gmp 0.4.0-x86-mingw32
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/CHANGELOG +109 -0
- data/INSTALL +4 -0
- data/README.rdoc +357 -0
- data/benchmark/COPYING +674 -0
- data/benchmark/README +75 -0
- data/benchmark/divide +34 -0
- data/benchmark/gcd +38 -0
- data/benchmark/gexpr +0 -0
- data/benchmark/gexpr.c +359 -0
- data/benchmark/multiply +44 -0
- data/benchmark/rsa +93 -0
- data/benchmark/runbench +147 -0
- data/benchmark/version +1 -0
- data/ext/extconf.rb +30 -0
- data/ext/gmp.c +197 -0
- data/ext/gmpbench_timing.c +80 -0
- data/ext/gmpf.c +595 -0
- data/ext/gmpf.h +144 -0
- data/ext/gmpq.c +780 -0
- data/ext/gmpq.h +12 -0
- data/ext/gmprandstate.c +224 -0
- data/ext/gmpz.c +1968 -0
- data/ext/gmpz.h +20 -0
- data/ext/libgmp-10.dll +0 -0
- data/ext/ruby_gmp.h +243 -0
- data/ext/takeover.h +36 -0
- data/manual.pdf +0 -0
- data/manual.tex +804 -0
- data/test/README +34 -0
- data/test/tc_cmp.rb +74 -0
- data/test/tc_division.rb +109 -0
- data/test/tc_f_arithmetics_coersion.rb +71 -0
- data/test/tc_f_precision.rb +48 -0
- data/test/tc_fib_fac_nextprime.rb +51 -0
- data/test/tc_floor_ceil_truncate.rb +21 -0
- data/test/tc_logical_roots.rb +48 -0
- data/test/tc_q.rb +27 -0
- data/test/tc_q_basic.rb +41 -0
- data/test/tc_random.rb +54 -0
- data/test/tc_sgn_neg_abs.rb +47 -0
- data/test/tc_swap.rb +19 -0
- data/test/tc_z.rb +71 -0
- data/test/tc_z_basic.rb +35 -0
- data/test/tc_z_exponentiation.rb +22 -0
- data/test/tc_z_gcd_lcm_invert.rb +57 -0
- data/test/tc_z_jac_leg_rem.rb +73 -0
- data/test/tc_z_logic.rb +54 -0
- data/test/tc_z_shifts_last_bits.rb +22 -0
- data/test/tc_z_to_d_to_i.rb +24 -0
- data/test/tc_zerodivisionexceptions.rb +17 -0
- data/test/test-12.rb +14 -0
- data/test/test-19.rb +13 -0
- data/test/test-20.rb +29 -0
- data/test/test-21.rb +37 -0
- data/test/test-22.rb +12 -0
- data/test/test-23.rb +11 -0
- data/test/test_helper.rb +8 -0
- data/test/unit_tests.rb +39 -0
- metadata +115 -0
data/ext/gmpz.h
ADDED
@@ -0,0 +1,20 @@
|
|
1
|
+
#ifndef _GMPZ_H_
|
2
|
+
#define _GMPZ_H_
|
3
|
+
|
4
|
+
/*
|
5
|
+
* gmpz.h
|
6
|
+
*
|
7
|
+
* This file contains GMP::Z method definitions.
|
8
|
+
*/
|
9
|
+
|
10
|
+
#include <ruby_gmp.h>
|
11
|
+
|
12
|
+
#define DEFUN_INT_COND_P(fname,mpz_fname) \
|
13
|
+
static VALUE r_gmpz_##fname(VALUE self) \
|
14
|
+
{ \
|
15
|
+
MP_INT *self_val; \
|
16
|
+
mpz_get_struct(self, self_val); \
|
17
|
+
return mpz_fname(self_val)?Qtrue:Qfalse; \
|
18
|
+
}
|
19
|
+
|
20
|
+
#endif
|
data/ext/libgmp-10.dll
ADDED
Binary file
|
data/ext/ruby_gmp.h
ADDED
@@ -0,0 +1,243 @@
|
|
1
|
+
#ifndef _RUBY_GMP_H_
|
2
|
+
#define _RUBY_GMP_H_
|
3
|
+
|
4
|
+
#include <stdio.h>
|
5
|
+
#include <ruby.h>
|
6
|
+
#ifndef _GNU_SOURCE
|
7
|
+
#define _GNU_SOURCE
|
8
|
+
#endif
|
9
|
+
#include <gmp.h>
|
10
|
+
|
11
|
+
#ifdef MPFR
|
12
|
+
|
13
|
+
#ifdef HAVE_MPFR_H
|
14
|
+
#include <mpfr.h>
|
15
|
+
#endif /* HAVE_MPFR_H */
|
16
|
+
|
17
|
+
#ifdef HAVE_MPF2MPFR_H
|
18
|
+
#include <mpf2mpfr.h>
|
19
|
+
#endif /* HAVE_MPF2MPFR_H */
|
20
|
+
|
21
|
+
#endif /* MPFR */
|
22
|
+
|
23
|
+
#include <stdlib.h>
|
24
|
+
|
25
|
+
/*
|
26
|
+
MP_INT*, MP_RAT* and MP_FLOAT* are used because they don't have side-effects
|
27
|
+
of single-element arrays mp*_t
|
28
|
+
|
29
|
+
MP_FLOAT is defined here, as it's commented out in gmp.h
|
30
|
+
*/
|
31
|
+
#if defined(MPFR) && defined(HAVE_MPFR_H)
|
32
|
+
typedef __mpfr_struct MP_FLOAT;
|
33
|
+
#else
|
34
|
+
typedef __mpf_struct MP_FLOAT;
|
35
|
+
#endif /* HAVE_MPF2MPFR_H */
|
36
|
+
|
37
|
+
/*
|
38
|
+
I don't like this solution, because in gmp.h, all of these typedefs are
|
39
|
+
marked with "gmp 1 source compatibility". :(.
|
40
|
+
*/
|
41
|
+
typedef __gmp_randstate_struct MP_RANDSTATE;
|
42
|
+
|
43
|
+
#define mpz_get_struct(ruby_var,c_var) { Data_Get_Struct(ruby_var, MP_INT, c_var); }
|
44
|
+
#define mpq_get_struct(ruby_var,c_var) { Data_Get_Struct(ruby_var, MP_RAT, c_var); }
|
45
|
+
#define mpf_get_struct(ruby_var,c_var) { Data_Get_Struct(ruby_var, MP_FLOAT, c_var); }
|
46
|
+
#define mprandstate_get_struct(ruby_var,c_var) { Data_Get_Struct(ruby_var, MP_RANDSTATE, c_var); }
|
47
|
+
#define mpf_get_struct_prec(ruby_var,c_var,prec) { mpf_get_struct(ruby_var,c_var); prec = mpf_get_prec(c_var); }
|
48
|
+
#define mpz_make_struct(ruby_var,c_var) { ruby_var = Data_Make_Struct(cGMP_Z, MP_INT, 0, r_gmpz_free, c_var); }
|
49
|
+
#define mpq_make_struct(ruby_var,c_var) { ruby_var = Data_Make_Struct(cGMP_Q, MP_RAT, 0, r_gmpq_free, c_var); }
|
50
|
+
#define mpf_make_struct(ruby_var,c_var) { ruby_var = Data_Make_Struct(cGMP_F, MP_FLOAT, 0, r_gmpf_free, c_var); }
|
51
|
+
#define mprandstate_make_struct(ruby_var,c_var) { ruby_var = Data_Make_Struct(cGMP_RandState, MP_RANDSTATE, 0, r_gmprandstate_free, c_var); }
|
52
|
+
#define mpz_make_struct_init(ruby_var,c_var) { mpz_make_struct(ruby_var,c_var); mpz_init (c_var); }
|
53
|
+
#define mpq_make_struct_init(ruby_var,c_var) { mpq_make_struct(ruby_var,c_var); mpq_init (c_var); }
|
54
|
+
#define mpf_make_struct_init(ruby_var,c_var,prec) { mpf_make_struct(ruby_var,c_var); mpf_init2 (c_var,prec); }
|
55
|
+
#define BIGNUM_P(value) (TYPE(value) == T_BIGNUM)
|
56
|
+
#define FLOAT_P(value) (TYPE(value) == T_FLOAT)
|
57
|
+
#define STRING_P(value) (TYPE(value) == T_STRING)
|
58
|
+
#define GMPZ_P(value) (rb_obj_is_instance_of(value, cGMP_Z) == Qtrue)
|
59
|
+
#define GMPQ_P(value) (rb_obj_is_instance_of(value, cGMP_Q) == Qtrue)
|
60
|
+
#define GMPF_P(value) (rb_obj_is_instance_of(value, cGMP_F) == Qtrue)
|
61
|
+
#define mpz_set_bignum(var_mpz,var_bignum) \
|
62
|
+
mpz_set_str (var_mpz, STR2CSTR (rb_funcall (var_bignum, rb_intern ("to_s"), 0)), 0);
|
63
|
+
#define mpz_temp_alloc(var) { var=malloc(sizeof(MP_INT)); }
|
64
|
+
#define mpz_temp_init(var) { mpz_temp_alloc(var); mpz_init(var); }
|
65
|
+
#define mpz_temp_from_bignum(var,var_bignum) \
|
66
|
+
{ mpz_temp_alloc(var); mpz_init_set_str(var, STR2CSTR(rb_funcall(var_bignum, rb_intern("to_s"), 0)), 0); }
|
67
|
+
#define mpz_temp_free(var) { mpz_clear(var); free(var); }
|
68
|
+
#define mpf_temp_alloc(var) { var=malloc(sizeof(MP_FLOAT)); }
|
69
|
+
#define mpf_temp_init(var,prec) { mpf_temp_alloc(var); mpf_init2(var,prec); }
|
70
|
+
#define mpf_temp_free(var) { mpf_clear(var); free(var); }
|
71
|
+
#define prec_max(prec,var) {if(mpf_get_prec(var) > prec) prec = mpf_get_prec(var); }
|
72
|
+
|
73
|
+
#define EXPECTED_ZQFXBD "Expected GMP::Z, GMP::Q, GMP::F, Fixnum, Bignum or Float"
|
74
|
+
#define EXPECTED_ZQFXB "Expected GMP::Z, GMP::Q, GMP::F, Fixnum or Bignum"
|
75
|
+
#define EXPECTED_ZXB "Expected GMP::Z, Fixnum or Bignum"
|
76
|
+
#define EXPECTED_ZX "Expected GMP::Z or Fixnum"
|
77
|
+
#define EXPECTED_X "Expected Fixnum"
|
78
|
+
#define EXPECTED_Z "Expected GMP::Z"
|
79
|
+
#define typeerror(expected) rb_raise(rb_eTypeError, EXPECTED_##expected)
|
80
|
+
#define typeerror_as(expected, argname) rb_raise(rb_eTypeError, EXPECTED_##expected " as " argname)
|
81
|
+
|
82
|
+
//should change exception type
|
83
|
+
#define not_yet rb_raise(rb_eTypeError,"Not implemented yet")
|
84
|
+
|
85
|
+
extern VALUE mGMP, cGMP_Z, cGMP_Q, cGMP_F, cGMP_RandState;
|
86
|
+
|
87
|
+
extern void r_gmpz_free(void *ptr);
|
88
|
+
extern void r_gmpq_free(void *ptr);
|
89
|
+
extern void r_gmpf_free(void *ptr);
|
90
|
+
extern void r_gmprandstate_free(void *ptr);
|
91
|
+
|
92
|
+
|
93
|
+
/* from gmpz.h */
|
94
|
+
|
95
|
+
// Initializing, Assigning Integers
|
96
|
+
extern VALUE r_gmpzsg_new(int argc, VALUE *argv, VALUE klass);
|
97
|
+
extern VALUE r_gmpz_initialize(int argc, VALUE *argv, VALUE self);
|
98
|
+
extern void mpz_set_value(MP_INT *target, VALUE source);
|
99
|
+
extern VALUE r_gmpmod_z(int argc, VALUE *argv, VALUE module);
|
100
|
+
extern VALUE r_gmpz_swap(VALUE self, VALUE arg);
|
101
|
+
|
102
|
+
// Converting Integers
|
103
|
+
extern VALUE r_gmpz_to_i(VALUE self);
|
104
|
+
extern VALUE r_gmpz_to_d(VALUE self);
|
105
|
+
extern VALUE r_gmpz_to_s(int argc, VALUE *argv, VALUE self);
|
106
|
+
|
107
|
+
// Integer Arithmetic
|
108
|
+
extern VALUE r_gmpz_add(VALUE self, VALUE arg);
|
109
|
+
extern VALUE r_gmpz_add_self(VALUE self, VALUE arg);
|
110
|
+
extern VALUE r_gmpz_sub(VALUE self, VALUE arg);
|
111
|
+
extern VALUE r_gmpz_sub_self(VALUE self, VALUE arg);
|
112
|
+
extern VALUE r_gmpz_mul(VALUE self, VALUE arg);
|
113
|
+
|
114
|
+
// Integer Division
|
115
|
+
extern VALUE r_gmpz_mod(VALUE self, VALUE arg);
|
116
|
+
|
117
|
+
// Integer Exponentiation
|
118
|
+
extern VALUE r_gmpzsg_pow(VALUE klass, VALUE base, VALUE exp);
|
119
|
+
|
120
|
+
// Number Theoretic Functions
|
121
|
+
extern VALUE r_gmpz_is_probab_prime(int argc, VALUE* argv, VALUE self);
|
122
|
+
extern VALUE r_gmpz_gcd(VALUE self, VALUE arg);
|
123
|
+
extern VALUE r_gmpz_invert(VALUE self, VALUE arg);
|
124
|
+
extern VALUE r_gmpz_jacobi(VALUE self, VALUE b);
|
125
|
+
extern VALUE r_gmpzsg_jacobi(VALUE klass, VALUE a, VALUE b);
|
126
|
+
extern VALUE r_gmpz_legendre(VALUE self, VALUE p);
|
127
|
+
extern VALUE r_gmpz_remove(VALUE self, VALUE arg);
|
128
|
+
|
129
|
+
// Integer Comparisons
|
130
|
+
extern VALUE r_gmpz_eq(VALUE self, VALUE arg);
|
131
|
+
extern VALUE r_gmpz_cmp(VALUE self, VALUE arg);
|
132
|
+
extern VALUE r_gmpz_cmpabs(VALUE self, VALUE arg);
|
133
|
+
|
134
|
+
// Miscelaneous Integer Functions
|
135
|
+
extern VALUE r_gmpz_sizeinbase(VALUE self, VALUE base);
|
136
|
+
extern VALUE r_gmpz_size_in_bin(VALUE self);
|
137
|
+
|
138
|
+
// _unsorted_
|
139
|
+
extern VALUE r_gmpz_div(VALUE self, VALUE arg);
|
140
|
+
extern VALUE r_gmpz_popcount(VALUE self);
|
141
|
+
extern VALUE r_gmpz_setbit(VALUE self, VALUE bitnr, VALUE set_to);
|
142
|
+
extern VALUE r_gmpz_getbit(VALUE self, VALUE bitnr);
|
143
|
+
extern VALUE r_gmpz_scan0(VALUE self, VALUE bitnr);
|
144
|
+
extern VALUE r_gmpz_scan1(VALUE self, VALUE bitnr);
|
145
|
+
extern VALUE r_gmpz_powm(VALUE self, VALUE exp, VALUE mod);
|
146
|
+
extern VALUE r_gmpz_sgn(VALUE self);
|
147
|
+
extern int mpz_cmp_value(MP_INT *OP, VALUE arg);
|
148
|
+
|
149
|
+
|
150
|
+
|
151
|
+
/* from gmpq.h */
|
152
|
+
|
153
|
+
// Initializing Rationals
|
154
|
+
extern VALUE r_gmpqsg_new(int argc, VALUE *argv, VALUE klass);
|
155
|
+
extern VALUE r_gmpmod_q(int argc, VALUE *argv, VALUE module);
|
156
|
+
extern VALUE r_gmpq_swap(VALUE self, VALUE arg);
|
157
|
+
|
158
|
+
// Rational Conversions
|
159
|
+
extern VALUE r_gmpq_to_d(VALUE self);
|
160
|
+
extern VALUE r_gmpq_to_s(VALUE self);
|
161
|
+
|
162
|
+
// Rational Arithmetic
|
163
|
+
extern VALUE r_gmpq_add(VALUE self, VALUE arg);
|
164
|
+
extern VALUE r_gmpq_sub(VALUE self, VALUE arg);
|
165
|
+
extern VALUE r_gmpq_mul(VALUE self, VALUE arg);
|
166
|
+
extern VALUE r_gmpq_div(VALUE self, VALUE arg);
|
167
|
+
extern VALUE r_gmpq_neg(VALUE self);
|
168
|
+
extern VALUE r_gmpq_neg_self(VALUE self);
|
169
|
+
extern VALUE r_gmpq_abs(VALUE self);
|
170
|
+
extern VALUE r_gmpq_abs_self(VALUE self);
|
171
|
+
extern VALUE r_gmpq_inv(VALUE self);
|
172
|
+
extern VALUE r_gmpq_inv_self(VALUE self);
|
173
|
+
|
174
|
+
// Comparing Rationals
|
175
|
+
extern VALUE r_gmpq_eq(VALUE self, VALUE arg);
|
176
|
+
extern VALUE r_gmpq_cmp(VALUE self, VALUE arg);
|
177
|
+
extern int mpq_cmp_value(MP_RAT *OP, VALUE arg);
|
178
|
+
extern VALUE r_gmpq_sgn(VALUE self);
|
179
|
+
|
180
|
+
// Applying Integer Functions
|
181
|
+
extern VALUE r_gmpq_num(VALUE self);
|
182
|
+
extern VALUE r_gmpq_den(VALUE self);
|
183
|
+
|
184
|
+
// _unsorted_
|
185
|
+
|
186
|
+
|
187
|
+
/* from gmpf.h */
|
188
|
+
|
189
|
+
// Initializing, Assigning Floats
|
190
|
+
extern VALUE r_gmpfsg_new(int argc, VALUE *argv, VALUE klass);
|
191
|
+
extern VALUE r_gmpf_initialize(int argc, VALUE *argv, VALUE self);
|
192
|
+
extern void mpf_set_value(MP_FLOAT *self_val, VALUE arg);
|
193
|
+
extern VALUE r_gmpmod_f(int argc, VALUE *argv, VALUE module);
|
194
|
+
|
195
|
+
// Converting Floats
|
196
|
+
extern VALUE r_gmpf_to_d(VALUE self);
|
197
|
+
extern VALUE r_gmpf_to_s(VALUE self);
|
198
|
+
|
199
|
+
// Float Arithmetic
|
200
|
+
extern VALUE r_gmpf_add(VALUE self, VALUE arg);
|
201
|
+
extern VALUE r_gmpf_sub(VALUE self, VALUE arg);
|
202
|
+
extern VALUE r_gmpf_mul(VALUE self, VALUE arg);
|
203
|
+
extern VALUE r_gmpf_div(VALUE self, VALUE arg);
|
204
|
+
|
205
|
+
// Float Comparison
|
206
|
+
extern VALUE r_gmpf_eq(VALUE self, VALUE arg);
|
207
|
+
extern VALUE r_gmpf_cmp(VALUE self, VALUE arg);
|
208
|
+
extern int mpf_cmp_value(MP_FLOAT *OP, VALUE arg);
|
209
|
+
|
210
|
+
// _unsorted_
|
211
|
+
extern VALUE r_gmpf_sgn(VALUE self);
|
212
|
+
extern VALUE r_gmpf_get_prec(VALUE self);
|
213
|
+
|
214
|
+
|
215
|
+
/* from gmprandstate.h */
|
216
|
+
|
217
|
+
// Random State Initialization
|
218
|
+
extern VALUE r_gmprandstatesg_new(int argc, VALUE *argv, VALUE klass);
|
219
|
+
extern VALUE r_gmprandstate_initialize(int argc, VALUE *argv, VALUE self);
|
220
|
+
extern VALUE r_gmpmod_randstate(int argc, VALUE *argv, VALUE module);
|
221
|
+
|
222
|
+
// Random State Seeding
|
223
|
+
extern VALUE r_gmprandstate_seed(VALUE self, VALUE arg);
|
224
|
+
|
225
|
+
// Integer Random Numbers
|
226
|
+
extern VALUE r_gmprandstate_urandomb(VALUE self, VALUE arg);
|
227
|
+
|
228
|
+
|
229
|
+
/* from gmpbench_timing.c */
|
230
|
+
|
231
|
+
// GMPbench Timing
|
232
|
+
extern VALUE r_gmpmod_cputime(VALUE self);
|
233
|
+
extern VALUE r_gmpmod_time(VALUE self);
|
234
|
+
|
235
|
+
|
236
|
+
|
237
|
+
extern void init_gmpz();
|
238
|
+
extern void init_gmpq();
|
239
|
+
extern void init_gmpf();
|
240
|
+
extern void init_gmprandstate();
|
241
|
+
extern void init_gmpbench_timing();
|
242
|
+
|
243
|
+
#endif
|
data/ext/takeover.h
ADDED
@@ -0,0 +1,36 @@
|
|
1
|
+
#define DEFUN_TAKEOVER_LOGIC(fname, mpz_fname, old_fname) \
|
2
|
+
static VALUE takeover_fixnum_##fname(int argc, VALUE *argv, VALUE self) \
|
3
|
+
{ \
|
4
|
+
MP_INT *res_val, *arg_val; \
|
5
|
+
VALUE res; \
|
6
|
+
\
|
7
|
+
if (argc != 1 || !GMPZ_P(argv[0])) { \
|
8
|
+
return rb_funcall2 (self, rb_intern (old_fname), argc, argv); \
|
9
|
+
} else { \
|
10
|
+
mpz_make_struct(res, res_val); \
|
11
|
+
mpz_get_struct(argv[0], arg_val); \
|
12
|
+
mpz_init_set_si (res_val, FIX2INT(self)); \
|
13
|
+
mpz_fname (res_val, res_val, arg_val); \
|
14
|
+
return res; \
|
15
|
+
} \
|
16
|
+
} \
|
17
|
+
\
|
18
|
+
static VALUE takeover_bignum_##fname(int argc, VALUE *argv, VALUE self) \
|
19
|
+
{\
|
20
|
+
MP_INT *res_val, *arg_val; \
|
21
|
+
VALUE res; \
|
22
|
+
\
|
23
|
+
if (argc != 1 || !GMPZ_P(argv[0])) { \
|
24
|
+
return rb_funcall2 (self, rb_intern (old_fname), argc, argv); \
|
25
|
+
} else { \
|
26
|
+
mpz_get_struct(argv[0], arg_val); \
|
27
|
+
mpz_make_struct_init(res, res_val); \
|
28
|
+
mpz_set_bignum (res_val, self); \
|
29
|
+
mpz_fname (res_val, res_val, arg_val); \
|
30
|
+
return res; \
|
31
|
+
} \
|
32
|
+
}
|
33
|
+
|
34
|
+
DEFUN_TAKEOVER_LOGIC(and, mpz_and, "old_and")
|
35
|
+
DEFUN_TAKEOVER_LOGIC(or, mpz_ior, "old_or")
|
36
|
+
DEFUN_TAKEOVER_LOGIC(xor, mpz_xor, "old_xor")
|
data/manual.pdf
ADDED
Binary file
|
data/manual.tex
ADDED
@@ -0,0 +1,804 @@
|
|
1
|
+
\documentclass[pdftex,10pt]{article}
|
2
|
+
\usepackage{amsmath,amsfonts,url}
|
3
|
+
\usepackage[pdftex]{graphicx}
|
4
|
+
\usepackage{booktabs}
|
5
|
+
\usepackage{url}
|
6
|
+
\setlength{\parindent}{0pt}
|
7
|
+
\def\cour{\fontfamily{pcr}\selectfont}
|
8
|
+
\usepackage[top=1in, bottom=0.8in, left=0.8in, right=0.8in]{geometry}
|
9
|
+
\setcounter{tocdepth}{3}
|
10
|
+
\newlength{\titrwidth}
|
11
|
+
\setlength{\titrwidth}{\textwidth}
|
12
|
+
\addtolength{\titrwidth}{-1.2in}
|
13
|
+
\newlength{\methwidth}
|
14
|
+
\setlength{\methwidth}{0.8in}
|
15
|
+
\newlength{\defnwidth}
|
16
|
+
\setlength{\defnwidth}{\textwidth}
|
17
|
+
\addtolength{\defnwidth}{-1.2in}
|
18
|
+
\addtolength{\heavyrulewidth}{\heavyrulewidth}
|
19
|
+
\def\qquad{\quad\quad}
|
20
|
+
\def\qqqquad{\quad\quad\quad\quad}
|
21
|
+
\def\cc{\colon\colon}
|
22
|
+
\def\gmpz{\textit{GMP::Z}}
|
23
|
+
\def\gmprandstate{\textit{GMP::RandState\ }}
|
24
|
+
\frenchspacing
|
25
|
+
\begin{document}
|
26
|
+
|
27
|
+
\begin{tabular}{p{1.0in} p{\titrwidth}}
|
28
|
+
\huge{gmp} &\\
|
29
|
+
\midrule[3pt]
|
30
|
+
\multicolumn{2}{r}{\large{Ruby bindings to the GMP library}}\\
|
31
|
+
\multicolumn{2}{r}{\large{Edition 0.4.0}}\\
|
32
|
+
\multicolumn{2}{r}{\large{26 February 2010}}
|
33
|
+
\end{tabular}
|
34
|
+
|
35
|
+
\vfill
|
36
|
+
\large{written by Sam Rawlins}\\
|
37
|
+
\large{with extensive quoting from the GMP Manual}
|
38
|
+
\newpage
|
39
|
+
|
40
|
+
\vfill
|
41
|
+
This manual describes how to use the gmp Ruby gem, which provides bindings to
|
42
|
+
the GNU multiple precision arithmetic library, version 4.3.x or 5.0.x.\\
|
43
|
+
\\
|
44
|
+
Copyright 2009 Sam Rawlins.\\
|
45
|
+
No license yet.
|
46
|
+
\newpage
|
47
|
+
|
48
|
+
\tableofcontents
|
49
|
+
\newpage
|
50
|
+
|
51
|
+
\section{Introduction to GNU MP}
|
52
|
+
|
53
|
+
This entire page is copied verbatim from the GMP Manual.\\\\
|
54
|
+
|
55
|
+
GNU MP is a portable library written in C for arbitrary precision arithmetic on
|
56
|
+
integers, rational numbers, and floating-point numbers. It aims to provide the
|
57
|
+
fastest possible arithmetic for all applications that need higher precision
|
58
|
+
than is directly supported by the basic C types.\\
|
59
|
+
\\
|
60
|
+
Many applications use just a few hundred bits of precision; but some
|
61
|
+
applications may need thousands or even millions of bits. GMP is designed to
|
62
|
+
give good performance for both, by choosing algorithms based on the sizes of
|
63
|
+
the operands, and by carefully keeping the overhead at a minimum.\\
|
64
|
+
\\
|
65
|
+
The speed of GMP is achieved by using fullwords as the basic arithmetic type,
|
66
|
+
by using sophisticated algorithms, by including carefully optimized assembly
|
67
|
+
code for the most common inner loops for many different CPUs, and by a general
|
68
|
+
emphasis on speed (as opposed to simplicity or elegance).\\
|
69
|
+
\\
|
70
|
+
There is assembly code for these CPUs: ARM, DEC Alpha 21064, 21164, and 21264,
|
71
|
+
AMD 29000, AMD K6, K6-2, Athlon, and Athlon64, Hitachi SuperH and SH-2, HPPA
|
72
|
+
1.0, 1.1, and 2.0, Intel Pentium, Pentium Pro/II/III, Pentium 4, generic x86,
|
73
|
+
Intel IA-64, i960, Motorola MC68000, MC68020, MC88100, and MC88110,
|
74
|
+
Motorola/IBM PowerPC 32 and 64, National NS32000, IBM POWER, MIPS R3000, R4000,
|
75
|
+
SPARCv7, SuperSPARC, generic SPARCv8, UltraSPARC, DEC VAX, and Zilog Z8000.
|
76
|
+
Some optimizations also for Cray vector systems, Clipper, IBM ROMP (RT), and
|
77
|
+
Pyramid AP/XP.\\
|
78
|
+
\\
|
79
|
+
For up-to-date information on GMP, please see the GMP web pages at\\
|
80
|
+
\setlength{\parindent}{0.25in}
|
81
|
+
\texttt{http://gmplib.org/}
|
82
|
+
\setlength{\parindent}{0in}
|
83
|
+
\\
|
84
|
+
|
85
|
+
The latest version of the library is available at\\
|
86
|
+
\setlength{\parindent}{0.25in}
|
87
|
+
\texttt{ftp://ftp.gnu.org/gnu/gmp/}\\
|
88
|
+
\setlength{\parindent}{0in}
|
89
|
+
\\
|
90
|
+
|
91
|
+
Many sites around the world mirror '\texttt{ftp.gnu.org}', please use a mirror
|
92
|
+
near you, see \texttt{http://www.gnu.org/order/ftp.html} for a full list.\\
|
93
|
+
\\
|
94
|
+
There are three public mailing lists of interest. One for release
|
95
|
+
announcements, one for general questions and discussions about usage of the GMP
|
96
|
+
library, and one for bug reports. For more information, see\\
|
97
|
+
\\
|
98
|
+
\texttt{http://gmplib.org/mailman/listinfo/}.\\
|
99
|
+
\\
|
100
|
+
The proper place for bug reports is gmp-bugs@gmplib.org. See Chapter 4
|
101
|
+
[Reporting Bugs], page 28 for information about reporting bugs.
|
102
|
+
|
103
|
+
\section{Introduction to the gmp gem}
|
104
|
+
|
105
|
+
The gmp Ruby gem is a Ruby library that provides bindings to GMP. The gem is
|
106
|
+
incomplete, and will likely only include a subset of the GMP functions. It is
|
107
|
+
built as a C extension for ruby, interacting with gmp.h. The gmp gem is not
|
108
|
+
endorsed or supported by GNU or the GMP team. The gmp gem also does not ship
|
109
|
+
with GMP, so GMP must be compiled separately.
|
110
|
+
|
111
|
+
\section{Installing the gmp gem}
|
112
|
+
|
113
|
+
\subsection{Prerequisites}
|
114
|
+
OK. First, we've got a few requirements. To install the gmp gem, you need one
|
115
|
+
of the following versions of Ruby:
|
116
|
+
\begin{itemize}
|
117
|
+
\item (MRI) Ruby 1.8.6 - tested lightly.
|
118
|
+
\item (MRI) Ruby 1.8.7 - tested seriously.
|
119
|
+
\item (MRI) Ruby 1.9.1 - tested seriously.
|
120
|
+
\end{itemize}
|
121
|
+
As you can see only Matz's Ruby Interpreter (MRI) is supported. I haven't even
|
122
|
+
put a thought into trying other interpreters/VMs. I intend to look into FFI,
|
123
|
+
which supposedly will allow me to load this extension into JRuby and Rubinius,
|
124
|
+
not sure about others...\\
|
125
|
+
|
126
|
+
Next is the platform, the combination of the architecture (processor) and OS.
|
127
|
+
As far as I can tell, if you can compile GMP and Ruby on a given platform, you
|
128
|
+
can use the gmp gem there too. Please report problems with that hypothesis.\\
|
129
|
+
|
130
|
+
Lastly, GMP. GMP must be compiled and working. "and working" means you ran "make
|
131
|
+
check" while installing GMP. The following versions of GMP have been tested:
|
132
|
+
\begin{itemize}
|
133
|
+
\item GMP 4.3.1
|
134
|
+
\item GMP 4.3.2
|
135
|
+
\item GMP 5.0.0
|
136
|
+
\item GMP 5.0.1
|
137
|
+
\end{itemize}
|
138
|
+
|
139
|
+
That's all. I don't intend to test any older versions, maybe 4.3.0 for
|
140
|
+
completeness.\\
|
141
|
+
|
142
|
+
Here is a table of the exact environments on which I have tested the gmp gem:\\\\
|
143
|
+
|
144
|
+
\begin{tabular}{lrr} \hline
|
145
|
+
Platform & Ruby & GMP \\ \midrule[1pt]
|
146
|
+
Cygwin on x86 & (MRI) Ruby 1.8.7 & GMP 4.3.1 \\ \hline
|
147
|
+
Linux (LinuxMint 7) on x86 & (MRI) Ruby 1.8.7 & GMP 4.3.1 \\ \hline
|
148
|
+
Mac OS X 10.5.7 on x86 (32-bit) & (MRI) Ruby 1.8.6 & GMP 4.3.1 \\ \hline
|
149
|
+
Mac OS X 10.5.7 on x86 (32-bit) & (MRI) Ruby 1.9.1 & GMP 4.3.1 \\ \hline
|
150
|
+
Windows XP on x86 (32-bit) & (MRI) Ruby 1.9.1 & GMP 5.0.1 \\ \hline
|
151
|
+
\end{tabular}
|
152
|
+
|
153
|
+
\subsection{Installing}
|
154
|
+
You may clone the gmp gem's git repository with:\\
|
155
|
+
\\
|
156
|
+
\texttt{git clone git://github.com/srawlins/gmp.git}\\
|
157
|
+
|
158
|
+
Or you may install the gem from gemcutter:\\
|
159
|
+
\\
|
160
|
+
\texttt{gem install gmp}\\
|
161
|
+
|
162
|
+
Or you may install the gem from github (old):\\
|
163
|
+
\\
|
164
|
+
\texttt{gem install srawlins-gmp}\\
|
165
|
+
|
166
|
+
At this time, the gem does not self-compile (how does that work?). To compile the C
|
167
|
+
extensions, do the following:\\
|
168
|
+
\\
|
169
|
+
\texttt{cd <gmp gem directory>/ext}\\
|
170
|
+
\texttt{ruby extconf.rb}\\
|
171
|
+
\texttt{make}\\
|
172
|
+
|
173
|
+
There shouldn't be any errors, or warnings.
|
174
|
+
|
175
|
+
\section{Testing the gmp gem}
|
176
|
+
|
177
|
+
Testing the gmp gem is quite simple. The test/unit\_tests.rb suite uses Unit::Test.
|
178
|
+
You can run this test suite with:\\
|
179
|
+
\\
|
180
|
+
\texttt{cd <gmp gem directory>/test}\\
|
181
|
+
\texttt{ruby unit\_tests.rb}\\
|
182
|
+
|
183
|
+
All tests should pass. If you don't have the test-unit gem installed, then you may
|
184
|
+
run into one error. I'm not sure why this is... I suspect a bug in Ruby's Test::Unit
|
185
|
+
that the test-unit gem monkey patches.
|
186
|
+
|
187
|
+
\section{GMP and gmp gem basics}
|
188
|
+
|
189
|
+
\subsection{Classes}
|
190
|
+
The gmp gem includes the namespace \texttt{GMP} and four classes within \texttt{GMP}:
|
191
|
+
\begin{itemize}
|
192
|
+
\item \texttt{GMP::Z} - Methods for signed integer arithmetic. There are at least 45
|
193
|
+
methods here (still accounting).
|
194
|
+
\item \texttt{GMP::Q} - Methods for rational number arithmetic. There are at least 11
|
195
|
+
methods here (still accounting).
|
196
|
+
\item \texttt{GMP::F} - Methods for floating-point arithmetic. There are at least 6
|
197
|
+
methods here (still accounting).
|
198
|
+
\item \texttt{GMP::RandState} - Methods for random number generation. There are 3
|
199
|
+
methods here.
|
200
|
+
\end{itemize}
|
201
|
+
|
202
|
+
In addition to the above four classes, there is also one constant within \texttt{GMP}:
|
203
|
+
\begin{itemize}
|
204
|
+
\item \texttt{GMP::GMP\_VERSION} - The version of GMP compiled into the gmp gem.
|
205
|
+
\end{itemize}
|
206
|
+
|
207
|
+
\newpage
|
208
|
+
\section{Integer Functions}
|
209
|
+
|
210
|
+
\subsection{Initializing, Assigning Integers}
|
211
|
+
|
212
|
+
\begin{tabular}{p{\methwidth} l r}
|
213
|
+
\toprule
|
214
|
+
\textbf{new} & & GMP::Z.new $\rightarrow$ \textit{integer} \\
|
215
|
+
& & GMP::Z.new(\textit{numeric = 0}) $\rightarrow$ \textit{integer} \\
|
216
|
+
& & GMP::Z.new(\textit{str}) $\rightarrow$ \textit{integer} \\
|
217
|
+
\cmidrule(r){2-3}
|
218
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
219
|
+
This method creates a new \textit{GMP::Z} integer. It takes one optional argument for
|
220
|
+
the value of the integer. This argument can be one of several classes. Here are some
|
221
|
+
examples:\newline
|
222
|
+
|
223
|
+
\texttt{GMP::Z.new \qqqquad\qqqquad \#=> 0 (default) \newline
|
224
|
+
GMP::Z.new(1) \qqqquad\qquad\ \#=> 1 (Ruby Fixnum) \newline
|
225
|
+
GMP::Z.new("127") \qqqquad\ \#=> 127 (Ruby String)\newline
|
226
|
+
GMP::Z.new(4294967296) \qquad \#=> 4294967296 (Ruby Bignum)\newline
|
227
|
+
GMP::Z.new(GMP::Z.new(31)) \#=> 31 (GMP Integer)}
|
228
|
+
}
|
229
|
+
\end{tabular}
|
230
|
+
\newline\newline
|
231
|
+
|
232
|
+
There is also a convenience method available, \texttt{GMP::Z()}.\\
|
233
|
+
|
234
|
+
\subsection{Converting Integers}
|
235
|
+
|
236
|
+
\begin{tabular}{p{\methwidth} l r}
|
237
|
+
\toprule
|
238
|
+
\textbf{to\_d} & & \textit{integer}.to\_d $\rightarrow$ \textit{float} \\
|
239
|
+
\cmidrule(r){2-3}
|
240
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
241
|
+
Returns \textit{integer} as an Float if \textit{integer} fits in a Float.
|
242
|
+
|
243
|
+
Otherwise returns the least significant part of \texttt{integer}, with the same sign as
|
244
|
+
\textit{integer}.
|
245
|
+
|
246
|
+
If \textit{integer} is too big to fit in a Float, the returned result is probably not
|
247
|
+
very useful. To find out if the value will fit, use the function
|
248
|
+
\textit{mpz\_fits\_slong\_p} (\textbf{Unimplemented}).
|
249
|
+
}
|
250
|
+
\end{tabular}
|
251
|
+
\newline\newline
|
252
|
+
|
253
|
+
\begin{tabular}{p{\methwidth} l r}
|
254
|
+
\toprule
|
255
|
+
\textbf{to\_i} & & \textit{integer}.to\_i $\rightarrow$ \textit{fixnum} \\
|
256
|
+
\cmidrule(r){2-3}
|
257
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
258
|
+
Returns \textit{integer} as a Fixnum if \textit{integer} fits in a Fixnum.
|
259
|
+
\newline
|
260
|
+
|
261
|
+
Otherwise returns the least significant part of \textit{integer}, with the same sign as
|
262
|
+
\textit{integer}.
|
263
|
+
\newline
|
264
|
+
|
265
|
+
If \textit{integer} is too big to fit in a Fixnum, the returned result is probably not
|
266
|
+
very useful. To find out if the value will fit, use the function
|
267
|
+
\textit{mpz\_fits\_slong\_p} (\textbf{Unimplemented}).
|
268
|
+
}
|
269
|
+
\end{tabular}
|
270
|
+
\newline\newline
|
271
|
+
|
272
|
+
\begin{tabular}{p{\methwidth} l r}
|
273
|
+
\toprule
|
274
|
+
\textbf{to\_s} & & \textit{integer}.to\_s(\textit{base = 10}) $\rightarrow$ \textit{str} \\
|
275
|
+
\cmidrule(r){2-3}
|
276
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
277
|
+
Converts \textit{integer} to a string of digits in base \textit{base}. The
|
278
|
+
\textit{base} argument may vary from 2 to 62 or from -2 to -36, or be a symbol, one of
|
279
|
+
\textit{:bin}, \textit{:oct}, \textit{:dec}, or \textit{:hex}.
|
280
|
+
\newline
|
281
|
+
|
282
|
+
For \textit{base} in the range 2..36, digits and lower-case letters are used; for
|
283
|
+
-2..-36 (and \textit{:bin}, \textit{:oct}, \textit{:dec}, and \textit{:hex}), digits
|
284
|
+
and upper-case letters are used; for 37..62, digits, upper-case letters, and lower-case
|
285
|
+
letters (in that significance order) are used. Here are some
|
286
|
+
examples:\newline
|
287
|
+
|
288
|
+
\texttt{GMP::Z(1).to\_s \qqqquad \#=> "1" \newline
|
289
|
+
GMP::Z(32).to\_s(2) \qquad \#=> "100000" \newline
|
290
|
+
GMP::Z(32).to\_s(4) \qquad \#=> "200" \newline
|
291
|
+
GMP::Z(10).to\_s(16) \quad\ \#=> "a" \newline
|
292
|
+
GMP::Z(10).to\_s(-16) \quad \#=> "A" \newline
|
293
|
+
GMP::Z(255).to\_s(:bin) \#=> "11111111" \newline
|
294
|
+
GMP::Z(255).to\_s(:oct) \#=> "377" \newline
|
295
|
+
GMP::Z(255).to\_s(:dec) \#=> "255" \newline
|
296
|
+
GMP::Z(255).to\_s(:hex) \#=> "ff"}
|
297
|
+
}
|
298
|
+
\end{tabular}
|
299
|
+
|
300
|
+
\subsection{Integer Arithmetic}
|
301
|
+
|
302
|
+
\begin{tabular}{p{\methwidth} l r}
|
303
|
+
\toprule
|
304
|
+
\textbf{+} & & \textit{integer} + \textit{numeric} $\rightarrow$ \textit{numeric} \\
|
305
|
+
\cmidrule(r){2-3}
|
306
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
307
|
+
Returns the sum of \textit{integer} and \textit{numeric}. \textit{numeric} can be an
|
308
|
+
instance of \textit{GMP::Z}, \textit{Fixnum}, \textit{GMP::Q}, \textit{GMP::F}, or
|
309
|
+
\textit{Bignum}.
|
310
|
+
}
|
311
|
+
\end{tabular}
|
312
|
+
\newline\newline
|
313
|
+
|
314
|
+
\begin{tabular}{p{\methwidth} l r}
|
315
|
+
\toprule
|
316
|
+
\textbf{add!} & & \textit{integer}.add!(\textit{numeric}) $\rightarrow$
|
317
|
+
\textit{numeric} \\
|
318
|
+
\cmidrule(r){2-3}
|
319
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
320
|
+
Sums \textit{integer} and \textit{numeric}, in place. \textit{numeric} can be an
|
321
|
+
instance of \textit{GMP::Z}, \textit{Fixnum}, \textit{GMP::Q}, \textit{GMP::F}, or
|
322
|
+
\textit{Bignum}.
|
323
|
+
}
|
324
|
+
\end{tabular}
|
325
|
+
\newline\newline
|
326
|
+
|
327
|
+
\begin{tabular}{p{\methwidth} l r}
|
328
|
+
\toprule
|
329
|
+
\textbf{-} & & \textit{integer} - \textit{numeric} $\rightarrow$ \textit{numeric} \\
|
330
|
+
& & \textit{integer}.sub!(\textit{numeric}) $\rightarrow$ \textit{numeric} \\
|
331
|
+
\cmidrule(r){2-3}
|
332
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
333
|
+
Returns the difference of \textit{integer} and \textit{numeric}. The destructive method
|
334
|
+
calculates the difference in place. \textit{numeric} can be an instance of
|
335
|
+
\textit{GMP::Z}, \textit{Fixnum}, \textit{GMP::Q}, \textit{GMP::F}, or \textit{Bignum}.
|
336
|
+
Here are some examples:\newline
|
337
|
+
|
338
|
+
\texttt{seven = GMP::Z(7) \newline
|
339
|
+
nine \ = GMP::Z(9) \newline
|
340
|
+
half \ = GMP::Q(1,2) \newline
|
341
|
+
pi \quad\ = GMP::F("3.14") \newline
|
342
|
+
nine - 5 \qquad\quad \#=> 4 (GMP Integer) \newline
|
343
|
+
nine - seven \quad \#=> 2 (GMP Integer) \newline
|
344
|
+
nine - (2**32) \#=> -4294967287 (GMP Integer) \newline
|
345
|
+
nine - nine \quad\ \#=> 0 (GMP Integer) \newline
|
346
|
+
nine - half \quad\ \#=> 8.5 (GMP Rational) \newline
|
347
|
+
nine - pi \qquad\ \#=> 5.86 (GMP Float)}
|
348
|
+
|
349
|
+
}
|
350
|
+
\end{tabular}
|
351
|
+
\newline\newline
|
352
|
+
|
353
|
+
\begin{tabular}{p{\methwidth} l r}
|
354
|
+
\toprule
|
355
|
+
\textbf{*} & & \textit{integer} * \textit{numeric} $\rightarrow$ \textit{numeric} \\
|
356
|
+
& & \textit{integer}.mul(\textit{numeric}) $\rightarrow$ \textit{numeric} \\
|
357
|
+
& & \textit{integer}.mul!(\textit{numeric}) $\rightarrow$ \textit{numeric} \\
|
358
|
+
\cmidrule(r){2-3}
|
359
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
360
|
+
Returns the product of \textit{integer} and \textit{numeric}. The destructive method
|
361
|
+
calculates the product in place. \textit{numeric} can be an instance of
|
362
|
+
\textit{GMP::Z}, \textit{Fixnum}, \textit{GMP::Q}, \textit{GMP::F}, or \textit{Bignum}.
|
363
|
+
}
|
364
|
+
\end{tabular}
|
365
|
+
\newline\newline
|
366
|
+
|
367
|
+
\begin{tabular}{p{\methwidth} l r}
|
368
|
+
\toprule
|
369
|
+
\textbf{\textless\textless} & & \textit{integer} \textless\textless \textit{numeric} $\rightarrow$ \textit{integer} \\
|
370
|
+
\cmidrule(r){2-3}
|
371
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
372
|
+
Returns \textit{integer} times 2 to the \textit{numeric} power. This can also be
|
373
|
+
defined as a left shift by \textit{numeric} bits.
|
374
|
+
}
|
375
|
+
\end{tabular}
|
376
|
+
\newline\newline
|
377
|
+
|
378
|
+
\begin{tabular}{p{\methwidth} l r}
|
379
|
+
\toprule
|
380
|
+
\textbf{-@} & & -\textit{integer}\\
|
381
|
+
& & \textit{integer}.neg\\
|
382
|
+
& & \textit{integer}.neg!\\
|
383
|
+
\cmidrule(r){2-3}
|
384
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
385
|
+
Returns the negation, the additive inverse, of \textit{integer}. The destructive method
|
386
|
+
negates in place.
|
387
|
+
}
|
388
|
+
\end{tabular}
|
389
|
+
\newline\newline
|
390
|
+
|
391
|
+
\begin{tabular}{p{\methwidth} l r}
|
392
|
+
\toprule
|
393
|
+
\textbf{abs} & & \textit{integer}.abs\\
|
394
|
+
& & \textit{integer}.abs!\\
|
395
|
+
\cmidrule(r){2-3}
|
396
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
397
|
+
Returns the absolute value of \textit{integer}. The destructive method calculates the
|
398
|
+
absolute value in place.
|
399
|
+
}
|
400
|
+
\end{tabular}
|
401
|
+
|
402
|
+
\subsection{Integer Division}
|
403
|
+
|
404
|
+
\begin{tabular}{p{\methwidth} l r}
|
405
|
+
\toprule
|
406
|
+
\textbf{tdiv} & & $integer$.tdiv($numeric$) $\rightarrow$ $integer$\\
|
407
|
+
\cmidrule(r){2-3}
|
408
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
409
|
+
Returns the division of $integer$ by $numeric$, truncated. $numeric$ can be an instance
|
410
|
+
of $GMP::Z$, $Fixnum$, $Bignum$. The return object's class is always $GMP::Z$.
|
411
|
+
}
|
412
|
+
\end{tabular}
|
413
|
+
\newline\newline
|
414
|
+
|
415
|
+
\begin{tabular}{p{\methwidth} l r}
|
416
|
+
\toprule
|
417
|
+
\textbf{fdiv} & & $integer$.fdiv($numeric$) $\rightarrow$ $integer$\\
|
418
|
+
\cmidrule(r){2-3}
|
419
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
420
|
+
Returns the division of $integer$ by $numeric$, floored. $numeric$ can be an instance
|
421
|
+
of $GMP::Z$, $Fixnum$, $Bignum$. The return object's class is always $GMP::Z$.
|
422
|
+
}
|
423
|
+
\end{tabular}
|
424
|
+
\newline\newline
|
425
|
+
|
426
|
+
\begin{tabular}{p{\methwidth} l r}
|
427
|
+
\toprule
|
428
|
+
\textbf{cdiv} & & $integer$.cdiv($numeric$) $\rightarrow$ $integer$\\
|
429
|
+
\cmidrule(r){2-3}
|
430
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
431
|
+
Returns the ceiling division of $integer$ by $numeric$. $numeric$ can be an instance of
|
432
|
+
$GMP::Z$, $Fixnum$, $Bignum$. The return object's class is always $GMP::Z$.
|
433
|
+
}
|
434
|
+
\end{tabular}
|
435
|
+
\newline\newline
|
436
|
+
|
437
|
+
\begin{tabular}{p{\methwidth} l r}
|
438
|
+
\toprule
|
439
|
+
\textbf{tmod} & & $integer$.tmod($numeric$) $\rightarrow$ $integer$\\
|
440
|
+
\cmidrule(r){2-3}
|
441
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
442
|
+
Returns the remainder after truncated division of $integer$ by $numeric$. $numeric$ can
|
443
|
+
be an instance of $GMP::Z$, $Fixnum$, or $Bignum$. The return object's class is always
|
444
|
+
$GMP::Z$.
|
445
|
+
}
|
446
|
+
\end{tabular}
|
447
|
+
\newline\newline
|
448
|
+
|
449
|
+
\begin{tabular}{p{\methwidth} l r}
|
450
|
+
\toprule
|
451
|
+
\textbf{fmod} & & $integer$.fmod($numeric$) $\rightarrow$ $integer$\\
|
452
|
+
\cmidrule(r){2-3}
|
453
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
454
|
+
Returns the remainder after floored division of $integer$ by $numeric$. $numeric$ can
|
455
|
+
be an instance of $GMP::Z$, $Fixnum$, or $Bignum$. The return object's class is always
|
456
|
+
$GMP::Z$.
|
457
|
+
}
|
458
|
+
\end{tabular}
|
459
|
+
\newline\newline
|
460
|
+
|
461
|
+
\begin{tabular}{p{\methwidth} l r}
|
462
|
+
\toprule
|
463
|
+
\textbf{cmod} & & \textit{integer}.cmod(\textit{numeric}) $\rightarrow$ \textit{integer}\\
|
464
|
+
\cmidrule(r){2-3}
|
465
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
466
|
+
Returns the remainder after ceilinged division of $integer$ by $numeric$. $numeric$ can
|
467
|
+
be an instance of $GMP::Z$, $Fixnum$, or $Bignum$. The return object's class is always
|
468
|
+
$GMP::Z$.
|
469
|
+
}
|
470
|
+
\end{tabular}
|
471
|
+
\newline\newline
|
472
|
+
|
473
|
+
\begin{tabular}{p{\methwidth} l r}
|
474
|
+
\toprule
|
475
|
+
\textbf{\%} & & \textit{integer} \% \textit{numeric} $\rightarrow$ \textit{integer}\\
|
476
|
+
\cmidrule(r){2-3}
|
477
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
478
|
+
Returns $integer$ modulo $numeric$. $numeric$ can be an instance of \gmpz, $Fixnum$,
|
479
|
+
or $Bignum$. The return object's class is always \gmpz.
|
480
|
+
}
|
481
|
+
\end{tabular}
|
482
|
+
|
483
|
+
\subsection{Integer Roots}
|
484
|
+
|
485
|
+
\begin{tabular}{p{\methwidth} l r}
|
486
|
+
\toprule
|
487
|
+
\textbf{root} & & \textit{integer}.root(\textit{numeric}) $\rightarrow$ \textit{numeric} \\
|
488
|
+
\cmidrule(r){2-3}
|
489
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
490
|
+
Returns the integer part of the $numeric$'th root of $integer$.
|
491
|
+
}
|
492
|
+
\end{tabular}
|
493
|
+
\newline\newline
|
494
|
+
|
495
|
+
\begin{tabular}{p{\methwidth} l r}
|
496
|
+
\toprule
|
497
|
+
\textbf{sqrt} & & \textit{integer}.sqrt $\rightarrow$ \textit{numeric} \\
|
498
|
+
& & \textit{integer}.sqrt!(\textit{numeric}) $\rightarrow$ \textit{numeric} \\
|
499
|
+
\cmidrule(r){2-3}
|
500
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
501
|
+
Returns the truncated integer part of the square root of $integer$.
|
502
|
+
}
|
503
|
+
\end{tabular}
|
504
|
+
\newline\newline
|
505
|
+
|
506
|
+
\begin{tabular}{p{\methwidth} l r}
|
507
|
+
\toprule
|
508
|
+
\textbf{sqrtrem} & & \textit{integer}.sqrtrem $\rightarrow$ \textit{sqrt}, \textit{rem} \\
|
509
|
+
\cmidrule(r){2-3}
|
510
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
511
|
+
Returns the truncated integer part of the square root of $integer$ as $sqrt$ and the
|
512
|
+
remainder, $integer - sqrt * sqrt$, as $rem$, which will be zero if $integer$ is a
|
513
|
+
perfect square.
|
514
|
+
}
|
515
|
+
\end{tabular}
|
516
|
+
\newline\newline
|
517
|
+
|
518
|
+
\begin{tabular}{p{\methwidth} l r}
|
519
|
+
\toprule
|
520
|
+
\textbf{power?} & & \textit{integer}.power? $\rightarrow$ \textit{true} \textbar\ \textit{false} \\
|
521
|
+
\cmidrule(r){2-3}
|
522
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
523
|
+
Returns true if $integer$ is a perfect power, i.e., if there exist integers $a$ and
|
524
|
+
$b$, with $b > 1$, such that $integer$ equals $a$ raised to the power $b$.
|
525
|
+
\newline\newline
|
526
|
+
Under this definition both 0 and 1 are considered to be perfect powers. Negative values
|
527
|
+
of integers are accepted, but of course can only be odd perfect powers.
|
528
|
+
}
|
529
|
+
\end{tabular}
|
530
|
+
\newline\newline
|
531
|
+
|
532
|
+
\begin{tabular}{p{\methwidth} l r}
|
533
|
+
\toprule
|
534
|
+
\textbf{square?} & & \textit{integer}.square? $\rightarrow$ \textit{true} \textbar\ \textit{false} \\
|
535
|
+
\cmidrule(r){2-3}
|
536
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
537
|
+
Returns true if $integer$ is a perfect square, i.e., if the square root of
|
538
|
+
$integer$ is an integer. Under this definition both 0 and 1 are considered to be
|
539
|
+
perfect squares.
|
540
|
+
}
|
541
|
+
\end{tabular}
|
542
|
+
|
543
|
+
\subsection{Integer Exponentiation}
|
544
|
+
|
545
|
+
\begin{tabular}{p{\methwidth} l r}
|
546
|
+
\toprule
|
547
|
+
\textbf{**} & & \textit{integer} ** \textit{numeric} $\rightarrow$ \textit{numeric} \\
|
548
|
+
& & \textit{integer}.pow(\textit{numeric}) $\rightarrow$ \textit{numeric} \\
|
549
|
+
\cmidrule(r){2-3}
|
550
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
551
|
+
Returns $integer$ raised to the $numeric$ power.
|
552
|
+
}
|
553
|
+
\end{tabular}
|
554
|
+
\newline\newline
|
555
|
+
|
556
|
+
\begin{tabular}{p{\methwidth} l r}
|
557
|
+
\toprule
|
558
|
+
\textbf{powmod} & & \textit{integer}.powmod(\textit{exp}, \textit{mod}) $\rightarrow$ \textit{integer} \\
|
559
|
+
\cmidrule(r){2-3}
|
560
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
561
|
+
Returns $integer$ raised to the $exp$ power, modulo $mod$. Negative $exp$ is supported
|
562
|
+
if an inverse, $integer^{-1}$ modulo $mod$, exists. If an inverse doesn't exist then a
|
563
|
+
divide by zero exception is raised.
|
564
|
+
}
|
565
|
+
\end{tabular}
|
566
|
+
|
567
|
+
\subsection{Number Theoretic Functions}
|
568
|
+
|
569
|
+
\begin{tabular}{p{\methwidth} l r}
|
570
|
+
\toprule
|
571
|
+
\textbf{is\_probab\_prime?} & & $integer$.is\_probab\_prime?($reps = 5$) $\rightarrow$ 0, 1, or 2 \\
|
572
|
+
\cmidrule(r){2-3}
|
573
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
574
|
+
Determine whether $integer$ is prime. Returns 2 if $integer$ is definitely prime,
|
575
|
+
returns 1 if $integer$ is probably prime (without being certain), or returns 0 if
|
576
|
+
$integer$ is definitely composite.
|
577
|
+
\newline\newline
|
578
|
+
This function does some trial divisions, then some Miller-Rabin probabilistic primality
|
579
|
+
tests. $reps$ controls how many such tests are done, 5 to 10 is a reasonable number,
|
580
|
+
more will reduce the chances of a composite being returned as �probably prime�.
|
581
|
+
\newline\newline
|
582
|
+
Miller-Rabin and similar tests can be more properly called compositeness tests. Numbers
|
583
|
+
which fail are known to be composite but those which pass might be prime or might be
|
584
|
+
composite. Only a few composites pass, hence those which pass are considered probably
|
585
|
+
prime.
|
586
|
+
}
|
587
|
+
\end{tabular}
|
588
|
+
\newline\newline
|
589
|
+
|
590
|
+
\begin{tabular}{p{\methwidth} l r}
|
591
|
+
\toprule
|
592
|
+
\textbf{next\_prime} & & $integer$.next\_prime $\rightarrow$ $prime$ \\
|
593
|
+
& & $integer$.nextprime $\rightarrow$ $prime$ \\
|
594
|
+
& & $integer$.next\_prime! $\rightarrow$ $prime$ \\
|
595
|
+
& & $integer$.nextprime! $\rightarrow$ $prime$ \\
|
596
|
+
\cmidrule(r){2-3}
|
597
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
598
|
+
Returns the next prime greater than $integer$. The destructive method sets $integer$ to
|
599
|
+
the next prime greater than $integer$.
|
600
|
+
\newline\newline
|
601
|
+
This function uses a probabilistic algorithm to identify primes. For practical purposes
|
602
|
+
it's adequate, the chance of a composite passing will be extremely small.
|
603
|
+
}
|
604
|
+
\end{tabular}
|
605
|
+
\newline\newline
|
606
|
+
|
607
|
+
\begin{tabular}{p{\methwidth} l r}
|
608
|
+
\toprule
|
609
|
+
\textbf{gcd} & & $a$.gcd($b$) $\rightarrow$ $g$ \\
|
610
|
+
\cmidrule(r){2-3}
|
611
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
612
|
+
Computes the greatest common divisor of $a$ and $b$. $g$ will always be positive, even
|
613
|
+
if $a$ or $b$ is negative. $b$ can be an instance of \gmpz, $Fixnum$, or $Bignum$.
|
614
|
+
\newline\newline
|
615
|
+
\texttt{GMP::Z(24).gcd(GMP::Z(8)) \quad \#=> GMP::Z(8) \newline
|
616
|
+
GMP::Z(24).gcd(8) \quad \#=> GMP::Z(8) \newline
|
617
|
+
GMP::Z(24).gcd(2**32) \quad \#=> GMP::Z(8)}
|
618
|
+
}
|
619
|
+
\end{tabular}
|
620
|
+
\newline\newline
|
621
|
+
|
622
|
+
\begin{tabular}{p{\methwidth} l r}
|
623
|
+
\toprule
|
624
|
+
\textbf{invert} & & $a$.invert($m$) $\rightarrow$ $integer$ \\
|
625
|
+
\cmidrule(r){2-3}
|
626
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
627
|
+
Computes the inverse of $a$ mod $m$. $m$ can be an instance of \gmpz, $Fixnum$, or
|
628
|
+
$Bignum$.
|
629
|
+
\newline\newline
|
630
|
+
\texttt{GMP::Z(2).invert(GMP::Z(11)) \quad \#=> GMP::Z(6) \newline
|
631
|
+
GMP::Z(3).invert(11) \quad \#=> GMP::Z(4) \newline
|
632
|
+
GMP::Z(5).invert(11) \quad \#=> GMP::Z(9)}
|
633
|
+
}
|
634
|
+
\end{tabular}
|
635
|
+
\newline\newline
|
636
|
+
|
637
|
+
\begin{tabular}{p{\methwidth} l r}
|
638
|
+
\toprule
|
639
|
+
\textbf{jacobi} & & $a$.jacobi($b$) $\rightarrow$ $integer$ \\
|
640
|
+
& & GMP::Z.jacobi($a$, $b$) $\rightarrow$ $integer$ \\
|
641
|
+
\cmidrule(r){2-3}
|
642
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
643
|
+
Returns the Jacobi symbol $(a/b)$. This is defined only for $b$ odd. If $b$ is even, a
|
644
|
+
range exception will be raised.
|
645
|
+
\newline\newline
|
646
|
+
\textit{GMP::Z.jacobi} (the instance method) requires $b$ to be an instance of \gmpz.
|
647
|
+
\newline
|
648
|
+
\textit{GMP::Z\#jacobi} (the class method) requires $a$ and $b$ each to be an instance of
|
649
|
+
\gmpz, $Fixnum$, or $Bignum$.
|
650
|
+
}
|
651
|
+
\end{tabular}
|
652
|
+
\newline\newline
|
653
|
+
|
654
|
+
\begin{tabular}{p{\methwidth} l r}
|
655
|
+
\toprule
|
656
|
+
\textbf{legendre} & & $a$.legendre($b$) $\rightarrow$ $integer$ \\
|
657
|
+
\cmidrule(r){2-3}
|
658
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
659
|
+
Returns the Legendre symbol $(a/b)$. This is defined only for $p$ an odd positive
|
660
|
+
prime. If $p$ is even, negative, or composite, a range exception will be raised.
|
661
|
+
}
|
662
|
+
\end{tabular}
|
663
|
+
\newline\newline
|
664
|
+
|
665
|
+
\begin{tabular}{p{\methwidth} l r}
|
666
|
+
\toprule
|
667
|
+
\textbf{remove} & & $n$.remove($factor$) $\rightarrow$ ($integer$, $times$) \\
|
668
|
+
\cmidrule(r){2-3}
|
669
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
670
|
+
Remove all occurrences of the factor $factor$ from $n$. $factor$ can be an instance of
|
671
|
+
\gmpz, $Fixnum$, or $Bignum$. $integer$ is the resulting integer, an instance of
|
672
|
+
\gmpz. $times$ is how many times $factor$ was removed, a $Fixnum$.
|
673
|
+
}
|
674
|
+
\end{tabular}
|
675
|
+
\newline\newline
|
676
|
+
|
677
|
+
\begin{tabular}{p{\methwidth} l r}
|
678
|
+
\toprule
|
679
|
+
\textbf{fac} & & GMP::Z.fac($n$) $\rightarrow$ $integer$ \\
|
680
|
+
\cmidrule(r){2-3}
|
681
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
682
|
+
Returns $n!$, or, $n$ factorial.
|
683
|
+
}
|
684
|
+
\end{tabular}
|
685
|
+
\newline\newline
|
686
|
+
|
687
|
+
\begin{tabular}{p{\methwidth} l r}
|
688
|
+
\toprule
|
689
|
+
\textbf{fib} & & GMP::Z.fib($n$) $\rightarrow$ $integer$ \\
|
690
|
+
\cmidrule(r){2-3}
|
691
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
692
|
+
Returns $F[n]$, or, the $n$th Fibonacci number.
|
693
|
+
}
|
694
|
+
\end{tabular}
|
695
|
+
|
696
|
+
|
697
|
+
|
698
|
+
\subsection{Integer Logic and Bit Fiddling}
|
699
|
+
|
700
|
+
\begin{tabular}{p{\methwidth} l r}
|
701
|
+
\toprule
|
702
|
+
\textbf{and} & & $a$ \& $b$ $\rightarrow$ $integer$ \\
|
703
|
+
\cmidrule(r){2-3}
|
704
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
705
|
+
Returns $integer$, the bitwise and of $a$ and $b$.
|
706
|
+
}
|
707
|
+
\end{tabular}
|
708
|
+
\newline\newline
|
709
|
+
|
710
|
+
\begin{tabular}{p{\methwidth} l r}
|
711
|
+
\toprule
|
712
|
+
\textbf{ior} & & $a$ \textbar\ $b$ $\rightarrow$ $integer$ \\
|
713
|
+
\cmidrule(r){2-3}
|
714
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
715
|
+
Returns $integer$, the bitwise inclusive or of $a$ and $b$.
|
716
|
+
}
|
717
|
+
\end{tabular}
|
718
|
+
\newline\newline
|
719
|
+
|
720
|
+
\begin{tabular}{p{\methwidth} l r}
|
721
|
+
\toprule
|
722
|
+
\textbf{xor} & & $a$ \textasciicircum\ $b$ $\rightarrow$ $integer$ \\
|
723
|
+
\cmidrule(r){2-3}
|
724
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
725
|
+
Returns $integer$, the bitwise exclusive or of $a$ and $b$.
|
726
|
+
}
|
727
|
+
\end{tabular}
|
728
|
+
\newline\newline
|
729
|
+
|
730
|
+
\begin{tabular}{p{\methwidth} l r}
|
731
|
+
\toprule
|
732
|
+
\textbf{scan0} & & $n$.scan0($i$) $\rightarrow$ $integer$ \\
|
733
|
+
\cmidrule(r){2-3}
|
734
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
735
|
+
Scans $n$, starting from bit $i$, towards more significant bits, until the first 0 bit
|
736
|
+
is found. Return the index of the found bit.
|
737
|
+
\newline\newline
|
738
|
+
If the bit at $i$ is already what's sought, then $i$ is returned.
|
739
|
+
\newline\newline
|
740
|
+
If there's no bit found, then $INT2FIX(ULONG\_MAX)$ is returned. This will happen in
|
741
|
+
scan0 past the end of a negative number.
|
742
|
+
}
|
743
|
+
\end{tabular}
|
744
|
+
|
745
|
+
\newpage
|
746
|
+
\section{Random Number Functions}
|
747
|
+
|
748
|
+
\subsection{Random State Initialization}
|
749
|
+
|
750
|
+
\begin{tabular}{p{\methwidth} l r}
|
751
|
+
\toprule
|
752
|
+
\textbf{new} & & GMP::RandState.new $\rightarrow$ \textit{mersenne twister state} \\
|
753
|
+
& & GMP::RandState.new(:default) $\rightarrow$ \textit{mersenne twister state} \\
|
754
|
+
& & GMP::RandState(:mt) $\rightarrow$ \textit{mersenne twister random state} \\
|
755
|
+
& & GMP::RandState.new(:lc\_2exp, a, c, m2exp) $\rightarrow$ \textit{linear congruential state} \\
|
756
|
+
& & GMP::RandState.new(:lc\_2exp\_size, size) $\rightarrow$ \textit{linear congruential state} \\
|
757
|
+
\cmidrule(r){2-3}
|
758
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
759
|
+
This method creates a new \gmprandstate instance. The first argument defaults
|
760
|
+
to \textit{:default} (also \textit{:mt}), which initializes the \gmprandstate for a Mersenne
|
761
|
+
Twister algorithm. No other arguments should be given if \textit{:default} or \textit{:mt} is
|
762
|
+
specified.
|
763
|
+
\newline\newline
|
764
|
+
If the first argument given is \textit{:lc\_2exp}, then the \gmprandstate is
|
765
|
+
initialized for a linear congruential algorithm. \textit{:lc\_2exp} must be followed with $a$,
|
766
|
+
$c$, and $m2exp$. The algorithm can then proceed as ($X = (a*X + c) \mod 2^{m2exp}$).
|
767
|
+
\newline\newline
|
768
|
+
\gmprandstate can also be initialized for a linear congruential algorithm with
|
769
|
+
\textit{:lc\_2exp\_size}. This initializer instead takes just one argument, $size$. $a$, $c$,
|
770
|
+
and $m2exp$ are then chosen from a table, with $m2exp/2 > size$. The maximum size
|
771
|
+
currently supported is 128.\newline
|
772
|
+
|
773
|
+
\texttt{GMP::RandState.new \newline
|
774
|
+
GMP::RandState.new(:mt) \newline
|
775
|
+
GMP::RandState.new(:lc\_2exp, 1103515245, 12345, 15) \quad \#=> Perl's old rand() \newline
|
776
|
+
GMP::RandState.new(:lc\_2exp, 25\_214\_903\_917, 11, 48) \quad \#=> drand48}
|
777
|
+
}
|
778
|
+
\end{tabular}
|
779
|
+
|
780
|
+
\subsection{Random State Seeding}
|
781
|
+
|
782
|
+
\begin{tabular}{p{\methwidth} l r}
|
783
|
+
\toprule
|
784
|
+
\textbf{seed} & & $state$.seed($integer$) $\rightarrow$ $integer$ \\
|
785
|
+
\cmidrule(r){2-3}
|
786
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
787
|
+
Set an initial seed value into $state$. $integer$ can be an instance of \gmpz,
|
788
|
+
$Fixnum$, or $Bignum$.
|
789
|
+
}
|
790
|
+
\end{tabular}
|
791
|
+
|
792
|
+
\subsection{Integer Random Numbers}
|
793
|
+
|
794
|
+
\begin{tabular}{p{\methwidth} l r}
|
795
|
+
\toprule
|
796
|
+
\textbf{urandomb} & & $state$.urandomb($n$) $\rightarrow$ $n$ \\
|
797
|
+
\cmidrule(r){2-3}
|
798
|
+
& \multicolumn{2}{p{\defnwidth}}{
|
799
|
+
Generates a uniformly distributed random integer in the range $0$ to $2^n -1$,
|
800
|
+
inclusive.
|
801
|
+
}
|
802
|
+
\end{tabular}
|
803
|
+
|
804
|
+
\end{document}
|