glm 0.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,151 @@
1
+ 5.1,3.5,1.4,0.2,Iris-setosa
2
+ 4.9,3.0,1.4,0.2,Iris-setosa
3
+ 4.7,3.2,1.3,0.2,Iris-setosa
4
+ 4.6,3.1,1.5,0.2,Iris-setosa
5
+ 5.0,3.6,1.4,0.2,Iris-setosa
6
+ 5.4,3.9,1.7,0.4,Iris-setosa
7
+ 4.6,3.4,1.4,0.3,Iris-setosa
8
+ 5.0,3.4,1.5,0.2,Iris-setosa
9
+ 4.4,2.9,1.4,0.2,Iris-setosa
10
+ 4.9,3.1,1.5,0.1,Iris-setosa
11
+ 5.4,3.7,1.5,0.2,Iris-setosa
12
+ 4.8,3.4,1.6,0.2,Iris-setosa
13
+ 4.8,3.0,1.4,0.1,Iris-setosa
14
+ 4.3,3.0,1.1,0.1,Iris-setosa
15
+ 5.8,4.0,1.2,0.2,Iris-setosa
16
+ 5.7,4.4,1.5,0.4,Iris-setosa
17
+ 5.4,3.9,1.3,0.4,Iris-setosa
18
+ 5.1,3.5,1.4,0.3,Iris-setosa
19
+ 5.7,3.8,1.7,0.3,Iris-setosa
20
+ 5.1,3.8,1.5,0.3,Iris-setosa
21
+ 5.4,3.4,1.7,0.2,Iris-setosa
22
+ 5.1,3.7,1.5,0.4,Iris-setosa
23
+ 4.6,3.6,1.0,0.2,Iris-setosa
24
+ 5.1,3.3,1.7,0.5,Iris-setosa
25
+ 4.8,3.4,1.9,0.2,Iris-setosa
26
+ 5.0,3.0,1.6,0.2,Iris-setosa
27
+ 5.0,3.4,1.6,0.4,Iris-setosa
28
+ 5.2,3.5,1.5,0.2,Iris-setosa
29
+ 5.2,3.4,1.4,0.2,Iris-setosa
30
+ 4.7,3.2,1.6,0.2,Iris-setosa
31
+ 4.8,3.1,1.6,0.2,Iris-setosa
32
+ 5.4,3.4,1.5,0.4,Iris-setosa
33
+ 5.2,4.1,1.5,0.1,Iris-setosa
34
+ 5.5,4.2,1.4,0.2,Iris-setosa
35
+ 4.9,3.1,1.5,0.1,Iris-setosa
36
+ 5.0,3.2,1.2,0.2,Iris-setosa
37
+ 5.5,3.5,1.3,0.2,Iris-setosa
38
+ 4.9,3.1,1.5,0.1,Iris-setosa
39
+ 4.4,3.0,1.3,0.2,Iris-setosa
40
+ 5.1,3.4,1.5,0.2,Iris-setosa
41
+ 5.0,3.5,1.3,0.3,Iris-setosa
42
+ 4.5,2.3,1.3,0.3,Iris-setosa
43
+ 4.4,3.2,1.3,0.2,Iris-setosa
44
+ 5.0,3.5,1.6,0.6,Iris-setosa
45
+ 5.1,3.8,1.9,0.4,Iris-setosa
46
+ 4.8,3.0,1.4,0.3,Iris-setosa
47
+ 5.1,3.8,1.6,0.2,Iris-setosa
48
+ 4.6,3.2,1.4,0.2,Iris-setosa
49
+ 5.3,3.7,1.5,0.2,Iris-setosa
50
+ 5.0,3.3,1.4,0.2,Iris-setosa
51
+ 7.0,3.2,4.7,1.4,Iris-versicolor
52
+ 6.4,3.2,4.5,1.5,Iris-versicolor
53
+ 6.9,3.1,4.9,1.5,Iris-versicolor
54
+ 5.5,2.3,4.0,1.3,Iris-versicolor
55
+ 6.5,2.8,4.6,1.5,Iris-versicolor
56
+ 5.7,2.8,4.5,1.3,Iris-versicolor
57
+ 6.3,3.3,4.7,1.6,Iris-versicolor
58
+ 4.9,2.4,3.3,1.0,Iris-versicolor
59
+ 6.6,2.9,4.6,1.3,Iris-versicolor
60
+ 5.2,2.7,3.9,1.4,Iris-versicolor
61
+ 5.0,2.0,3.5,1.0,Iris-versicolor
62
+ 5.9,3.0,4.2,1.5,Iris-versicolor
63
+ 6.0,2.2,4.0,1.0,Iris-versicolor
64
+ 6.1,2.9,4.7,1.4,Iris-versicolor
65
+ 5.6,2.9,3.6,1.3,Iris-versicolor
66
+ 6.7,3.1,4.4,1.4,Iris-versicolor
67
+ 5.6,3.0,4.5,1.5,Iris-versicolor
68
+ 5.8,2.7,4.1,1.0,Iris-versicolor
69
+ 6.2,2.2,4.5,1.5,Iris-versicolor
70
+ 5.6,2.5,3.9,1.1,Iris-versicolor
71
+ 5.9,3.2,4.8,1.8,Iris-versicolor
72
+ 6.1,2.8,4.0,1.3,Iris-versicolor
73
+ 6.3,2.5,4.9,1.5,Iris-versicolor
74
+ 6.1,2.8,4.7,1.2,Iris-versicolor
75
+ 6.4,2.9,4.3,1.3,Iris-versicolor
76
+ 6.6,3.0,4.4,1.4,Iris-versicolor
77
+ 6.8,2.8,4.8,1.4,Iris-versicolor
78
+ 6.7,3.0,5.0,1.7,Iris-versicolor
79
+ 6.0,2.9,4.5,1.5,Iris-versicolor
80
+ 5.7,2.6,3.5,1.0,Iris-versicolor
81
+ 5.5,2.4,3.8,1.1,Iris-versicolor
82
+ 5.5,2.4,3.7,1.0,Iris-versicolor
83
+ 5.8,2.7,3.9,1.2,Iris-versicolor
84
+ 6.0,2.7,5.1,1.6,Iris-versicolor
85
+ 5.4,3.0,4.5,1.5,Iris-versicolor
86
+ 6.0,3.4,4.5,1.6,Iris-versicolor
87
+ 6.7,3.1,4.7,1.5,Iris-versicolor
88
+ 6.3,2.3,4.4,1.3,Iris-versicolor
89
+ 5.6,3.0,4.1,1.3,Iris-versicolor
90
+ 5.5,2.5,4.0,1.3,Iris-versicolor
91
+ 5.5,2.6,4.4,1.2,Iris-versicolor
92
+ 6.1,3.0,4.6,1.4,Iris-versicolor
93
+ 5.8,2.6,4.0,1.2,Iris-versicolor
94
+ 5.0,2.3,3.3,1.0,Iris-versicolor
95
+ 5.6,2.7,4.2,1.3,Iris-versicolor
96
+ 5.7,3.0,4.2,1.2,Iris-versicolor
97
+ 5.7,2.9,4.2,1.3,Iris-versicolor
98
+ 6.2,2.9,4.3,1.3,Iris-versicolor
99
+ 5.1,2.5,3.0,1.1,Iris-versicolor
100
+ 5.7,2.8,4.1,1.3,Iris-versicolor
101
+ 6.3,3.3,6.0,2.5,Iris-virginica
102
+ 5.8,2.7,5.1,1.9,Iris-virginica
103
+ 7.1,3.0,5.9,2.1,Iris-virginica
104
+ 6.3,2.9,5.6,1.8,Iris-virginica
105
+ 6.5,3.0,5.8,2.2,Iris-virginica
106
+ 7.6,3.0,6.6,2.1,Iris-virginica
107
+ 4.9,2.5,4.5,1.7,Iris-virginica
108
+ 7.3,2.9,6.3,1.8,Iris-virginica
109
+ 6.7,2.5,5.8,1.8,Iris-virginica
110
+ 7.2,3.6,6.1,2.5,Iris-virginica
111
+ 6.5,3.2,5.1,2.0,Iris-virginica
112
+ 6.4,2.7,5.3,1.9,Iris-virginica
113
+ 6.8,3.0,5.5,2.1,Iris-virginica
114
+ 5.7,2.5,5.0,2.0,Iris-virginica
115
+ 5.8,2.8,5.1,2.4,Iris-virginica
116
+ 6.4,3.2,5.3,2.3,Iris-virginica
117
+ 6.5,3.0,5.5,1.8,Iris-virginica
118
+ 7.7,3.8,6.7,2.2,Iris-virginica
119
+ 7.7,2.6,6.9,2.3,Iris-virginica
120
+ 6.0,2.2,5.0,1.5,Iris-virginica
121
+ 6.9,3.2,5.7,2.3,Iris-virginica
122
+ 5.6,2.8,4.9,2.0,Iris-virginica
123
+ 7.7,2.8,6.7,2.0,Iris-virginica
124
+ 6.3,2.7,4.9,1.8,Iris-virginica
125
+ 6.7,3.3,5.7,2.1,Iris-virginica
126
+ 7.2,3.2,6.0,1.8,Iris-virginica
127
+ 6.2,2.8,4.8,1.8,Iris-virginica
128
+ 6.1,3.0,4.9,1.8,Iris-virginica
129
+ 6.4,2.8,5.6,2.1,Iris-virginica
130
+ 7.2,3.0,5.8,1.6,Iris-virginica
131
+ 7.4,2.8,6.1,1.9,Iris-virginica
132
+ 7.9,3.8,6.4,2.0,Iris-virginica
133
+ 6.4,2.8,5.6,2.2,Iris-virginica
134
+ 6.3,2.8,5.1,1.5,Iris-virginica
135
+ 6.1,2.6,5.6,1.4,Iris-virginica
136
+ 7.7,3.0,6.1,2.3,Iris-virginica
137
+ 6.3,3.4,5.6,2.4,Iris-virginica
138
+ 6.4,3.1,5.5,1.8,Iris-virginica
139
+ 6.0,3.0,4.8,1.8,Iris-virginica
140
+ 6.9,3.1,5.4,2.1,Iris-virginica
141
+ 6.7,3.1,5.6,2.4,Iris-virginica
142
+ 6.9,3.1,5.1,2.3,Iris-virginica
143
+ 5.8,2.7,5.1,1.9,Iris-virginica
144
+ 6.8,3.2,5.9,2.3,Iris-virginica
145
+ 6.7,3.3,5.7,2.5,Iris-virginica
146
+ 6.7,3.0,5.2,2.3,Iris-virginica
147
+ 6.3,2.5,5.0,1.9,Iris-virginica
148
+ 6.5,3.0,5.2,2.0,Iris-virginica
149
+ 6.2,3.4,5.4,2.3,Iris-virginica
150
+ 5.9,3.0,5.1,1.8,Iris-virginica
151
+
@@ -0,0 +1,14 @@
1
+ #It just loads iris data as a 2-d array, rows being samples, columns 0...n-1 being flaot-valued features and column n-1 being target {0,1}
2
+ def load_iris
3
+ ifile = File.open(
4
+ File.join("data","iris.data"))
5
+ iris = ((ifile.readlines.map {|l|
6
+ fields = l.chomp.split(pattern=",")
7
+ fields
8
+ }).select {|fields|
9
+ fields[4] != "Iris-virginica" && fields != []}).map {|fields|
10
+ fields[4] = (fields[4] == "Iris-setosa") ? 1 : 0
11
+ fields.map{|f| f.to_f}}
12
+ ifile.close
13
+ return iris
14
+ end
@@ -0,0 +1,28 @@
1
+ require 'glm'
2
+ require 'pp'
3
+ require 'ruby-debug' ; Debugger.start(:post_mortem => true)
4
+ Debugger.settings[:autoeval] = true
5
+ require 'prepare'
6
+
7
+ T = 2000
8
+
9
+ iris = load_iris
10
+ y_arr = iris.map {|r| r[0]}
11
+ x = iris.map {|r| r[1...-1]}
12
+ x = x.map{|r| r << 1}
13
+ x,y = GLM::Util.formatArrays(x, y_arr)
14
+
15
+ linear = GLM::Linear.new(x, y)
16
+
17
+ (1..T).each do |i|
18
+ linear.sto_update
19
+ est_y = linear.est(x)
20
+ err = (y.zip(est_y).map{|e| (e[0]-e[1])**2}).reduce(:+)/y.row_size
21
+ puts err
22
+ end
23
+
24
+ #end
25
+
26
+ #puts ((y_est - y).map {|e| e ** 2}).reduce(:+)/y.row_size
27
+ # puts "Theta: #{y_est.to_a.to_s}"
28
+
@@ -0,0 +1,26 @@
1
+ require 'glm'
2
+ require 'pp'
3
+ require 'ruby-debug' ; Debugger.start(:post_mortem => true)
4
+ Debugger.settings[:autoeval] = true
5
+ require 'prepare'
6
+
7
+ T = 200
8
+
9
+ iris = load_iris
10
+ y_arr = iris.map {|r| r[-1].to_i}
11
+ x = iris.map {|r| r[0...-2]}
12
+ x = x.map{|r| r << 1}
13
+ x,y = GLM::Util.formatArrays(x, y_arr)
14
+
15
+ glm = GLM::Logit.new(x, y, 0.1)
16
+
17
+ (1..T).each do |i|
18
+ glm.sto_update
19
+
20
+ est_y = glm.est(x)
21
+ err = (y.zip(est_y).map{|e| (e[0]!=e[1])?1:0}).reduce(:+)#/y.row_size
22
+ # pp y.zip(est_y)
23
+
24
+ puts err
25
+ pp glm.theta
26
+ end
@@ -0,0 +1,20 @@
1
+ require 'matrix'
2
+ include Math
3
+
4
+
5
+ #The main class
6
+ #Generalized Linear Models
7
+ #
8
+
9
+ class GLM
10
+
11
+ # Vectorize a function intended for
12
+ def self.vectorize()
13
+ end
14
+
15
+ end
16
+
17
+
18
+ require 'glm/logit'
19
+ require 'glm/linear'
20
+ require 'glm/util'
@@ -0,0 +1,103 @@
1
+ class GLM::Base
2
+
3
+ def initialize(x,y,alpha = 0.1)
4
+ @x = x
5
+ @y = y
6
+ @@alpha = alpha
7
+ @theta = Array.new(x.column_size,1)
8
+ end
9
+
10
+ #Log partition function <b>a(eta)</b>, intended to be overriden
11
+ def a
12
+ raise 'Log partition function a(eta) undefined'
13
+ end
14
+
15
+ #intended to be overriden
16
+ def b
17
+ raise 'b undefined'
18
+ end
19
+
20
+ def format(x)
21
+ if x.is_a? Array
22
+ if x[0].is_a?(Array)
23
+ x.map {|e|
24
+ output(e)}
25
+ else
26
+ output(x)
27
+ end
28
+ #Assuming x.is_a?(Matrix) == true
29
+ else
30
+ x.row_vectors.map {|e|
31
+ output(Matrix.row_vector(e))
32
+ }
33
+ end
34
+ end
35
+
36
+
37
+ # Estimator
38
+ # =Arguments:
39
+ # x: a feature vector in Array
40
+ # =Returns:
41
+ # Estimation
42
+ def est(x)
43
+ format(x)
44
+ end
45
+
46
+ #Output estimation from E(y|theta,x)
47
+ #Need overriding, except for plain linear regression
48
+ def output(x)
49
+ return h(x.t)
50
+ end
51
+
52
+ #Natural parameter eta
53
+ def eta(x)
54
+ tmp = (Matrix.column_vector(@theta).t * x)[0,0]
55
+ return tmp
56
+ end
57
+
58
+
59
+ #Sufficient statistic <b>T</b>
60
+ def T
61
+ return @y
62
+ end
63
+
64
+ #Canonical reponse function, intended to be overriden
65
+ def self.g(eta)
66
+ raise 'Canonical reponse function g(eta) undefined'
67
+ end
68
+
69
+ #Gradient on one sample
70
+ def gradient(x,y,v)
71
+ tmp = h(v)
72
+ return (y - tmp) * x
73
+ end
74
+
75
+ # Hypothesis function, outputs E(y|theta, x), mean of y given x parameterized by theta
76
+ # =Parameters:
77
+ # x: a feature vector
78
+ # =Returns:
79
+ # E(y|theta, x)
80
+ def h(x)
81
+ tmp = eta(x)
82
+ return self.class.g(tmp)
83
+ end
84
+
85
+ #A step based on one sample in stochastic gradient descent
86
+ def single_update()
87
+
88
+ end
89
+
90
+ #One complete loop of stochastic gradient descend
91
+ def sto_update()
92
+ (0...(@x.row_size)).each do |i|
93
+ (0...(@x.column_size)).each do |j|
94
+ @theta[j] += @@alpha * gradient(@x[i,j], @y[i,0], Matrix.column_vector(@x.row(i)))
95
+ end
96
+ end
97
+ end
98
+
99
+ def theta()
100
+ return @theta
101
+ end
102
+
103
+ end
@@ -0,0 +1,27 @@
1
+ require 'glm/base'
2
+
3
+ class GLM::Linear < GLM::Base
4
+
5
+
6
+ def hi
7
+ return "Hi, this is #{self.class}"
8
+ end
9
+
10
+
11
+ # Canonical response function
12
+ # It's identity function here, obviously
13
+ def self.g(eta)
14
+ return eta
15
+ end
16
+
17
+ def ne_est(x)
18
+ @theta = ne_fit
19
+ [@theta, x * Matrix.column_vector(@theta)]
20
+ end
21
+
22
+ #Normal equation fit
23
+ def ne_fit
24
+ (( @x.t * @x ).inverse * @x.t * @y).to_a.flatten
25
+ end
26
+
27
+ end
@@ -0,0 +1,62 @@
1
+ require 'glm/base'
2
+
3
+ class GLM::Logit < GLM::Base
4
+
5
+
6
+ def a
7
+ return -Math.log(1-phi)
8
+ end
9
+
10
+ def b
11
+ return 1
12
+ end
13
+
14
+ # Canonical response function
15
+ def self.g(eta)
16
+ self.sigmoid(eta)
17
+ end
18
+
19
+ def output(x)
20
+ return (h(x.t) > 0.5)?1:0
21
+ end
22
+
23
+ def phi
24
+ return h(x)
25
+ end
26
+
27
+ # Logistic function on vectors, parameterized by theta
28
+ # Arguments:
29
+ # theta: An array
30
+
31
+ def self.sigmoid_vec(theta)
32
+ # Returns a closure which takes
33
+ # Arguments:
34
+ # x: single row matrix
35
+ return lambda {|x|
36
+ sigmoid(
37
+ (Matrix.row_vector(x) * Matrix.row_vector(theta).t).tr)}
38
+ end
39
+
40
+ # Logistic function
41
+ # Arguments:
42
+ # x: scalar
43
+ def self.sigmoid(x)
44
+ return 1/(1 + exp(-x))
45
+ end
46
+
47
+ # Derivative of Logistic function
48
+ # Arguments:
49
+ # x: scalar
50
+ def self.deriv_sigmoid( x )
51
+ return sigmoid( x ) * ( 1 - sigmoid( x ) )
52
+ end
53
+
54
+ def self.logit(z)
55
+ Math.log(z/(1-z))
56
+ end
57
+
58
+ def self.truth
59
+ "Sanity is for the weak!"
60
+ end
61
+
62
+ end
@@ -0,0 +1,9 @@
1
+ require 'matrix'
2
+
3
+ class GLM::Util
4
+ def self.formatArrays(x, y)
5
+ x = Matrix.rows(x)
6
+ y = Matrix.column_vector(y)
7
+ return [x, y]
8
+ end
9
+ end
@@ -0,0 +1,41 @@
1
+ require 'test/unit'
2
+ require 'glm'
3
+ require 'pp'
4
+ require 'ruby-debug' ; Debugger.start(:post_mortem => true)
5
+
6
+ class GLMTest < Test::Unit::TestCase
7
+ def test_glm_logit_truth
8
+ assert_equal "Sanity is for the weak!",
9
+ GLM::Logit.truth
10
+ end
11
+
12
+ #Helper method
13
+ def load_iris
14
+ ifile = File.open(
15
+ File.join("data","iris.data"))
16
+ iris = ((ifile.readlines.map {|l|
17
+ fields = l.chomp.split(pattern=",")
18
+ fields
19
+ }).select {|fields|
20
+ fields[4] != "Iris-virginica" && fields != []}).map {|fields|
21
+ fields[4] = (fields[4] == "Iris-setosa") ? 1 : 0
22
+ fields.map{|f| f.to_f}}
23
+ assert_equal 100, iris.length
24
+ ifile.close
25
+ return iris
26
+ end
27
+
28
+ def test_linear
29
+ iris = load_iris
30
+ y = iris.map {|r| r[0]}
31
+ x = iris.map {|r| r[1...-1]}
32
+ x = x.map{|r| r << 1}
33
+ x,y = GLM::Util.formatArrays(x, y)
34
+ linear = GLM::Linear.new(x, y)
35
+ theta, y_est = linear.ne_est(x)
36
+ assert ((y_est - y).map {|e| e ** 2}).reduce(:+)/y.row_size < 0.1
37
+ end
38
+
39
+
40
+
41
+ end
metadata ADDED
@@ -0,0 +1,54 @@
1
+ --- !ruby/object:Gem::Specification
2
+ name: glm
3
+ version: !ruby/object:Gem::Version
4
+ version: 0.0.0
5
+ prerelease:
6
+ platform: ruby
7
+ authors:
8
+ - Yu Shen
9
+ autorequire:
10
+ bindir: bin
11
+ cert_chain: []
12
+ date: 2012-03-19 00:00:00.000000000Z
13
+ dependencies: []
14
+ description: Generalized Linear Method
15
+ email: yushen83@gmail.com
16
+ executables: []
17
+ extensions: []
18
+ extra_rdoc_files: []
19
+ files:
20
+ - lib/glm.rb
21
+ - lib/glm/base.rb
22
+ - lib/glm/linear.rb
23
+ - lib/glm/logit.rb
24
+ - lib/glm/util.rb
25
+ - examples/prepare.rb
26
+ - examples/test_glm_logit.rb
27
+ - examples/test_glm_linear.rb
28
+ - test/test_glm.rb
29
+ - data/iris.data
30
+ homepage: https://github.com/yushen
31
+ licenses: []
32
+ post_install_message:
33
+ rdoc_options: []
34
+ require_paths:
35
+ - lib
36
+ required_ruby_version: !ruby/object:Gem::Requirement
37
+ none: false
38
+ requirements:
39
+ - - ! '>='
40
+ - !ruby/object:Gem::Version
41
+ version: '0'
42
+ required_rubygems_version: !ruby/object:Gem::Requirement
43
+ none: false
44
+ requirements:
45
+ - - ! '>='
46
+ - !ruby/object:Gem::Version
47
+ version: '0'
48
+ requirements: []
49
+ rubyforge_project:
50
+ rubygems_version: 1.8.19
51
+ signing_key:
52
+ specification_version: 3
53
+ summary: This is a W.I.P implementation of GLM
54
+ test_files: []