gmp 0.4.1-x86-mingw32 → 0.4.3-x86-mingw32
Sign up to get free protection for your applications and to get access to all the features.
- data/CHANGELOG +14 -0
- data/README.rdoc +49 -17
- data/benchmark/runbench.rb +165 -165
- data/ext/gmp.c +63 -30
- data/ext/gmp.so +0 -0
- data/ext/gmpf.c +207 -3
- data/ext/gmpf.h +0 -132
- data/ext/gmprandstate.c +56 -2
- data/ext/libmpfr-1.dll +0 -0
- data/ext/ruby_gmp.h +39 -0
- data/manual.pdf +0 -0
- data/manual.tex +67 -7
- data/test/mpfr_tsqrt.rb +53 -0
- data/test/tc_f_precision.rb +99 -34
- data/test/tc_mpfr_functions.rb +45 -0
- data/test/tc_mpfr_random.rb +49 -0
- data/test/test_helper.rb +1 -0
- data/test/unit_tests.rb +9 -14
- metadata +8 -3
data/ext/gmprandstate.c
CHANGED
@@ -205,12 +205,13 @@ VALUE r_gmprandstate_urandomb(VALUE self, VALUE arg)
|
|
205
205
|
|
206
206
|
/*
|
207
207
|
* call-seq:
|
208
|
-
* rand_state.urandomm(
|
208
|
+
* rand_state.urandomm(integer)
|
209
209
|
*
|
210
210
|
* From the GMP Manual:
|
211
211
|
*
|
212
212
|
* Generate a uniformly distributed random integer in the range 0 to
|
213
|
-
*
|
213
|
+
* _integer-1_, inclusive. _integer_ can be an instance of GMP::Z,
|
214
|
+
* Fixnum, or Bignum
|
214
215
|
*/
|
215
216
|
VALUE r_gmprandstate_urandomm(VALUE self, VALUE arg)
|
216
217
|
{
|
@@ -241,6 +242,54 @@ VALUE r_gmprandstate_urandomm(VALUE self, VALUE arg)
|
|
241
242
|
return res;
|
242
243
|
}
|
243
244
|
|
245
|
+
|
246
|
+
#ifdef MPFR
|
247
|
+
/**********************************************************************
|
248
|
+
* MPFR Random Numbers *
|
249
|
+
**********************************************************************/
|
250
|
+
|
251
|
+
/*
|
252
|
+
* call-seq:
|
253
|
+
* rand_state.mpfr_urandomb()
|
254
|
+
*
|
255
|
+
* From the MPFR Manual:
|
256
|
+
*
|
257
|
+
* Generate a uniformly distributed random float in the interval 0 <= rop < 1.
|
258
|
+
*/
|
259
|
+
VALUE r_gmprandstate_mpfr_urandomb(int argc, VALUE *argv, VALUE self)
|
260
|
+
{
|
261
|
+
MP_RANDSTATE *self_val;
|
262
|
+
MP_FLOAT *res_val;
|
263
|
+
VALUE res;
|
264
|
+
unsigned long prec = 0;
|
265
|
+
|
266
|
+
if (argc > 1)
|
267
|
+
rb_raise (rb_eArgError, "wrong # of arguments(%d for 0 or 1)", argc);
|
268
|
+
|
269
|
+
mprandstate_get_struct (self,self_val);
|
270
|
+
|
271
|
+
if (argc == 1) {
|
272
|
+
if (FIXNUM_P (argv[0])) {
|
273
|
+
if (FIX2INT (argv[0]) >= 0)
|
274
|
+
prec = FIX2INT (argv[0]);
|
275
|
+
else
|
276
|
+
rb_raise (rb_eRangeError, "prec must be non-negative");
|
277
|
+
} else {
|
278
|
+
rb_raise (rb_eTypeError, "prec must be a Fixnum");
|
279
|
+
}
|
280
|
+
}
|
281
|
+
|
282
|
+
mpf_make_struct (res, res_val);
|
283
|
+
if (prec == 0) { mpf_init (res_val); }
|
284
|
+
else { mpf_init2 (res_val, prec); }
|
285
|
+
|
286
|
+
mpfr_urandomb (res_val, self_val);
|
287
|
+
|
288
|
+
return res;
|
289
|
+
}
|
290
|
+
#endif /* MPFR */
|
291
|
+
|
292
|
+
|
244
293
|
void init_gmprandstate()
|
245
294
|
{
|
246
295
|
mGMP = rb_define_module("GMP");
|
@@ -258,4 +307,9 @@ void init_gmprandstate()
|
|
258
307
|
// Integer Random Numbers
|
259
308
|
rb_define_method(cGMP_RandState, "urandomb", r_gmprandstate_urandomb, 1);
|
260
309
|
rb_define_method(cGMP_RandState, "urandomm", r_gmprandstate_urandomm, 1);
|
310
|
+
|
311
|
+
#ifdef MPFR
|
312
|
+
// Float Random Numbers
|
313
|
+
rb_define_method(cGMP_RandState, "mpfr_urandomb", r_gmprandstate_mpfr_urandomb, -1);
|
314
|
+
#endif /* MPFR */
|
261
315
|
}
|
data/ext/libmpfr-1.dll
ADDED
Binary file
|
data/ext/ruby_gmp.h
CHANGED
@@ -207,6 +207,40 @@ extern VALUE r_gmpf_eq(VALUE self, VALUE arg);
|
|
207
207
|
extern VALUE r_gmpf_cmp(VALUE self, VALUE arg);
|
208
208
|
extern int mpf_cmp_value(MP_FLOAT *OP, VALUE arg);
|
209
209
|
|
210
|
+
// MPFR
|
211
|
+
#ifdef MPFR
|
212
|
+
extern VALUE r_gmpfr_sqrt(VALUE self);
|
213
|
+
|
214
|
+
extern VALUE r_gmpfr_log(VALUE self);
|
215
|
+
extern VALUE r_gmpfr_log2(VALUE self);
|
216
|
+
extern VALUE r_gmpfr_log10(VALUE self);
|
217
|
+
extern VALUE r_gmpfr_exp(VALUE self);
|
218
|
+
|
219
|
+
extern VALUE r_gmpfr_cos(VALUE self);
|
220
|
+
extern VALUE r_gmpfr_sin(VALUE self);
|
221
|
+
extern VALUE r_gmpfr_tan(VALUE self);
|
222
|
+
extern VALUE r_gmpfr_sec(VALUE self);
|
223
|
+
extern VALUE r_gmpfr_csc(VALUE self);
|
224
|
+
extern VALUE r_gmpfr_cot(VALUE self);
|
225
|
+
|
226
|
+
extern VALUE r_gmpfr_acos(VALUE self);
|
227
|
+
extern VALUE r_gmpfr_asin(VALUE self);
|
228
|
+
extern VALUE r_gmpfr_atan(VALUE self);
|
229
|
+
|
230
|
+
extern VALUE r_gmpfr_cosh(VALUE self);
|
231
|
+
extern VALUE r_gmpfr_sinh(VALUE self);
|
232
|
+
extern VALUE r_gmpfr_tanh(VALUE self);
|
233
|
+
|
234
|
+
extern VALUE r_gmpfr_acosh(VALUE self);
|
235
|
+
extern VALUE r_gmpfr_asinh(VALUE self);
|
236
|
+
extern VALUE r_gmpfr_atanh(VALUE self);
|
237
|
+
|
238
|
+
extern VALUE r_gmpfrsg_const_log2();
|
239
|
+
extern VALUE r_gmpfrsg_const_pi();
|
240
|
+
extern VALUE r_gmpfrsg_const_euler();
|
241
|
+
extern VALUE r_gmpfrsg_const_catalan();
|
242
|
+
#endif /* MPFR */
|
243
|
+
|
210
244
|
// _unsorted_
|
211
245
|
extern VALUE r_gmpf_sgn(VALUE self);
|
212
246
|
extern VALUE r_gmpf_get_prec(VALUE self);
|
@@ -226,6 +260,11 @@ extern VALUE r_gmprandstate_seed(VALUE self, VALUE arg);
|
|
226
260
|
extern VALUE r_gmprandstate_urandomb(VALUE self, VALUE arg);
|
227
261
|
extern VALUE r_gmprandstate_urandomm(VALUE self, VALUE arg);
|
228
262
|
|
263
|
+
#ifdef MPFR
|
264
|
+
// Float Random Numbers
|
265
|
+
extern VALUE r_gmprandstate_mpfr_urandomb(int argc, VALUE *argv, VALUE self);
|
266
|
+
#endif /* MPFR */
|
267
|
+
|
229
268
|
|
230
269
|
/* from gmpbench_timing.c */
|
231
270
|
|
data/manual.pdf
CHANGED
Binary file
|
data/manual.tex
CHANGED
@@ -28,8 +28,8 @@
|
|
28
28
|
\huge{gmp} &\\
|
29
29
|
\midrule[3pt]
|
30
30
|
\multicolumn{2}{r}{\large{Ruby bindings to the GMP library}}\\
|
31
|
-
\multicolumn{2}{r}{\large{Edition 0.4.
|
32
|
-
\multicolumn{2}{r}{\large{
|
31
|
+
\multicolumn{2}{r}{\large{Edition 0.4.3}}\\
|
32
|
+
\multicolumn{2}{r}{\large{8 March 2010}}
|
33
33
|
\end{tabular}
|
34
34
|
|
35
35
|
\vfill
|
@@ -41,7 +41,7 @@
|
|
41
41
|
This manual describes how to use the gmp Ruby gem, which provides bindings to
|
42
42
|
the GNU multiple precision arithmetic library, version 4.3.x or 5.0.x.\\
|
43
43
|
\\
|
44
|
-
Copyright 2009 Sam Rawlins.\\
|
44
|
+
Copyright 2009, 2010 Sam Rawlins.\\
|
45
45
|
No license yet.
|
46
46
|
\newpage
|
47
47
|
|
@@ -201,7 +201,29 @@ The gmp gem includes the namespace \texttt{GMP} and four classes within \texttt{
|
|
201
201
|
|
202
202
|
In addition to the above four classes, there is also one constant within \texttt{GMP}:
|
203
203
|
\begin{itemize}
|
204
|
-
\item \texttt{GMP::GMP\_VERSION} - The version of GMP
|
204
|
+
\item \texttt{GMP::GMP\_VERSION} - The version of GMP linked into the gmp gem
|
205
|
+
\item \texttt{GMP::GMP\_CC} - The compiler that compiled GMP linked into the gmp gem
|
206
|
+
\item \texttt{GMP::GMP\_CFLAGS} - The compiler flags used to compile GMP linked into
|
207
|
+
the gmp gem
|
208
|
+
\item \texttt{GMP::GMP\_BITS\_PER\_LIMB} - The number of bits per limb
|
209
|
+
\end{itemize}
|
210
|
+
|
211
|
+
\section{MPFR basics}
|
212
|
+
|
213
|
+
The gmp gem can optionally link to MPFR, the Multiple Precision Floating-Point Reliable
|
214
|
+
Library. The x86-mswin32 version of the gmp gem comes with MPFR. This library uses the
|
215
|
+
floating-point type from GMP, and thus the MPFR functions mapped in the gmp gem become
|
216
|
+
methods in \texttt{GMP::F}.
|
217
|
+
|
218
|
+
There are additional constants within \texttt{GMP} when MPFR is linked:
|
219
|
+
\begin{itemize}
|
220
|
+
\item \texttt{GMP::MPFR\_VERSION} - The version of MPFR linked into the gmp gem.
|
221
|
+
\item \texttt{GMP::GMP\_RNDN} - Rounding mode representing "round to nearest."
|
222
|
+
\item \texttt{GMP::GMP\_RNDZ} - Rounding mode representing "round toward zero."
|
223
|
+
\item \texttt{GMP::GMP\_RNDU} - Rounding mode representing "round toward positive
|
224
|
+
infinity."
|
225
|
+
\item \texttt{GMP::GMP\_RNDD} - Rounding mode representing "round toward negative
|
226
|
+
infinity."
|
205
227
|
\end{itemize}
|
206
228
|
|
207
229
|
\newpage
|
@@ -693,8 +715,6 @@ There is also a convenience method available, \texttt{GMP::Z()}.\\
|
|
693
715
|
}
|
694
716
|
\end{tabular}
|
695
717
|
|
696
|
-
|
697
|
-
|
698
718
|
\subsection{Integer Logic and Bit Fiddling}
|
699
719
|
|
700
720
|
\begin{tabular}{p{\methwidth} l r}
|
@@ -742,6 +762,35 @@ There is also a convenience method available, \texttt{GMP::Z()}.\\
|
|
742
762
|
}
|
743
763
|
\end{tabular}
|
744
764
|
|
765
|
+
\newpage
|
766
|
+
\section{Rational Functions}
|
767
|
+
|
768
|
+
\subsection{Initializing, Assigning Rationals}
|
769
|
+
|
770
|
+
\begin{tabular}{p{\methwidth} l r}
|
771
|
+
\toprule
|
772
|
+
\textbf{new} & & GMP::Q.new $\rightarrow$ \textit{rational} \\
|
773
|
+
& & GMP::Q.new(\textit{numerator = 0}, \textit{denominator = 1}) $\rightarrow$ \textit{rational} \\
|
774
|
+
& & GMP::Q.new(\textit{str}) $\rightarrow$ \textit{rational} \\
|
775
|
+
\cmidrule(r){2-3}
|
776
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
777
|
+
This method creates a new \textit{GMP::Q} rational number. It takes two optional
|
778
|
+
arguments for the value of the numerator and denominator. These arguments can each be
|
779
|
+
an instance of several classes. Here are some
|
780
|
+
examples:\newline
|
781
|
+
|
782
|
+
\texttt{GMP::Q.new \qqqquad\qqqquad \#=> 0 (default) \newline
|
783
|
+
GMP::Q.new(1) \qqqquad\qquad\ \#=> 1 (Ruby Fixnum) \newline
|
784
|
+
GMP::Q.new(1,3) \qqqquad\ \#=> 1/3 (Ruby Fixnums) \newline
|
785
|
+
GMP::Q.new("127") \qqqquad\ \#=> 127 (Ruby String)\newline
|
786
|
+
GMP::Q.new(4294967296) \qquad \#=> 4294967296 (Ruby Bignum)\newline
|
787
|
+
GMP::Q.new(GMP::Z.new(31)) \#=> 31 (GMP Integer)}
|
788
|
+
}
|
789
|
+
\end{tabular}
|
790
|
+
\newline\newline
|
791
|
+
|
792
|
+
There is also a convenience method available, \texttt{GMP::Q()}.\\
|
793
|
+
|
745
794
|
\newpage
|
746
795
|
\section{Random Number Functions}
|
747
796
|
|
@@ -793,12 +842,23 @@ There is also a convenience method available, \texttt{GMP::Z()}.\\
|
|
793
842
|
|
794
843
|
\begin{tabular}{p{\methwidth} l r}
|
795
844
|
\toprule
|
796
|
-
\textbf{urandomb} & & $state$.urandomb($n$) $\rightarrow$ $
|
845
|
+
\textbf{urandomb} & & $state$.urandomb($n$) $\rightarrow$ $integer$ \\
|
797
846
|
\cmidrule(r){2-3}
|
798
847
|
& \multicolumn{2}{p{\defnwidth}}{
|
799
848
|
Generates a uniformly distributed random integer in the range $0$ to $2^n -1$,
|
800
849
|
inclusive.
|
801
850
|
}
|
802
851
|
\end{tabular}
|
852
|
+
\newline\newline
|
853
|
+
|
854
|
+
\begin{tabular}{p{\methwidth} l r}
|
855
|
+
\toprule
|
856
|
+
\textbf{urandomm} & & $state$.urandomm($n$) $\rightarrow$ $integer$ \\
|
857
|
+
\cmidrule(r){2-3}
|
858
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
859
|
+
Generates a uniformly distributed random integer in the range $0$ to $n -1$,
|
860
|
+
inclusive. $n$ can be an instance of \gmpz, $Fixnum$, or $Bignum$.
|
861
|
+
}
|
862
|
+
\end{tabular}
|
803
863
|
|
804
864
|
\end{document}
|
data/test/mpfr_tsqrt.rb
ADDED
@@ -0,0 +1,53 @@
|
|
1
|
+
require 'test_helper'
|
2
|
+
|
3
|
+
class MPFR_TSQRT < Test::Unit::TestCase
|
4
|
+
def setup
|
5
|
+
@rand_state = GMP::RandState.new
|
6
|
+
end
|
7
|
+
|
8
|
+
# This really should be moved to be a method of GMP::F
|
9
|
+
def integer_component(f)
|
10
|
+
index_e = f.to_s.index('e')
|
11
|
+
exp = f.to_s[(index_e+1)..-1].to_i
|
12
|
+
return 0 if exp < 0
|
13
|
+
f.to_s[2..(index_e-1)][0,exp]
|
14
|
+
end
|
15
|
+
|
16
|
+
def check_diverse(as, p, qs)
|
17
|
+
q = GMP::F(as, p)
|
18
|
+
q = q.sqrt
|
19
|
+
assert_equal(integer_component(q), qs)
|
20
|
+
end
|
21
|
+
|
22
|
+
def property1(p, rounding)
|
23
|
+
current_rounding_mode = GMP::F.default_rounding_mode
|
24
|
+
GMP::F.default_rounding_mode = rounding
|
25
|
+
x = @rand_state.mpfr_urandomb(p)
|
26
|
+
y = @rand_state.mpfr_urandomb(p)
|
27
|
+
z = x**2 + y**2
|
28
|
+
z = x / z.sqrt
|
29
|
+
assert_between(-1, 1, z, "-1 <= x/sqrt(x^2+y^2) <= 1 should hold.")
|
30
|
+
GMP::F.default_rounding_mode = GMP.const_get(current_rounding_mode)
|
31
|
+
end
|
32
|
+
|
33
|
+
def property2(p, rounding)
|
34
|
+
current_rounding_mode = GMP::F.default_rounding_mode
|
35
|
+
GMP::F.default_rounding_mode = rounding
|
36
|
+
x = @rand_state.mpfr_urandomb(p)
|
37
|
+
y = (x ** 2).sqrt
|
38
|
+
assert_true(x == y, "sqrt(x^2) = x should hold.")
|
39
|
+
GMP::F.default_rounding_mode = GMP.const_get(current_rounding_mode)
|
40
|
+
end
|
41
|
+
|
42
|
+
def test_prec
|
43
|
+
(GMP::MPFR_PREC_MIN..128).each do |p|
|
44
|
+
property1(p, GMP::GMP_RNDN)
|
45
|
+
property1(p, GMP::GMP_RNDU)
|
46
|
+
property2(p, GMP::GMP_RNDN)
|
47
|
+
end
|
48
|
+
|
49
|
+
check_diverse("635030154261163106768013773815762607450069292760790610550915652722277604820131530404842415587328",
|
50
|
+
160,
|
51
|
+
"796887792767063979679855997149887366668464780637")
|
52
|
+
end
|
53
|
+
end
|
data/test/tc_f_precision.rb
CHANGED
@@ -2,47 +2,112 @@ require 'test_helper'
|
|
2
2
|
|
3
3
|
class TC_precision < Test::Unit::TestCase
|
4
4
|
def setup
|
5
|
+
begin
|
6
|
+
GMP::MPFR_VERSION
|
7
|
+
@initial_default_prec = GMP::F.default_prec
|
8
|
+
rescue
|
9
|
+
@initial_default_prec = GMP::F.default_prec
|
10
|
+
end
|
11
|
+
end
|
12
|
+
|
13
|
+
def test_initial_default_precision
|
14
|
+
begin
|
15
|
+
GMP::MPFR_VERSION
|
16
|
+
assert_equal(53, GMP::F.default_prec, "The initial default precision with MPFR should be 53.")
|
17
|
+
rescue
|
18
|
+
assert_equal(64, GMP::F.default_prec, "The initial default precision without MPFR should be 64.")
|
19
|
+
end
|
20
|
+
end
|
21
|
+
|
22
|
+
def test_initial_default_precision2
|
5
23
|
@pi = GMP::F.new(3.14)
|
6
24
|
@seven_halves = GMP::F.new(GMP::Q.new(7,2), 1000)
|
25
|
+
assert_in_delta(0, GMP::F.new(), 1e-12)
|
26
|
+
assert_equal(@initial_default_prec, GMP::F.new().prec)
|
27
|
+
assert_in_delta(3.14000000000000012434, @pi, 1e-12)
|
28
|
+
assert_equal(@initial_default_prec, @pi.prec)
|
29
|
+
assert_in_delta(1, GMP::F.new(1), 1e-12)
|
30
|
+
assert_equal(@initial_default_prec, GMP::F.new(1).prec)
|
31
|
+
assert_in_delta(3.14, GMP::F.new("3.14"), 1e-12)
|
32
|
+
assert_equal(@initial_default_prec, GMP::F.new("3.14").prec)
|
33
|
+
assert_in_delta(4294967296, GMP::F.new(2**32), 1e-12)
|
34
|
+
assert_equal(@initial_default_prec, GMP::F.new(2**32).prec)
|
35
|
+
assert_in_delta(3, GMP::F.new(GMP::Z.new(3)), 1e-12)
|
36
|
+
assert_equal(@initial_default_prec, GMP::F.new(GMP::Z.new(3)).prec)
|
37
|
+
assert_in_delta(3.5, GMP::F.new(GMP::Q.new(7,2)), 1e-12)
|
38
|
+
assert_equal(@initial_default_prec, GMP::F.new(GMP::Q.new(7,2)).prec)
|
39
|
+
assert_in_delta(3.14000000000000012434, GMP::F.new(@pi), 1e-12)
|
40
|
+
assert_equal(@initial_default_prec, GMP::F.new(@pi).prec)
|
7
41
|
end
|
8
42
|
|
9
43
|
def test_default_precision
|
10
|
-
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
assert_equal(
|
15
|
-
|
16
|
-
assert_equal(
|
17
|
-
|
18
|
-
assert_equal(
|
19
|
-
|
20
|
-
assert_equal(
|
21
|
-
|
22
|
-
assert_equal(
|
23
|
-
|
24
|
-
assert_equal(
|
25
|
-
|
44
|
+
GMP::F.default_prec = 128
|
45
|
+
@pi = GMP::F.new(3.14)
|
46
|
+
@seven_halves = GMP::F.new(GMP::Q.new(7,2), 1000)
|
47
|
+
assert_in_delta(0, GMP::F.new(), 1e-12)
|
48
|
+
assert_equal(128, GMP::F.new().prec)
|
49
|
+
assert_in_delta(3.14000000000000012434, @pi, 1e-12)
|
50
|
+
assert_equal(128, @pi.prec)
|
51
|
+
assert_in_delta(1, GMP::F.new(1), 1e-12)
|
52
|
+
assert_equal(128, GMP::F.new(1).prec)
|
53
|
+
assert_in_delta(3.14, GMP::F.new("3.14"), 1e-12)
|
54
|
+
assert_equal(128, GMP::F.new("3.14").prec)
|
55
|
+
assert_in_delta(4294967296, GMP::F.new(2**32), 1e-12)
|
56
|
+
assert_equal(128, GMP::F.new(2**32).prec)
|
57
|
+
assert_in_delta(3, GMP::F.new(GMP::Z.new(3)), 1e-12)
|
58
|
+
assert_equal(128, GMP::F.new(GMP::Z.new(3)).prec)
|
59
|
+
assert_in_delta(3.5, GMP::F.new(GMP::Q.new(7,2)), 1e-12)
|
60
|
+
assert_equal(128, GMP::F.new(GMP::Q.new(7,2)).prec)
|
61
|
+
assert_in_delta(3.14000000000000012434, GMP::F.new(@pi), 1e-12)
|
62
|
+
assert_equal(128, GMP::F.new(@pi).prec)
|
63
|
+
GMP::F.default_prec = @initial_default_prec
|
26
64
|
end
|
27
65
|
|
28
66
|
def test_specific_precision
|
29
|
-
|
30
|
-
|
31
|
-
assert_equal(
|
32
|
-
assert_equal(1024,
|
33
|
-
|
34
|
-
assert_equal(1024,
|
35
|
-
|
36
|
-
assert_equal(1024,
|
37
|
-
|
38
|
-
assert_equal(1024,
|
39
|
-
|
40
|
-
assert_equal(1024,
|
41
|
-
|
42
|
-
assert_equal(1024,
|
43
|
-
|
44
|
-
assert_equal(1024,
|
45
|
-
assert_equal(
|
46
|
-
assert_equal(
|
67
|
+
@pi = GMP::F.new(3.14)
|
68
|
+
@seven_halves = GMP::F.new(GMP::Q.new(7,2), 1024)
|
69
|
+
assert_equal(0, GMP::F.new(3.14, 1024).to_s =~ /0\.31400000000000001243449787580175325274467468261718750*e\+1/)
|
70
|
+
assert_equal(1024, GMP::F.new(3.14, 1024).prec)
|
71
|
+
assert_in_delta(1, GMP::F.new(1, 1024), 1e-12)
|
72
|
+
assert_equal(1024, GMP::F.new(1, 1024).prec)
|
73
|
+
assert_in_delta(3.14, GMP::F.new("3.14", 1024), 1e-12)
|
74
|
+
assert_equal(1024, GMP::F.new("3.14", 1024).prec)
|
75
|
+
assert_in_delta(4294967296, GMP::F.new(2**32, 1024), 1e-12)
|
76
|
+
assert_equal(1024, GMP::F.new(2**32, 1024).prec)
|
77
|
+
assert_in_delta(3, GMP::F.new(GMP::Z.new(3), 1024), 1e-12)
|
78
|
+
assert_equal(1024, GMP::F.new(GMP::Z.new(3), 1024).prec)
|
79
|
+
assert_in_delta(3.5, @seven_halves, 1e-12)
|
80
|
+
assert_equal(1024, @seven_halves.prec)
|
81
|
+
assert_in_delta(3.5, GMP::F.new(@seven_halves), 1e-12)
|
82
|
+
assert_equal(1024, GMP::F.new(@seven_halves).prec)
|
83
|
+
assert_equal(0, GMP::F.new(@pi, 1024).to_s =~ /0\.31400000000000001243449787580175325274467468261718750*e\+1/)
|
84
|
+
assert_equal(1024, GMP::F.new(@pi, 1024).prec)
|
85
|
+
assert_in_delta(3.5, GMP::F.new(@seven_halves, 0), 1e-12)
|
86
|
+
assert_equal(@initial_default_prec, GMP::F.new(@seven_halves, 0).prec)
|
87
|
+
end
|
88
|
+
|
89
|
+
def test_set_default_prec
|
90
|
+
begin
|
91
|
+
GMP::MPFR_VERSION
|
92
|
+
GMP::F.default_prec = 100
|
93
|
+
assert_equal(100, GMP::F.default_prec, "GMP::F.default_prec should be assignable.")
|
94
|
+
GMP::F.default_prec = 130
|
95
|
+
assert_equal(130, GMP::F.default_prec, "GMP::F.default_prec should be assignable.")
|
96
|
+
GMP::F.default_prec = 1000
|
97
|
+
assert_equal(1000, GMP::F.default_prec, "GMP::F.default_prec should be assignable.")
|
98
|
+
assert_raise(RangeError) { GMP::F.default_prec = -64 }
|
99
|
+
assert_raise(TypeError) { GMP::F.default_prec = "Cow" }
|
100
|
+
rescue NameError => err
|
101
|
+
raise unless err.to_s == "uninitialized constant GMP::MPFR_VERSION"
|
102
|
+
GMP::F.default_prec = 100
|
103
|
+
assert_equal(128, GMP::F.default_prec, "GMP::F.default_prec should be assignable.")
|
104
|
+
GMP::F.default_prec = 130
|
105
|
+
assert_equal(160, GMP::F.default_prec, "GMP::F.default_prec should be assignable.")
|
106
|
+
GMP::F.default_prec = 1000
|
107
|
+
assert_equal(1024, GMP::F.default_prec, "GMP::F.default_prec should be assignable.")
|
108
|
+
assert_raise(RangeError) { GMP::F.default_prec = -64 }
|
109
|
+
assert_raise(TypeError) { GMP::F.default_prec = "Cow" }
|
110
|
+
end
|
111
|
+
GMP::F.default_prec = @initial_default_prec
|
47
112
|
end
|
48
113
|
end
|