google-apis-bigquery_v2 0.55.0 → 0.56.0

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 25d8500f82cbfb24ff98b21a820001c2350115e69735b53b9105ffce817abf37
4
- data.tar.gz: fd3558fc9eb0ee8372c6fa94754c0d40fa711c28f35be23111c45c99966e946a
3
+ metadata.gz: 96d288b73ae9414e0d7892c2b9aa8c31ca683a47d12a4375243b81ae2a75c4e7
4
+ data.tar.gz: f127e06eff8aa5cc07d98ac73b37c1ddb1e1bd439eaeb4b20cf73cf6b5676dfa
5
5
  SHA512:
6
- metadata.gz: 0b67ce265711b5c31170a8f5ab7c41ea52650e9f4d2f7ef00bbb330b76e08b08e10310edacc5abb52c083cb4c4acc060068fb5f028830d7868ad49cb192512c7
7
- data.tar.gz: 29d8df277a6c9078070bb9ef3170b2deba2d2e129cbec1c45ca79b3bfa59c428447407b2b0ad92883ea907d10dcba33893a9f5f33cf1685a7ebb485f192f9f4c
6
+ metadata.gz: 06bcddbe313e8362eb55f3836fbf75325ee4ea5b021436cdd6872cfa617af36c18a626cd17454c8f368da73486211d14e5d5788016ccd3a823ebf5776fb8a160
7
+ data.tar.gz: 223a8a49b2c7800e7379d3e3339cb5c23ea8503f0e9d82355633cfc6eabb7714d162b93437a7d87c708a52750d00a140fb9a4080ba7506720a3a23577800eb6b
data/CHANGELOG.md CHANGED
@@ -1,5 +1,9 @@
1
1
  # Release history for google-apis-bigquery_v2
2
2
 
3
+ ### v0.56.0 (2023-07-16)
4
+
5
+ * Regenerated from discovery document revision 20230708
6
+
3
7
  ### v0.55.0 (2023-06-25)
4
8
 
5
9
  * Regenerated from discovery document revision 20230617
@@ -5407,7 +5407,8 @@ module Google
5407
5407
  # @return [Fixnum]
5408
5408
  attr_accessor :expiration_time
5409
5409
 
5410
- # Output only. Input feature columns that were used to train this model.
5410
+ # Output only. Input feature columns for the model inference. If the model is
5411
+ # trained with TRANSFORM clause, these are the input of the TRANSFORM clause.
5411
5412
  # Corresponds to the JSON property `featureColumns`
5412
5413
  # @return [Array<Google::Apis::BigqueryV2::StandardSqlField>]
5413
5414
  attr_accessor :feature_columns
@@ -8533,6 +8534,11 @@ module Google
8533
8534
  class TrainingOptions
8534
8535
  include Google::Apis::Core::Hashable
8535
8536
 
8537
+ # Activation function of the neural nets.
8538
+ # Corresponds to the JSON property `activationFn`
8539
+ # @return [String]
8540
+ attr_accessor :activation_fn
8541
+
8536
8542
  # If true, detect step changes and make data adjustment in the input time series.
8537
8543
  # Corresponds to the JSON property `adjustStepChanges`
8538
8544
  # @return [Boolean]
@@ -8562,6 +8568,13 @@ module Google
8562
8568
  # @return [Fixnum]
8563
8569
  attr_accessor :auto_arima_min_order
8564
8570
 
8571
+ # Whether to calculate class weights automatically based on the popularity of
8572
+ # each label.
8573
+ # Corresponds to the JSON property `autoClassWeights`
8574
+ # @return [Boolean]
8575
+ attr_accessor :auto_class_weights
8576
+ alias_method :auto_class_weights?, :auto_class_weights
8577
+
8565
8578
  # Batch size for dnn models.
8566
8579
  # Corresponds to the JSON property `batchSize`
8567
8580
  # @return [Fixnum]
@@ -8572,6 +8585,11 @@ module Google
8572
8585
  # @return [String]
8573
8586
  attr_accessor :booster_type
8574
8587
 
8588
+ # Budget in hours for AutoML training.
8589
+ # Corresponds to the JSON property `budgetHours`
8590
+ # @return [Float]
8591
+ attr_accessor :budget_hours
8592
+
8575
8593
  # Whether or not p-value test should be computed for this model. Only available
8576
8594
  # for linear and logistic regression models.
8577
8595
  # Corresponds to the JSON property `calculatePValues`
@@ -8675,6 +8693,12 @@ module Google
8675
8693
  # @return [String]
8676
8694
  attr_accessor :feedback_type
8677
8695
 
8696
+ # Whether the model should include intercept during model training.
8697
+ # Corresponds to the JSON property `fitIntercept`
8698
+ # @return [Boolean]
8699
+ attr_accessor :fit_intercept
8700
+ alias_method :fit_intercept?, :fit_intercept
8701
+
8678
8702
  # Hidden units for dnn models.
8679
8703
  # Corresponds to the JSON property `hiddenUnits`
8680
8704
  # @return [Array<Fixnum>]
@@ -8740,6 +8764,11 @@ module Google
8740
8764
  # @return [String]
8741
8765
  attr_accessor :kmeans_initialization_method
8742
8766
 
8767
+ # L1 regularization coefficient to activations.
8768
+ # Corresponds to the JSON property `l1RegActivation`
8769
+ # @return [Float]
8770
+ attr_accessor :l1_reg_activation
8771
+
8743
8772
  # L1 regularization coefficient.
8744
8773
  # Corresponds to the JSON property `l1Regularization`
8745
8774
  # @return [Float]
@@ -8815,6 +8844,11 @@ module Google
8815
8844
  # @return [Fixnum]
8816
8845
  attr_accessor :min_tree_child_weight
8817
8846
 
8847
+ # The model registry.
8848
+ # Corresponds to the JSON property `modelRegistry`
8849
+ # @return [String]
8850
+ attr_accessor :model_registry
8851
+
8818
8852
  # Google Cloud Storage URI from which the model was imported. Only applicable
8819
8853
  # for imported models.
8820
8854
  # Corresponds to the JSON property `modelUri`
@@ -8842,6 +8876,12 @@ module Google
8842
8876
  # @return [Fixnum]
8843
8877
  attr_accessor :num_parallel_tree
8844
8878
 
8879
+ # Number of principal components to keep in the PCA model. Must be <= the number
8880
+ # of features.
8881
+ # Corresponds to the JSON property `numPrincipalComponents`
8882
+ # @return [Fixnum]
8883
+ attr_accessor :num_principal_components
8884
+
8845
8885
  # Number of trials to run this hyperparameter tuning job.
8846
8886
  # Corresponds to the JSON property `numTrials`
8847
8887
  # @return [Fixnum]
@@ -8852,11 +8892,40 @@ module Google
8852
8892
  # @return [String]
8853
8893
  attr_accessor :optimization_strategy
8854
8894
 
8895
+ # Optimizer used for training the neural nets.
8896
+ # Corresponds to the JSON property `optimizer`
8897
+ # @return [String]
8898
+ attr_accessor :optimizer
8899
+
8900
+ # The minimum ratio of cumulative explained variance that needs to be given by
8901
+ # the PCA model.
8902
+ # Corresponds to the JSON property `pcaExplainedVarianceRatio`
8903
+ # @return [Float]
8904
+ attr_accessor :pca_explained_variance_ratio
8905
+
8906
+ # The solver for PCA.
8907
+ # Corresponds to the JSON property `pcaSolver`
8908
+ # @return [String]
8909
+ attr_accessor :pca_solver
8910
+
8855
8911
  # Number of paths for the sampled Shapley explain method.
8856
8912
  # Corresponds to the JSON property `sampledShapleyNumPaths`
8857
8913
  # @return [Fixnum]
8858
8914
  attr_accessor :sampled_shapley_num_paths
8859
8915
 
8916
+ # If true, scale the feature values by dividing the feature standard deviation.
8917
+ # Currently only apply to PCA.
8918
+ # Corresponds to the JSON property `scaleFeatures`
8919
+ # @return [Boolean]
8920
+ attr_accessor :scale_features
8921
+ alias_method :scale_features?, :scale_features
8922
+
8923
+ # Whether to standardize numerical features. Default to true.
8924
+ # Corresponds to the JSON property `standardizeFeatures`
8925
+ # @return [Boolean]
8926
+ attr_accessor :standardize_features
8927
+ alias_method :standardize_features?, :standardize_features
8928
+
8860
8929
  # Subsample fraction of the training data to grow tree to prevent overfitting
8861
8930
  # for boosted tree models.
8862
8931
  # Corresponds to the JSON property `subsample`
@@ -8909,6 +8978,12 @@ module Google
8909
8978
  # @return [String]
8910
8979
  attr_accessor :user_column
8911
8980
 
8981
+ # The version aliases to apply in Vertex AI model registry. Always overwrite if
8982
+ # the version aliases exists in a existing model.
8983
+ # Corresponds to the JSON property `vertexAiModelVersionAliases`
8984
+ # @return [Array<String>]
8985
+ attr_accessor :vertex_ai_model_version_aliases
8986
+
8912
8987
  # Hyperparameter for matrix factoration when implicit feedback type is specified.
8913
8988
  # Corresponds to the JSON property `walsAlpha`
8914
8989
  # @return [Float]
@@ -8931,13 +9006,16 @@ module Google
8931
9006
 
8932
9007
  # Update properties of this object
8933
9008
  def update!(**args)
9009
+ @activation_fn = args[:activation_fn] if args.key?(:activation_fn)
8934
9010
  @adjust_step_changes = args[:adjust_step_changes] if args.key?(:adjust_step_changes)
8935
9011
  @approx_global_feature_contrib = args[:approx_global_feature_contrib] if args.key?(:approx_global_feature_contrib)
8936
9012
  @auto_arima = args[:auto_arima] if args.key?(:auto_arima)
8937
9013
  @auto_arima_max_order = args[:auto_arima_max_order] if args.key?(:auto_arima_max_order)
8938
9014
  @auto_arima_min_order = args[:auto_arima_min_order] if args.key?(:auto_arima_min_order)
9015
+ @auto_class_weights = args[:auto_class_weights] if args.key?(:auto_class_weights)
8939
9016
  @batch_size = args[:batch_size] if args.key?(:batch_size)
8940
9017
  @booster_type = args[:booster_type] if args.key?(:booster_type)
9018
+ @budget_hours = args[:budget_hours] if args.key?(:budget_hours)
8941
9019
  @calculate_p_values = args[:calculate_p_values] if args.key?(:calculate_p_values)
8942
9020
  @clean_spikes_and_dips = args[:clean_spikes_and_dips] if args.key?(:clean_spikes_and_dips)
8943
9021
  @color_space = args[:color_space] if args.key?(:color_space)
@@ -8955,6 +9033,7 @@ module Google
8955
9033
  @early_stop = args[:early_stop] if args.key?(:early_stop)
8956
9034
  @enable_global_explain = args[:enable_global_explain] if args.key?(:enable_global_explain)
8957
9035
  @feedback_type = args[:feedback_type] if args.key?(:feedback_type)
9036
+ @fit_intercept = args[:fit_intercept] if args.key?(:fit_intercept)
8958
9037
  @hidden_units = args[:hidden_units] if args.key?(:hidden_units)
8959
9038
  @holiday_region = args[:holiday_region] if args.key?(:holiday_region)
8960
9039
  @horizon = args[:horizon] if args.key?(:horizon)
@@ -8967,6 +9046,7 @@ module Google
8967
9046
  @item_column = args[:item_column] if args.key?(:item_column)
8968
9047
  @kmeans_initialization_column = args[:kmeans_initialization_column] if args.key?(:kmeans_initialization_column)
8969
9048
  @kmeans_initialization_method = args[:kmeans_initialization_method] if args.key?(:kmeans_initialization_method)
9049
+ @l1_reg_activation = args[:l1_reg_activation] if args.key?(:l1_reg_activation)
8970
9050
  @l1_regularization = args[:l1_regularization] if args.key?(:l1_regularization)
8971
9051
  @l2_regularization = args[:l2_regularization] if args.key?(:l2_regularization)
8972
9052
  @label_class_weights = args[:label_class_weights] if args.key?(:label_class_weights)
@@ -8981,14 +9061,21 @@ module Google
8981
9061
  @min_split_loss = args[:min_split_loss] if args.key?(:min_split_loss)
8982
9062
  @min_time_series_length = args[:min_time_series_length] if args.key?(:min_time_series_length)
8983
9063
  @min_tree_child_weight = args[:min_tree_child_weight] if args.key?(:min_tree_child_weight)
9064
+ @model_registry = args[:model_registry] if args.key?(:model_registry)
8984
9065
  @model_uri = args[:model_uri] if args.key?(:model_uri)
8985
9066
  @non_seasonal_order = args[:non_seasonal_order] if args.key?(:non_seasonal_order)
8986
9067
  @num_clusters = args[:num_clusters] if args.key?(:num_clusters)
8987
9068
  @num_factors = args[:num_factors] if args.key?(:num_factors)
8988
9069
  @num_parallel_tree = args[:num_parallel_tree] if args.key?(:num_parallel_tree)
9070
+ @num_principal_components = args[:num_principal_components] if args.key?(:num_principal_components)
8989
9071
  @num_trials = args[:num_trials] if args.key?(:num_trials)
8990
9072
  @optimization_strategy = args[:optimization_strategy] if args.key?(:optimization_strategy)
9073
+ @optimizer = args[:optimizer] if args.key?(:optimizer)
9074
+ @pca_explained_variance_ratio = args[:pca_explained_variance_ratio] if args.key?(:pca_explained_variance_ratio)
9075
+ @pca_solver = args[:pca_solver] if args.key?(:pca_solver)
8991
9076
  @sampled_shapley_num_paths = args[:sampled_shapley_num_paths] if args.key?(:sampled_shapley_num_paths)
9077
+ @scale_features = args[:scale_features] if args.key?(:scale_features)
9078
+ @standardize_features = args[:standardize_features] if args.key?(:standardize_features)
8992
9079
  @subsample = args[:subsample] if args.key?(:subsample)
8993
9080
  @tf_version = args[:tf_version] if args.key?(:tf_version)
8994
9081
  @time_series_data_column = args[:time_series_data_column] if args.key?(:time_series_data_column)
@@ -8999,6 +9086,7 @@ module Google
8999
9086
  @tree_method = args[:tree_method] if args.key?(:tree_method)
9000
9087
  @trend_smoothing_window_size = args[:trend_smoothing_window_size] if args.key?(:trend_smoothing_window_size)
9001
9088
  @user_column = args[:user_column] if args.key?(:user_column)
9089
+ @vertex_ai_model_version_aliases = args[:vertex_ai_model_version_aliases] if args.key?(:vertex_ai_model_version_aliases)
9002
9090
  @wals_alpha = args[:wals_alpha] if args.key?(:wals_alpha)
9003
9091
  @warm_start = args[:warm_start] if args.key?(:warm_start)
9004
9092
  @xgboost_version = args[:xgboost_version] if args.key?(:xgboost_version)
@@ -16,13 +16,13 @@ module Google
16
16
  module Apis
17
17
  module BigqueryV2
18
18
  # Version of the google-apis-bigquery_v2 gem
19
- GEM_VERSION = "0.55.0"
19
+ GEM_VERSION = "0.56.0"
20
20
 
21
21
  # Version of the code generator used to generate this client
22
22
  GENERATOR_VERSION = "0.12.0"
23
23
 
24
24
  # Revision of the discovery document this client was generated from
25
- REVISION = "20230617"
25
+ REVISION = "20230708"
26
26
  end
27
27
  end
28
28
  end
@@ -3188,13 +3188,16 @@ module Google
3188
3188
  class TrainingOptions
3189
3189
  # @private
3190
3190
  class Representation < Google::Apis::Core::JsonRepresentation
3191
+ property :activation_fn, as: 'activationFn'
3191
3192
  property :adjust_step_changes, as: 'adjustStepChanges'
3192
3193
  property :approx_global_feature_contrib, as: 'approxGlobalFeatureContrib'
3193
3194
  property :auto_arima, as: 'autoArima'
3194
3195
  property :auto_arima_max_order, :numeric_string => true, as: 'autoArimaMaxOrder'
3195
3196
  property :auto_arima_min_order, :numeric_string => true, as: 'autoArimaMinOrder'
3197
+ property :auto_class_weights, as: 'autoClassWeights'
3196
3198
  property :batch_size, :numeric_string => true, as: 'batchSize'
3197
3199
  property :booster_type, as: 'boosterType'
3200
+ property :budget_hours, as: 'budgetHours'
3198
3201
  property :calculate_p_values, as: 'calculatePValues'
3199
3202
  property :clean_spikes_and_dips, as: 'cleanSpikesAndDips'
3200
3203
  property :color_space, as: 'colorSpace'
@@ -3212,6 +3215,7 @@ module Google
3212
3215
  property :early_stop, as: 'earlyStop'
3213
3216
  property :enable_global_explain, as: 'enableGlobalExplain'
3214
3217
  property :feedback_type, as: 'feedbackType'
3218
+ property :fit_intercept, as: 'fitIntercept'
3215
3219
  collection :hidden_units, as: 'hiddenUnits'
3216
3220
  property :holiday_region, as: 'holidayRegion'
3217
3221
  property :horizon, :numeric_string => true, as: 'horizon'
@@ -3224,6 +3228,7 @@ module Google
3224
3228
  property :item_column, as: 'itemColumn'
3225
3229
  property :kmeans_initialization_column, as: 'kmeansInitializationColumn'
3226
3230
  property :kmeans_initialization_method, as: 'kmeansInitializationMethod'
3231
+ property :l1_reg_activation, as: 'l1RegActivation'
3227
3232
  property :l1_regularization, as: 'l1Regularization'
3228
3233
  property :l2_regularization, as: 'l2Regularization'
3229
3234
  hash :label_class_weights, as: 'labelClassWeights'
@@ -3238,15 +3243,22 @@ module Google
3238
3243
  property :min_split_loss, as: 'minSplitLoss'
3239
3244
  property :min_time_series_length, :numeric_string => true, as: 'minTimeSeriesLength'
3240
3245
  property :min_tree_child_weight, :numeric_string => true, as: 'minTreeChildWeight'
3246
+ property :model_registry, as: 'modelRegistry'
3241
3247
  property :model_uri, as: 'modelUri'
3242
3248
  property :non_seasonal_order, as: 'nonSeasonalOrder', class: Google::Apis::BigqueryV2::ArimaOrder, decorator: Google::Apis::BigqueryV2::ArimaOrder::Representation
3243
3249
 
3244
3250
  property :num_clusters, :numeric_string => true, as: 'numClusters'
3245
3251
  property :num_factors, :numeric_string => true, as: 'numFactors'
3246
3252
  property :num_parallel_tree, :numeric_string => true, as: 'numParallelTree'
3253
+ property :num_principal_components, :numeric_string => true, as: 'numPrincipalComponents'
3247
3254
  property :num_trials, :numeric_string => true, as: 'numTrials'
3248
3255
  property :optimization_strategy, as: 'optimizationStrategy'
3256
+ property :optimizer, as: 'optimizer'
3257
+ property :pca_explained_variance_ratio, as: 'pcaExplainedVarianceRatio'
3258
+ property :pca_solver, as: 'pcaSolver'
3249
3259
  property :sampled_shapley_num_paths, :numeric_string => true, as: 'sampledShapleyNumPaths'
3260
+ property :scale_features, as: 'scaleFeatures'
3261
+ property :standardize_features, as: 'standardizeFeatures'
3250
3262
  property :subsample, as: 'subsample'
3251
3263
  property :tf_version, as: 'tfVersion'
3252
3264
  property :time_series_data_column, as: 'timeSeriesDataColumn'
@@ -3257,6 +3269,7 @@ module Google
3257
3269
  property :tree_method, as: 'treeMethod'
3258
3270
  property :trend_smoothing_window_size, :numeric_string => true, as: 'trendSmoothingWindowSize'
3259
3271
  property :user_column, as: 'userColumn'
3272
+ collection :vertex_ai_model_version_aliases, as: 'vertexAiModelVersionAliases'
3260
3273
  property :wals_alpha, as: 'walsAlpha'
3261
3274
  property :warm_start, as: 'warmStart'
3262
3275
  property :xgboost_version, as: 'xgboostVersion'
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: google-apis-bigquery_v2
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.55.0
4
+ version: 0.56.0
5
5
  platform: ruby
6
6
  authors:
7
7
  - Google LLC
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2023-06-25 00:00:00.000000000 Z
11
+ date: 2023-07-16 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: google-apis-core
@@ -58,7 +58,7 @@ licenses:
58
58
  metadata:
59
59
  bug_tracker_uri: https://github.com/googleapis/google-api-ruby-client/issues
60
60
  changelog_uri: https://github.com/googleapis/google-api-ruby-client/tree/main/generated/google-apis-bigquery_v2/CHANGELOG.md
61
- documentation_uri: https://googleapis.dev/ruby/google-apis-bigquery_v2/v0.55.0
61
+ documentation_uri: https://googleapis.dev/ruby/google-apis-bigquery_v2/v0.56.0
62
62
  source_code_uri: https://github.com/googleapis/google-api-ruby-client/tree/main/generated/google-apis-bigquery_v2
63
63
  post_install_message:
64
64
  rdoc_options: []