fselector 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/LICENSE +21 -0
 - data/README.md +195 -0
 - data/lib/fselector.rb +41 -0
 - data/lib/fselector/algo_continuous/PMetric.rb +51 -0
 - data/lib/fselector/algo_continuous/ReliefF_c.rb +190 -0
 - data/lib/fselector/algo_continuous/Relief_c.rb +150 -0
 - data/lib/fselector/algo_continuous/TScore.rb +52 -0
 - data/lib/fselector/algo_continuous/discretizer.rb +219 -0
 - data/lib/fselector/algo_continuous/normalizer.rb +59 -0
 - data/lib/fselector/algo_discrete/Accuracy.rb +35 -0
 - data/lib/fselector/algo_discrete/AccuracyBalanced.rb +37 -0
 - data/lib/fselector/algo_discrete/BiNormalSeparation.rb +45 -0
 - data/lib/fselector/algo_discrete/ChiSquaredTest.rb +69 -0
 - data/lib/fselector/algo_discrete/CorrelationCoefficient.rb +42 -0
 - data/lib/fselector/algo_discrete/DocumentFrequency.rb +36 -0
 - data/lib/fselector/algo_discrete/F1Measure.rb +41 -0
 - data/lib/fselector/algo_discrete/FishersExactTest.rb +47 -0
 - data/lib/fselector/algo_discrete/GMean.rb +37 -0
 - data/lib/fselector/algo_discrete/GSSCoefficient.rb +43 -0
 - data/lib/fselector/algo_discrete/GiniIndex.rb +44 -0
 - data/lib/fselector/algo_discrete/InformationGain.rb +96 -0
 - data/lib/fselector/algo_discrete/MatthewsCorrelationCoefficient.rb +45 -0
 - data/lib/fselector/algo_discrete/McNemarsTest.rb +57 -0
 - data/lib/fselector/algo_discrete/MutualInformation.rb +42 -0
 - data/lib/fselector/algo_discrete/OddsRatio.rb +46 -0
 - data/lib/fselector/algo_discrete/OddsRatioNumerator.rb +41 -0
 - data/lib/fselector/algo_discrete/Power.rb +46 -0
 - data/lib/fselector/algo_discrete/Precision.rb +31 -0
 - data/lib/fselector/algo_discrete/ProbabilityRatio.rb +41 -0
 - data/lib/fselector/algo_discrete/Random.rb +40 -0
 - data/lib/fselector/algo_discrete/ReliefF_d.rb +173 -0
 - data/lib/fselector/algo_discrete/Relief_d.rb +135 -0
 - data/lib/fselector/algo_discrete/Sensitivity.rb +38 -0
 - data/lib/fselector/algo_discrete/Specificity.rb +35 -0
 - data/lib/fselector/base.rb +322 -0
 - data/lib/fselector/base_continuous.rb +25 -0
 - data/lib/fselector/base_discrete.rb +355 -0
 - data/lib/fselector/ensemble.rb +181 -0
 - data/lib/fselector/fileio.rb +455 -0
 - data/lib/fselector/util.rb +707 -0
 - metadata +86 -0
 
| 
         @@ -0,0 +1,707 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            #
         
     | 
| 
      
 2 
     | 
    
         
            +
            # add functions to Array class
         
     | 
| 
      
 3 
     | 
    
         
            +
            #
         
     | 
| 
      
 4 
     | 
    
         
            +
            class Array
         
     | 
| 
      
 5 
     | 
    
         
            +
              # summation
         
     | 
| 
      
 6 
     | 
    
         
            +
              # @return [Float] sum
         
     | 
| 
      
 7 
     | 
    
         
            +
              def sum
         
     | 
| 
      
 8 
     | 
    
         
            +
                self.inject(0.0) { |s, i| s+i }
         
     | 
| 
      
 9 
     | 
    
         
            +
              end
         
     | 
| 
      
 10 
     | 
    
         
            +
              
         
     | 
| 
      
 11 
     | 
    
         
            +
              
         
     | 
| 
      
 12 
     | 
    
         
            +
              # average (mean)
         
     | 
| 
      
 13 
     | 
    
         
            +
              # @return [Float] average (mean)
         
     | 
| 
      
 14 
     | 
    
         
            +
              def ave
         
     | 
| 
      
 15 
     | 
    
         
            +
                self.sum / self.size
         
     | 
| 
      
 16 
     | 
    
         
            +
              end
         
     | 
| 
      
 17 
     | 
    
         
            +
              alias :mean :ave # make mean as an alias of ave
         
     | 
| 
      
 18 
     | 
    
         
            +
              
         
     | 
| 
      
 19 
     | 
    
         
            +
              
         
     | 
| 
      
 20 
     | 
    
         
            +
              # variance
         
     | 
| 
      
 21 
     | 
    
         
            +
              # @return [Float] variance
         
     | 
| 
      
 22 
     | 
    
         
            +
              def var
         
     | 
| 
      
 23 
     | 
    
         
            +
                u = self.ave
         
     | 
| 
      
 24 
     | 
    
         
            +
                v2 = self.inject(0.0) { |v, i| v+(i-u)*(i-u) }
         
     | 
| 
      
 25 
     | 
    
         
            +
                
         
     | 
| 
      
 26 
     | 
    
         
            +
                v2/(self.size-1)
         
     | 
| 
      
 27 
     | 
    
         
            +
              end
         
     | 
| 
      
 28 
     | 
    
         
            +
              
         
     | 
| 
      
 29 
     | 
    
         
            +
              
         
     | 
| 
      
 30 
     | 
    
         
            +
              # standard deviation
         
     | 
| 
      
 31 
     | 
    
         
            +
              # @return [Float] standard deviation
         
     | 
| 
      
 32 
     | 
    
         
            +
              def sd
         
     | 
| 
      
 33 
     | 
    
         
            +
                Math.sqrt(self.var)
         
     | 
| 
      
 34 
     | 
    
         
            +
              end
         
     | 
| 
      
 35 
     | 
    
         
            +
              
         
     | 
| 
      
 36 
     | 
    
         
            +
              
         
     | 
| 
      
 37 
     | 
    
         
            +
              # scale to [min, max]
         
     | 
| 
      
 38 
     | 
    
         
            +
              def to_scale(min=0.0, max=1.0)
         
     | 
| 
      
 39 
     | 
    
         
            +
                if (min >= max)
         
     | 
| 
      
 40 
     | 
    
         
            +
                  abort "[#{__FILE__}@#{__LINE__}]: "+
         
     | 
| 
      
 41 
     | 
    
         
            +
                        "min must be smaller than max"
         
     | 
| 
      
 42 
     | 
    
         
            +
                end
         
     | 
| 
      
 43 
     | 
    
         
            +
                
         
     | 
| 
      
 44 
     | 
    
         
            +
                old_min = self.min
         
     | 
| 
      
 45 
     | 
    
         
            +
                old_max = self.max
         
     | 
| 
      
 46 
     | 
    
         
            +
              
         
     | 
| 
      
 47 
     | 
    
         
            +
                self.collect do |v|
         
     | 
| 
      
 48 
     | 
    
         
            +
                  if old_min == old_max
         
     | 
| 
      
 49 
     | 
    
         
            +
                    max
         
     | 
| 
      
 50 
     | 
    
         
            +
                  else
         
     | 
| 
      
 51 
     | 
    
         
            +
                    min + (v-old_min)*(max-min)/(old_max-old_min)
         
     | 
| 
      
 52 
     | 
    
         
            +
                  end
         
     | 
| 
      
 53 
     | 
    
         
            +
                end
         
     | 
| 
      
 54 
     | 
    
         
            +
              end
         
     | 
| 
      
 55 
     | 
    
         
            +
              
         
     | 
| 
      
 56 
     | 
    
         
            +
              
         
     | 
| 
      
 57 
     | 
    
         
            +
              # convert to zscore
         
     | 
| 
      
 58 
     | 
    
         
            +
              #
         
     | 
| 
      
 59 
     | 
    
         
            +
              # ref: [Wikipedia](http://en.wikipedia.org/wiki/Standard_score)
         
     | 
| 
      
 60 
     | 
    
         
            +
              def to_zscore
         
     | 
| 
      
 61 
     | 
    
         
            +
                ave = self.ave
         
     | 
| 
      
 62 
     | 
    
         
            +
                sd = self.sd
         
     | 
| 
      
 63 
     | 
    
         
            +
              
         
     | 
| 
      
 64 
     | 
    
         
            +
                return self.collect { |v| (v-ave)/sd }
         
     | 
| 
      
 65 
     | 
    
         
            +
              end
         
     | 
| 
      
 66 
     | 
    
         
            +
              
         
     | 
| 
      
 67 
     | 
    
         
            +
              
         
     | 
| 
      
 68 
     | 
    
         
            +
              # to symbol
         
     | 
| 
      
 69 
     | 
    
         
            +
              # @return [Array<Symbol>] converted symbols
         
     | 
| 
      
 70 
     | 
    
         
            +
              def to_sym
         
     | 
| 
      
 71 
     | 
    
         
            +
                self.collect { |x| x.to_sym }
         
     | 
| 
      
 72 
     | 
    
         
            +
              end
         
     | 
| 
      
 73 
     | 
    
         
            +
              
         
     | 
| 
      
 74 
     | 
    
         
            +
              
         
     | 
| 
      
 75 
     | 
    
         
            +
            end
         
     | 
| 
      
 76 
     | 
    
         
            +
             
     | 
| 
      
 77 
     | 
    
         
            +
             
     | 
| 
      
 78 
     | 
    
         
            +
            #
         
     | 
| 
      
 79 
     | 
    
         
            +
            # add functions to String class
         
     | 
| 
      
 80 
     | 
    
         
            +
            #
         
     | 
| 
      
 81 
     | 
    
         
            +
            class String
         
     | 
| 
      
 82 
     | 
    
         
            +
              # comment line?
         
     | 
| 
      
 83 
     | 
    
         
            +
              #
         
     | 
| 
      
 84 
     | 
    
         
            +
              # @param [String] char line beginning char
         
     | 
| 
      
 85 
     | 
    
         
            +
              def comment?(char='#')
         
     | 
| 
      
 86 
     | 
    
         
            +
                return self =~ /^#{char}/
         
     | 
| 
      
 87 
     | 
    
         
            +
              end
         
     | 
| 
      
 88 
     | 
    
         
            +
             
     | 
| 
      
 89 
     | 
    
         
            +
             
     | 
| 
      
 90 
     | 
    
         
            +
              # blank line?
         
     | 
| 
      
 91 
     | 
    
         
            +
              def blank?
         
     | 
| 
      
 92 
     | 
    
         
            +
                return self =~ /^\s*$/
         
     | 
| 
      
 93 
     | 
    
         
            +
              end
         
     | 
| 
      
 94 
     | 
    
         
            +
              
         
     | 
| 
      
 95 
     | 
    
         
            +
              
         
     | 
| 
      
 96 
     | 
    
         
            +
              #
         
     | 
| 
      
 97 
     | 
    
         
            +
              # Enhanced String.split with escape char, which means
         
     | 
| 
      
 98 
     | 
    
         
            +
              # string included in a pair of escape char is considered as a whole
         
     | 
| 
      
 99 
     | 
    
         
            +
              # even if it matches the split regular expression. this is especially
         
     | 
| 
      
 100 
     | 
    
         
            +
              # useful to parse CSV file that contains comma in a doube-quoted string
         
     | 
| 
      
 101 
     | 
    
         
            +
              # e.g. 'a,"b, c",d'.split_me(/,/, '"') => [a, 'b, c', d]
         
     | 
| 
      
 102 
     | 
    
         
            +
              #
         
     | 
| 
      
 103 
     | 
    
         
            +
              # @param [Regex] delim_regex regular expression for split
         
     | 
| 
      
 104 
     | 
    
         
            +
              # @param [String] quote quote char such as ' and "
         
     | 
| 
      
 105 
     | 
    
         
            +
              # @return [Array<String>]
         
     | 
| 
      
 106 
     | 
    
         
            +
              #
         
     | 
| 
      
 107 
     | 
    
         
            +
              def split_me(delim_regex, quote_char="'")
         
     | 
| 
      
 108 
     | 
    
         
            +
                d, q = delim_regex, quote_char
         
     | 
| 
      
 109 
     | 
    
         
            +
                if not self.count(q) % 2 == 0
         
     | 
| 
      
 110 
     | 
    
         
            +
                  $stderr.puts "unpaired char of #{q} found, return nil"
         
     | 
| 
      
 111 
     | 
    
         
            +
                  return nil
         
     | 
| 
      
 112 
     | 
    
         
            +
                end
         
     | 
| 
      
 113 
     | 
    
         
            +
                self.split(/#{d.source} (?=(?:[^#{q}]* #{q} [^#{q}]* #{q})* [^#{q}]*$) /x)
         
     | 
| 
      
 114 
     | 
    
         
            +
              end
         
     | 
| 
      
 115 
     | 
    
         
            +
              
         
     | 
| 
      
 116 
     | 
    
         
            +
              
         
     | 
| 
      
 117 
     | 
    
         
            +
            end
         
     | 
| 
      
 118 
     | 
    
         
            +
             
     | 
| 
      
 119 
     | 
    
         
            +
            #puts "a, 'b,c, d' ,'e'".split_me(/,\s*/, "'")
         
     | 
| 
      
 120 
     | 
    
         
            +
            #=>a
         
     | 
| 
      
 121 
     | 
    
         
            +
            #=>_'b,c, d'_
         
     | 
| 
      
 122 
     | 
    
         
            +
            #=>'e'
         
     | 
| 
      
 123 
     | 
    
         
            +
             
     | 
| 
      
 124 
     | 
    
         
            +
             
     | 
| 
      
 125 
     | 
    
         
            +
            #
         
     | 
| 
      
 126 
     | 
    
         
            +
            # adapted from the Ruby statistics libraries --
         
     | 
| 
      
 127 
     | 
    
         
            +
            # [Rubystats](http://rubystats.rubyforge.org)
         
     | 
| 
      
 128 
     | 
    
         
            +
            #
         
     | 
| 
      
 129 
     | 
    
         
            +
            # - for Fisher's exact test (Rubystats::FishersExactTest.calculate())
         
     | 
| 
      
 130 
     | 
    
         
            +
            #   used by algo\_binary/FishersExactText.rb
         
     | 
| 
      
 131 
     | 
    
         
            +
            # - for inverse cumulative normal distribution function (Rubystats::NormalDistribution.get\_icdf())
         
     | 
| 
      
 132 
     | 
    
         
            +
            #   used by algo\_binary/BiNormalSeparation.rb. note the original get\_icdf() function is a private
         
     | 
| 
      
 133 
     | 
    
         
            +
            #   one, so we have to open it up and that's why the codes here.
         
     | 
| 
      
 134 
     | 
    
         
            +
            # 
         
     | 
| 
      
 135 
     | 
    
         
            +
            #
         
     | 
| 
      
 136 
     | 
    
         
            +
             module Rubystats
         
     | 
| 
      
 137 
     | 
    
         
            +
              MAX_VALUE = 1.2e290
         
     | 
| 
      
 138 
     | 
    
         
            +
              SQRT2PI = 2.5066282746310005024157652848110452530069867406099
         
     | 
| 
      
 139 
     | 
    
         
            +
              SQRT2 = 1.4142135623730950488016887242096980785696718753769
         
     | 
| 
      
 140 
     | 
    
         
            +
              TWO_PI = 6.2831853071795864769252867665590057683943387987502
         
     | 
| 
      
 141 
     | 
    
         
            +
              
         
     | 
| 
      
 142 
     | 
    
         
            +
              #
         
     | 
| 
      
 143 
     | 
    
         
            +
              # Fisher's exact test calculator
         
     | 
| 
      
 144 
     | 
    
         
            +
              #
         
     | 
| 
      
 145 
     | 
    
         
            +
              class FishersExactTest
         
     | 
| 
      
 146 
     | 
    
         
            +
                # new()
         
     | 
| 
      
 147 
     | 
    
         
            +
                def initialize
         
     | 
| 
      
 148 
     | 
    
         
            +
                  @sn11    = 0.0
         
     | 
| 
      
 149 
     | 
    
         
            +
                  @sn1_    = 0.0
         
     | 
| 
      
 150 
     | 
    
         
            +
                  @sn_1    = 0.0
         
     | 
| 
      
 151 
     | 
    
         
            +
                  @sn      = 0.0
         
     | 
| 
      
 152 
     | 
    
         
            +
                  @sprob   = 0.0
         
     | 
| 
      
 153 
     | 
    
         
            +
             
     | 
| 
      
 154 
     | 
    
         
            +
                  @sleft   = 0.0
         
     | 
| 
      
 155 
     | 
    
         
            +
                  @sright  = 0.0 
         
     | 
| 
      
 156 
     | 
    
         
            +
                  @sless   = 0.0 
         
     | 
| 
      
 157 
     | 
    
         
            +
                  @slarg   = 0.0
         
     | 
| 
      
 158 
     | 
    
         
            +
             
     | 
| 
      
 159 
     | 
    
         
            +
                  @left    = 0.0
         
     | 
| 
      
 160 
     | 
    
         
            +
                  @right   = 0.0
         
     | 
| 
      
 161 
     | 
    
         
            +
                  @twotail = 0.0
         
     | 
| 
      
 162 
     | 
    
         
            +
                end
         
     | 
| 
      
 163 
     | 
    
         
            +
                
         
     | 
| 
      
 164 
     | 
    
         
            +
                
         
     | 
| 
      
 165 
     | 
    
         
            +
                # Fisher's exact test
         
     | 
| 
      
 166 
     | 
    
         
            +
                def calculate(n11_,n12_,n21_,n22_)
         
     | 
| 
      
 167 
     | 
    
         
            +
                  n11_ *= -1 if n11_ < 0
         
     | 
| 
      
 168 
     | 
    
         
            +
                  n12_ *= -1 if n12_ < 0
         
     | 
| 
      
 169 
     | 
    
         
            +
                  n21_ *= -1 if n21_ < 0 
         
     | 
| 
      
 170 
     | 
    
         
            +
                  n22_ *= -1 if n22_ < 0 
         
     | 
| 
      
 171 
     | 
    
         
            +
                  n1_     = n11_ + n12_
         
     | 
| 
      
 172 
     | 
    
         
            +
                  n_1     = n11_ + n21_
         
     | 
| 
      
 173 
     | 
    
         
            +
                  n       = n11_ + n12_ + n21_ + n22_
         
     | 
| 
      
 174 
     | 
    
         
            +
                  prob    = exact(n11_,n1_,n_1,n)
         
     | 
| 
      
 175 
     | 
    
         
            +
                  left    = @sless
         
     | 
| 
      
 176 
     | 
    
         
            +
                  right   = @slarg
         
     | 
| 
      
 177 
     | 
    
         
            +
                  twotail = @sleft + @sright
         
     | 
| 
      
 178 
     | 
    
         
            +
                  twotail = 1 if twotail > 1
         
     | 
| 
      
 179 
     | 
    
         
            +
                  values_hash = { :left =>left, :right =>right, :twotail =>twotail }
         
     | 
| 
      
 180 
     | 
    
         
            +
                  return values_hash
         
     | 
| 
      
 181 
     | 
    
         
            +
                end
         
     | 
| 
      
 182 
     | 
    
         
            +
                
         
     | 
| 
      
 183 
     | 
    
         
            +
                private
         
     | 
| 
      
 184 
     | 
    
         
            +
             
     | 
| 
      
 185 
     | 
    
         
            +
                # Reference: "Lanczos, C. 'A precision approximation
         
     | 
| 
      
 186 
     | 
    
         
            +
                # of the gamma function', J. SIAM Numer. Anal., B, 1, 86-96, 1964."
         
     | 
| 
      
 187 
     | 
    
         
            +
                # Translation of  Alan Miller's FORTRAN-implementation
         
     | 
| 
      
 188 
     | 
    
         
            +
                # See http://lib.stat.cmu.edu/apstat/245
         
     | 
| 
      
 189 
     | 
    
         
            +
                def lngamm(z) 
         
     | 
| 
      
 190 
     | 
    
         
            +
                  x = 0
         
     | 
| 
      
 191 
     | 
    
         
            +
                  x += 0.0000001659470187408462/(z+7)
         
     | 
| 
      
 192 
     | 
    
         
            +
                  x += 0.000009934937113930748 /(z+6)
         
     | 
| 
      
 193 
     | 
    
         
            +
                  x -= 0.1385710331296526      /(z+5)
         
     | 
| 
      
 194 
     | 
    
         
            +
                  x += 12.50734324009056       /(z+4)
         
     | 
| 
      
 195 
     | 
    
         
            +
                  x -= 176.6150291498386       /(z+3)
         
     | 
| 
      
 196 
     | 
    
         
            +
                  x += 771.3234287757674       /(z+2)
         
     | 
| 
      
 197 
     | 
    
         
            +
                  x -= 1259.139216722289       /(z+1)
         
     | 
| 
      
 198 
     | 
    
         
            +
                  x += 676.5203681218835       /(z)
         
     | 
| 
      
 199 
     | 
    
         
            +
                  x += 0.9999999999995183
         
     | 
| 
      
 200 
     | 
    
         
            +
             
     | 
| 
      
 201 
     | 
    
         
            +
                  return(Math.log(x)-5.58106146679532777-z+(z-0.5) * Math.log(z+6.5))
         
     | 
| 
      
 202 
     | 
    
         
            +
                end
         
     | 
| 
      
 203 
     | 
    
         
            +
             
     | 
| 
      
 204 
     | 
    
         
            +
                def lnfact(n)
         
     | 
| 
      
 205 
     | 
    
         
            +
                  if n <= 1
         
     | 
| 
      
 206 
     | 
    
         
            +
                    return 0
         
     | 
| 
      
 207 
     | 
    
         
            +
                  else
         
     | 
| 
      
 208 
     | 
    
         
            +
                    return lngamm(n+1)
         
     | 
| 
      
 209 
     | 
    
         
            +
                  end
         
     | 
| 
      
 210 
     | 
    
         
            +
                end
         
     | 
| 
      
 211 
     | 
    
         
            +
             
     | 
| 
      
 212 
     | 
    
         
            +
                def lnbico(n,k)
         
     | 
| 
      
 213 
     | 
    
         
            +
                  return lnfact(n) - lnfact(k) - lnfact(n-k)
         
     | 
| 
      
 214 
     | 
    
         
            +
                end
         
     | 
| 
      
 215 
     | 
    
         
            +
             
     | 
| 
      
 216 
     | 
    
         
            +
                def hyper_323(n11, n1_, n_1, n)
         
     | 
| 
      
 217 
     | 
    
         
            +
                  return Math.exp(lnbico(n1_, n11) + lnbico(n-n1_, n_1-n11) - lnbico(n, n_1))
         
     | 
| 
      
 218 
     | 
    
         
            +
                end
         
     | 
| 
      
 219 
     | 
    
         
            +
             
     | 
| 
      
 220 
     | 
    
         
            +
                def hyper(n11)
         
     | 
| 
      
 221 
     | 
    
         
            +
                  return hyper0(n11, 0, 0, 0)
         
     | 
| 
      
 222 
     | 
    
         
            +
                end
         
     | 
| 
      
 223 
     | 
    
         
            +
             
     | 
| 
      
 224 
     | 
    
         
            +
                def hyper0(n11i,n1_i,n_1i,ni)
         
     | 
| 
      
 225 
     | 
    
         
            +
                  if n1_i == 0 and n_1i ==0 and ni == 0
         
     | 
| 
      
 226 
     | 
    
         
            +
                    unless n11i % 10 == 0
         
     | 
| 
      
 227 
     | 
    
         
            +
                      if n11i == @sn11+1
         
     | 
| 
      
 228 
     | 
    
         
            +
                        @sprob *= ((@sn1_ - @sn11)/(n11i.to_f))*((@sn_1 - @sn11)/(n11i.to_f + @sn - @sn1_ - @sn_1))
         
     | 
| 
      
 229 
     | 
    
         
            +
                        @sn11 = n11i
         
     | 
| 
      
 230 
     | 
    
         
            +
                        return @sprob
         
     | 
| 
      
 231 
     | 
    
         
            +
                      end
         
     | 
| 
      
 232 
     | 
    
         
            +
                      if n11i == @sn11-1
         
     | 
| 
      
 233 
     | 
    
         
            +
                        @sprob *= ((@sn11)/(@sn1_-n11i.to_f))*((@sn11+@sn-@sn1_-@sn_1)/(@sn_1-n11i.to_f))
         
     | 
| 
      
 234 
     | 
    
         
            +
                        @sn11 = n11i
         
     | 
| 
      
 235 
     | 
    
         
            +
                        return @sprob
         
     | 
| 
      
 236 
     | 
    
         
            +
                      end
         
     | 
| 
      
 237 
     | 
    
         
            +
                    end
         
     | 
| 
      
 238 
     | 
    
         
            +
                    @sn11 = n11i
         
     | 
| 
      
 239 
     | 
    
         
            +
                  else
         
     | 
| 
      
 240 
     | 
    
         
            +
                    @sn11 = n11i
         
     | 
| 
      
 241 
     | 
    
         
            +
                    @sn1_ = n1_i
         
     | 
| 
      
 242 
     | 
    
         
            +
                    @sn_1 = n_1i
         
     | 
| 
      
 243 
     | 
    
         
            +
                    @sn   = ni
         
     | 
| 
      
 244 
     | 
    
         
            +
                  end
         
     | 
| 
      
 245 
     | 
    
         
            +
                  @sprob = hyper_323(@sn11,@sn1_,@sn_1,@sn)
         
     | 
| 
      
 246 
     | 
    
         
            +
                  return @sprob
         
     | 
| 
      
 247 
     | 
    
         
            +
                end
         
     | 
| 
      
 248 
     | 
    
         
            +
             
     | 
| 
      
 249 
     | 
    
         
            +
                def exact(n11,n1_,n_1,n)
         
     | 
| 
      
 250 
     | 
    
         
            +
             
     | 
| 
      
 251 
     | 
    
         
            +
                  p = i = j = prob = 0.0
         
     | 
| 
      
 252 
     | 
    
         
            +
             
     | 
| 
      
 253 
     | 
    
         
            +
                  max = n1_
         
     | 
| 
      
 254 
     | 
    
         
            +
                  max = n_1 if n_1 < max
         
     | 
| 
      
 255 
     | 
    
         
            +
                  min = n1_ + n_1 - n
         
     | 
| 
      
 256 
     | 
    
         
            +
                  min = 0 if min < 0
         
     | 
| 
      
 257 
     | 
    
         
            +
             
     | 
| 
      
 258 
     | 
    
         
            +
                  if min == max
         
     | 
| 
      
 259 
     | 
    
         
            +
                    @sless  = 1
         
     | 
| 
      
 260 
     | 
    
         
            +
                    @sright = 1
         
     | 
| 
      
 261 
     | 
    
         
            +
                    @sleft  = 1
         
     | 
| 
      
 262 
     | 
    
         
            +
                    @slarg  = 1
         
     | 
| 
      
 263 
     | 
    
         
            +
                    return 1
         
     | 
| 
      
 264 
     | 
    
         
            +
                  end
         
     | 
| 
      
 265 
     | 
    
         
            +
             
     | 
| 
      
 266 
     | 
    
         
            +
                  prob = hyper0(n11,n1_,n_1,n)
         
     | 
| 
      
 267 
     | 
    
         
            +
                  @sleft = 0
         
     | 
| 
      
 268 
     | 
    
         
            +
             
     | 
| 
      
 269 
     | 
    
         
            +
                  p = hyper(min)
         
     | 
| 
      
 270 
     | 
    
         
            +
                  i = min + 1
         
     | 
| 
      
 271 
     | 
    
         
            +
                  while p < (0.99999999 * prob)
         
     | 
| 
      
 272 
     | 
    
         
            +
                    @sleft += p
         
     | 
| 
      
 273 
     | 
    
         
            +
                    p = hyper(i)
         
     | 
| 
      
 274 
     | 
    
         
            +
                    i += 1
         
     | 
| 
      
 275 
     | 
    
         
            +
                  end
         
     | 
| 
      
 276 
     | 
    
         
            +
             
     | 
| 
      
 277 
     | 
    
         
            +
                  i -= 1
         
     | 
| 
      
 278 
     | 
    
         
            +
             
     | 
| 
      
 279 
     | 
    
         
            +
                  if p < (1.00000001*prob)
         
     | 
| 
      
 280 
     | 
    
         
            +
                    @sleft += p
         
     | 
| 
      
 281 
     | 
    
         
            +
                  else 
         
     | 
| 
      
 282 
     | 
    
         
            +
                    i -= 1  
         
     | 
| 
      
 283 
     | 
    
         
            +
                  end
         
     | 
| 
      
 284 
     | 
    
         
            +
             
     | 
| 
      
 285 
     | 
    
         
            +
                  @sright = 0
         
     | 
| 
      
 286 
     | 
    
         
            +
             
     | 
| 
      
 287 
     | 
    
         
            +
                  p = hyper(max)
         
     | 
| 
      
 288 
     | 
    
         
            +
                  j = max - 1
         
     | 
| 
      
 289 
     | 
    
         
            +
                  while p < (0.99999999 * prob)
         
     | 
| 
      
 290 
     | 
    
         
            +
                    @sright += p
         
     | 
| 
      
 291 
     | 
    
         
            +
                    p = hyper(j)
         
     | 
| 
      
 292 
     | 
    
         
            +
                    j -= 1
         
     | 
| 
      
 293 
     | 
    
         
            +
                  end
         
     | 
| 
      
 294 
     | 
    
         
            +
                  j += 1
         
     | 
| 
      
 295 
     | 
    
         
            +
             
     | 
| 
      
 296 
     | 
    
         
            +
                  if p < (1.00000001*prob)
         
     | 
| 
      
 297 
     | 
    
         
            +
                    @sright += p
         
     | 
| 
      
 298 
     | 
    
         
            +
                  else 
         
     | 
| 
      
 299 
     | 
    
         
            +
                    j += 1
         
     | 
| 
      
 300 
     | 
    
         
            +
                  end
         
     | 
| 
      
 301 
     | 
    
         
            +
             
     | 
| 
      
 302 
     | 
    
         
            +
                  if (i - n11).abs < (j - n11).abs 
         
     | 
| 
      
 303 
     | 
    
         
            +
                    @sless = @sleft
         
     | 
| 
      
 304 
     | 
    
         
            +
                    @slarg = 1 - @sleft + prob
         
     | 
| 
      
 305 
     | 
    
         
            +
                  else
         
     | 
| 
      
 306 
     | 
    
         
            +
                    @sless = 1 - @sright + prob
         
     | 
| 
      
 307 
     | 
    
         
            +
                    @slarg = @sright
         
     | 
| 
      
 308 
     | 
    
         
            +
                  end
         
     | 
| 
      
 309 
     | 
    
         
            +
                  return prob
         
     | 
| 
      
 310 
     | 
    
         
            +
                end
         
     | 
| 
      
 311 
     | 
    
         
            +
                    
         
     | 
| 
      
 312 
     | 
    
         
            +
                
         
     | 
| 
      
 313 
     | 
    
         
            +
              end # class
         
     | 
| 
      
 314 
     | 
    
         
            +
              
         
     | 
| 
      
 315 
     | 
    
         
            +
              #
         
     | 
| 
      
 316 
     | 
    
         
            +
              # Normal distribution
         
     | 
| 
      
 317 
     | 
    
         
            +
              #
         
     | 
| 
      
 318 
     | 
    
         
            +
              class NormalDistribution
         
     | 
| 
      
 319 
     | 
    
         
            +
                # Constructs a normal distribution (defaults to zero mean and
         
     | 
| 
      
 320 
     | 
    
         
            +
                # unity variance)
         
     | 
| 
      
 321 
     | 
    
         
            +
                def initialize(mu=0.0, sigma=1.0)
         
     | 
| 
      
 322 
     | 
    
         
            +
                  @mean = mu
         
     | 
| 
      
 323 
     | 
    
         
            +
                  if sigma <= 0.0
         
     | 
| 
      
 324 
     | 
    
         
            +
                    return "error"
         
     | 
| 
      
 325 
     | 
    
         
            +
                  end
         
     | 
| 
      
 326 
     | 
    
         
            +
                  @stdev = sigma
         
     | 
| 
      
 327 
     | 
    
         
            +
                  @variance = sigma**2
         
     | 
| 
      
 328 
     | 
    
         
            +
                  @pdf_denominator = SQRT2PI * Math.sqrt(@variance)
         
     | 
| 
      
 329 
     | 
    
         
            +
                  @cdf_denominator = SQRT2   * Math.sqrt(@variance)
         
     | 
| 
      
 330 
     | 
    
         
            +
                end
         
     | 
| 
      
 331 
     | 
    
         
            +
             
     | 
| 
      
 332 
     | 
    
         
            +
               
         
     | 
| 
      
 333 
     | 
    
         
            +
                # Obtain single PDF value
         
     | 
| 
      
 334 
     | 
    
         
            +
                # Returns the probability that a stochastic variable x has the value X,
         
     | 
| 
      
 335 
     | 
    
         
            +
                # i.e. P(x=X)
         
     | 
| 
      
 336 
     | 
    
         
            +
                def get_pdf(x)
         
     | 
| 
      
 337 
     | 
    
         
            +
                  Math.exp( -((x-@mean)**2) / (2 * @variance)) / @pdf_denominator
         
     | 
| 
      
 338 
     | 
    
         
            +
                end
         
     | 
| 
      
 339 
     | 
    
         
            +
                
         
     | 
| 
      
 340 
     | 
    
         
            +
                
         
     | 
| 
      
 341 
     | 
    
         
            +
                # Obtain single CDF value
         
     | 
| 
      
 342 
     | 
    
         
            +
                # Returns the probability that a stochastic variable x is less than X,
         
     | 
| 
      
 343 
     | 
    
         
            +
                # i.e. P(x<X)
         
     | 
| 
      
 344 
     | 
    
         
            +
                def get_cdf(x)
         
     | 
| 
      
 345 
     | 
    
         
            +
                  complementary_error( -(x - @mean) / @cdf_denominator) / 2
         
     | 
| 
      
 346 
     | 
    
         
            +
                end
         
     | 
| 
      
 347 
     | 
    
         
            +
                
         
     | 
| 
      
 348 
     | 
    
         
            +
                
         
     | 
| 
      
 349 
     | 
    
         
            +
                # Obtain single inverse CDF value.
         
     | 
| 
      
 350 
     | 
    
         
            +
                # returns the value X for which P(x<X).
         
     | 
| 
      
 351 
     | 
    
         
            +
                def get_icdf(p)
         
     | 
| 
      
 352 
     | 
    
         
            +
                  check_range(p)
         
     | 
| 
      
 353 
     | 
    
         
            +
                  if p == 0.0
         
     | 
| 
      
 354 
     | 
    
         
            +
                    return -MAX_VALUE
         
     | 
| 
      
 355 
     | 
    
         
            +
                  end
         
     | 
| 
      
 356 
     | 
    
         
            +
                  if p == 1.0
         
     | 
| 
      
 357 
     | 
    
         
            +
                    return MAX_VALUE
         
     | 
| 
      
 358 
     | 
    
         
            +
                  end
         
     | 
| 
      
 359 
     | 
    
         
            +
                  if p == 0.5
         
     | 
| 
      
 360 
     | 
    
         
            +
                  return @mean
         
     | 
| 
      
 361 
     | 
    
         
            +
                  end
         
     | 
| 
      
 362 
     | 
    
         
            +
             
     | 
| 
      
 363 
     | 
    
         
            +
                  mean_save = @mean
         
     | 
| 
      
 364 
     | 
    
         
            +
                  var_save = @variance
         
     | 
| 
      
 365 
     | 
    
         
            +
                  pdf_D_save = @pdf_denominator
         
     | 
| 
      
 366 
     | 
    
         
            +
                  cdf_D_save = @cdf_denominator
         
     | 
| 
      
 367 
     | 
    
         
            +
                  @mean = 0.0
         
     | 
| 
      
 368 
     | 
    
         
            +
                  @variance = 1.0
         
     | 
| 
      
 369 
     | 
    
         
            +
                  @pdf_denominator = Math.sqrt(TWO_PI)
         
     | 
| 
      
 370 
     | 
    
         
            +
                  @cdf_denominator = SQRT2
         
     | 
| 
      
 371 
     | 
    
         
            +
                  x = find_root(p, 0.0, -100.0, 100.0)
         
     | 
| 
      
 372 
     | 
    
         
            +
                  #scale back
         
     | 
| 
      
 373 
     | 
    
         
            +
                  @mean = mean_save
         
     | 
| 
      
 374 
     | 
    
         
            +
                  @variance = var_save
         
     | 
| 
      
 375 
     | 
    
         
            +
                  @pdf_denominator = pdf_D_save
         
     | 
| 
      
 376 
     | 
    
         
            +
                  @cdf_denominator = cdf_D_save
         
     | 
| 
      
 377 
     | 
    
         
            +
                  return x * Math.sqrt(@variance) + @mean
         
     | 
| 
      
 378 
     | 
    
         
            +
                end
         
     | 
| 
      
 379 
     | 
    
         
            +
             
     | 
| 
      
 380 
     | 
    
         
            +
                private
         
     | 
| 
      
 381 
     | 
    
         
            +
                
         
     | 
| 
      
 382 
     | 
    
         
            +
                #check that variable is between lo and hi limits. 
         
     | 
| 
      
 383 
     | 
    
         
            +
                #lo default is 0.0 and hi default is 1.0
         
     | 
| 
      
 384 
     | 
    
         
            +
                def check_range(x, lo=0.0, hi=1.0)
         
     | 
| 
      
 385 
     | 
    
         
            +
                  raise ArgumentError.new("x cannot be nil") if x.nil?
         
     | 
| 
      
 386 
     | 
    
         
            +
                  if x < lo or x > hi
         
     | 
| 
      
 387 
     | 
    
         
            +
                    raise ArgumentError.new("x must be less than lo (#{lo}) and greater than hi (#{hi})")
         
     | 
| 
      
 388 
     | 
    
         
            +
                  end
         
     | 
| 
      
 389 
     | 
    
         
            +
                end
         
     | 
| 
      
 390 
     | 
    
         
            +
             
     | 
| 
      
 391 
     | 
    
         
            +
             
     | 
| 
      
 392 
     | 
    
         
            +
                def find_root(prob, guess, x_lo, x_hi)
         
     | 
| 
      
 393 
     | 
    
         
            +
                  accuracy = 1.0e-10
         
     | 
| 
      
 394 
     | 
    
         
            +
                  max_iteration = 150
         
     | 
| 
      
 395 
     | 
    
         
            +
                  x     = guess
         
     | 
| 
      
 396 
     | 
    
         
            +
                  x_new = guess
         
     | 
| 
      
 397 
     | 
    
         
            +
                  error = 0.0
         
     | 
| 
      
 398 
     | 
    
         
            +
                  _pdf  = 0.0
         
     | 
| 
      
 399 
     | 
    
         
            +
                  dx    = 1000.0
         
     | 
| 
      
 400 
     | 
    
         
            +
                  i     = 0
         
     | 
| 
      
 401 
     | 
    
         
            +
                  while ( dx.abs > accuracy && (i += 1) < max_iteration )
         
     | 
| 
      
 402 
     | 
    
         
            +
                    #Apply Newton-Raphson step
         
     | 
| 
      
 403 
     | 
    
         
            +
                    error = cdf(x) - prob
         
     | 
| 
      
 404 
     | 
    
         
            +
                    if error < 0.0
         
     | 
| 
      
 405 
     | 
    
         
            +
                    x_lo = x
         
     | 
| 
      
 406 
     | 
    
         
            +
                    else
         
     | 
| 
      
 407 
     | 
    
         
            +
                    x_hi = x
         
     | 
| 
      
 408 
     | 
    
         
            +
                    end
         
     | 
| 
      
 409 
     | 
    
         
            +
                    _pdf = pdf(x)
         
     | 
| 
      
 410 
     | 
    
         
            +
                    if _pdf != 0.0
         
     | 
| 
      
 411 
     | 
    
         
            +
                    dx = error / _pdf
         
     | 
| 
      
 412 
     | 
    
         
            +
                    x_new = x -dx
         
     | 
| 
      
 413 
     | 
    
         
            +
                    end
         
     | 
| 
      
 414 
     | 
    
         
            +
                    # If the NR fails to converge (which for example may be the
         
     | 
| 
      
 415 
     | 
    
         
            +
                    # case if the initial guess is too rough) we apply a bisection
         
     | 
| 
      
 416 
     | 
    
         
            +
                    # step to determine a more narrow interval around the root.
         
     | 
| 
      
 417 
     | 
    
         
            +
                    if  x_new < x_lo || x_new > x_hi || _pdf == 0.0
         
     | 
| 
      
 418 
     | 
    
         
            +
                    x_new = (x_lo + x_hi) / 2.0
         
     | 
| 
      
 419 
     | 
    
         
            +
                    dx = x_new - x
         
     | 
| 
      
 420 
     | 
    
         
            +
                    end
         
     | 
| 
      
 421 
     | 
    
         
            +
                    x = x_new
         
     | 
| 
      
 422 
     | 
    
         
            +
                  end
         
     | 
| 
      
 423 
     | 
    
         
            +
                  return x
         
     | 
| 
      
 424 
     | 
    
         
            +
                end
         
     | 
| 
      
 425 
     | 
    
         
            +
             
     | 
| 
      
 426 
     | 
    
         
            +
                
         
     | 
| 
      
 427 
     | 
    
         
            +
                #Probability density function
         
     | 
| 
      
 428 
     | 
    
         
            +
                def pdf(x)
         
     | 
| 
      
 429 
     | 
    
         
            +
                  if x.class == Array
         
     | 
| 
      
 430 
     | 
    
         
            +
                    pdf_vals = []
         
     | 
| 
      
 431 
     | 
    
         
            +
                    for i in (0 ... x.length)
         
     | 
| 
      
 432 
     | 
    
         
            +
                      pdf_vals[i] = get_pdf(x[i])
         
     | 
| 
      
 433 
     | 
    
         
            +
                    end
         
     | 
| 
      
 434 
     | 
    
         
            +
                  return pdf_vals
         
     | 
| 
      
 435 
     | 
    
         
            +
                  else
         
     | 
| 
      
 436 
     | 
    
         
            +
                    return get_pdf(x)
         
     | 
| 
      
 437 
     | 
    
         
            +
                  end
         
     | 
| 
      
 438 
     | 
    
         
            +
                end
         
     | 
| 
      
 439 
     | 
    
         
            +
             
     | 
| 
      
 440 
     | 
    
         
            +
                
         
     | 
| 
      
 441 
     | 
    
         
            +
                #Cummulative distribution function
         
     | 
| 
      
 442 
     | 
    
         
            +
                def cdf(x)
         
     | 
| 
      
 443 
     | 
    
         
            +
                  if x.class == Array
         
     | 
| 
      
 444 
     | 
    
         
            +
                    cdf_vals = []
         
     | 
| 
      
 445 
     | 
    
         
            +
                    for i in (0...x.size)
         
     | 
| 
      
 446 
     | 
    
         
            +
                      cdf_vals[i] = get_cdf(x[i])
         
     | 
| 
      
 447 
     | 
    
         
            +
                    end
         
     | 
| 
      
 448 
     | 
    
         
            +
                  return cdf_vals
         
     | 
| 
      
 449 
     | 
    
         
            +
                  else
         
     | 
| 
      
 450 
     | 
    
         
            +
                    return get_cdf(x)
         
     | 
| 
      
 451 
     | 
    
         
            +
                  end
         
     | 
| 
      
 452 
     | 
    
         
            +
                end
         
     | 
| 
      
 453 
     | 
    
         
            +
             
     | 
| 
      
 454 
     | 
    
         
            +
                
         
     | 
| 
      
 455 
     | 
    
         
            +
             
     | 
| 
      
 456 
     | 
    
         
            +
                # Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
         
     | 
| 
      
 457 
     | 
    
         
            +
                #
         
     | 
| 
      
 458 
     | 
    
         
            +
                # Developed at SunSoft, a Sun Microsystems, Inc. business.
         
     | 
| 
      
 459 
     | 
    
         
            +
                # Permission to use, copy, modify, and distribute this
         
     | 
| 
      
 460 
     | 
    
         
            +
                # software is freely granted, provided that this notice
         
     | 
| 
      
 461 
     | 
    
         
            +
                # is preserved.
         
     | 
| 
      
 462 
     | 
    
         
            +
                #
         
     | 
| 
      
 463 
     | 
    
         
            +
                #                 x
         
     | 
| 
      
 464 
     | 
    
         
            +
                #              2      |\
         
     | 
| 
      
 465 
     | 
    
         
            +
                #     erf(x)  =  ---------  | exp(-t*t)dt
         
     | 
| 
      
 466 
     | 
    
         
            +
                #            sqrt(pi) \|
         
     | 
| 
      
 467 
     | 
    
         
            +
                #                 0
         
     | 
| 
      
 468 
     | 
    
         
            +
                #
         
     | 
| 
      
 469 
     | 
    
         
            +
                #     erfc(x) =  1-erf(x)
         
     | 
| 
      
 470 
     | 
    
         
            +
                #  Note that
         
     | 
| 
      
 471 
     | 
    
         
            +
                #        erf(-x) = -erf(x)
         
     | 
| 
      
 472 
     | 
    
         
            +
                #        erfc(-x) = 2 - erfc(x)
         
     | 
| 
      
 473 
     | 
    
         
            +
                #
         
     | 
| 
      
 474 
     | 
    
         
            +
                # Method:
         
     | 
| 
      
 475 
     | 
    
         
            +
                #    1. For |x| in [0, 0.84375]
         
     | 
| 
      
 476 
     | 
    
         
            +
                #        erf(x)  = x + x*R(x^2)
         
     | 
| 
      
 477 
     | 
    
         
            +
                #          erfc(x) = 1 - erf(x)           if x in [-.84375,0.25]
         
     | 
| 
      
 478 
     | 
    
         
            +
                #                  = 0.5 + ((0.5-x)-x*R)  if x in [0.25,0.84375]
         
     | 
| 
      
 479 
     | 
    
         
            +
                #       where R = P/Q where P is an odd poly of degree 8 and
         
     | 
| 
      
 480 
     | 
    
         
            +
                #       Q is an odd poly of degree 10.
         
     | 
| 
      
 481 
     | 
    
         
            +
                #                         -57.90
         
     | 
| 
      
 482 
     | 
    
         
            +
                #            | R - (erf(x)-x)/x | <= 2
         
     | 
| 
      
 483 
     | 
    
         
            +
                #
         
     | 
| 
      
 484 
     | 
    
         
            +
                #
         
     | 
| 
      
 485 
     | 
    
         
            +
                #       Remark. The formula is derived by noting
         
     | 
| 
      
 486 
     | 
    
         
            +
                #          erf(x) = (2/sqrt(pi))*(x - x^3/3 + x^5/10 - x^7/42 + ....)
         
     | 
| 
      
 487 
     | 
    
         
            +
                #       and that
         
     | 
| 
      
 488 
     | 
    
         
            +
                #          2/sqrt(pi) = 1.128379167095512573896158903121545171688
         
     | 
| 
      
 489 
     | 
    
         
            +
                #       is close to one. The interval is chosen because the fix
         
     | 
| 
      
 490 
     | 
    
         
            +
                #       point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
         
     | 
| 
      
 491 
     | 
    
         
            +
                #       near 0.6174), and by some experiment, 0.84375 is chosen to
         
     | 
| 
      
 492 
     | 
    
         
            +
                #        guarantee the error is less than one ulp for erf.
         
     | 
| 
      
 493 
     | 
    
         
            +
                #
         
     | 
| 
      
 494 
     | 
    
         
            +
                #      2. For |x| in [0.84375,1.25], let s = |x| - 1, and
         
     | 
| 
      
 495 
     | 
    
         
            +
                #         c = 0.84506291151 rounded to single (24 bits)
         
     | 
| 
      
 496 
     | 
    
         
            +
                #             erf(x)  = sign(x) * (c  + P1(s)/Q1(s))
         
     | 
| 
      
 497 
     | 
    
         
            +
                #             erfc(x) = (1-c)  - P1(s)/Q1(s) if x > 0
         
     | 
| 
      
 498 
     | 
    
         
            +
                #              1+(c+P1(s)/Q1(s))    if x < 0
         
     | 
| 
      
 499 
     | 
    
         
            +
                #             |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
         
     | 
| 
      
 500 
     | 
    
         
            +
                #       Remark: here we use the taylor series expansion at x=1.
         
     | 
| 
      
 501 
     | 
    
         
            +
                #        erf(1+s) = erf(1) + s*Poly(s)
         
     | 
| 
      
 502 
     | 
    
         
            +
                #             = 0.845.. + P1(s)/Q1(s)
         
     | 
| 
      
 503 
     | 
    
         
            +
                #              That is, we use rational approximation to approximate
         
     | 
| 
      
 504 
     | 
    
         
            +
                #                 erf(1+s) - (c = (single)0.84506291151)
         
     | 
| 
      
 505 
     | 
    
         
            +
                #            Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
         
     | 
| 
      
 506 
     | 
    
         
            +
                #            where
         
     | 
| 
      
 507 
     | 
    
         
            +
                #             P1(s) = degree 6 poly in s
         
     | 
| 
      
 508 
     | 
    
         
            +
                #             Q1(s) = degree 6 poly in s
         
     | 
| 
      
 509 
     | 
    
         
            +
                #
         
     | 
| 
      
 510 
     | 
    
         
            +
                #           3. For x in [1.25,1/0.35(~2.857143)],
         
     | 
| 
      
 511 
     | 
    
         
            +
                #                  erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
         
     | 
| 
      
 512 
     | 
    
         
            +
                #                  erf(x)  = 1 - erfc(x)
         
     | 
| 
      
 513 
     | 
    
         
            +
                #            where
         
     | 
| 
      
 514 
     | 
    
         
            +
                #             R1(z) = degree 7 poly in z, (z=1/x^2)
         
     | 
| 
      
 515 
     | 
    
         
            +
                #             S1(z) = degree 8 poly in z
         
     | 
| 
      
 516 
     | 
    
         
            +
                #
         
     | 
| 
      
 517 
     | 
    
         
            +
                #           4. For x in [1/0.35,28]
         
     | 
| 
      
 518 
     | 
    
         
            +
                #                  erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
         
     | 
| 
      
 519 
     | 
    
         
            +
                #                 = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
         
     | 
| 
      
 520 
     | 
    
         
            +
                #                 = 2.0 - tiny        (if x <= -6)
         
     | 
| 
      
 521 
     | 
    
         
            +
                #                  erf(x)  = sign(x)*(1.0 - erfc(x)) if x < 6, else
         
     | 
| 
      
 522 
     | 
    
         
            +
                #                  erf(x)  = sign(x)*(1.0 - tiny)
         
     | 
| 
      
 523 
     | 
    
         
            +
                #            where
         
     | 
| 
      
 524 
     | 
    
         
            +
                #             R2(z) = degree 6 poly in z, (z=1/x^2)
         
     | 
| 
      
 525 
     | 
    
         
            +
                #             S2(z) = degree 7 poly in z
         
     | 
| 
      
 526 
     | 
    
         
            +
                #
         
     | 
| 
      
 527 
     | 
    
         
            +
                #           Note1:
         
     | 
| 
      
 528 
     | 
    
         
            +
                #            To compute exp(-x*x-0.5625+R/S), let s be a single
         
     | 
| 
      
 529 
     | 
    
         
            +
                #            PRECISION number and s := x then
         
     | 
| 
      
 530 
     | 
    
         
            +
                #             -x*x = -s*s + (s-x)*(s+x)
         
     | 
| 
      
 531 
     | 
    
         
            +
                #                 exp(-x*x-0.5626+R/S) =
         
     | 
| 
      
 532 
     | 
    
         
            +
                #                 exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S)
         
     | 
| 
      
 533 
     | 
    
         
            +
                #           Note2:
         
     | 
| 
      
 534 
     | 
    
         
            +
                #            Here 4 and 5 make use of the asymptotic series
         
     | 
| 
      
 535 
     | 
    
         
            +
                #                   exp(-x*x)
         
     | 
| 
      
 536 
     | 
    
         
            +
                #             erfc(x) ~ ---------- * ( 1 + Poly(1/x^2) )
         
     | 
| 
      
 537 
     | 
    
         
            +
                #                   x*sqrt(pi)
         
     | 
| 
      
 538 
     | 
    
         
            +
                #            We use rational approximation to approximate
         
     | 
| 
      
 539 
     | 
    
         
            +
                #               g(s)=f(1/x^2) = log(erfc(x)*x) - x*x + 0.5625
         
     | 
| 
      
 540 
     | 
    
         
            +
                #            Here is the error bound for R1/S1 and R2/S2
         
     | 
| 
      
 541 
     | 
    
         
            +
                #               |R1/S1 - f(x)|  < 2**(-62.57)
         
     | 
| 
      
 542 
     | 
    
         
            +
                #               |R2/S2 - f(x)|  < 2**(-61.52)
         
     | 
| 
      
 543 
     | 
    
         
            +
                #
         
     | 
| 
      
 544 
     | 
    
         
            +
                #            5. For inf > x >= 28
         
     | 
| 
      
 545 
     | 
    
         
            +
                #                             erf(x)  = sign(x) *(1 - tiny)  (raise inexact)
         
     | 
| 
      
 546 
     | 
    
         
            +
                #                             erfc(x) = tiny*tiny (raise underflow) if x > 0
         
     | 
| 
      
 547 
     | 
    
         
            +
                #                           = 2 - tiny if x<0
         
     | 
| 
      
 548 
     | 
    
         
            +
                #
         
     | 
| 
      
 549 
     | 
    
         
            +
                #            7. Special case:
         
     | 
| 
      
 550 
     | 
    
         
            +
                #                             erf(0)  = 0, erf(inf)  = 1, erf(-inf) = -1,
         
     | 
| 
      
 551 
     | 
    
         
            +
                #                             erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
         
     | 
| 
      
 552 
     | 
    
         
            +
                #                           erfc/erf(NaN) is NaN
         
     | 
| 
      
 553 
     | 
    
         
            +
                #
         
     | 
| 
      
 554 
     | 
    
         
            +
                #               $efx8 = 1.02703333676410069053e00
         
     | 
| 
      
 555 
     | 
    
         
            +
                #
         
     | 
| 
      
 556 
     | 
    
         
            +
                #                 Coefficients for approximation to erf on [0,0.84375]
         
     | 
| 
      
 557 
     | 
    
         
            +
                #
         
     | 
| 
      
 558 
     | 
    
         
            +
             
     | 
| 
      
 559 
     | 
    
         
            +
                # Error function.
         
     | 
| 
      
 560 
     | 
    
         
            +
                # Based on C-code for the error function developed at Sun Microsystems.
         
     | 
| 
      
 561 
     | 
    
         
            +
                # Author:: Jaco van Kooten
         
     | 
| 
      
 562 
     | 
    
         
            +
             
     | 
| 
      
 563 
     | 
    
         
            +
                def error(x)
         
     | 
| 
      
 564 
     | 
    
         
            +
                  e_efx = 1.28379167095512586316e-01
         
     | 
| 
      
 565 
     | 
    
         
            +
             
     | 
| 
      
 566 
     | 
    
         
            +
                  ePp = [ 1.28379167095512558561e-01,
         
     | 
| 
      
 567 
     | 
    
         
            +
                    -3.25042107247001499370e-01,
         
     | 
| 
      
 568 
     | 
    
         
            +
                    -2.84817495755985104766e-02,
         
     | 
| 
      
 569 
     | 
    
         
            +
                    -5.77027029648944159157e-03,
         
     | 
| 
      
 570 
     | 
    
         
            +
                    -2.37630166566501626084e-05 ]
         
     | 
| 
      
 571 
     | 
    
         
            +
             
     | 
| 
      
 572 
     | 
    
         
            +
                  eQq = [ 3.97917223959155352819e-01,
         
     | 
| 
      
 573 
     | 
    
         
            +
                    6.50222499887672944485e-02,
         
     | 
| 
      
 574 
     | 
    
         
            +
                    5.08130628187576562776e-03,
         
     | 
| 
      
 575 
     | 
    
         
            +
                    1.32494738004321644526e-04,
         
     | 
| 
      
 576 
     | 
    
         
            +
                    -3.96022827877536812320e-06 ]
         
     | 
| 
      
 577 
     | 
    
         
            +
             
     | 
| 
      
 578 
     | 
    
         
            +
                  # Coefficients for approximation to erf in [0.84375,1.25]
         
     | 
| 
      
 579 
     | 
    
         
            +
                  ePa = [-2.36211856075265944077e-03,
         
     | 
| 
      
 580 
     | 
    
         
            +
                    4.14856118683748331666e-01,
         
     | 
| 
      
 581 
     | 
    
         
            +
                    -3.72207876035701323847e-01,
         
     | 
| 
      
 582 
     | 
    
         
            +
                    3.18346619901161753674e-01,
         
     | 
| 
      
 583 
     | 
    
         
            +
                    -1.10894694282396677476e-01,
         
     | 
| 
      
 584 
     | 
    
         
            +
                    3.54783043256182359371e-02,
         
     | 
| 
      
 585 
     | 
    
         
            +
                    -2.16637559486879084300e-03 ]
         
     | 
| 
      
 586 
     | 
    
         
            +
             
     | 
| 
      
 587 
     | 
    
         
            +
                  eQa = [ 1.06420880400844228286e-01,
         
     | 
| 
      
 588 
     | 
    
         
            +
                    5.40397917702171048937e-01,
         
     | 
| 
      
 589 
     | 
    
         
            +
                    7.18286544141962662868e-02,
         
     | 
| 
      
 590 
     | 
    
         
            +
                    1.26171219808761642112e-01,
         
     | 
| 
      
 591 
     | 
    
         
            +
                    1.36370839120290507362e-02,
         
     | 
| 
      
 592 
     | 
    
         
            +
                    1.19844998467991074170e-02 ]
         
     | 
| 
      
 593 
     | 
    
         
            +
             
     | 
| 
      
 594 
     | 
    
         
            +
                  e_erx = 8.45062911510467529297e-01
         
     | 
| 
      
 595 
     | 
    
         
            +
             
     | 
| 
      
 596 
     | 
    
         
            +
                  abs_x = (if x >= 0.0 then x else -x end)
         
     | 
| 
      
 597 
     | 
    
         
            +
                  # 0 < |x| < 0.84375
         
     | 
| 
      
 598 
     | 
    
         
            +
                  if abs_x < 0.84375
         
     | 
| 
      
 599 
     | 
    
         
            +
                    #|x| < 2**-28
         
     | 
| 
      
 600 
     | 
    
         
            +
                    if abs_x < 3.7252902984619141e-9
         
     | 
| 
      
 601 
     | 
    
         
            +
                    retval = abs_x + abs_x * e_efx
         
     | 
| 
      
 602 
     | 
    
         
            +
                    else
         
     | 
| 
      
 603 
     | 
    
         
            +
                    s = x * x
         
     | 
| 
      
 604 
     | 
    
         
            +
                    p = ePp[0] + s * (ePp[1] + s * (ePp[2] + s * (ePp[3] + s * ePp[4])))
         
     | 
| 
      
 605 
     | 
    
         
            +
             
     | 
| 
      
 606 
     | 
    
         
            +
                    q = 1.0 + s * (eQq[0] + s * (eQq[1] + s *
         
     | 
| 
      
 607 
     | 
    
         
            +
                    ( eQq[2] + s * (eQq[3] + s * eQq[4]))))
         
     | 
| 
      
 608 
     | 
    
         
            +
                    retval = abs_x + abs_x * (p / q)
         
     | 
| 
      
 609 
     | 
    
         
            +
                    end
         
     | 
| 
      
 610 
     | 
    
         
            +
                  elsif abs_x < 1.25
         
     | 
| 
      
 611 
     | 
    
         
            +
                  s = abs_x - 1.0
         
     | 
| 
      
 612 
     | 
    
         
            +
                  p = ePa[0] + s * (ePa[1] + s *
         
     | 
| 
      
 613 
     | 
    
         
            +
                  (ePa[2] + s * (ePa[3] + s *
         
     | 
| 
      
 614 
     | 
    
         
            +
                  (ePa[4] + s * (ePa[5] + s * ePa[6])))))
         
     | 
| 
      
 615 
     | 
    
         
            +
             
     | 
| 
      
 616 
     | 
    
         
            +
                  q = 1.0 + s * (eQa[0] + s *
         
     | 
| 
      
 617 
     | 
    
         
            +
                  (eQa[1] + s * (eQa[2] + s *
         
     | 
| 
      
 618 
     | 
    
         
            +
                  (eQa[3] + s * (eQa[4] + s * eQa[5])))))
         
     | 
| 
      
 619 
     | 
    
         
            +
                  retval = e_erx + p / q
         
     | 
| 
      
 620 
     | 
    
         
            +
             
     | 
| 
      
 621 
     | 
    
         
            +
                  elsif abs_x >= 6.0
         
     | 
| 
      
 622 
     | 
    
         
            +
                  retval = 1.0
         
     | 
| 
      
 623 
     | 
    
         
            +
                  else
         
     | 
| 
      
 624 
     | 
    
         
            +
                    retval = 1.0 - complementary_error(abs_x)
         
     | 
| 
      
 625 
     | 
    
         
            +
                  end
         
     | 
| 
      
 626 
     | 
    
         
            +
                  return (if x >= 0.0 then retval else -retval end)
         
     | 
| 
      
 627 
     | 
    
         
            +
                end
         
     | 
| 
      
 628 
     | 
    
         
            +
             
     | 
| 
      
 629 
     | 
    
         
            +
                # Complementary error function.
         
     | 
| 
      
 630 
     | 
    
         
            +
                # Based on C-code for the error function developed at Sun Microsystems.
         
     | 
| 
      
 631 
     | 
    
         
            +
                # author Jaco van Kooten
         
     | 
| 
      
 632 
     | 
    
         
            +
             
     | 
| 
      
 633 
     | 
    
         
            +
                def complementary_error(x)
         
     | 
| 
      
 634 
     | 
    
         
            +
                  # Coefficients for approximation of erfc in [1.25,1/.35]
         
     | 
| 
      
 635 
     | 
    
         
            +
             
     | 
| 
      
 636 
     | 
    
         
            +
                  eRa = [-9.86494403484714822705e-03,
         
     | 
| 
      
 637 
     | 
    
         
            +
                    -6.93858572707181764372e-01,
         
     | 
| 
      
 638 
     | 
    
         
            +
                    -1.05586262253232909814e01,
         
     | 
| 
      
 639 
     | 
    
         
            +
                    -6.23753324503260060396e01,
         
     | 
| 
      
 640 
     | 
    
         
            +
                    -1.62396669462573470355e02,
         
     | 
| 
      
 641 
     | 
    
         
            +
                    -1.84605092906711035994e02,
         
     | 
| 
      
 642 
     | 
    
         
            +
                    -8.12874355063065934246e01,
         
     | 
| 
      
 643 
     | 
    
         
            +
                    -9.81432934416914548592e00 ]
         
     | 
| 
      
 644 
     | 
    
         
            +
             
     | 
| 
      
 645 
     | 
    
         
            +
                  eSa = [ 1.96512716674392571292e01,
         
     | 
| 
      
 646 
     | 
    
         
            +
                    1.37657754143519042600e02,
         
     | 
| 
      
 647 
     | 
    
         
            +
                    4.34565877475229228821e02,
         
     | 
| 
      
 648 
     | 
    
         
            +
                    6.45387271733267880336e02,
         
     | 
| 
      
 649 
     | 
    
         
            +
                    4.29008140027567833386e02,
         
     | 
| 
      
 650 
     | 
    
         
            +
                    1.08635005541779435134e02,
         
     | 
| 
      
 651 
     | 
    
         
            +
                    6.57024977031928170135e00,
         
     | 
| 
      
 652 
     | 
    
         
            +
                    -6.04244152148580987438e-02 ]
         
     | 
| 
      
 653 
     | 
    
         
            +
             
     | 
| 
      
 654 
     | 
    
         
            +
                  # Coefficients for approximation to erfc in [1/.35,28]
         
     | 
| 
      
 655 
     | 
    
         
            +
             
     | 
| 
      
 656 
     | 
    
         
            +
                  eRb = [-9.86494292470009928597e-03,
         
     | 
| 
      
 657 
     | 
    
         
            +
                    -7.99283237680523006574e-01,
         
     | 
| 
      
 658 
     | 
    
         
            +
                    -1.77579549177547519889e01,
         
     | 
| 
      
 659 
     | 
    
         
            +
                    -1.60636384855821916062e02,
         
     | 
| 
      
 660 
     | 
    
         
            +
                    -6.37566443368389627722e02,
         
     | 
| 
      
 661 
     | 
    
         
            +
                    -1.02509513161107724954e03,
         
     | 
| 
      
 662 
     | 
    
         
            +
                    -4.83519191608651397019e02 ]
         
     | 
| 
      
 663 
     | 
    
         
            +
             
     | 
| 
      
 664 
     | 
    
         
            +
                  eSb = [ 3.03380607434824582924e01,
         
     | 
| 
      
 665 
     | 
    
         
            +
                    3.25792512996573918826e02,
         
     | 
| 
      
 666 
     | 
    
         
            +
                    1.53672958608443695994e03,
         
     | 
| 
      
 667 
     | 
    
         
            +
                    3.19985821950859553908e03,
         
     | 
| 
      
 668 
     | 
    
         
            +
                    2.55305040643316442583e03,
         
     | 
| 
      
 669 
     | 
    
         
            +
                    4.74528541206955367215e02,
         
     | 
| 
      
 670 
     | 
    
         
            +
                    -2.24409524465858183362e01 ]
         
     | 
| 
      
 671 
     | 
    
         
            +
             
     | 
| 
      
 672 
     | 
    
         
            +
                  abs_x = (if x >= 0.0 then x else -x end)
         
     | 
| 
      
 673 
     | 
    
         
            +
                  if abs_x < 1.25
         
     | 
| 
      
 674 
     | 
    
         
            +
                    retval = 1.0 - error(abs_x)
         
     | 
| 
      
 675 
     | 
    
         
            +
                  elsif abs_x > 28.0
         
     | 
| 
      
 676 
     | 
    
         
            +
                  retval = 0.0
         
     | 
| 
      
 677 
     | 
    
         
            +
             
     | 
| 
      
 678 
     | 
    
         
            +
                  # 1.25 < |x| < 28
         
     | 
| 
      
 679 
     | 
    
         
            +
                  else
         
     | 
| 
      
 680 
     | 
    
         
            +
                    s = 1.0/(abs_x * abs_x)
         
     | 
| 
      
 681 
     | 
    
         
            +
                    if abs_x < 2.8571428
         
     | 
| 
      
 682 
     | 
    
         
            +
                    r = eRa[0] + s * (eRa[1] + s *
         
     | 
| 
      
 683 
     | 
    
         
            +
                    (eRa[2] + s * (eRa[3] + s * (eRa[4] + s *
         
     | 
| 
      
 684 
     | 
    
         
            +
                    (eRa[5] + s *(eRa[6] + s * eRa[7])
         
     | 
| 
      
 685 
     | 
    
         
            +
                    )))))
         
     | 
| 
      
 686 
     | 
    
         
            +
             
     | 
| 
      
 687 
     | 
    
         
            +
                    s = 1.0 + s * (eSa[0] + s * (eSa[1] + s *
         
     | 
| 
      
 688 
     | 
    
         
            +
                    (eSa[2] + s * (eSa[3] + s * (eSa[4] + s *
         
     | 
| 
      
 689 
     | 
    
         
            +
                    (eSa[5] + s * (eSa[6] + s * eSa[7])))))))
         
     | 
| 
      
 690 
     | 
    
         
            +
             
     | 
| 
      
 691 
     | 
    
         
            +
                    else
         
     | 
| 
      
 692 
     | 
    
         
            +
                    r = eRb[0] + s * (eRb[1] + s *
         
     | 
| 
      
 693 
     | 
    
         
            +
                    (eRb[2] + s * (eRb[3] + s * (eRb[4] + s *
         
     | 
| 
      
 694 
     | 
    
         
            +
                    (eRb[5] + s * eRb[6])))))
         
     | 
| 
      
 695 
     | 
    
         
            +
             
     | 
| 
      
 696 
     | 
    
         
            +
                    s = 1.0 + s * (eSb[0] + s *
         
     | 
| 
      
 697 
     | 
    
         
            +
                    (eSb[1] + s * (eSb[2] + s * (eSb[3] + s *
         
     | 
| 
      
 698 
     | 
    
         
            +
                    (eSb[4] + s * (eSb[5] + s * eSb[6]))))))
         
     | 
| 
      
 699 
     | 
    
         
            +
                    end
         
     | 
| 
      
 700 
     | 
    
         
            +
                    retval =  Math.exp(-x * x - 0.5625 + r/s) / abs_x
         
     | 
| 
      
 701 
     | 
    
         
            +
                  end
         
     | 
| 
      
 702 
     | 
    
         
            +
                  return ( if x >= 0.0 then retval else 2.0 - retval end )
         
     | 
| 
      
 703 
     | 
    
         
            +
                end
         
     | 
| 
      
 704 
     | 
    
         
            +
             
     | 
| 
      
 705 
     | 
    
         
            +
              end # class
         
     | 
| 
      
 706 
     | 
    
         
            +
             
     | 
| 
      
 707 
     | 
    
         
            +
            end # module
         
     |