gmp 0.4.0-x86-mingw32

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (59) hide show
  1. data/CHANGELOG +109 -0
  2. data/INSTALL +4 -0
  3. data/README.rdoc +357 -0
  4. data/benchmark/COPYING +674 -0
  5. data/benchmark/README +75 -0
  6. data/benchmark/divide +34 -0
  7. data/benchmark/gcd +38 -0
  8. data/benchmark/gexpr +0 -0
  9. data/benchmark/gexpr.c +359 -0
  10. data/benchmark/multiply +44 -0
  11. data/benchmark/rsa +93 -0
  12. data/benchmark/runbench +147 -0
  13. data/benchmark/version +1 -0
  14. data/ext/extconf.rb +30 -0
  15. data/ext/gmp.c +197 -0
  16. data/ext/gmpbench_timing.c +80 -0
  17. data/ext/gmpf.c +595 -0
  18. data/ext/gmpf.h +144 -0
  19. data/ext/gmpq.c +780 -0
  20. data/ext/gmpq.h +12 -0
  21. data/ext/gmprandstate.c +224 -0
  22. data/ext/gmpz.c +1968 -0
  23. data/ext/gmpz.h +20 -0
  24. data/ext/libgmp-10.dll +0 -0
  25. data/ext/ruby_gmp.h +243 -0
  26. data/ext/takeover.h +36 -0
  27. data/manual.pdf +0 -0
  28. data/manual.tex +804 -0
  29. data/test/README +34 -0
  30. data/test/tc_cmp.rb +74 -0
  31. data/test/tc_division.rb +109 -0
  32. data/test/tc_f_arithmetics_coersion.rb +71 -0
  33. data/test/tc_f_precision.rb +48 -0
  34. data/test/tc_fib_fac_nextprime.rb +51 -0
  35. data/test/tc_floor_ceil_truncate.rb +21 -0
  36. data/test/tc_logical_roots.rb +48 -0
  37. data/test/tc_q.rb +27 -0
  38. data/test/tc_q_basic.rb +41 -0
  39. data/test/tc_random.rb +54 -0
  40. data/test/tc_sgn_neg_abs.rb +47 -0
  41. data/test/tc_swap.rb +19 -0
  42. data/test/tc_z.rb +71 -0
  43. data/test/tc_z_basic.rb +35 -0
  44. data/test/tc_z_exponentiation.rb +22 -0
  45. data/test/tc_z_gcd_lcm_invert.rb +57 -0
  46. data/test/tc_z_jac_leg_rem.rb +73 -0
  47. data/test/tc_z_logic.rb +54 -0
  48. data/test/tc_z_shifts_last_bits.rb +22 -0
  49. data/test/tc_z_to_d_to_i.rb +24 -0
  50. data/test/tc_zerodivisionexceptions.rb +17 -0
  51. data/test/test-12.rb +14 -0
  52. data/test/test-19.rb +13 -0
  53. data/test/test-20.rb +29 -0
  54. data/test/test-21.rb +37 -0
  55. data/test/test-22.rb +12 -0
  56. data/test/test-23.rb +11 -0
  57. data/test/test_helper.rb +8 -0
  58. data/test/unit_tests.rb +39 -0
  59. metadata +115 -0
@@ -0,0 +1,20 @@
1
+ #ifndef _GMPZ_H_
2
+ #define _GMPZ_H_
3
+
4
+ /*
5
+ * gmpz.h
6
+ *
7
+ * This file contains GMP::Z method definitions.
8
+ */
9
+
10
+ #include <ruby_gmp.h>
11
+
12
+ #define DEFUN_INT_COND_P(fname,mpz_fname) \
13
+ static VALUE r_gmpz_##fname(VALUE self) \
14
+ { \
15
+ MP_INT *self_val; \
16
+ mpz_get_struct(self, self_val); \
17
+ return mpz_fname(self_val)?Qtrue:Qfalse; \
18
+ }
19
+
20
+ #endif
Binary file
@@ -0,0 +1,243 @@
1
+ #ifndef _RUBY_GMP_H_
2
+ #define _RUBY_GMP_H_
3
+
4
+ #include <stdio.h>
5
+ #include <ruby.h>
6
+ #ifndef _GNU_SOURCE
7
+ #define _GNU_SOURCE
8
+ #endif
9
+ #include <gmp.h>
10
+
11
+ #ifdef MPFR
12
+
13
+ #ifdef HAVE_MPFR_H
14
+ #include <mpfr.h>
15
+ #endif /* HAVE_MPFR_H */
16
+
17
+ #ifdef HAVE_MPF2MPFR_H
18
+ #include <mpf2mpfr.h>
19
+ #endif /* HAVE_MPF2MPFR_H */
20
+
21
+ #endif /* MPFR */
22
+
23
+ #include <stdlib.h>
24
+
25
+ /*
26
+ MP_INT*, MP_RAT* and MP_FLOAT* are used because they don't have side-effects
27
+ of single-element arrays mp*_t
28
+
29
+ MP_FLOAT is defined here, as it's commented out in gmp.h
30
+ */
31
+ #if defined(MPFR) && defined(HAVE_MPFR_H)
32
+ typedef __mpfr_struct MP_FLOAT;
33
+ #else
34
+ typedef __mpf_struct MP_FLOAT;
35
+ #endif /* HAVE_MPF2MPFR_H */
36
+
37
+ /*
38
+ I don't like this solution, because in gmp.h, all of these typedefs are
39
+ marked with "gmp 1 source compatibility". :(.
40
+ */
41
+ typedef __gmp_randstate_struct MP_RANDSTATE;
42
+
43
+ #define mpz_get_struct(ruby_var,c_var) { Data_Get_Struct(ruby_var, MP_INT, c_var); }
44
+ #define mpq_get_struct(ruby_var,c_var) { Data_Get_Struct(ruby_var, MP_RAT, c_var); }
45
+ #define mpf_get_struct(ruby_var,c_var) { Data_Get_Struct(ruby_var, MP_FLOAT, c_var); }
46
+ #define mprandstate_get_struct(ruby_var,c_var) { Data_Get_Struct(ruby_var, MP_RANDSTATE, c_var); }
47
+ #define mpf_get_struct_prec(ruby_var,c_var,prec) { mpf_get_struct(ruby_var,c_var); prec = mpf_get_prec(c_var); }
48
+ #define mpz_make_struct(ruby_var,c_var) { ruby_var = Data_Make_Struct(cGMP_Z, MP_INT, 0, r_gmpz_free, c_var); }
49
+ #define mpq_make_struct(ruby_var,c_var) { ruby_var = Data_Make_Struct(cGMP_Q, MP_RAT, 0, r_gmpq_free, c_var); }
50
+ #define mpf_make_struct(ruby_var,c_var) { ruby_var = Data_Make_Struct(cGMP_F, MP_FLOAT, 0, r_gmpf_free, c_var); }
51
+ #define mprandstate_make_struct(ruby_var,c_var) { ruby_var = Data_Make_Struct(cGMP_RandState, MP_RANDSTATE, 0, r_gmprandstate_free, c_var); }
52
+ #define mpz_make_struct_init(ruby_var,c_var) { mpz_make_struct(ruby_var,c_var); mpz_init (c_var); }
53
+ #define mpq_make_struct_init(ruby_var,c_var) { mpq_make_struct(ruby_var,c_var); mpq_init (c_var); }
54
+ #define mpf_make_struct_init(ruby_var,c_var,prec) { mpf_make_struct(ruby_var,c_var); mpf_init2 (c_var,prec); }
55
+ #define BIGNUM_P(value) (TYPE(value) == T_BIGNUM)
56
+ #define FLOAT_P(value) (TYPE(value) == T_FLOAT)
57
+ #define STRING_P(value) (TYPE(value) == T_STRING)
58
+ #define GMPZ_P(value) (rb_obj_is_instance_of(value, cGMP_Z) == Qtrue)
59
+ #define GMPQ_P(value) (rb_obj_is_instance_of(value, cGMP_Q) == Qtrue)
60
+ #define GMPF_P(value) (rb_obj_is_instance_of(value, cGMP_F) == Qtrue)
61
+ #define mpz_set_bignum(var_mpz,var_bignum) \
62
+ mpz_set_str (var_mpz, STR2CSTR (rb_funcall (var_bignum, rb_intern ("to_s"), 0)), 0);
63
+ #define mpz_temp_alloc(var) { var=malloc(sizeof(MP_INT)); }
64
+ #define mpz_temp_init(var) { mpz_temp_alloc(var); mpz_init(var); }
65
+ #define mpz_temp_from_bignum(var,var_bignum) \
66
+ { mpz_temp_alloc(var); mpz_init_set_str(var, STR2CSTR(rb_funcall(var_bignum, rb_intern("to_s"), 0)), 0); }
67
+ #define mpz_temp_free(var) { mpz_clear(var); free(var); }
68
+ #define mpf_temp_alloc(var) { var=malloc(sizeof(MP_FLOAT)); }
69
+ #define mpf_temp_init(var,prec) { mpf_temp_alloc(var); mpf_init2(var,prec); }
70
+ #define mpf_temp_free(var) { mpf_clear(var); free(var); }
71
+ #define prec_max(prec,var) {if(mpf_get_prec(var) > prec) prec = mpf_get_prec(var); }
72
+
73
+ #define EXPECTED_ZQFXBD "Expected GMP::Z, GMP::Q, GMP::F, Fixnum, Bignum or Float"
74
+ #define EXPECTED_ZQFXB "Expected GMP::Z, GMP::Q, GMP::F, Fixnum or Bignum"
75
+ #define EXPECTED_ZXB "Expected GMP::Z, Fixnum or Bignum"
76
+ #define EXPECTED_ZX "Expected GMP::Z or Fixnum"
77
+ #define EXPECTED_X "Expected Fixnum"
78
+ #define EXPECTED_Z "Expected GMP::Z"
79
+ #define typeerror(expected) rb_raise(rb_eTypeError, EXPECTED_##expected)
80
+ #define typeerror_as(expected, argname) rb_raise(rb_eTypeError, EXPECTED_##expected " as " argname)
81
+
82
+ //should change exception type
83
+ #define not_yet rb_raise(rb_eTypeError,"Not implemented yet")
84
+
85
+ extern VALUE mGMP, cGMP_Z, cGMP_Q, cGMP_F, cGMP_RandState;
86
+
87
+ extern void r_gmpz_free(void *ptr);
88
+ extern void r_gmpq_free(void *ptr);
89
+ extern void r_gmpf_free(void *ptr);
90
+ extern void r_gmprandstate_free(void *ptr);
91
+
92
+
93
+ /* from gmpz.h */
94
+
95
+ // Initializing, Assigning Integers
96
+ extern VALUE r_gmpzsg_new(int argc, VALUE *argv, VALUE klass);
97
+ extern VALUE r_gmpz_initialize(int argc, VALUE *argv, VALUE self);
98
+ extern void mpz_set_value(MP_INT *target, VALUE source);
99
+ extern VALUE r_gmpmod_z(int argc, VALUE *argv, VALUE module);
100
+ extern VALUE r_gmpz_swap(VALUE self, VALUE arg);
101
+
102
+ // Converting Integers
103
+ extern VALUE r_gmpz_to_i(VALUE self);
104
+ extern VALUE r_gmpz_to_d(VALUE self);
105
+ extern VALUE r_gmpz_to_s(int argc, VALUE *argv, VALUE self);
106
+
107
+ // Integer Arithmetic
108
+ extern VALUE r_gmpz_add(VALUE self, VALUE arg);
109
+ extern VALUE r_gmpz_add_self(VALUE self, VALUE arg);
110
+ extern VALUE r_gmpz_sub(VALUE self, VALUE arg);
111
+ extern VALUE r_gmpz_sub_self(VALUE self, VALUE arg);
112
+ extern VALUE r_gmpz_mul(VALUE self, VALUE arg);
113
+
114
+ // Integer Division
115
+ extern VALUE r_gmpz_mod(VALUE self, VALUE arg);
116
+
117
+ // Integer Exponentiation
118
+ extern VALUE r_gmpzsg_pow(VALUE klass, VALUE base, VALUE exp);
119
+
120
+ // Number Theoretic Functions
121
+ extern VALUE r_gmpz_is_probab_prime(int argc, VALUE* argv, VALUE self);
122
+ extern VALUE r_gmpz_gcd(VALUE self, VALUE arg);
123
+ extern VALUE r_gmpz_invert(VALUE self, VALUE arg);
124
+ extern VALUE r_gmpz_jacobi(VALUE self, VALUE b);
125
+ extern VALUE r_gmpzsg_jacobi(VALUE klass, VALUE a, VALUE b);
126
+ extern VALUE r_gmpz_legendre(VALUE self, VALUE p);
127
+ extern VALUE r_gmpz_remove(VALUE self, VALUE arg);
128
+
129
+ // Integer Comparisons
130
+ extern VALUE r_gmpz_eq(VALUE self, VALUE arg);
131
+ extern VALUE r_gmpz_cmp(VALUE self, VALUE arg);
132
+ extern VALUE r_gmpz_cmpabs(VALUE self, VALUE arg);
133
+
134
+ // Miscelaneous Integer Functions
135
+ extern VALUE r_gmpz_sizeinbase(VALUE self, VALUE base);
136
+ extern VALUE r_gmpz_size_in_bin(VALUE self);
137
+
138
+ // _unsorted_
139
+ extern VALUE r_gmpz_div(VALUE self, VALUE arg);
140
+ extern VALUE r_gmpz_popcount(VALUE self);
141
+ extern VALUE r_gmpz_setbit(VALUE self, VALUE bitnr, VALUE set_to);
142
+ extern VALUE r_gmpz_getbit(VALUE self, VALUE bitnr);
143
+ extern VALUE r_gmpz_scan0(VALUE self, VALUE bitnr);
144
+ extern VALUE r_gmpz_scan1(VALUE self, VALUE bitnr);
145
+ extern VALUE r_gmpz_powm(VALUE self, VALUE exp, VALUE mod);
146
+ extern VALUE r_gmpz_sgn(VALUE self);
147
+ extern int mpz_cmp_value(MP_INT *OP, VALUE arg);
148
+
149
+
150
+
151
+ /* from gmpq.h */
152
+
153
+ // Initializing Rationals
154
+ extern VALUE r_gmpqsg_new(int argc, VALUE *argv, VALUE klass);
155
+ extern VALUE r_gmpmod_q(int argc, VALUE *argv, VALUE module);
156
+ extern VALUE r_gmpq_swap(VALUE self, VALUE arg);
157
+
158
+ // Rational Conversions
159
+ extern VALUE r_gmpq_to_d(VALUE self);
160
+ extern VALUE r_gmpq_to_s(VALUE self);
161
+
162
+ // Rational Arithmetic
163
+ extern VALUE r_gmpq_add(VALUE self, VALUE arg);
164
+ extern VALUE r_gmpq_sub(VALUE self, VALUE arg);
165
+ extern VALUE r_gmpq_mul(VALUE self, VALUE arg);
166
+ extern VALUE r_gmpq_div(VALUE self, VALUE arg);
167
+ extern VALUE r_gmpq_neg(VALUE self);
168
+ extern VALUE r_gmpq_neg_self(VALUE self);
169
+ extern VALUE r_gmpq_abs(VALUE self);
170
+ extern VALUE r_gmpq_abs_self(VALUE self);
171
+ extern VALUE r_gmpq_inv(VALUE self);
172
+ extern VALUE r_gmpq_inv_self(VALUE self);
173
+
174
+ // Comparing Rationals
175
+ extern VALUE r_gmpq_eq(VALUE self, VALUE arg);
176
+ extern VALUE r_gmpq_cmp(VALUE self, VALUE arg);
177
+ extern int mpq_cmp_value(MP_RAT *OP, VALUE arg);
178
+ extern VALUE r_gmpq_sgn(VALUE self);
179
+
180
+ // Applying Integer Functions
181
+ extern VALUE r_gmpq_num(VALUE self);
182
+ extern VALUE r_gmpq_den(VALUE self);
183
+
184
+ // _unsorted_
185
+
186
+
187
+ /* from gmpf.h */
188
+
189
+ // Initializing, Assigning Floats
190
+ extern VALUE r_gmpfsg_new(int argc, VALUE *argv, VALUE klass);
191
+ extern VALUE r_gmpf_initialize(int argc, VALUE *argv, VALUE self);
192
+ extern void mpf_set_value(MP_FLOAT *self_val, VALUE arg);
193
+ extern VALUE r_gmpmod_f(int argc, VALUE *argv, VALUE module);
194
+
195
+ // Converting Floats
196
+ extern VALUE r_gmpf_to_d(VALUE self);
197
+ extern VALUE r_gmpf_to_s(VALUE self);
198
+
199
+ // Float Arithmetic
200
+ extern VALUE r_gmpf_add(VALUE self, VALUE arg);
201
+ extern VALUE r_gmpf_sub(VALUE self, VALUE arg);
202
+ extern VALUE r_gmpf_mul(VALUE self, VALUE arg);
203
+ extern VALUE r_gmpf_div(VALUE self, VALUE arg);
204
+
205
+ // Float Comparison
206
+ extern VALUE r_gmpf_eq(VALUE self, VALUE arg);
207
+ extern VALUE r_gmpf_cmp(VALUE self, VALUE arg);
208
+ extern int mpf_cmp_value(MP_FLOAT *OP, VALUE arg);
209
+
210
+ // _unsorted_
211
+ extern VALUE r_gmpf_sgn(VALUE self);
212
+ extern VALUE r_gmpf_get_prec(VALUE self);
213
+
214
+
215
+ /* from gmprandstate.h */
216
+
217
+ // Random State Initialization
218
+ extern VALUE r_gmprandstatesg_new(int argc, VALUE *argv, VALUE klass);
219
+ extern VALUE r_gmprandstate_initialize(int argc, VALUE *argv, VALUE self);
220
+ extern VALUE r_gmpmod_randstate(int argc, VALUE *argv, VALUE module);
221
+
222
+ // Random State Seeding
223
+ extern VALUE r_gmprandstate_seed(VALUE self, VALUE arg);
224
+
225
+ // Integer Random Numbers
226
+ extern VALUE r_gmprandstate_urandomb(VALUE self, VALUE arg);
227
+
228
+
229
+ /* from gmpbench_timing.c */
230
+
231
+ // GMPbench Timing
232
+ extern VALUE r_gmpmod_cputime(VALUE self);
233
+ extern VALUE r_gmpmod_time(VALUE self);
234
+
235
+
236
+
237
+ extern void init_gmpz();
238
+ extern void init_gmpq();
239
+ extern void init_gmpf();
240
+ extern void init_gmprandstate();
241
+ extern void init_gmpbench_timing();
242
+
243
+ #endif
@@ -0,0 +1,36 @@
1
+ #define DEFUN_TAKEOVER_LOGIC(fname, mpz_fname, old_fname) \
2
+ static VALUE takeover_fixnum_##fname(int argc, VALUE *argv, VALUE self) \
3
+ { \
4
+ MP_INT *res_val, *arg_val; \
5
+ VALUE res; \
6
+ \
7
+ if (argc != 1 || !GMPZ_P(argv[0])) { \
8
+ return rb_funcall2 (self, rb_intern (old_fname), argc, argv); \
9
+ } else { \
10
+ mpz_make_struct(res, res_val); \
11
+ mpz_get_struct(argv[0], arg_val); \
12
+ mpz_init_set_si (res_val, FIX2INT(self)); \
13
+ mpz_fname (res_val, res_val, arg_val); \
14
+ return res; \
15
+ } \
16
+ } \
17
+ \
18
+ static VALUE takeover_bignum_##fname(int argc, VALUE *argv, VALUE self) \
19
+ {\
20
+ MP_INT *res_val, *arg_val; \
21
+ VALUE res; \
22
+ \
23
+ if (argc != 1 || !GMPZ_P(argv[0])) { \
24
+ return rb_funcall2 (self, rb_intern (old_fname), argc, argv); \
25
+ } else { \
26
+ mpz_get_struct(argv[0], arg_val); \
27
+ mpz_make_struct_init(res, res_val); \
28
+ mpz_set_bignum (res_val, self); \
29
+ mpz_fname (res_val, res_val, arg_val); \
30
+ return res; \
31
+ } \
32
+ }
33
+
34
+ DEFUN_TAKEOVER_LOGIC(and, mpz_and, "old_and")
35
+ DEFUN_TAKEOVER_LOGIC(or, mpz_ior, "old_or")
36
+ DEFUN_TAKEOVER_LOGIC(xor, mpz_xor, "old_xor")
Binary file
@@ -0,0 +1,804 @@
1
+ \documentclass[pdftex,10pt]{article}
2
+ \usepackage{amsmath,amsfonts,url}
3
+ \usepackage[pdftex]{graphicx}
4
+ \usepackage{booktabs}
5
+ \usepackage{url}
6
+ \setlength{\parindent}{0pt}
7
+ \def\cour{\fontfamily{pcr}\selectfont}
8
+ \usepackage[top=1in, bottom=0.8in, left=0.8in, right=0.8in]{geometry}
9
+ \setcounter{tocdepth}{3}
10
+ \newlength{\titrwidth}
11
+ \setlength{\titrwidth}{\textwidth}
12
+ \addtolength{\titrwidth}{-1.2in}
13
+ \newlength{\methwidth}
14
+ \setlength{\methwidth}{0.8in}
15
+ \newlength{\defnwidth}
16
+ \setlength{\defnwidth}{\textwidth}
17
+ \addtolength{\defnwidth}{-1.2in}
18
+ \addtolength{\heavyrulewidth}{\heavyrulewidth}
19
+ \def\qquad{\quad\quad}
20
+ \def\qqqquad{\quad\quad\quad\quad}
21
+ \def\cc{\colon\colon}
22
+ \def\gmpz{\textit{GMP::Z}}
23
+ \def\gmprandstate{\textit{GMP::RandState\ }}
24
+ \frenchspacing
25
+ \begin{document}
26
+
27
+ \begin{tabular}{p{1.0in} p{\titrwidth}}
28
+ \huge{gmp} &\\
29
+ \midrule[3pt]
30
+ \multicolumn{2}{r}{\large{Ruby bindings to the GMP library}}\\
31
+ \multicolumn{2}{r}{\large{Edition 0.4.0}}\\
32
+ \multicolumn{2}{r}{\large{26 February 2010}}
33
+ \end{tabular}
34
+
35
+ \vfill
36
+ \large{written by Sam Rawlins}\\
37
+ \large{with extensive quoting from the GMP Manual}
38
+ \newpage
39
+
40
+ \vfill
41
+ This manual describes how to use the gmp Ruby gem, which provides bindings to
42
+ the GNU multiple precision arithmetic library, version 4.3.x or 5.0.x.\\
43
+ \\
44
+ Copyright 2009 Sam Rawlins.\\
45
+ No license yet.
46
+ \newpage
47
+
48
+ \tableofcontents
49
+ \newpage
50
+
51
+ \section{Introduction to GNU MP}
52
+
53
+ This entire page is copied verbatim from the GMP Manual.\\\\
54
+
55
+ GNU MP is a portable library written in C for arbitrary precision arithmetic on
56
+ integers, rational numbers, and floating-point numbers. It aims to provide the
57
+ fastest possible arithmetic for all applications that need higher precision
58
+ than is directly supported by the basic C types.\\
59
+ \\
60
+ Many applications use just a few hundred bits of precision; but some
61
+ applications may need thousands or even millions of bits. GMP is designed to
62
+ give good performance for both, by choosing algorithms based on the sizes of
63
+ the operands, and by carefully keeping the overhead at a minimum.\\
64
+ \\
65
+ The speed of GMP is achieved by using fullwords as the basic arithmetic type,
66
+ by using sophisticated algorithms, by including carefully optimized assembly
67
+ code for the most common inner loops for many different CPUs, and by a general
68
+ emphasis on speed (as opposed to simplicity or elegance).\\
69
+ \\
70
+ There is assembly code for these CPUs: ARM, DEC Alpha 21064, 21164, and 21264,
71
+ AMD 29000, AMD K6, K6-2, Athlon, and Athlon64, Hitachi SuperH and SH-2, HPPA
72
+ 1.0, 1.1, and 2.0, Intel Pentium, Pentium Pro/II/III, Pentium 4, generic x86,
73
+ Intel IA-64, i960, Motorola MC68000, MC68020, MC88100, and MC88110,
74
+ Motorola/IBM PowerPC 32 and 64, National NS32000, IBM POWER, MIPS R3000, R4000,
75
+ SPARCv7, SuperSPARC, generic SPARCv8, UltraSPARC, DEC VAX, and Zilog Z8000.
76
+ Some optimizations also for Cray vector systems, Clipper, IBM ROMP (RT), and
77
+ Pyramid AP/XP.\\
78
+ \\
79
+ For up-to-date information on GMP, please see the GMP web pages at\\
80
+ \setlength{\parindent}{0.25in}
81
+ \texttt{http://gmplib.org/}
82
+ \setlength{\parindent}{0in}
83
+ \\
84
+
85
+ The latest version of the library is available at\\
86
+ \setlength{\parindent}{0.25in}
87
+ \texttt{ftp://ftp.gnu.org/gnu/gmp/}\\
88
+ \setlength{\parindent}{0in}
89
+ \\
90
+
91
+ Many sites around the world mirror '\texttt{ftp.gnu.org}', please use a mirror
92
+ near you, see \texttt{http://www.gnu.org/order/ftp.html} for a full list.\\
93
+ \\
94
+ There are three public mailing lists of interest. One for release
95
+ announcements, one for general questions and discussions about usage of the GMP
96
+ library, and one for bug reports. For more information, see\\
97
+ \\
98
+ \texttt{http://gmplib.org/mailman/listinfo/}.\\
99
+ \\
100
+ The proper place for bug reports is gmp-bugs@gmplib.org. See Chapter 4
101
+ [Reporting Bugs], page 28 for information about reporting bugs.
102
+
103
+ \section{Introduction to the gmp gem}
104
+
105
+ The gmp Ruby gem is a Ruby library that provides bindings to GMP. The gem is
106
+ incomplete, and will likely only include a subset of the GMP functions. It is
107
+ built as a C extension for ruby, interacting with gmp.h. The gmp gem is not
108
+ endorsed or supported by GNU or the GMP team. The gmp gem also does not ship
109
+ with GMP, so GMP must be compiled separately.
110
+
111
+ \section{Installing the gmp gem}
112
+
113
+ \subsection{Prerequisites}
114
+ OK. First, we've got a few requirements. To install the gmp gem, you need one
115
+ of the following versions of Ruby:
116
+ \begin{itemize}
117
+ \item (MRI) Ruby 1.8.6 - tested lightly.
118
+ \item (MRI) Ruby 1.8.7 - tested seriously.
119
+ \item (MRI) Ruby 1.9.1 - tested seriously.
120
+ \end{itemize}
121
+ As you can see only Matz's Ruby Interpreter (MRI) is supported. I haven't even
122
+ put a thought into trying other interpreters/VMs. I intend to look into FFI,
123
+ which supposedly will allow me to load this extension into JRuby and Rubinius,
124
+ not sure about others...\\
125
+
126
+ Next is the platform, the combination of the architecture (processor) and OS.
127
+ As far as I can tell, if you can compile GMP and Ruby on a given platform, you
128
+ can use the gmp gem there too. Please report problems with that hypothesis.\\
129
+
130
+ Lastly, GMP. GMP must be compiled and working. "and working" means you ran "make
131
+ check" while installing GMP. The following versions of GMP have been tested:
132
+ \begin{itemize}
133
+ \item GMP 4.3.1
134
+ \item GMP 4.3.2
135
+ \item GMP 5.0.0
136
+ \item GMP 5.0.1
137
+ \end{itemize}
138
+
139
+ That's all. I don't intend to test any older versions, maybe 4.3.0 for
140
+ completeness.\\
141
+
142
+ Here is a table of the exact environments on which I have tested the gmp gem:\\\\
143
+
144
+ \begin{tabular}{lrr} \hline
145
+ Platform & Ruby & GMP \\ \midrule[1pt]
146
+ Cygwin on x86 & (MRI) Ruby 1.8.7 & GMP 4.3.1 \\ \hline
147
+ Linux (LinuxMint 7) on x86 & (MRI) Ruby 1.8.7 & GMP 4.3.1 \\ \hline
148
+ Mac OS X 10.5.7 on x86 (32-bit) & (MRI) Ruby 1.8.6 & GMP 4.3.1 \\ \hline
149
+ Mac OS X 10.5.7 on x86 (32-bit) & (MRI) Ruby 1.9.1 & GMP 4.3.1 \\ \hline
150
+ Windows XP on x86 (32-bit) & (MRI) Ruby 1.9.1 & GMP 5.0.1 \\ \hline
151
+ \end{tabular}
152
+
153
+ \subsection{Installing}
154
+ You may clone the gmp gem's git repository with:\\
155
+ \\
156
+ \texttt{git clone git://github.com/srawlins/gmp.git}\\
157
+
158
+ Or you may install the gem from gemcutter:\\
159
+ \\
160
+ \texttt{gem install gmp}\\
161
+
162
+ Or you may install the gem from github (old):\\
163
+ \\
164
+ \texttt{gem install srawlins-gmp}\\
165
+
166
+ At this time, the gem does not self-compile (how does that work?). To compile the C
167
+ extensions, do the following:\\
168
+ \\
169
+ \texttt{cd <gmp gem directory>/ext}\\
170
+ \texttt{ruby extconf.rb}\\
171
+ \texttt{make}\\
172
+
173
+ There shouldn't be any errors, or warnings.
174
+
175
+ \section{Testing the gmp gem}
176
+
177
+ Testing the gmp gem is quite simple. The test/unit\_tests.rb suite uses Unit::Test.
178
+ You can run this test suite with:\\
179
+ \\
180
+ \texttt{cd <gmp gem directory>/test}\\
181
+ \texttt{ruby unit\_tests.rb}\\
182
+
183
+ All tests should pass. If you don't have the test-unit gem installed, then you may
184
+ run into one error. I'm not sure why this is... I suspect a bug in Ruby's Test::Unit
185
+ that the test-unit gem monkey patches.
186
+
187
+ \section{GMP and gmp gem basics}
188
+
189
+ \subsection{Classes}
190
+ The gmp gem includes the namespace \texttt{GMP} and four classes within \texttt{GMP}:
191
+ \begin{itemize}
192
+ \item \texttt{GMP::Z} - Methods for signed integer arithmetic. There are at least 45
193
+ methods here (still accounting).
194
+ \item \texttt{GMP::Q} - Methods for rational number arithmetic. There are at least 11
195
+ methods here (still accounting).
196
+ \item \texttt{GMP::F} - Methods for floating-point arithmetic. There are at least 6
197
+ methods here (still accounting).
198
+ \item \texttt{GMP::RandState} - Methods for random number generation. There are 3
199
+ methods here.
200
+ \end{itemize}
201
+
202
+ In addition to the above four classes, there is also one constant within \texttt{GMP}:
203
+ \begin{itemize}
204
+ \item \texttt{GMP::GMP\_VERSION} - The version of GMP compiled into the gmp gem.
205
+ \end{itemize}
206
+
207
+ \newpage
208
+ \section{Integer Functions}
209
+
210
+ \subsection{Initializing, Assigning Integers}
211
+
212
+ \begin{tabular}{p{\methwidth} l r}
213
+ \toprule
214
+ \textbf{new} & & GMP::Z.new $\rightarrow$ \textit{integer} \\
215
+ & & GMP::Z.new(\textit{numeric = 0}) $\rightarrow$ \textit{integer} \\
216
+ & & GMP::Z.new(\textit{str}) $\rightarrow$ \textit{integer} \\
217
+ \cmidrule(r){2-3}
218
+ & \multicolumn{2}{p{\defnwidth}}{
219
+ This method creates a new \textit{GMP::Z} integer. It takes one optional argument for
220
+ the value of the integer. This argument can be one of several classes. Here are some
221
+ examples:\newline
222
+
223
+ \texttt{GMP::Z.new \qqqquad\qqqquad \#=> 0 (default) \newline
224
+ GMP::Z.new(1) \qqqquad\qquad\ \#=> 1 (Ruby Fixnum) \newline
225
+ GMP::Z.new("127") \qqqquad\ \#=> 127 (Ruby String)\newline
226
+ GMP::Z.new(4294967296) \qquad \#=> 4294967296 (Ruby Bignum)\newline
227
+ GMP::Z.new(GMP::Z.new(31)) \#=> 31 (GMP Integer)}
228
+ }
229
+ \end{tabular}
230
+ \newline\newline
231
+
232
+ There is also a convenience method available, \texttt{GMP::Z()}.\\
233
+
234
+ \subsection{Converting Integers}
235
+
236
+ \begin{tabular}{p{\methwidth} l r}
237
+ \toprule
238
+ \textbf{to\_d} & & \textit{integer}.to\_d $\rightarrow$ \textit{float} \\
239
+ \cmidrule(r){2-3}
240
+ & \multicolumn{2}{p{\defnwidth}}{
241
+ Returns \textit{integer} as an Float if \textit{integer} fits in a Float.
242
+
243
+ Otherwise returns the least significant part of \texttt{integer}, with the same sign as
244
+ \textit{integer}.
245
+
246
+ If \textit{integer} is too big to fit in a Float, the returned result is probably not
247
+ very useful. To find out if the value will fit, use the function
248
+ \textit{mpz\_fits\_slong\_p} (\textbf{Unimplemented}).
249
+ }
250
+ \end{tabular}
251
+ \newline\newline
252
+
253
+ \begin{tabular}{p{\methwidth} l r}
254
+ \toprule
255
+ \textbf{to\_i} & & \textit{integer}.to\_i $\rightarrow$ \textit{fixnum} \\
256
+ \cmidrule(r){2-3}
257
+ & \multicolumn{2}{p{\defnwidth}}{
258
+ Returns \textit{integer} as a Fixnum if \textit{integer} fits in a Fixnum.
259
+ \newline
260
+
261
+ Otherwise returns the least significant part of \textit{integer}, with the same sign as
262
+ \textit{integer}.
263
+ \newline
264
+
265
+ If \textit{integer} is too big to fit in a Fixnum, the returned result is probably not
266
+ very useful. To find out if the value will fit, use the function
267
+ \textit{mpz\_fits\_slong\_p} (\textbf{Unimplemented}).
268
+ }
269
+ \end{tabular}
270
+ \newline\newline
271
+
272
+ \begin{tabular}{p{\methwidth} l r}
273
+ \toprule
274
+ \textbf{to\_s} & & \textit{integer}.to\_s(\textit{base = 10}) $\rightarrow$ \textit{str} \\
275
+ \cmidrule(r){2-3}
276
+ & \multicolumn{2}{p{\defnwidth}}{
277
+ Converts \textit{integer} to a string of digits in base \textit{base}. The
278
+ \textit{base} argument may vary from 2 to 62 or from -2 to -36, or be a symbol, one of
279
+ \textit{:bin}, \textit{:oct}, \textit{:dec}, or \textit{:hex}.
280
+ \newline
281
+
282
+ For \textit{base} in the range 2..36, digits and lower-case letters are used; for
283
+ -2..-36 (and \textit{:bin}, \textit{:oct}, \textit{:dec}, and \textit{:hex}), digits
284
+ and upper-case letters are used; for 37..62, digits, upper-case letters, and lower-case
285
+ letters (in that significance order) are used. Here are some
286
+ examples:\newline
287
+
288
+ \texttt{GMP::Z(1).to\_s \qqqquad \#=> "1" \newline
289
+ GMP::Z(32).to\_s(2) \qquad \#=> "100000" \newline
290
+ GMP::Z(32).to\_s(4) \qquad \#=> "200" \newline
291
+ GMP::Z(10).to\_s(16) \quad\ \#=> "a" \newline
292
+ GMP::Z(10).to\_s(-16) \quad \#=> "A" \newline
293
+ GMP::Z(255).to\_s(:bin) \#=> "11111111" \newline
294
+ GMP::Z(255).to\_s(:oct) \#=> "377" \newline
295
+ GMP::Z(255).to\_s(:dec) \#=> "255" \newline
296
+ GMP::Z(255).to\_s(:hex) \#=> "ff"}
297
+ }
298
+ \end{tabular}
299
+
300
+ \subsection{Integer Arithmetic}
301
+
302
+ \begin{tabular}{p{\methwidth} l r}
303
+ \toprule
304
+ \textbf{+} & & \textit{integer} + \textit{numeric} $\rightarrow$ \textit{numeric} \\
305
+ \cmidrule(r){2-3}
306
+ & \multicolumn{2}{p{\defnwidth}}{
307
+ Returns the sum of \textit{integer} and \textit{numeric}. \textit{numeric} can be an
308
+ instance of \textit{GMP::Z}, \textit{Fixnum}, \textit{GMP::Q}, \textit{GMP::F}, or
309
+ \textit{Bignum}.
310
+ }
311
+ \end{tabular}
312
+ \newline\newline
313
+
314
+ \begin{tabular}{p{\methwidth} l r}
315
+ \toprule
316
+ \textbf{add!} & & \textit{integer}.add!(\textit{numeric}) $\rightarrow$
317
+ \textit{numeric} \\
318
+ \cmidrule(r){2-3}
319
+ & \multicolumn{2}{p{\defnwidth}}{
320
+ Sums \textit{integer} and \textit{numeric}, in place. \textit{numeric} can be an
321
+ instance of \textit{GMP::Z}, \textit{Fixnum}, \textit{GMP::Q}, \textit{GMP::F}, or
322
+ \textit{Bignum}.
323
+ }
324
+ \end{tabular}
325
+ \newline\newline
326
+
327
+ \begin{tabular}{p{\methwidth} l r}
328
+ \toprule
329
+ \textbf{-} & & \textit{integer} - \textit{numeric} $\rightarrow$ \textit{numeric} \\
330
+ & & \textit{integer}.sub!(\textit{numeric}) $\rightarrow$ \textit{numeric} \\
331
+ \cmidrule(r){2-3}
332
+ & \multicolumn{2}{p{\defnwidth}}{
333
+ Returns the difference of \textit{integer} and \textit{numeric}. The destructive method
334
+ calculates the difference in place. \textit{numeric} can be an instance of
335
+ \textit{GMP::Z}, \textit{Fixnum}, \textit{GMP::Q}, \textit{GMP::F}, or \textit{Bignum}.
336
+ Here are some examples:\newline
337
+
338
+ \texttt{seven = GMP::Z(7) \newline
339
+ nine \ = GMP::Z(9) \newline
340
+ half \ = GMP::Q(1,2) \newline
341
+ pi \quad\ = GMP::F("3.14") \newline
342
+ nine - 5 \qquad\quad \#=> 4 (GMP Integer) \newline
343
+ nine - seven \quad \#=> 2 (GMP Integer) \newline
344
+ nine - (2**32) \#=> -4294967287 (GMP Integer) \newline
345
+ nine - nine \quad\ \#=> 0 (GMP Integer) \newline
346
+ nine - half \quad\ \#=> 8.5 (GMP Rational) \newline
347
+ nine - pi \qquad\ \#=> 5.86 (GMP Float)}
348
+
349
+ }
350
+ \end{tabular}
351
+ \newline\newline
352
+
353
+ \begin{tabular}{p{\methwidth} l r}
354
+ \toprule
355
+ \textbf{*} & & \textit{integer} * \textit{numeric} $\rightarrow$ \textit{numeric} \\
356
+ & & \textit{integer}.mul(\textit{numeric}) $\rightarrow$ \textit{numeric} \\
357
+ & & \textit{integer}.mul!(\textit{numeric}) $\rightarrow$ \textit{numeric} \\
358
+ \cmidrule(r){2-3}
359
+ & \multicolumn{2}{p{\defnwidth}}{
360
+ Returns the product of \textit{integer} and \textit{numeric}. The destructive method
361
+ calculates the product in place. \textit{numeric} can be an instance of
362
+ \textit{GMP::Z}, \textit{Fixnum}, \textit{GMP::Q}, \textit{GMP::F}, or \textit{Bignum}.
363
+ }
364
+ \end{tabular}
365
+ \newline\newline
366
+
367
+ \begin{tabular}{p{\methwidth} l r}
368
+ \toprule
369
+ \textbf{\textless\textless} & & \textit{integer} \textless\textless \textit{numeric} $\rightarrow$ \textit{integer} \\
370
+ \cmidrule(r){2-3}
371
+ & \multicolumn{2}{p{\defnwidth}}{
372
+ Returns \textit{integer} times 2 to the \textit{numeric} power. This can also be
373
+ defined as a left shift by \textit{numeric} bits.
374
+ }
375
+ \end{tabular}
376
+ \newline\newline
377
+
378
+ \begin{tabular}{p{\methwidth} l r}
379
+ \toprule
380
+ \textbf{-@} & & -\textit{integer}\\
381
+ & & \textit{integer}.neg\\
382
+ & & \textit{integer}.neg!\\
383
+ \cmidrule(r){2-3}
384
+ & \multicolumn{2}{p{\defnwidth}}{
385
+ Returns the negation, the additive inverse, of \textit{integer}. The destructive method
386
+ negates in place.
387
+ }
388
+ \end{tabular}
389
+ \newline\newline
390
+
391
+ \begin{tabular}{p{\methwidth} l r}
392
+ \toprule
393
+ \textbf{abs} & & \textit{integer}.abs\\
394
+ & & \textit{integer}.abs!\\
395
+ \cmidrule(r){2-3}
396
+ & \multicolumn{2}{p{\defnwidth}}{
397
+ Returns the absolute value of \textit{integer}. The destructive method calculates the
398
+ absolute value in place.
399
+ }
400
+ \end{tabular}
401
+
402
+ \subsection{Integer Division}
403
+
404
+ \begin{tabular}{p{\methwidth} l r}
405
+ \toprule
406
+ \textbf{tdiv} & & $integer$.tdiv($numeric$) $\rightarrow$ $integer$\\
407
+ \cmidrule(r){2-3}
408
+ & \multicolumn{2}{p{\defnwidth}}{
409
+ Returns the division of $integer$ by $numeric$, truncated. $numeric$ can be an instance
410
+ of $GMP::Z$, $Fixnum$, $Bignum$. The return object's class is always $GMP::Z$.
411
+ }
412
+ \end{tabular}
413
+ \newline\newline
414
+
415
+ \begin{tabular}{p{\methwidth} l r}
416
+ \toprule
417
+ \textbf{fdiv} & & $integer$.fdiv($numeric$) $\rightarrow$ $integer$\\
418
+ \cmidrule(r){2-3}
419
+ & \multicolumn{2}{p{\defnwidth}}{
420
+ Returns the division of $integer$ by $numeric$, floored. $numeric$ can be an instance
421
+ of $GMP::Z$, $Fixnum$, $Bignum$. The return object's class is always $GMP::Z$.
422
+ }
423
+ \end{tabular}
424
+ \newline\newline
425
+
426
+ \begin{tabular}{p{\methwidth} l r}
427
+ \toprule
428
+ \textbf{cdiv} & & $integer$.cdiv($numeric$) $\rightarrow$ $integer$\\
429
+ \cmidrule(r){2-3}
430
+ & \multicolumn{2}{p{\defnwidth}}{
431
+ Returns the ceiling division of $integer$ by $numeric$. $numeric$ can be an instance of
432
+ $GMP::Z$, $Fixnum$, $Bignum$. The return object's class is always $GMP::Z$.
433
+ }
434
+ \end{tabular}
435
+ \newline\newline
436
+
437
+ \begin{tabular}{p{\methwidth} l r}
438
+ \toprule
439
+ \textbf{tmod} & & $integer$.tmod($numeric$) $\rightarrow$ $integer$\\
440
+ \cmidrule(r){2-3}
441
+ & \multicolumn{2}{p{\defnwidth}}{
442
+ Returns the remainder after truncated division of $integer$ by $numeric$. $numeric$ can
443
+ be an instance of $GMP::Z$, $Fixnum$, or $Bignum$. The return object's class is always
444
+ $GMP::Z$.
445
+ }
446
+ \end{tabular}
447
+ \newline\newline
448
+
449
+ \begin{tabular}{p{\methwidth} l r}
450
+ \toprule
451
+ \textbf{fmod} & & $integer$.fmod($numeric$) $\rightarrow$ $integer$\\
452
+ \cmidrule(r){2-3}
453
+ & \multicolumn{2}{p{\defnwidth}}{
454
+ Returns the remainder after floored division of $integer$ by $numeric$. $numeric$ can
455
+ be an instance of $GMP::Z$, $Fixnum$, or $Bignum$. The return object's class is always
456
+ $GMP::Z$.
457
+ }
458
+ \end{tabular}
459
+ \newline\newline
460
+
461
+ \begin{tabular}{p{\methwidth} l r}
462
+ \toprule
463
+ \textbf{cmod} & & \textit{integer}.cmod(\textit{numeric}) $\rightarrow$ \textit{integer}\\
464
+ \cmidrule(r){2-3}
465
+ & \multicolumn{2}{p{\defnwidth}}{
466
+ Returns the remainder after ceilinged division of $integer$ by $numeric$. $numeric$ can
467
+ be an instance of $GMP::Z$, $Fixnum$, or $Bignum$. The return object's class is always
468
+ $GMP::Z$.
469
+ }
470
+ \end{tabular}
471
+ \newline\newline
472
+
473
+ \begin{tabular}{p{\methwidth} l r}
474
+ \toprule
475
+ \textbf{\%} & & \textit{integer} \% \textit{numeric} $\rightarrow$ \textit{integer}\\
476
+ \cmidrule(r){2-3}
477
+ & \multicolumn{2}{p{\defnwidth}}{
478
+ Returns $integer$ modulo $numeric$. $numeric$ can be an instance of \gmpz, $Fixnum$,
479
+ or $Bignum$. The return object's class is always \gmpz.
480
+ }
481
+ \end{tabular}
482
+
483
+ \subsection{Integer Roots}
484
+
485
+ \begin{tabular}{p{\methwidth} l r}
486
+ \toprule
487
+ \textbf{root} & & \textit{integer}.root(\textit{numeric}) $\rightarrow$ \textit{numeric} \\
488
+ \cmidrule(r){2-3}
489
+ & \multicolumn{2}{p{\defnwidth}}{
490
+ Returns the integer part of the $numeric$'th root of $integer$.
491
+ }
492
+ \end{tabular}
493
+ \newline\newline
494
+
495
+ \begin{tabular}{p{\methwidth} l r}
496
+ \toprule
497
+ \textbf{sqrt} & & \textit{integer}.sqrt $\rightarrow$ \textit{numeric} \\
498
+ & & \textit{integer}.sqrt!(\textit{numeric}) $\rightarrow$ \textit{numeric} \\
499
+ \cmidrule(r){2-3}
500
+ & \multicolumn{2}{p{\defnwidth}}{
501
+ Returns the truncated integer part of the square root of $integer$.
502
+ }
503
+ \end{tabular}
504
+ \newline\newline
505
+
506
+ \begin{tabular}{p{\methwidth} l r}
507
+ \toprule
508
+ \textbf{sqrtrem} & & \textit{integer}.sqrtrem $\rightarrow$ \textit{sqrt}, \textit{rem} \\
509
+ \cmidrule(r){2-3}
510
+ & \multicolumn{2}{p{\defnwidth}}{
511
+ Returns the truncated integer part of the square root of $integer$ as $sqrt$ and the
512
+ remainder, $integer - sqrt * sqrt$, as $rem$, which will be zero if $integer$ is a
513
+ perfect square.
514
+ }
515
+ \end{tabular}
516
+ \newline\newline
517
+
518
+ \begin{tabular}{p{\methwidth} l r}
519
+ \toprule
520
+ \textbf{power?} & & \textit{integer}.power? $\rightarrow$ \textit{true} \textbar\ \textit{false} \\
521
+ \cmidrule(r){2-3}
522
+ & \multicolumn{2}{p{\defnwidth}}{
523
+ Returns true if $integer$ is a perfect power, i.e., if there exist integers $a$ and
524
+ $b$, with $b > 1$, such that $integer$ equals $a$ raised to the power $b$.
525
+ \newline\newline
526
+ Under this definition both 0 and 1 are considered to be perfect powers. Negative values
527
+ of integers are accepted, but of course can only be odd perfect powers.
528
+ }
529
+ \end{tabular}
530
+ \newline\newline
531
+
532
+ \begin{tabular}{p{\methwidth} l r}
533
+ \toprule
534
+ \textbf{square?} & & \textit{integer}.square? $\rightarrow$ \textit{true} \textbar\ \textit{false} \\
535
+ \cmidrule(r){2-3}
536
+ & \multicolumn{2}{p{\defnwidth}}{
537
+ Returns true if $integer$ is a perfect square, i.e., if the square root of
538
+ $integer$ is an integer. Under this definition both 0 and 1 are considered to be
539
+ perfect squares.
540
+ }
541
+ \end{tabular}
542
+
543
+ \subsection{Integer Exponentiation}
544
+
545
+ \begin{tabular}{p{\methwidth} l r}
546
+ \toprule
547
+ \textbf{**} & & \textit{integer} ** \textit{numeric} $\rightarrow$ \textit{numeric} \\
548
+ & & \textit{integer}.pow(\textit{numeric}) $\rightarrow$ \textit{numeric} \\
549
+ \cmidrule(r){2-3}
550
+ & \multicolumn{2}{p{\defnwidth}}{
551
+ Returns $integer$ raised to the $numeric$ power.
552
+ }
553
+ \end{tabular}
554
+ \newline\newline
555
+
556
+ \begin{tabular}{p{\methwidth} l r}
557
+ \toprule
558
+ \textbf{powmod} & & \textit{integer}.powmod(\textit{exp}, \textit{mod}) $\rightarrow$ \textit{integer} \\
559
+ \cmidrule(r){2-3}
560
+ & \multicolumn{2}{p{\defnwidth}}{
561
+ Returns $integer$ raised to the $exp$ power, modulo $mod$. Negative $exp$ is supported
562
+ if an inverse, $integer^{-1}$ modulo $mod$, exists. If an inverse doesn't exist then a
563
+ divide by zero exception is raised.
564
+ }
565
+ \end{tabular}
566
+
567
+ \subsection{Number Theoretic Functions}
568
+
569
+ \begin{tabular}{p{\methwidth} l r}
570
+ \toprule
571
+ \textbf{is\_probab\_prime?} & & $integer$.is\_probab\_prime?($reps = 5$) $\rightarrow$ 0, 1, or 2 \\
572
+ \cmidrule(r){2-3}
573
+ & \multicolumn{2}{p{\defnwidth}}{
574
+ Determine whether $integer$ is prime. Returns 2 if $integer$ is definitely prime,
575
+ returns 1 if $integer$ is probably prime (without being certain), or returns 0 if
576
+ $integer$ is definitely composite.
577
+ \newline\newline
578
+ This function does some trial divisions, then some Miller-Rabin probabilistic primality
579
+ tests. $reps$ controls how many such tests are done, 5 to 10 is a reasonable number,
580
+ more will reduce the chances of a composite being returned as �probably prime�.
581
+ \newline\newline
582
+ Miller-Rabin and similar tests can be more properly called compositeness tests. Numbers
583
+ which fail are known to be composite but those which pass might be prime or might be
584
+ composite. Only a few composites pass, hence those which pass are considered probably
585
+ prime.
586
+ }
587
+ \end{tabular}
588
+ \newline\newline
589
+
590
+ \begin{tabular}{p{\methwidth} l r}
591
+ \toprule
592
+ \textbf{next\_prime} & & $integer$.next\_prime $\rightarrow$ $prime$ \\
593
+ & & $integer$.nextprime $\rightarrow$ $prime$ \\
594
+ & & $integer$.next\_prime! $\rightarrow$ $prime$ \\
595
+ & & $integer$.nextprime! $\rightarrow$ $prime$ \\
596
+ \cmidrule(r){2-3}
597
+ & \multicolumn{2}{p{\defnwidth}}{
598
+ Returns the next prime greater than $integer$. The destructive method sets $integer$ to
599
+ the next prime greater than $integer$.
600
+ \newline\newline
601
+ This function uses a probabilistic algorithm to identify primes. For practical purposes
602
+ it's adequate, the chance of a composite passing will be extremely small.
603
+ }
604
+ \end{tabular}
605
+ \newline\newline
606
+
607
+ \begin{tabular}{p{\methwidth} l r}
608
+ \toprule
609
+ \textbf{gcd} & & $a$.gcd($b$) $\rightarrow$ $g$ \\
610
+ \cmidrule(r){2-3}
611
+ & \multicolumn{2}{p{\defnwidth}}{
612
+ Computes the greatest common divisor of $a$ and $b$. $g$ will always be positive, even
613
+ if $a$ or $b$ is negative. $b$ can be an instance of \gmpz, $Fixnum$, or $Bignum$.
614
+ \newline\newline
615
+ \texttt{GMP::Z(24).gcd(GMP::Z(8)) \quad \#=> GMP::Z(8) \newline
616
+ GMP::Z(24).gcd(8) \quad \#=> GMP::Z(8) \newline
617
+ GMP::Z(24).gcd(2**32) \quad \#=> GMP::Z(8)}
618
+ }
619
+ \end{tabular}
620
+ \newline\newline
621
+
622
+ \begin{tabular}{p{\methwidth} l r}
623
+ \toprule
624
+ \textbf{invert} & & $a$.invert($m$) $\rightarrow$ $integer$ \\
625
+ \cmidrule(r){2-3}
626
+ & \multicolumn{2}{p{\defnwidth}}{
627
+ Computes the inverse of $a$ mod $m$. $m$ can be an instance of \gmpz, $Fixnum$, or
628
+ $Bignum$.
629
+ \newline\newline
630
+ \texttt{GMP::Z(2).invert(GMP::Z(11)) \quad \#=> GMP::Z(6) \newline
631
+ GMP::Z(3).invert(11) \quad \#=> GMP::Z(4) \newline
632
+ GMP::Z(5).invert(11) \quad \#=> GMP::Z(9)}
633
+ }
634
+ \end{tabular}
635
+ \newline\newline
636
+
637
+ \begin{tabular}{p{\methwidth} l r}
638
+ \toprule
639
+ \textbf{jacobi} & & $a$.jacobi($b$) $\rightarrow$ $integer$ \\
640
+ & & GMP::Z.jacobi($a$, $b$) $\rightarrow$ $integer$ \\
641
+ \cmidrule(r){2-3}
642
+ & \multicolumn{2}{p{\defnwidth}}{
643
+ Returns the Jacobi symbol $(a/b)$. This is defined only for $b$ odd. If $b$ is even, a
644
+ range exception will be raised.
645
+ \newline\newline
646
+ \textit{GMP::Z.jacobi} (the instance method) requires $b$ to be an instance of \gmpz.
647
+ \newline
648
+ \textit{GMP::Z\#jacobi} (the class method) requires $a$ and $b$ each to be an instance of
649
+ \gmpz, $Fixnum$, or $Bignum$.
650
+ }
651
+ \end{tabular}
652
+ \newline\newline
653
+
654
+ \begin{tabular}{p{\methwidth} l r}
655
+ \toprule
656
+ \textbf{legendre} & & $a$.legendre($b$) $\rightarrow$ $integer$ \\
657
+ \cmidrule(r){2-3}
658
+ & \multicolumn{2}{p{\defnwidth}}{
659
+ Returns the Legendre symbol $(a/b)$. This is defined only for $p$ an odd positive
660
+ prime. If $p$ is even, negative, or composite, a range exception will be raised.
661
+ }
662
+ \end{tabular}
663
+ \newline\newline
664
+
665
+ \begin{tabular}{p{\methwidth} l r}
666
+ \toprule
667
+ \textbf{remove} & & $n$.remove($factor$) $\rightarrow$ ($integer$, $times$) \\
668
+ \cmidrule(r){2-3}
669
+ & \multicolumn{2}{p{\defnwidth}}{
670
+ Remove all occurrences of the factor $factor$ from $n$. $factor$ can be an instance of
671
+ \gmpz, $Fixnum$, or $Bignum$. $integer$ is the resulting integer, an instance of
672
+ \gmpz. $times$ is how many times $factor$ was removed, a $Fixnum$.
673
+ }
674
+ \end{tabular}
675
+ \newline\newline
676
+
677
+ \begin{tabular}{p{\methwidth} l r}
678
+ \toprule
679
+ \textbf{fac} & & GMP::Z.fac($n$) $\rightarrow$ $integer$ \\
680
+ \cmidrule(r){2-3}
681
+ & \multicolumn{2}{p{\defnwidth}}{
682
+ Returns $n!$, or, $n$ factorial.
683
+ }
684
+ \end{tabular}
685
+ \newline\newline
686
+
687
+ \begin{tabular}{p{\methwidth} l r}
688
+ \toprule
689
+ \textbf{fib} & & GMP::Z.fib($n$) $\rightarrow$ $integer$ \\
690
+ \cmidrule(r){2-3}
691
+ & \multicolumn{2}{p{\defnwidth}}{
692
+ Returns $F[n]$, or, the $n$th Fibonacci number.
693
+ }
694
+ \end{tabular}
695
+
696
+
697
+
698
+ \subsection{Integer Logic and Bit Fiddling}
699
+
700
+ \begin{tabular}{p{\methwidth} l r}
701
+ \toprule
702
+ \textbf{and} & & $a$ \& $b$ $\rightarrow$ $integer$ \\
703
+ \cmidrule(r){2-3}
704
+ & \multicolumn{2}{p{\defnwidth}}{
705
+ Returns $integer$, the bitwise and of $a$ and $b$.
706
+ }
707
+ \end{tabular}
708
+ \newline\newline
709
+
710
+ \begin{tabular}{p{\methwidth} l r}
711
+ \toprule
712
+ \textbf{ior} & & $a$ \textbar\ $b$ $\rightarrow$ $integer$ \\
713
+ \cmidrule(r){2-3}
714
+ & \multicolumn{2}{p{\defnwidth}}{
715
+ Returns $integer$, the bitwise inclusive or of $a$ and $b$.
716
+ }
717
+ \end{tabular}
718
+ \newline\newline
719
+
720
+ \begin{tabular}{p{\methwidth} l r}
721
+ \toprule
722
+ \textbf{xor} & & $a$ \textasciicircum\ $b$ $\rightarrow$ $integer$ \\
723
+ \cmidrule(r){2-3}
724
+ & \multicolumn{2}{p{\defnwidth}}{
725
+ Returns $integer$, the bitwise exclusive or of $a$ and $b$.
726
+ }
727
+ \end{tabular}
728
+ \newline\newline
729
+
730
+ \begin{tabular}{p{\methwidth} l r}
731
+ \toprule
732
+ \textbf{scan0} & & $n$.scan0($i$) $\rightarrow$ $integer$ \\
733
+ \cmidrule(r){2-3}
734
+ & \multicolumn{2}{p{\defnwidth}}{
735
+ Scans $n$, starting from bit $i$, towards more significant bits, until the first 0 bit
736
+ is found. Return the index of the found bit.
737
+ \newline\newline
738
+ If the bit at $i$ is already what's sought, then $i$ is returned.
739
+ \newline\newline
740
+ If there's no bit found, then $INT2FIX(ULONG\_MAX)$ is returned. This will happen in
741
+ scan0 past the end of a negative number.
742
+ }
743
+ \end{tabular}
744
+
745
+ \newpage
746
+ \section{Random Number Functions}
747
+
748
+ \subsection{Random State Initialization}
749
+
750
+ \begin{tabular}{p{\methwidth} l r}
751
+ \toprule
752
+ \textbf{new} & & GMP::RandState.new $\rightarrow$ \textit{mersenne twister state} \\
753
+ & & GMP::RandState.new(:default) $\rightarrow$ \textit{mersenne twister state} \\
754
+ & & GMP::RandState(:mt) $\rightarrow$ \textit{mersenne twister random state} \\
755
+ & & GMP::RandState.new(:lc\_2exp, a, c, m2exp) $\rightarrow$ \textit{linear congruential state} \\
756
+ & & GMP::RandState.new(:lc\_2exp\_size, size) $\rightarrow$ \textit{linear congruential state} \\
757
+ \cmidrule(r){2-3}
758
+ & \multicolumn{2}{p{\defnwidth}}{
759
+ This method creates a new \gmprandstate instance. The first argument defaults
760
+ to \textit{:default} (also \textit{:mt}), which initializes the \gmprandstate for a Mersenne
761
+ Twister algorithm. No other arguments should be given if \textit{:default} or \textit{:mt} is
762
+ specified.
763
+ \newline\newline
764
+ If the first argument given is \textit{:lc\_2exp}, then the \gmprandstate is
765
+ initialized for a linear congruential algorithm. \textit{:lc\_2exp} must be followed with $a$,
766
+ $c$, and $m2exp$. The algorithm can then proceed as ($X = (a*X + c) \mod 2^{m2exp}$).
767
+ \newline\newline
768
+ \gmprandstate can also be initialized for a linear congruential algorithm with
769
+ \textit{:lc\_2exp\_size}. This initializer instead takes just one argument, $size$. $a$, $c$,
770
+ and $m2exp$ are then chosen from a table, with $m2exp/2 > size$. The maximum size
771
+ currently supported is 128.\newline
772
+
773
+ \texttt{GMP::RandState.new \newline
774
+ GMP::RandState.new(:mt) \newline
775
+ GMP::RandState.new(:lc\_2exp, 1103515245, 12345, 15) \quad \#=> Perl's old rand() \newline
776
+ GMP::RandState.new(:lc\_2exp, 25\_214\_903\_917, 11, 48) \quad \#=> drand48}
777
+ }
778
+ \end{tabular}
779
+
780
+ \subsection{Random State Seeding}
781
+
782
+ \begin{tabular}{p{\methwidth} l r}
783
+ \toprule
784
+ \textbf{seed} & & $state$.seed($integer$) $\rightarrow$ $integer$ \\
785
+ \cmidrule(r){2-3}
786
+ & \multicolumn{2}{p{\defnwidth}}{
787
+ Set an initial seed value into $state$. $integer$ can be an instance of \gmpz,
788
+ $Fixnum$, or $Bignum$.
789
+ }
790
+ \end{tabular}
791
+
792
+ \subsection{Integer Random Numbers}
793
+
794
+ \begin{tabular}{p{\methwidth} l r}
795
+ \toprule
796
+ \textbf{urandomb} & & $state$.urandomb($n$) $\rightarrow$ $n$ \\
797
+ \cmidrule(r){2-3}
798
+ & \multicolumn{2}{p{\defnwidth}}{
799
+ Generates a uniformly distributed random integer in the range $0$ to $2^n -1$,
800
+ inclusive.
801
+ }
802
+ \end{tabular}
803
+
804
+ \end{document}