frprep 0.0.1.prealpha
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/.yardopts +8 -0
 - data/CHANGELOG.rdoc +0 -0
 - data/LICENSE.rdoc +0 -0
 - data/README.rdoc +0 -0
 - data/lib/common/AbstractSynInterface.rb +1227 -0
 - data/lib/common/BerkeleyInterface.rb +375 -0
 - data/lib/common/CollinsInterface.rb +1165 -0
 - data/lib/common/ConfigData.rb +694 -0
 - data/lib/common/Counter.rb +18 -0
 - data/lib/common/DBInterface.rb +48 -0
 - data/lib/common/EnduserMode.rb +27 -0
 - data/lib/common/Eval.rb +480 -0
 - data/lib/common/FixSynSemMapping.rb +196 -0
 - data/lib/common/FrPrepConfigData.rb +66 -0
 - data/lib/common/FrprepHelper.rb +1324 -0
 - data/lib/common/Graph.rb +345 -0
 - data/lib/common/ISO-8859-1.rb +24 -0
 - data/lib/common/ML.rb +186 -0
 - data/lib/common/Maxent.rb +215 -0
 - data/lib/common/MiniparInterface.rb +1388 -0
 - data/lib/common/Optimise.rb +195 -0
 - data/lib/common/Parser.rb +213 -0
 - data/lib/common/RegXML.rb +269 -0
 - data/lib/common/RosyConventions.rb +171 -0
 - data/lib/common/SQLQuery.rb +243 -0
 - data/lib/common/STXmlTerminalOrder.rb +194 -0
 - data/lib/common/SalsaTigerRegXML.rb +2347 -0
 - data/lib/common/SalsaTigerXMLHelper.rb +99 -0
 - data/lib/common/SleepyInterface.rb +384 -0
 - data/lib/common/SynInterfaces.rb +275 -0
 - data/lib/common/TabFormat.rb +720 -0
 - data/lib/common/Tiger.rb +1448 -0
 - data/lib/common/TntInterface.rb +44 -0
 - data/lib/common/Tree.rb +61 -0
 - data/lib/common/TreetaggerInterface.rb +303 -0
 - data/lib/common/headz.rb +338 -0
 - data/lib/common/option_parser.rb +13 -0
 - data/lib/common/ruby_class_extensions.rb +310 -0
 - data/lib/fred/Baseline.rb +150 -0
 - data/lib/fred/FileZipped.rb +31 -0
 - data/lib/fred/FredBOWContext.rb +863 -0
 - data/lib/fred/FredConfigData.rb +182 -0
 - data/lib/fred/FredConventions.rb +232 -0
 - data/lib/fred/FredDetermineTargets.rb +324 -0
 - data/lib/fred/FredEval.rb +312 -0
 - data/lib/fred/FredFeatureExtractors.rb +321 -0
 - data/lib/fred/FredFeatures.rb +1061 -0
 - data/lib/fred/FredFeaturize.rb +596 -0
 - data/lib/fred/FredNumTrainingSenses.rb +27 -0
 - data/lib/fred/FredParameters.rb +402 -0
 - data/lib/fred/FredSplit.rb +84 -0
 - data/lib/fred/FredSplitPkg.rb +180 -0
 - data/lib/fred/FredTest.rb +607 -0
 - data/lib/fred/FredTrain.rb +144 -0
 - data/lib/fred/PlotAndREval.rb +480 -0
 - data/lib/fred/fred.rb +45 -0
 - data/lib/fred/md5.rb +23 -0
 - data/lib/fred/opt_parser.rb +250 -0
 - data/lib/frprep/AbstractSynInterface.rb +1227 -0
 - data/lib/frprep/Ampersand.rb +37 -0
 - data/lib/frprep/BerkeleyInterface.rb +375 -0
 - data/lib/frprep/CollinsInterface.rb +1165 -0
 - data/lib/frprep/ConfigData.rb +694 -0
 - data/lib/frprep/Counter.rb +18 -0
 - data/lib/frprep/FNCorpusXML.rb +643 -0
 - data/lib/frprep/FNDatabase.rb +144 -0
 - data/lib/frprep/FixSynSemMapping.rb +196 -0
 - data/lib/frprep/FrPrepConfigData.rb +66 -0
 - data/lib/frprep/FrameXML.rb +513 -0
 - data/lib/frprep/FrprepHelper.rb +1324 -0
 - data/lib/frprep/Graph.rb +345 -0
 - data/lib/frprep/ISO-8859-1.rb +24 -0
 - data/lib/frprep/MiniparInterface.rb +1388 -0
 - data/lib/frprep/Parser.rb +213 -0
 - data/lib/frprep/RegXML.rb +269 -0
 - data/lib/frprep/STXmlTerminalOrder.rb +194 -0
 - data/lib/frprep/SalsaTigerRegXML.rb +2347 -0
 - data/lib/frprep/SalsaTigerXMLHelper.rb +99 -0
 - data/lib/frprep/SleepyInterface.rb +384 -0
 - data/lib/frprep/SynInterfaces.rb +275 -0
 - data/lib/frprep/TabFormat.rb +720 -0
 - data/lib/frprep/Tiger.rb +1448 -0
 - data/lib/frprep/TntInterface.rb +44 -0
 - data/lib/frprep/Tree.rb +61 -0
 - data/lib/frprep/TreetaggerInterface.rb +303 -0
 - data/lib/frprep/do_parses.rb +142 -0
 - data/lib/frprep/frprep.rb +686 -0
 - data/lib/frprep/headz.rb +338 -0
 - data/lib/frprep/one_parsed_file.rb +28 -0
 - data/lib/frprep/opt_parser.rb +94 -0
 - data/lib/frprep/ruby_class_extensions.rb +310 -0
 - data/lib/rosy/AbstractFeatureAndExternal.rb +240 -0
 - data/lib/rosy/DBMySQL.rb +146 -0
 - data/lib/rosy/DBSQLite.rb +280 -0
 - data/lib/rosy/DBTable.rb +239 -0
 - data/lib/rosy/DBWrapper.rb +176 -0
 - data/lib/rosy/ExternalConfigData.rb +58 -0
 - data/lib/rosy/FailedParses.rb +130 -0
 - data/lib/rosy/FeatureInfo.rb +242 -0
 - data/lib/rosy/GfInduce.rb +1115 -0
 - data/lib/rosy/GfInduceFeature.rb +148 -0
 - data/lib/rosy/InputData.rb +294 -0
 - data/lib/rosy/RosyConfigData.rb +115 -0
 - data/lib/rosy/RosyConfusability.rb +338 -0
 - data/lib/rosy/RosyEval.rb +465 -0
 - data/lib/rosy/RosyFeatureExtractors.rb +1609 -0
 - data/lib/rosy/RosyFeaturize.rb +280 -0
 - data/lib/rosy/RosyInspect.rb +336 -0
 - data/lib/rosy/RosyIterator.rb +477 -0
 - data/lib/rosy/RosyPhase2FeatureExtractors.rb +230 -0
 - data/lib/rosy/RosyPruning.rb +165 -0
 - data/lib/rosy/RosyServices.rb +744 -0
 - data/lib/rosy/RosySplit.rb +232 -0
 - data/lib/rosy/RosyTask.rb +19 -0
 - data/lib/rosy/RosyTest.rb +826 -0
 - data/lib/rosy/RosyTrain.rb +232 -0
 - data/lib/rosy/RosyTrainingTestTable.rb +786 -0
 - data/lib/rosy/TargetsMostFrequentFrame.rb +60 -0
 - data/lib/rosy/View.rb +418 -0
 - data/lib/rosy/opt_parser.rb +379 -0
 - data/lib/rosy/rosy.rb +77 -0
 - data/lib/shalmaneser/version.rb +3 -0
 - data/test/frprep/test_opt_parser.rb +94 -0
 - data/test/functional/functional_test_helper.rb +40 -0
 - data/test/functional/sample_experiment_files/fred_test.salsa.erb +122 -0
 - data/test/functional/sample_experiment_files/fred_train.salsa.erb +135 -0
 - data/test/functional/sample_experiment_files/prp_test.salsa.erb +138 -0
 - data/test/functional/sample_experiment_files/prp_test.salsa.fred.standalone.erb +120 -0
 - data/test/functional/sample_experiment_files/prp_test.salsa.rosy.standalone.erb +120 -0
 - data/test/functional/sample_experiment_files/prp_train.salsa.erb +138 -0
 - data/test/functional/sample_experiment_files/prp_train.salsa.fred.standalone.erb +138 -0
 - data/test/functional/sample_experiment_files/prp_train.salsa.rosy.standalone.erb +138 -0
 - data/test/functional/sample_experiment_files/rosy_test.salsa.erb +257 -0
 - data/test/functional/sample_experiment_files/rosy_train.salsa.erb +259 -0
 - data/test/functional/test_fred.rb +47 -0
 - data/test/functional/test_frprep.rb +52 -0
 - data/test/functional/test_rosy.rb +20 -0
 - metadata +270 -0
 
| 
         @@ -0,0 +1,180 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            ##
         
     | 
| 
      
 2 
     | 
    
         
            +
            # splitting package for WSD:
         
     | 
| 
      
 3 
     | 
    
         
            +
            # compute a split for feature files (one item a line, CSV),
         
     | 
| 
      
 4 
     | 
    
         
            +
            # and apply pre-computed split
         
     | 
| 
      
 5 
     | 
    
         
            +
            # to produce new feature files accordingly
         
     | 
| 
      
 6 
     | 
    
         
            +
             
     | 
| 
      
 7 
     | 
    
         
            +
            require "tempfile"
         
     | 
| 
      
 8 
     | 
    
         
            +
             
     | 
| 
      
 9 
     | 
    
         
            +
            require "fred/FredDetermineTargets"
         
     | 
| 
      
 10 
     | 
    
         
            +
            require "fred/FredConventions"
         
     | 
| 
      
 11 
     | 
    
         
            +
             
     | 
| 
      
 12 
     | 
    
         
            +
            class FredSplitPkg
         
     | 
| 
      
 13 
     | 
    
         
            +
              ###
         
     | 
| 
      
 14 
     | 
    
         
            +
              def initialize(exp)
         
     | 
| 
      
 15 
     | 
    
         
            +
                @exp = exp
         
     | 
| 
      
 16 
     | 
    
         
            +
              end
         
     | 
| 
      
 17 
     | 
    
         
            +
             
     | 
| 
      
 18 
     | 
    
         
            +
              ###
         
     | 
| 
      
 19 
     | 
    
         
            +
              def FredSplitPkg.split_dir(exp, split_id, mode = "existing")
         
     | 
| 
      
 20 
     | 
    
         
            +
                return fred_dirname(exp, "split", split_id, mode)
         
     | 
| 
      
 21 
     | 
    
         
            +
              end
         
     | 
| 
      
 22 
     | 
    
         
            +
             
     | 
| 
      
 23 
     | 
    
         
            +
              ###
         
     | 
| 
      
 24 
     | 
    
         
            +
              # make a new split
         
     | 
| 
      
 25 
     | 
    
         
            +
              def make_new_split(split_id,  # string: ID
         
     | 
| 
      
 26 
     | 
    
         
            +
                                 trainpercent, # float: percentage training data
         
     | 
| 
      
 27 
     | 
    
         
            +
                                 ignore_unambiguous = false)
         
     | 
| 
      
 28 
     | 
    
         
            +
             
     | 
| 
      
 29 
     | 
    
         
            +
                # where to store the split?
         
     | 
| 
      
 30 
     | 
    
         
            +
                split_dir = FredSplitPkg.split_dir(@exp, split_id, "new")
         
     | 
| 
      
 31 
     | 
    
         
            +
             
     | 
| 
      
 32 
     | 
    
         
            +
                lemmas_and_senses = Targets.new(@exp, nil, "r")
         
     | 
| 
      
 33 
     | 
    
         
            +
                unless lemmas_and_senses.targets_okay
         
     | 
| 
      
 34 
     | 
    
         
            +
                  # error during initialization
         
     | 
| 
      
 35 
     | 
    
         
            +
                  $stderr.puts "Error: Could not read list of known targets, bailing out."
         
     | 
| 
      
 36 
     | 
    
         
            +
                  exit 1
         
     | 
| 
      
 37 
     | 
    
         
            +
                end
         
     | 
| 
      
 38 
     | 
    
         
            +
             
     | 
| 
      
 39 
     | 
    
         
            +
                # Iterate through lemmas,
         
     | 
| 
      
 40 
     | 
    
         
            +
                # split training feature files.
         
     | 
| 
      
 41 
     | 
    
         
            +
                #
         
     | 
| 
      
 42 
     | 
    
         
            +
                # Do the split only once per lemma,
         
     | 
| 
      
 43 
     | 
    
         
            +
                # even if we have sense-specific feature files
         
     | 
| 
      
 44 
     | 
    
         
            +
                feature_dir =  fred_dirname(@exp, "train", "features")
         
     | 
| 
      
 45 
     | 
    
         
            +
             
     | 
| 
      
 46 
     | 
    
         
            +
                lemmas_and_senses.get_lemmas().each { |lemma|
         
     | 
| 
      
 47 
     | 
    
         
            +
                  # construct split file
         
     | 
| 
      
 48 
     | 
    
         
            +
                  splitfilename = split_dir + fred_split_filename(lemma)
         
     | 
| 
      
 49 
     | 
    
         
            +
                  begin
         
     | 
| 
      
 50 
     | 
    
         
            +
                    splitfile = File.new(splitfilename, "w")
         
     | 
| 
      
 51 
     | 
    
         
            +
                  rescue
         
     | 
| 
      
 52 
     | 
    
         
            +
                    raise "Error: Couldn't write to file " + splitfilename
         
     | 
| 
      
 53 
     | 
    
         
            +
                  end
         
     | 
| 
      
 54 
     | 
    
         
            +
                  
         
     | 
| 
      
 55 
     | 
    
         
            +
                  # find lemma-specific  feature file
         
     | 
| 
      
 56 
     | 
    
         
            +
             
     | 
| 
      
 57 
     | 
    
         
            +
                  filename = feature_dir + fred_feature_filename(lemma)
         
     | 
| 
      
 58 
     | 
    
         
            +
             
     | 
| 
      
 59 
     | 
    
         
            +
                  unless File.exists?(filename)
         
     | 
| 
      
 60 
     | 
    
         
            +
                    # try lemma+sense-specific feature file
         
     | 
| 
      
 61 
     | 
    
         
            +
                    file_pattern = fred_feature_filename(lemma, "*", true)
         
     | 
| 
      
 62 
     | 
    
         
            +
                    filename = Dir[feature_dir + file_pattern].first()
         
     | 
| 
      
 63 
     | 
    
         
            +
             
     | 
| 
      
 64 
     | 
    
         
            +
                    unless filename
         
     | 
| 
      
 65 
     | 
    
         
            +
                      # no lemma+sense-specific feature file
         
     | 
| 
      
 66 
     | 
    
         
            +
                      $stderr.puts "Warning: split: no feature file found for #{lemma}, skipping." 
         
     | 
| 
      
 67 
     | 
    
         
            +
                      splitfile.close()
         
     | 
| 
      
 68 
     | 
    
         
            +
                      next
         
     | 
| 
      
 69 
     | 
    
         
            +
                    end
         
     | 
| 
      
 70 
     | 
    
         
            +
                  end
         
     | 
| 
      
 71 
     | 
    
         
            +
                  
         
     | 
| 
      
 72 
     | 
    
         
            +
                  # open feature file for reading
         
     | 
| 
      
 73 
     | 
    
         
            +
                  begin
         
     | 
| 
      
 74 
     | 
    
         
            +
                    file = File.new(filename)
         
     | 
| 
      
 75 
     | 
    
         
            +
                  rescue
         
     | 
| 
      
 76 
     | 
    
         
            +
                    raise "Couldn't read feature file " + filename
         
     | 
| 
      
 77 
     | 
    
         
            +
                  end
         
     | 
| 
      
 78 
     | 
    
         
            +
             
     | 
| 
      
 79 
     | 
    
         
            +
                  if ignore_unambiguous and
         
     | 
| 
      
 80 
     | 
    
         
            +
                      lemmas_and_senses.get_senses(lemma).length() < 2
         
     | 
| 
      
 81 
     | 
    
         
            +
                    # unambiguous: ignore
         
     | 
| 
      
 82 
     | 
    
         
            +
             
     | 
| 
      
 83 
     | 
    
         
            +
                    while file.gets()
         
     | 
| 
      
 84 
     | 
    
         
            +
                      splitfile.puts "ignore"
         
     | 
| 
      
 85 
     | 
    
         
            +
                    end
         
     | 
| 
      
 86 
     | 
    
         
            +
                    
         
     | 
| 
      
 87 
     | 
    
         
            +
                  else
         
     | 
| 
      
 88 
     | 
    
         
            +
                    # read from feature file, classify at random
         
     | 
| 
      
 89 
     | 
    
         
            +
                    # as train or test,
         
     | 
| 
      
 90 
     | 
    
         
            +
                    # write result to splitfile
         
     | 
| 
      
 91 
     | 
    
         
            +
                      
         
     | 
| 
      
 92 
     | 
    
         
            +
                    while file.gets()
         
     | 
| 
      
 93 
     | 
    
         
            +
                      if rand() < trainpercent
         
     | 
| 
      
 94 
     | 
    
         
            +
                        splitfile.puts "train"
         
     | 
| 
      
 95 
     | 
    
         
            +
                      else
         
     | 
| 
      
 96 
     | 
    
         
            +
                        splitfile.puts "test"
         
     | 
| 
      
 97 
     | 
    
         
            +
                      end
         
     | 
| 
      
 98 
     | 
    
         
            +
                    end
         
     | 
| 
      
 99 
     | 
    
         
            +
                  end
         
     | 
| 
      
 100 
     | 
    
         
            +
             
     | 
| 
      
 101 
     | 
    
         
            +
                  splitfile.close()
         
     | 
| 
      
 102 
     | 
    
         
            +
                }
         
     | 
| 
      
 103 
     | 
    
         
            +
              end
         
     | 
| 
      
 104 
     | 
    
         
            +
             
     | 
| 
      
 105 
     | 
    
         
            +
              ###
         
     | 
| 
      
 106 
     | 
    
         
            +
              # remove an old split
         
     | 
| 
      
 107 
     | 
    
         
            +
              def FredSplitPkg.remove_split(exp,      # FredConfigData object
         
     | 
| 
      
 108 
     | 
    
         
            +
                                            splitID)  # string: split ID
         
     | 
| 
      
 109 
     | 
    
         
            +
                begin
         
     | 
| 
      
 110 
     | 
    
         
            +
                  split_dir = FredSplitPkg.split_dir(exp, splitID, "new")
         
     | 
| 
      
 111 
     | 
    
         
            +
                rescue
         
     | 
| 
      
 112 
     | 
    
         
            +
                  # no split to be removed
         
     | 
| 
      
 113 
     | 
    
         
            +
                  return
         
     | 
| 
      
 114 
     | 
    
         
            +
                end
         
     | 
| 
      
 115 
     | 
    
         
            +
                %x{rm -rf #{split_dir}}
         
     | 
| 
      
 116 
     | 
    
         
            +
              end
         
     | 
| 
      
 117 
     | 
    
         
            +
             
     | 
| 
      
 118 
     | 
    
         
            +
             
     | 
| 
      
 119 
     | 
    
         
            +
              ###
         
     | 
| 
      
 120 
     | 
    
         
            +
              # change feature files according to 
         
     | 
| 
      
 121 
     | 
    
         
            +
              # pre-computed split
         
     | 
| 
      
 122 
     | 
    
         
            +
              #
         
     | 
| 
      
 123 
     | 
    
         
            +
              #
         
     | 
| 
      
 124 
     | 
    
         
            +
              # returns: tempfile containing featurized items,
         
     | 
| 
      
 125 
     | 
    
         
            +
              # according to split,
         
     | 
| 
      
 126 
     | 
    
         
            +
              # or nil if the split file wouldn't contain any data
         
     | 
| 
      
 127 
     | 
    
         
            +
              def apply_split(filename, # feature file
         
     | 
| 
      
 128 
     | 
    
         
            +
                              lemma,    # string: lemma that filename is about
         
     | 
| 
      
 129 
     | 
    
         
            +
                              dataset,  # string: train, test
         
     | 
| 
      
 130 
     | 
    
         
            +
                              split_id) # string: split ID
         
     | 
| 
      
 131 
     | 
    
         
            +
             
     | 
| 
      
 132 
     | 
    
         
            +
             
     | 
| 
      
 133 
     | 
    
         
            +
                split_filename = FredSplitPkg.split_dir(@exp, split_id) +
         
     | 
| 
      
 134 
     | 
    
         
            +
                  fred_split_filename(lemma)
         
     | 
| 
      
 135 
     | 
    
         
            +
             
     | 
| 
      
 136 
     | 
    
         
            +
                # read feature file and split file at the same time
         
     | 
| 
      
 137 
     | 
    
         
            +
                # write to tempfile.
         
     | 
| 
      
 138 
     | 
    
         
            +
                f_feat = File.new(filename)
         
     | 
| 
      
 139 
     | 
    
         
            +
                f_split = File.new(split_filename)
         
     | 
| 
      
 140 
     | 
    
         
            +
                f_out = Tempfile.new("fred_split")
         
     | 
| 
      
 141 
     | 
    
         
            +
             
     | 
| 
      
 142 
     | 
    
         
            +
                num_yes = 0
         
     | 
| 
      
 143 
     | 
    
         
            +
             
     | 
| 
      
 144 
     | 
    
         
            +
                f_feat.each { |line|
         
     | 
| 
      
 145 
     | 
    
         
            +
                  begin
         
     | 
| 
      
 146 
     | 
    
         
            +
                    split_part = f_split.readline().chomp()
         
     | 
| 
      
 147 
     | 
    
         
            +
                  rescue
         
     | 
| 
      
 148 
     | 
    
         
            +
                    $stderr.puts "FredSplit error: split file too short."
         
     | 
| 
      
 149 
     | 
    
         
            +
                    $stderr.puts "skipping rest of featurization data."
         
     | 
| 
      
 150 
     | 
    
         
            +
                    $stderr.puts "Split file: #{split_filename}"
         
     | 
| 
      
 151 
     | 
    
         
            +
                    $stderr.puts "Feature file: #{filename}"
         
     | 
| 
      
 152 
     | 
    
         
            +
                    raise "HIER"
         
     | 
| 
      
 153 
     | 
    
         
            +
                    f_out.close()
         
     | 
| 
      
 154 
     | 
    
         
            +
                    if num_yes > 0
         
     | 
| 
      
 155 
     | 
    
         
            +
                      return f_out
         
     | 
| 
      
 156 
     | 
    
         
            +
                    else
         
     | 
| 
      
 157 
     | 
    
         
            +
                      return nil
         
     | 
| 
      
 158 
     | 
    
         
            +
                    end
         
     | 
| 
      
 159 
     | 
    
         
            +
                  end
         
     | 
| 
      
 160 
     | 
    
         
            +
             
     | 
| 
      
 161 
     | 
    
         
            +
                  if split_part == dataset
         
     | 
| 
      
 162 
     | 
    
         
            +
                    # write training data, and this item is in the training
         
     | 
| 
      
 163 
     | 
    
         
            +
                    # part of the split,
         
     | 
| 
      
 164 
     | 
    
         
            +
                    # or write test data, and item is in test part
         
     | 
| 
      
 165 
     | 
    
         
            +
                    f_out.puts line
         
     | 
| 
      
 166 
     | 
    
         
            +
                    num_yes += 1
         
     | 
| 
      
 167 
     | 
    
         
            +
                  end
         
     | 
| 
      
 168 
     | 
    
         
            +
                }
         
     | 
| 
      
 169 
     | 
    
         
            +
                f_out.close()
         
     | 
| 
      
 170 
     | 
    
         
            +
                f_feat.close()
         
     | 
| 
      
 171 
     | 
    
         
            +
                f_split.close()
         
     | 
| 
      
 172 
     | 
    
         
            +
             
     | 
| 
      
 173 
     | 
    
         
            +
                if num_yes > 0
         
     | 
| 
      
 174 
     | 
    
         
            +
                  return f_out
         
     | 
| 
      
 175 
     | 
    
         
            +
                else
         
     | 
| 
      
 176 
     | 
    
         
            +
                  return nil
         
     | 
| 
      
 177 
     | 
    
         
            +
                end
         
     | 
| 
      
 178 
     | 
    
         
            +
             
     | 
| 
      
 179 
     | 
    
         
            +
              end
         
     | 
| 
      
 180 
     | 
    
         
            +
            end
         
     | 
| 
         @@ -0,0 +1,607 @@ 
     | 
|
| 
      
 1 
     | 
    
         
            +
            # -*- coding: utf-8 -*-
         
     | 
| 
      
 2 
     | 
    
         
            +
            # FredTest
         
     | 
| 
      
 3 
     | 
    
         
            +
            # Katrin Erk April 05
         
     | 
| 
      
 4 
     | 
    
         
            +
            #
         
     | 
| 
      
 5 
     | 
    
         
            +
            # Frame disambiguation system: 
         
     | 
| 
      
 6 
     | 
    
         
            +
            # apply trained classifiers to test data
         
     | 
| 
      
 7 
     | 
    
         
            +
            # Results are written out one output line per instance line.
         
     | 
| 
      
 8 
     | 
    
         
            +
             
     | 
| 
      
 9 
     | 
    
         
            +
            # Ruby packages
         
     | 
| 
      
 10 
     | 
    
         
            +
            require "tempfile"
         
     | 
| 
      
 11 
     | 
    
         
            +
             
     | 
| 
      
 12 
     | 
    
         
            +
            # Salsa packages
         
     | 
| 
      
 13 
     | 
    
         
            +
            require "common/Parser"
         
     | 
| 
      
 14 
     | 
    
         
            +
            require "common/RegXML"
         
     | 
| 
      
 15 
     | 
    
         
            +
            require "common/SalsaTigerRegXML"
         
     | 
| 
      
 16 
     | 
    
         
            +
            require "common/ruby_class_extensions"
         
     | 
| 
      
 17 
     | 
    
         
            +
             
     | 
| 
      
 18 
     | 
    
         
            +
            # Shalmaneser packages
         
     | 
| 
      
 19 
     | 
    
         
            +
            require "common/FrPrepConfigData"
         
     | 
| 
      
 20 
     | 
    
         
            +
            require "common/ML"
         
     | 
| 
      
 21 
     | 
    
         
            +
            require "fred/Baseline"
         
     | 
| 
      
 22 
     | 
    
         
            +
            require "fred/FredConventions"
         
     | 
| 
      
 23 
     | 
    
         
            +
            require "fred/FredDetermineTargets"
         
     | 
| 
      
 24 
     | 
    
         
            +
            require "fred/FredSplitPkg"
         
     | 
| 
      
 25 
     | 
    
         
            +
            require "fred/FredFeatures"
         
     | 
| 
      
 26 
     | 
    
         
            +
            require "fred/FredNumTrainingSenses"
         
     | 
| 
      
 27 
     | 
    
         
            +
             
     | 
| 
      
 28 
     | 
    
         
            +
            class FredTest
         
     | 
| 
      
 29 
     | 
    
         
            +
             
     | 
| 
      
 30 
     | 
    
         
            +
              ###
         
     | 
| 
      
 31 
     | 
    
         
            +
              # new
         
     | 
| 
      
 32 
     | 
    
         
            +
              #
         
     | 
| 
      
 33 
     | 
    
         
            +
              # evaluate runtime options and announce the task
         
     | 
| 
      
 34 
     | 
    
         
            +
              def initialize(exp_obj, # FredConfigData object
         
     | 
| 
      
 35 
     | 
    
         
            +
            		 options) # hash: runtime option name (string) => value(string)
         
     | 
| 
      
 36 
     | 
    
         
            +
             
     | 
| 
      
 37 
     | 
    
         
            +
                # keep the experiment file object
         
     | 
| 
      
 38 
     | 
    
         
            +
                @exp = exp_obj
         
     | 
| 
      
 39 
     | 
    
         
            +
             
     | 
| 
      
 40 
     | 
    
         
            +
                # evaluate runtime options
         
     | 
| 
      
 41 
     | 
    
         
            +
                @split_id = nil
         
     | 
| 
      
 42 
     | 
    
         
            +
                @baseline = false
         
     | 
| 
      
 43 
     | 
    
         
            +
                @produce_output = true
         
     | 
| 
      
 44 
     | 
    
         
            +
             
     | 
| 
      
 45 
     | 
    
         
            +
                options.each_pair { |opt, arg|
         
     | 
| 
      
 46 
     | 
    
         
            +
                  case opt
         
     | 
| 
      
 47 
     | 
    
         
            +
                  when "--logID"
         
     | 
| 
      
 48 
     | 
    
         
            +
            	
         
     | 
| 
      
 49 
     | 
    
         
            +
            	@split_id = arg
         
     | 
| 
      
 50 
     | 
    
         
            +
             
     | 
| 
      
 51 
     | 
    
         
            +
                  when "--baseline"
         
     | 
| 
      
 52 
     | 
    
         
            +
            	@baseline = true
         
     | 
| 
      
 53 
     | 
    
         
            +
             
     | 
| 
      
 54 
     | 
    
         
            +
                  when "--nooutput"
         
     | 
| 
      
 55 
     | 
    
         
            +
                    @produce_output = false
         
     | 
| 
      
 56 
     | 
    
         
            +
             
     | 
| 
      
 57 
     | 
    
         
            +
                  else
         
     | 
| 
      
 58 
     | 
    
         
            +
            	# case of unknown arguments has been dealt with by fred.rb
         
     | 
| 
      
 59 
     | 
    
         
            +
                  end
         
     | 
| 
      
 60 
     | 
    
         
            +
                }
         
     | 
| 
      
 61 
     | 
    
         
            +
             
     | 
| 
      
 62 
     | 
    
         
            +
                # announce the task
         
     | 
| 
      
 63 
     | 
    
         
            +
                $stderr.puts "---------"
         
     | 
| 
      
 64 
     | 
    
         
            +
                $stderr.print "Fred  experiment #{@exp.get("experiment_ID")}: "
         
     | 
| 
      
 65 
     | 
    
         
            +
                if @baseline
         
     | 
| 
      
 66 
     | 
    
         
            +
                  $stderr.print "Computing baseline "
         
     | 
| 
      
 67 
     | 
    
         
            +
                else
         
     | 
| 
      
 68 
     | 
    
         
            +
                  $stderr.print "Applying classifiers"
         
     | 
| 
      
 69 
     | 
    
         
            +
                end
         
     | 
| 
      
 70 
     | 
    
         
            +
                if @split_id
         
     | 
| 
      
 71 
     | 
    
         
            +
                  $stderr.puts " using split with ID #{@split_id}"
         
     | 
| 
      
 72 
     | 
    
         
            +
                else
         
     | 
| 
      
 73 
     | 
    
         
            +
                  $stderr.puts
         
     | 
| 
      
 74 
     | 
    
         
            +
                end
         
     | 
| 
      
 75 
     | 
    
         
            +
                if @produce_output and not @split_id
         
     | 
| 
      
 76 
     | 
    
         
            +
                  $stderr.print "Output is to "
         
     | 
| 
      
 77 
     | 
    
         
            +
                  if @exp.get("directory_output")
         
     | 
| 
      
 78 
     | 
    
         
            +
                    $stderr.puts @exp.get("directory_output")
         
     | 
| 
      
 79 
     | 
    
         
            +
                  else
         
     | 
| 
      
 80 
     | 
    
         
            +
                    $stderr.puts fred_dirname(@exp, "output", "stxml", "new")
         
     | 
| 
      
 81 
     | 
    
         
            +
                  end
         
     | 
| 
      
 82 
     | 
    
         
            +
                end
         
     | 
| 
      
 83 
     | 
    
         
            +
                $stderr.puts "---------"
         
     | 
| 
      
 84 
     | 
    
         
            +
             
     | 
| 
      
 85 
     | 
    
         
            +
                ###
         
     | 
| 
      
 86 
     | 
    
         
            +
                # prepare data:
         
     | 
| 
      
 87 
     | 
    
         
            +
             
     | 
| 
      
 88 
     | 
    
         
            +
                if @baseline
         
     | 
| 
      
 89 
     | 
    
         
            +
                  # only compute baseline: always assign most frequent sense
         
     | 
| 
      
 90 
     | 
    
         
            +
                  
         
     | 
| 
      
 91 
     | 
    
         
            +
                  @classifiers = [
         
     | 
| 
      
 92 
     | 
    
         
            +
                                  [Baseline.new(@exp, @split_id), "baseline"]
         
     | 
| 
      
 93 
     | 
    
         
            +
                                 ]
         
     | 
| 
      
 94 
     | 
    
         
            +
             
     | 
| 
      
 95 
     | 
    
         
            +
                else
         
     | 
| 
      
 96 
     | 
    
         
            +
                  # determine classifiers
         
     | 
| 
      
 97 
     | 
    
         
            +
                  #
         
     | 
| 
      
 98 
     | 
    
         
            +
                  # get_lf returns: array of pairs [classifier_name, options[array]]
         
     | 
| 
      
 99 
     | 
    
         
            +
                  #
         
     | 
| 
      
 100 
     | 
    
         
            +
                  # @classifiers: list of pairs [Classifier object, classifier name(string)]
         
     | 
| 
      
 101 
     | 
    
         
            +
                  @classifiers = @exp.get_lf("classifier").map { |classif_name, options|
         
     | 
| 
      
 102 
     | 
    
         
            +
                    [Classifier.new(classif_name, options), classif_name]
         
     | 
| 
      
 103 
     | 
    
         
            +
                  }
         
     | 
| 
      
 104 
     | 
    
         
            +
                  # sanity check: we need at least one classifier
         
     | 
| 
      
 105 
     | 
    
         
            +
                  if @classifiers.empty?
         
     | 
| 
      
 106 
     | 
    
         
            +
                    $stderr.puts "Error: I need at least one classifier, please specify using exp. file option 'classifier'"
         
     | 
| 
      
 107 
     | 
    
         
            +
                    exit 1
         
     | 
| 
      
 108 
     | 
    
         
            +
                  end      
         
     | 
| 
      
 109 
     | 
    
         
            +
             
     | 
| 
      
 110 
     | 
    
         
            +
             
     | 
| 
      
 111 
     | 
    
         
            +
                  if @classifiers.length() > 1
         
     | 
| 
      
 112 
     | 
    
         
            +
                    $stderr.puts "Warning: I'm not doing classifier combination at the moment,"
         
     | 
| 
      
 113 
     | 
    
         
            +
                    $stderr.puts "so I'll be ignoring all but the first classifier type."
         
     | 
| 
      
 114 
     | 
    
         
            +
                  end
         
     | 
| 
      
 115 
     | 
    
         
            +
                end
         
     | 
| 
      
 116 
     | 
    
         
            +
             
     | 
| 
      
 117 
     | 
    
         
            +
                # get an object for listing senses of each lemma
         
     | 
| 
      
 118 
     | 
    
         
            +
                @lemmas_and_senses = Targets.new(@exp, nil, "r")
         
     | 
| 
      
 119 
     | 
    
         
            +
              end
         
     | 
| 
      
 120 
     | 
    
         
            +
             
     | 
| 
      
 121 
     | 
    
         
            +
              ###
         
     | 
| 
      
 122 
     | 
    
         
            +
              # compute
         
     | 
| 
      
 123 
     | 
    
         
            +
              #
         
     | 
| 
      
 124 
     | 
    
         
            +
              # classify test instances,
         
     | 
| 
      
 125 
     | 
    
         
            +
              # write output to file.
         
     | 
| 
      
 126 
     | 
    
         
            +
              def compute()
         
     | 
| 
      
 127 
     | 
    
         
            +
                if @split_id
         
     | 
| 
      
 128 
     | 
    
         
            +
                  # make split object and parameter hash to pass to it.
         
     | 
| 
      
 129 
     | 
    
         
            +
                  # read feature data from training feature directory.
         
     | 
| 
      
 130 
     | 
    
         
            +
                  split_obj = FredSplitPkg.new(@exp)
         
     | 
| 
      
 131 
     | 
    
         
            +
                  dataset = "train"
         
     | 
| 
      
 132 
     | 
    
         
            +
                else
         
     | 
| 
      
 133 
     | 
    
         
            +
                  # read feature data from test feature directory.
         
     | 
| 
      
 134 
     | 
    
         
            +
                  dataset = "test"
         
     | 
| 
      
 135 
     | 
    
         
            +
                end
         
     | 
| 
      
 136 
     | 
    
         
            +
             
     | 
| 
      
 137 
     | 
    
         
            +
                output_dir = fred_dirname(@exp, "output", "tab", "new")
         
     | 
| 
      
 138 
     | 
    
         
            +
                classif_dir = fred_classifier_directory(@exp, @split_id)
         
     | 
| 
      
 139 
     | 
    
         
            +
             
     | 
| 
      
 140 
     | 
    
         
            +
                ###
         
     | 
| 
      
 141 
     | 
    
         
            +
                # remove old classifier output files
         
     | 
| 
      
 142 
     | 
    
         
            +
                Dir[output_dir + "*"].each { |f|
         
     | 
| 
      
 143 
     | 
    
         
            +
                  if File.exists? f
         
     | 
| 
      
 144 
     | 
    
         
            +
                    File.delete(f)
         
     | 
| 
      
 145 
     | 
    
         
            +
                  end
         
     | 
| 
      
 146 
     | 
    
         
            +
                }
         
     | 
| 
      
 147 
     | 
    
         
            +
             
     | 
| 
      
 148 
     | 
    
         
            +
             
     | 
| 
      
 149 
     | 
    
         
            +
                all_results = Array.new()
         
     | 
| 
      
 150 
     | 
    
         
            +
             
     | 
| 
      
 151 
     | 
    
         
            +
                ###
         
     | 
| 
      
 152 
     | 
    
         
            +
                # get a list of all relevant feature files: lemma, sense?
         
     | 
| 
      
 153 
     | 
    
         
            +
                lemma2_sense_and_filename = Hash.new()
         
     | 
| 
      
 154 
     | 
    
         
            +
             
     | 
| 
      
 155 
     | 
    
         
            +
                FredFeatureAccess.each_feature_file(@exp, dataset) { |filename, values|
         
     | 
| 
      
 156 
     | 
    
         
            +
             
     | 
| 
      
 157 
     | 
    
         
            +
                  # catalogue under lemma
         
     | 
| 
      
 158 
     | 
    
         
            +
                  unless lemma2_sense_and_filename[values["lemma"]]
         
     | 
| 
      
 159 
     | 
    
         
            +
                    lemma2_sense_and_filename[values["lemma"]] = Array.new()
         
     | 
| 
      
 160 
     | 
    
         
            +
                  end
         
     | 
| 
      
 161 
     | 
    
         
            +
                  # catalogue only matches between chosen classifier type
         
     | 
| 
      
 162 
     | 
    
         
            +
                  # and actually existing classifier type
         
     | 
| 
      
 163 
     | 
    
         
            +
             
     | 
| 
      
 164 
     | 
    
         
            +
            # hier checken
         
     | 
| 
      
 165 
     | 
    
         
            +
            # senses ist nil,  lemma2_sense_and_filename wird nicht gefüllt 
         
     | 
| 
      
 166 
     | 
    
         
            +
            # => es werden keine classifier gefunden
         
     | 
| 
      
 167 
     | 
    
         
            +
             
     | 
| 
      
 168 
     | 
    
         
            +
             
     | 
| 
      
 169 
     | 
    
         
            +
                  if @exp.get("binary_classifiers") and \
         
     | 
| 
      
 170 
     | 
    
         
            +
                    values["sense"] and not(values["sense"].empty?)
         
     | 
| 
      
 171 
     | 
    
         
            +
                    lemma2_sense_and_filename[values["lemma"]] << [values["sense"], filename]
         
     | 
| 
      
 172 
     | 
    
         
            +
             
     | 
| 
      
 173 
     | 
    
         
            +
                  elsif not(@exp.get("binary_classifiers")) and \
         
     | 
| 
      
 174 
     | 
    
         
            +
                    (values["sense"].nil? or values["sense"].empty?)
         
     | 
| 
      
 175 
     | 
    
         
            +
                    lemma2_sense_and_filename[values["lemma"]] << [nil, filename]
         
     | 
| 
      
 176 
     | 
    
         
            +
                  end        
         
     | 
| 
      
 177 
     | 
    
         
            +
                }
         
     | 
| 
      
 178 
     | 
    
         
            +
             
     | 
| 
      
 179 
     | 
    
         
            +
                ###
         
     | 
| 
      
 180 
     | 
    
         
            +
                # check whether we have classifiers
         
     | 
| 
      
 181 
     | 
    
         
            +
                found = 0
         
     | 
| 
      
 182 
     | 
    
         
            +
                found_single_sense = 0
         
     | 
| 
      
 183 
     | 
    
         
            +
                lemma2_sense_and_filename.each_pair { |lemma, senses_and_filenames|
         
     | 
| 
      
 184 
     | 
    
         
            +
                  if @lemmas_and_senses.get_senses(lemma).length() == 1
         
     | 
| 
      
 185 
     | 
    
         
            +
                    # lemma with only one sense? then mark as such
         
     | 
| 
      
 186 
     | 
    
         
            +
                    found_single_sense += 1
         
     | 
| 
      
 187 
     | 
    
         
            +
                  else
         
     | 
| 
      
 188 
     | 
    
         
            +
                    # lemma with more than one sense: look for classifiers
         
     | 
| 
      
 189 
     | 
    
         
            +
                    senses_and_filenames.each { |sense, filename|
         
     | 
| 
      
 190 
     | 
    
         
            +
                      @classifiers.each { |classifier, classifier_name|
         
     | 
| 
      
 191 
     | 
    
         
            +
                        if @exp.get("binary_classifiers") and \
         
     | 
| 
      
 192 
     | 
    
         
            +
                          classifier.exists? classif_dir + fred_classifier_filename(classifier_name, 
         
     | 
| 
      
 193 
     | 
    
         
            +
                                                                                    lemma, sense)
         
     | 
| 
      
 194 
     | 
    
         
            +
                          found += 1
         
     | 
| 
      
 195 
     | 
    
         
            +
                        elsif not(@exp.get("binary_classifiers")) and\
         
     | 
| 
      
 196 
     | 
    
         
            +
                          classifier.exists? classif_dir + fred_classifier_filename(classifier_name, 
         
     | 
| 
      
 197 
     | 
    
         
            +
                                                                                    lemma)
         
     | 
| 
      
 198 
     | 
    
         
            +
                          found += 1
         
     | 
| 
      
 199 
     | 
    
         
            +
                        end
         
     | 
| 
      
 200 
     | 
    
         
            +
                      }
         
     | 
| 
      
 201 
     | 
    
         
            +
                    }
         
     | 
| 
      
 202 
     | 
    
         
            +
                  end
         
     | 
| 
      
 203 
     | 
    
         
            +
                }
         
     | 
| 
      
 204 
     | 
    
         
            +
                if found == 0 and found_single_sense < lemma2_sense_and_filename.length()
         
     | 
| 
      
 205 
     | 
    
         
            +
                  # no matching classifiers found
         
     | 
| 
      
 206 
     | 
    
         
            +
                  $stderr.puts "ERROR: no classifiers found in #{classif_dir}."
         
     | 
| 
      
 207 
     | 
    
         
            +
                  if @exp.get("binary_classifiers")
         
     | 
| 
      
 208 
     | 
    
         
            +
                    $stderr.puts "(Looking for binary classifiers.)"
         
     | 
| 
      
 209 
     | 
    
         
            +
                  else
         
     | 
| 
      
 210 
     | 
    
         
            +
                    $stderr.puts "(Looking for n-ary classifiers.)"
         
     | 
| 
      
 211 
     | 
    
         
            +
                  end
         
     | 
| 
      
 212 
     | 
    
         
            +
                  $stderr.puts "Please check whether you mistyped the classifier directory name.
         
     | 
| 
      
 213 
     | 
    
         
            +
                  
         
     | 
| 
      
 214 
     | 
    
         
            +
            Another possibility: You may have trained binary classifiers, but
         
     | 
| 
      
 215 
     | 
    
         
            +
            tried to apply n-ary ones (or vice versa.)
         
     | 
| 
      
 216 
     | 
    
         
            +
            "
         
     | 
| 
      
 217 
     | 
    
         
            +
                  exit 1
         
     | 
| 
      
 218 
     | 
    
         
            +
                end
         
     | 
| 
      
 219 
     | 
    
         
            +
             
     | 
| 
      
 220 
     | 
    
         
            +
                ###
         
     | 
| 
      
 221 
     | 
    
         
            +
                # each test feature set:
         
     | 
| 
      
 222 
     | 
    
         
            +
                # read classifier, apply
         
     | 
| 
      
 223 
     | 
    
         
            +
                # iterate through instance files
         
     | 
| 
      
 224 
     | 
    
         
            +
                lemma2_sense_and_filename.to_a().sort { |a, b|
         
     | 
| 
      
 225 
     | 
    
         
            +
                  a.first() <=> b.first
         
     | 
| 
      
 226 
     | 
    
         
            +
                }.each { |lemma, senses_and_filenames|
         
     | 
| 
      
 227 
     | 
    
         
            +
                  # progress report
         
     | 
| 
      
 228 
     | 
    
         
            +
                  if @exp.get("verbose")
         
     | 
| 
      
 229 
     | 
    
         
            +
                    $stderr.puts "Applying to " + lemma
         
     | 
| 
      
 230 
     | 
    
         
            +
                  end
         
     | 
| 
      
 231 
     | 
    
         
            +
             
     | 
| 
      
 232 
     | 
    
         
            +
                  # results_this_lemma: array of classifier_results
         
     | 
| 
      
 233 
     | 
    
         
            +
                  # classifier_result: array of line_entries
         
     | 
| 
      
 234 
     | 
    
         
            +
                  # line entry: list of pairs [sense, confidence]
         
     | 
| 
      
 235 
     | 
    
         
            +
                  results_this_lemma = Array.new()
         
     | 
| 
      
 236 
     | 
    
         
            +
             
     | 
| 
      
 237 
     | 
    
         
            +
                  training_senses = determine_training_senses(lemma, @exp, 
         
     | 
| 
      
 238 
     | 
    
         
            +
                                                              @lemmas_and_senses, @split_id)
         
     | 
| 
      
 239 
     | 
    
         
            +
             
     | 
| 
      
 240 
     | 
    
         
            +
                  senses_and_filenames.each { |sense, filename|
         
     | 
| 
      
 241 
     | 
    
         
            +
             
     | 
| 
      
 242 
     | 
    
         
            +
                    # if we're splitting the data, do that now
         
     | 
| 
      
 243 
     | 
    
         
            +
                    if split_obj
         
     | 
| 
      
 244 
     | 
    
         
            +
                      tempfile = split_obj.apply_split(filename, lemma, "test", @split_id)
         
     | 
| 
      
 245 
     | 
    
         
            +
                      if tempfile.nil?
         
     | 
| 
      
 246 
     | 
    
         
            +
                        # the test part of the split doesn't contain any data
         
     | 
| 
      
 247 
     | 
    
         
            +
                        $stderr.puts "Skipping #{lemma}: no test data in split"
         
     | 
| 
      
 248 
     | 
    
         
            +
                        next
         
     | 
| 
      
 249 
     | 
    
         
            +
                      end
         
     | 
| 
      
 250 
     | 
    
         
            +
             
     | 
| 
      
 251 
     | 
    
         
            +
                      filename = tempfile.path()
         
     | 
| 
      
 252 
     | 
    
         
            +
                    end
         
     | 
| 
      
 253 
     | 
    
         
            +
             
     | 
| 
      
 254 
     | 
    
         
            +
                    if training_senses.length() == 1
         
     | 
| 
      
 255 
     | 
    
         
            +
                      # single-sense lemma: just assign that sense to all occurrences
         
     | 
| 
      
 256 
     | 
    
         
            +
                      assigned_sense = training_senses.first()
         
     | 
| 
      
 257 
     | 
    
         
            +
             
     | 
| 
      
 258 
     | 
    
         
            +
                      classifier_result = Array.new()
         
     | 
| 
      
 259 
     | 
    
         
            +
                      f = File.open(filename)
         
     | 
| 
      
 260 
     | 
    
         
            +
             
     | 
| 
      
 261 
     | 
    
         
            +
                      f.each { |line| classifier_result << [[assigned_sense, 1.0]] }
         
     | 
| 
      
 262 
     | 
    
         
            +
                      results_this_lemma << classifier_result
         
     | 
| 
      
 263 
     | 
    
         
            +
             
     | 
| 
      
 264 
     | 
    
         
            +
                    else
         
     | 
| 
      
 265 
     | 
    
         
            +
                      #more than one sense: apply classifier(s)
         
     | 
| 
      
 266 
     | 
    
         
            +
             
     | 
| 
      
 267 
     | 
    
         
            +
                      # classifiers_read_okay: 
         
     | 
| 
      
 268 
     | 
    
         
            +
                      # boolean, true if reading the stored classifier(s) succeeded
         
     | 
| 
      
 269 
     | 
    
         
            +
                      classifiers_read_okay = true
         
     | 
| 
      
 270 
     | 
    
         
            +
                      @classifiers.each { |classifier, classifier_name| 
         
     | 
| 
      
 271 
     | 
    
         
            +
                        
         
     | 
| 
      
 272 
     | 
    
         
            +
                        stored_classifier = classif_dir +  fred_classifier_filename(classifier_name, 
         
     | 
| 
      
 273 
     | 
    
         
            +
                                                                                  lemma, sense)
         
     | 
| 
      
 274 
     | 
    
         
            +
                        status = classifier.read(stored_classifier)
         
     | 
| 
      
 275 
     | 
    
         
            +
                        unless status
         
     | 
| 
      
 276 
     | 
    
         
            +
                          $stderr.puts "[FredTest] Error: could not read classifier."
         
     | 
| 
      
 277 
     | 
    
         
            +
                          classifiers_read_okay = false
         
     | 
| 
      
 278 
     | 
    
         
            +
                        end
         
     | 
| 
      
 279 
     | 
    
         
            +
                      }
         
     | 
| 
      
 280 
     | 
    
         
            +
             
     | 
| 
      
 281 
     | 
    
         
            +
                      if classifiers_read_okay        
         
     | 
| 
      
 282 
     | 
    
         
            +
                        # apply classifiers, write result to database
         
     | 
| 
      
 283 
     | 
    
         
            +
                        classifier_results = apply_classifiers(filename, classif_dir)
         
     | 
| 
      
 284 
     | 
    
         
            +
             
     | 
| 
      
 285 
     | 
    
         
            +
                        if classifier_results.empty?
         
     | 
| 
      
 286 
     | 
    
         
            +
                          # something went wrong during the application of classifiers
         
     | 
| 
      
 287 
     | 
    
         
            +
                          $stderr.puts "Error while working on #{lemma}, skipping"
         
     | 
| 
      
 288 
     | 
    
         
            +
                        else
         
     | 
| 
      
 289 
     | 
    
         
            +
                          # we have classifier results:
         
     | 
| 
      
 290 
     | 
    
         
            +
                          # since we're not doing any classifier combination at the moment
         
     | 
| 
      
 291 
     | 
    
         
            +
                          # (if we did, this would be the place to do so!)
         
     | 
| 
      
 292 
     | 
    
         
            +
                        # discard the results of all but the first classifier
         
     | 
| 
      
 293 
     | 
    
         
            +
                          results_this_lemma << classifier_results.first()
         
     | 
| 
      
 294 
     | 
    
         
            +
                        end
         
     | 
| 
      
 295 
     | 
    
         
            +
                      end
         
     | 
| 
      
 296 
     | 
    
         
            +
             
     | 
| 
      
 297 
     | 
    
         
            +
                      if split_obj
         
     | 
| 
      
 298 
     | 
    
         
            +
                        tempfile.close(true)
         
     | 
| 
      
 299 
     | 
    
         
            +
                      end
         
     | 
| 
      
 300 
     | 
    
         
            +
                    end
         
     | 
| 
      
 301 
     | 
    
         
            +
                  }
         
     | 
| 
      
 302 
     | 
    
         
            +
             
     | 
| 
      
 303 
     | 
    
         
            +
                  # write to output file:
         
     | 
| 
      
 304 
     | 
    
         
            +
                  # if we have binary classifiers, join.
         
     | 
| 
      
 305 
     | 
    
         
            +
                  results_this_lemma = join_binary_classifier_results(results_this_lemma)
         
     | 
| 
      
 306 
     | 
    
         
            +
             
     | 
| 
      
 307 
     | 
    
         
            +
                  outfilename = output_dir + fred_result_filename(lemma)
         
     | 
| 
      
 308 
     | 
    
         
            +
                  begin
         
     | 
| 
      
 309 
     | 
    
         
            +
                    outfile = File.new(outfilename, "w")
         
     | 
| 
      
 310 
     | 
    
         
            +
                  rescue
         
     | 
| 
      
 311 
     | 
    
         
            +
                    raise "Couldn't write to result file " + outfilename
         
     | 
| 
      
 312 
     | 
    
         
            +
                  end
         
     | 
| 
      
 313 
     | 
    
         
            +
                  
         
     | 
| 
      
 314 
     | 
    
         
            +
                  if results_this_lemma.nil?
         
     | 
| 
      
 315 
     | 
    
         
            +
                    # nothing has been done for this lemma
         
     | 
| 
      
 316 
     | 
    
         
            +
                    next
         
     | 
| 
      
 317 
     | 
    
         
            +
                  end
         
     | 
| 
      
 318 
     | 
    
         
            +
             
     | 
| 
      
 319 
     | 
    
         
            +
                  results_this_lemma.each { |result|
         
     | 
| 
      
 320 
     | 
    
         
            +
                    # result: an ordered list of pairs [label, confidence]
         
     | 
| 
      
 321 
     | 
    
         
            +
                    outfile.puts result.map { |label, confidence|
         
     | 
| 
      
 322 
     | 
    
         
            +
                      "#{label} #{confidence}"
         
     | 
| 
      
 323 
     | 
    
         
            +
                    }.join(" ")
         
     | 
| 
      
 324 
     | 
    
         
            +
                  }
         
     | 
| 
      
 325 
     | 
    
         
            +
             
     | 
| 
      
 326 
     | 
    
         
            +
                  # remember results for output
         
     | 
| 
      
 327 
     | 
    
         
            +
                  if @produce_output
         
     | 
| 
      
 328 
     | 
    
         
            +
                    all_results << [lemma, results_this_lemma]
         
     | 
| 
      
 329 
     | 
    
         
            +
                  end
         
     | 
| 
      
 330 
     | 
    
         
            +
                }
         
     | 
| 
      
 331 
     | 
    
         
            +
             
     | 
| 
      
 332 
     | 
    
         
            +
             
     | 
| 
      
 333 
     | 
    
         
            +
                ##
         
     | 
| 
      
 334 
     | 
    
         
            +
                # produce output: disambiguated data in SalsaTigerXML format
         
     | 
| 
      
 335 
     | 
    
         
            +
                if @produce_output
         
     | 
| 
      
 336 
     | 
    
         
            +
                  salsatiger_output(all_results)
         
     | 
| 
      
 337 
     | 
    
         
            +
                end
         
     | 
| 
      
 338 
     | 
    
         
            +
             
     | 
| 
      
 339 
     | 
    
         
            +
              end
         
     | 
| 
      
 340 
     | 
    
         
            +
             
     | 
| 
      
 341 
     | 
    
         
            +
              #####
         
     | 
| 
      
 342 
     | 
    
         
            +
              private
         
     | 
| 
      
 343 
     | 
    
         
            +
             
     | 
| 
      
 344 
     | 
    
         
            +
              #########################
         
     | 
| 
      
 345 
     | 
    
         
            +
              def apply_classifiers(filename,    # name of feature file
         
     | 
| 
      
 346 
     | 
    
         
            +
                                    classif_dir) # string: name of directory with classifiers
         
     | 
| 
      
 347 
     | 
    
         
            +
                                    
         
     | 
| 
      
 348 
     | 
    
         
            +
                # make output file for classifiers
         
     | 
| 
      
 349 
     | 
    
         
            +
                tf_output = Tempfile.new("fred")
         
     | 
| 
      
 350 
     | 
    
         
            +
                tf_output.close()
         
     | 
| 
      
 351 
     | 
    
         
            +
             
     | 
| 
      
 352 
     | 
    
         
            +
                ###
         
     | 
| 
      
 353 
     | 
    
         
            +
                # apply classifiers
         
     | 
| 
      
 354 
     | 
    
         
            +
                
         
     | 
| 
      
 355 
     | 
    
         
            +
                classifier_results = Array.new
         
     | 
| 
      
 356 
     | 
    
         
            +
             
     | 
| 
      
 357 
     | 
    
         
            +
                @classifiers.each { |classifier, classifier_name|
         
     | 
| 
      
 358 
     | 
    
         
            +
             
     | 
| 
      
 359 
     | 
    
         
            +
                  success = classifier.apply(filename, tf_output.path())
         
     | 
| 
      
 360 
     | 
    
         
            +
             
     | 
| 
      
 361 
     | 
    
         
            +
                  # did we manage to classify the test data?      
         
     | 
| 
      
 362 
     | 
    
         
            +
                  # there may be errors on the way (eg no training data)      
         
     | 
| 
      
 363 
     | 
    
         
            +
                  if success
         
     | 
| 
      
 364 
     | 
    
         
            +
                    # read classifier output from file
         
     | 
| 
      
 365 
     | 
    
         
            +
                    # classifier_results: list of line entries
         
     | 
| 
      
 366 
     | 
    
         
            +
                    # line entry: list of pairs [sense, confidence]
         
     | 
| 
      
 367 
     | 
    
         
            +
                    classifier_results << classifier.read_resultfile(tf_output.path())
         
     | 
| 
      
 368 
     | 
    
         
            +
                    
         
     | 
| 
      
 369 
     | 
    
         
            +
                  else
         
     | 
| 
      
 370 
     | 
    
         
            +
                    # error: return empty Array, so that error handling can take over
         
     | 
| 
      
 371 
     | 
    
         
            +
                    return Array.new
         
     | 
| 
      
 372 
     | 
    
         
            +
                  end
         
     | 
| 
      
 373 
     | 
    
         
            +
                }
         
     | 
| 
      
 374 
     | 
    
         
            +
             
     | 
| 
      
 375 
     | 
    
         
            +
                # if we are here, all classifiers have succeeded... 
         
     | 
| 
      
 376 
     | 
    
         
            +
                
         
     | 
| 
      
 377 
     | 
    
         
            +
                # clean up
         
     | 
| 
      
 378 
     | 
    
         
            +
                tf_output.close(true)
         
     | 
| 
      
 379 
     | 
    
         
            +
             
     | 
| 
      
 380 
     | 
    
         
            +
                # return list of classifier results,
         
     | 
| 
      
 381 
     | 
    
         
            +
                # each entry is a list of results,
         
     | 
| 
      
 382 
     | 
    
         
            +
                # one entry per classifier type
         
     | 
| 
      
 383 
     | 
    
         
            +
                return classifier_results
         
     | 
| 
      
 384 
     | 
    
         
            +
              end
         
     | 
| 
      
 385 
     | 
    
         
            +
             
     | 
| 
      
 386 
     | 
    
         
            +
              ###
         
     | 
| 
      
 387 
     | 
    
         
            +
              # join binary classifier results (if we are doing binary classifiers):
         
     | 
| 
      
 388 
     | 
    
         
            +
              # if we have classifiers that are specific to individual senses,
         
     | 
| 
      
 389 
     | 
    
         
            +
              # collect all classifiers that we have for a lemma, and
         
     | 
| 
      
 390 
     | 
    
         
            +
              # for each instance, choose the sense that won with the highest confidence
         
     | 
| 
      
 391 
     | 
    
         
            +
              #
         
     | 
| 
      
 392 
     | 
    
         
            +
              # input: a list of result lists.
         
     | 
| 
      
 393 
     | 
    
         
            +
              #  a result list is a list of instance_results
         
     | 
| 
      
 394 
     | 
    
         
            +
              #  instance_results is a list of pairs [label, confidence]
         
     | 
| 
      
 395 
     | 
    
         
            +
              #  such that the label with the highest confidence is mentioned first
         
     | 
| 
      
 396 
     | 
    
         
            +
              #
         
     | 
| 
      
 397 
     | 
    
         
            +
              # output: a result list.
         
     | 
| 
      
 398 
     | 
    
         
            +
              def join_binary_classifier_results(resultlists) # list:list:tuples [label, confidence]
         
     | 
| 
      
 399 
     | 
    
         
            +
                unless @exp.get("binary_classifiers")
         
     | 
| 
      
 400 
     | 
    
         
            +
                  # we are doing lemma-specific, not sense-specific classifiers.
         
     | 
| 
      
 401 
     | 
    
         
            +
                  # so resultlist is a list containing just one entry.
         
     | 
| 
      
 402 
     | 
    
         
            +
                  #   all classifier: list of lists of lists of pairs label, confidence
         
     | 
| 
      
 403 
     | 
    
         
            +
                  #   one classifier: list of lists of pairs label, confidence
         
     | 
| 
      
 404 
     | 
    
         
            +
                  #   line: list of pairs label, confidence
         
     | 
| 
      
 405 
     | 
    
         
            +
                  #   label: pair label, confidence
         
     | 
| 
      
 406 
     | 
    
         
            +
                  return resultlists.first()
         
     | 
| 
      
 407 
     | 
    
         
            +
                end
         
     | 
| 
      
 408 
     | 
    
         
            +
             
     | 
| 
      
 409 
     | 
    
         
            +
                # we are doing sense-specific classifiers.
         
     | 
| 
      
 410 
     | 
    
         
            +
                # group triples 
         
     | 
| 
      
 411 
     | 
    
         
            +
             
     | 
| 
      
 412 
     | 
    
         
            +
                # what is the name of the negative sense?
         
     | 
| 
      
 413 
     | 
    
         
            +
                unless (negsense = @exp.get("negsense"))
         
     | 
| 
      
 414 
     | 
    
         
            +
                  negsense = "NONE"
         
     | 
| 
      
 415 
     | 
    
         
            +
                end
         
     | 
| 
      
 416 
     | 
    
         
            +
             
     | 
| 
      
 417 
     | 
    
         
            +
                # retv: list of instance results
         
     | 
| 
      
 418 
     | 
    
         
            +
                # where an instance result is a list of pairs [label, confidence]
         
     | 
| 
      
 419 
     | 
    
         
            +
                retv = Array.new()
         
     | 
| 
      
 420 
     | 
    
         
            +
             
     | 
| 
      
 421 
     | 
    
         
            +
                # choose the sense that was assigned with highest confidence
         
     | 
| 
      
 422 
     | 
    
         
            +
                # how many instances? max. length of any of the instance lists
         
     | 
| 
      
 423 
     | 
    
         
            +
                # (we'll deal with mismatches in instance numbers later)
         
     | 
| 
      
 424 
     | 
    
         
            +
                num_instances = resultlists.map { |list_one_classifier| list_one_classifier.length() }.max()
         
     | 
| 
      
 425 
     | 
    
         
            +
                if num_instances.nil?
         
     | 
| 
      
 426 
     | 
    
         
            +
                  # no instances, it seems
         
     | 
| 
      
 427 
     | 
    
         
            +
                  return nil
         
     | 
| 
      
 428 
     | 
    
         
            +
                end
         
     | 
| 
      
 429 
     | 
    
         
            +
                
         
     | 
| 
      
 430 
     | 
    
         
            +
                0.upto(num_instances - 1) { |instno|
         
     | 
| 
      
 431 
     | 
    
         
            +
             
     | 
| 
      
 432 
     | 
    
         
            +
                  # get the results of all classifiers for instance number instno
         
     | 
| 
      
 433 
     | 
    
         
            +
                  all_results_this_instance = resultlists.map { |list_one_classifier|
         
     | 
| 
      
 434 
     | 
    
         
            +
                    # get the instno-th line
         
     | 
| 
      
 435 
     | 
    
         
            +
                    if list_one_classifier.at(instno)
         
     | 
| 
      
 436 
     | 
    
         
            +
                      list_one_classifier.at(instno)
         
     | 
| 
      
 437 
     | 
    
         
            +
                    else
         
     | 
| 
      
 438 
     | 
    
         
            +
                      # length mismatch: we're missing an instance
         
     | 
| 
      
 439 
     | 
    
         
            +
                      $stderr.puts "Error: binary classifier results don't all have the same length."
         
     | 
| 
      
 440 
     | 
    
         
            +
                      $stderr.puts "Assuming missing results to be negative."
         
     | 
| 
      
 441 
     | 
    
         
            +
                      [["NONE", 1.0]]
         
     | 
| 
      
 442 
     | 
    
         
            +
                    end
         
     | 
| 
      
 443 
     | 
    
         
            +
                  }
         
     | 
| 
      
 444 
     | 
    
         
            +
             
     | 
| 
      
 445 
     | 
    
         
            +
                  # now throw out the negsense judgments, and sort results by confidence
         
     | 
| 
      
 446 
     | 
    
         
            +
                  joint_result_this_instance = all_results_this_instance.map { |inst_result|
         
     | 
| 
      
 447 
     | 
    
         
            +
                    # if we have more than 2 entries here, 
         
     | 
| 
      
 448 
     | 
    
         
            +
                    # this is very weird for a binary classifier
         
     | 
| 
      
 449 
     | 
    
         
            +
                    if inst_result.length() > 2
         
     | 
| 
      
 450 
     | 
    
         
            +
                      $stderr.puts "Judgments for more than 2 senses in binary classifier? Very weird!"
         
     | 
| 
      
 451 
     | 
    
         
            +
                      $stderr.puts inst_result.map { |label, confidence| "#{label}:#{confidence}" }.join(" ")
         
     | 
| 
      
 452 
     | 
    
         
            +
                      $stderr.puts "Only considering the first non-negative sense."
         
     | 
| 
      
 453 
     | 
    
         
            +
                    end
         
     | 
| 
      
 454 
     | 
    
         
            +
             
     | 
| 
      
 455 
     | 
    
         
            +
                    # choose the first entry that is not the negsense,
         
     | 
| 
      
 456 
     | 
    
         
            +
                    # or nil, if only the negative sense has been assigned with 1.0 certainty.
         
     | 
| 
      
 457 
     | 
    
         
            +
                    # nil choices will be removed by the compact() below
         
     | 
| 
      
 458 
     | 
    
         
            +
                    inst_result.detect { |label, confidence|
         
     | 
| 
      
 459 
     | 
    
         
            +
                      label != negsense
         
     | 
| 
      
 460 
     | 
    
         
            +
                    }
         
     | 
| 
      
 461 
     | 
    
         
            +
                  }.compact().sort { |a, b|
         
     | 
| 
      
 462 
     | 
    
         
            +
                    # sort senses by confidence, highest confidence first
         
     | 
| 
      
 463 
     | 
    
         
            +
                    b[1] <=> a[1]
         
     | 
| 
      
 464 
     | 
    
         
            +
                  }
         
     | 
| 
      
 465 
     | 
    
         
            +
                  
         
     | 
| 
      
 466 
     | 
    
         
            +
                  retv << joint_result_this_instance
         
     | 
| 
      
 467 
     | 
    
         
            +
                }
         
     | 
| 
      
 468 
     | 
    
         
            +
             
     | 
| 
      
 469 
     | 
    
         
            +
                return retv
         
     | 
| 
      
 470 
     | 
    
         
            +
              end
         
     | 
| 
      
 471 
     | 
    
         
            +
             
     | 
| 
      
 472 
     | 
    
         
            +
             
     | 
| 
      
 473 
     | 
    
         
            +
              ###
         
     | 
| 
      
 474 
     | 
    
         
            +
              # produce output in SalsaTigerXML: disambiguated training data,
         
     | 
| 
      
 475 
     | 
    
         
            +
              # assigned senses are recorded as frames, the targets of which are the
         
     | 
| 
      
 476 
     | 
    
         
            +
              # disambiguated words
         
     | 
| 
      
 477 
     | 
    
         
            +
              def salsatiger_output(all_results)
         
     | 
| 
      
 478 
     | 
    
         
            +
             
     | 
| 
      
 479 
     | 
    
         
            +
                if @split_id
         
     | 
| 
      
 480 
     | 
    
         
            +
                  # we're not writing Salsa/Tiger XML output for splits.
         
     | 
| 
      
 481 
     | 
    
         
            +
                  $stderr.puts "No Salsa/Tiger XML output for random splits of the data,"
         
     | 
| 
      
 482 
     | 
    
         
            +
                  $stderr.puts "only for separate test sets."
         
     | 
| 
      
 483 
     | 
    
         
            +
                  return
         
     | 
| 
      
 484 
     | 
    
         
            +
                end
         
     | 
| 
      
 485 
     | 
    
         
            +
             
     | 
| 
      
 486 
     | 
    
         
            +
                ##
         
     | 
| 
      
 487 
     | 
    
         
            +
                # determine output directory
         
     | 
| 
      
 488 
     | 
    
         
            +
                if @exp.get("directory_output")
         
     | 
| 
      
 489 
     | 
    
         
            +
                  output_dir = File.new_dir(@exp.get("directory_output"))
         
     | 
| 
      
 490 
     | 
    
         
            +
                else
         
     | 
| 
      
 491 
     | 
    
         
            +
                  output_dir = fred_dirname(@exp, "output", "stxml", "new")
         
     | 
| 
      
 492 
     | 
    
         
            +
                end
         
     | 
| 
      
 493 
     | 
    
         
            +
             
     | 
| 
      
 494 
     | 
    
         
            +
                $stderr.puts "Writing SalsaTigerXML output to #{output_dir}"
         
     | 
| 
      
 495 
     | 
    
         
            +
             
     | 
| 
      
 496 
     | 
    
         
            +
                ##
         
     | 
| 
      
 497 
     | 
    
         
            +
                # empty output directory
         
     | 
| 
      
 498 
     | 
    
         
            +
                Dir[output_dir + "*"].each { |filename|
         
     | 
| 
      
 499 
     | 
    
         
            +
                  if File.exists?(filename)
         
     | 
| 
      
 500 
     | 
    
         
            +
                    File.delete(filename)
         
     | 
| 
      
 501 
     | 
    
         
            +
                  end
         
     | 
| 
      
 502 
     | 
    
         
            +
                }
         
     | 
| 
      
 503 
     | 
    
         
            +
             
     | 
| 
      
 504 
     | 
    
         
            +
                # input directory: where we stored the zipped input files
         
     | 
| 
      
 505 
     | 
    
         
            +
                input_dir = fred_dirname(@exp, "test", "input_data")
         
     | 
| 
      
 506 
     | 
    
         
            +
             
     | 
| 
      
 507 
     | 
    
         
            +
                ##
         
     | 
| 
      
 508 
     | 
    
         
            +
                # map results to target IDs, using answer key files
         
     | 
| 
      
 509 
     | 
    
         
            +
             
     | 
| 
      
 510 
     | 
    
         
            +
                # record results: hash 
         
     | 
| 
      
 511 
     | 
    
         
            +
                # <sentencde ID>(string) -> assigned senses
         
     | 
| 
      
 512 
     | 
    
         
            +
                # where assigned senses are a list of tuples 
         
     | 
| 
      
 513 
     | 
    
         
            +
                # [target IDs, sense, lemma, pos]
         
     | 
| 
      
 514 
     | 
    
         
            +
                recorded_results = Hash.new
         
     | 
| 
      
 515 
     | 
    
         
            +
             
     | 
| 
      
 516 
     | 
    
         
            +
                all_results.each { |lemma, results|
         
     | 
| 
      
 517 
     | 
    
         
            +
                  answer_obj = AnswerKeyAccess.new(@exp, "test", lemma, "r")
         
     | 
| 
      
 518 
     | 
    
         
            +
             
     | 
| 
      
 519 
     | 
    
         
            +
                  instance_index = 0
         
     | 
| 
      
 520 
     | 
    
         
            +
                  answer_obj.each { |a_lemma, a_pos, a_targetIDs, a_sid, a_senses, a_senses_this|
         
     | 
| 
      
 521 
     | 
    
         
            +
                    key = a_sid
         
     | 
| 
      
 522 
     | 
    
         
            +
             
     | 
| 
      
 523 
     | 
    
         
            +
                    unless recorded_results[key]
         
     | 
| 
      
 524 
     | 
    
         
            +
                      recorded_results[key] = Array.new()
         
     | 
| 
      
 525 
     | 
    
         
            +
                    end
         
     | 
| 
      
 526 
     | 
    
         
            +
             
     | 
| 
      
 527 
     | 
    
         
            +
                    labels_and_senses_for_this_instance = results.at(instance_index)
         
     | 
| 
      
 528 
     | 
    
         
            +
                    if not(labels_and_senses_for_this_instance.empty?) and 
         
     | 
| 
      
 529 
     | 
    
         
            +
                        (winning_sense = labels_and_senses_for_this_instance.first().first())
         
     | 
| 
      
 530 
     | 
    
         
            +
                        
         
     | 
| 
      
 531 
     | 
    
         
            +
                      recorded_results[key] << [a_targetIDs, winning_sense, a_lemma, a_pos]
         
     | 
| 
      
 532 
     | 
    
         
            +
                    end
         
     | 
| 
      
 533 
     | 
    
         
            +
             
     | 
| 
      
 534 
     | 
    
         
            +
                    instance_index += 1
         
     | 
| 
      
 535 
     | 
    
         
            +
                  } # each answerkey line for this lemma
         
     | 
| 
      
 536 
     | 
    
         
            +
                } # each lemma/results pair
         
     | 
| 
      
 537 
     | 
    
         
            +
             
     | 
| 
      
 538 
     | 
    
         
            +
             
     | 
| 
      
 539 
     | 
    
         
            +
                ##
         
     | 
| 
      
 540 
     | 
    
         
            +
                # read in SalsaTiger syntax, remove old semantics, add new semantics, write
         
     | 
| 
      
 541 
     | 
    
         
            +
             
     | 
| 
      
 542 
     | 
    
         
            +
                Dir[input_dir + "*.xml.gz"].each { |filename|
         
     | 
| 
      
 543 
     | 
    
         
            +
                  # unzip input file
         
     | 
| 
      
 544 
     | 
    
         
            +
                  tempfile = Tempfile.new("FredTest")
         
     | 
| 
      
 545 
     | 
    
         
            +
                  tempfile.close()
         
     | 
| 
      
 546 
     | 
    
         
            +
                  %x{gunzip -c #{filename} > #{tempfile.path()}}
         
     | 
| 
      
 547 
     | 
    
         
            +
             
     | 
| 
      
 548 
     | 
    
         
            +
                  infile = FilePartsParser.new(tempfile.path())
         
     | 
| 
      
 549 
     | 
    
         
            +
                  if @exp.get("verbose")
         
     | 
| 
      
 550 
     | 
    
         
            +
                    $stderr.puts "SalsaTigerXML output of " + File.basename(filename, ".gz")
         
     | 
| 
      
 551 
     | 
    
         
            +
                  end
         
     | 
| 
      
 552 
     | 
    
         
            +
             
     | 
| 
      
 553 
     | 
    
         
            +
                  begin
         
     | 
| 
      
 554 
     | 
    
         
            +
                    outfile = File.new(output_dir + File.basename(filename, ".gz"), "w")
         
     | 
| 
      
 555 
     | 
    
         
            +
                  rescue
         
     | 
| 
      
 556 
     | 
    
         
            +
                    $stderr.puts "Couldn't write to output file #{output_dir}#{File.basename(filename)}."
         
     | 
| 
      
 557 
     | 
    
         
            +
                    $stderr.puts "Skipping Salsa/Tiger XML output."
         
     | 
| 
      
 558 
     | 
    
         
            +
                    return
         
     | 
| 
      
 559 
     | 
    
         
            +
                  end
         
     | 
| 
      
 560 
     | 
    
         
            +
             
     | 
| 
      
 561 
     | 
    
         
            +
                  # write header
         
     | 
| 
      
 562 
     | 
    
         
            +
                  outfile.puts infile.head()
         
     | 
| 
      
 563 
     | 
    
         
            +
             
     | 
| 
      
 564 
     | 
    
         
            +
                  infile.scan_s { |sent_string|
         
     | 
| 
      
 565 
     | 
    
         
            +
                    sent = SalsaTigerSentence.new(sent_string)
         
     | 
| 
      
 566 
     | 
    
         
            +
             
     | 
| 
      
 567 
     | 
    
         
            +
                    # remove old semantics
         
     | 
| 
      
 568 
     | 
    
         
            +
                    sent.remove_semantics()
         
     | 
| 
      
 569 
     | 
    
         
            +
             
     | 
| 
      
 570 
     | 
    
         
            +
                    if recorded_results and recorded_results[sent.id()]
         
     | 
| 
      
 571 
     | 
    
         
            +
                      recorded_results[sent.id()].each { |target_ids, sense, lemma, pos|
         
     | 
| 
      
 572 
     | 
    
         
            +
             
     | 
| 
      
 573 
     | 
    
         
            +
                        # add frame to sentence
         
     | 
| 
      
 574 
     | 
    
         
            +
                        new_frame = sent.add_frame(sense)
         
     | 
| 
      
 575 
     | 
    
         
            +
                        
         
     | 
| 
      
 576 
     | 
    
         
            +
                        # get list of target nodes from target IDs
         
     | 
| 
      
 577 
     | 
    
         
            +
                        # assuming that target_ids is a string of target IDs
         
     | 
| 
      
 578 
     | 
    
         
            +
                        # separated by comma.
         
     | 
| 
      
 579 
     | 
    
         
            +
                        # IDs for which no node could be found are just ignored
         
     | 
| 
      
 580 
     | 
    
         
            +
             
     | 
| 
      
 581 
     | 
    
         
            +
                        targets = target_ids.map { |target_id|
         
     | 
| 
      
 582 
     | 
    
         
            +
                          sent.syn_node_with_id(target_id)
         
     | 
| 
      
 583 
     | 
    
         
            +
                        }.compact
         
     | 
| 
      
 584 
     | 
    
         
            +
                        # enter the target nodes for this new frame
         
     | 
| 
      
 585 
     | 
    
         
            +
                        new_frame.add_fe("target", targets)
         
     | 
| 
      
 586 
     | 
    
         
            +
                        
         
     | 
| 
      
 587 
     | 
    
         
            +
                      # put lemma and POS info into <target>
         
     | 
| 
      
 588 
     | 
    
         
            +
                        new_frame.target.set_attribute("lemma", lemma)
         
     | 
| 
      
 589 
     | 
    
         
            +
                        new_frame.target.set_attribute("pos", pos)
         
     | 
| 
      
 590 
     | 
    
         
            +
                      }
         
     | 
| 
      
 591 
     | 
    
         
            +
                    end
         
     | 
| 
      
 592 
     | 
    
         
            +
                        
         
     | 
| 
      
 593 
     | 
    
         
            +
                    # write changed sentence: 
         
     | 
| 
      
 594 
     | 
    
         
            +
                    # only if there are recorded results for this sentence!
         
     | 
| 
      
 595 
     | 
    
         
            +
                    outfile.puts sent.get()
         
     | 
| 
      
 596 
     | 
    
         
            +
                      
         
     | 
| 
      
 597 
     | 
    
         
            +
                  } # each sentence of file 
         
     | 
| 
      
 598 
     | 
    
         
            +
             
     | 
| 
      
 599 
     | 
    
         
            +
                  # write footer
         
     | 
| 
      
 600 
     | 
    
         
            +
                  outfile.puts infile.tail()
         
     | 
| 
      
 601 
     | 
    
         
            +
                  outfile.close()
         
     | 
| 
      
 602 
     | 
    
         
            +
                  tempfile.close(true)
         
     | 
| 
      
 603 
     | 
    
         
            +
                } # each SalsaTiger file of the input directory
         
     | 
| 
      
 604 
     | 
    
         
            +
                
         
     | 
| 
      
 605 
     | 
    
         
            +
              end
         
     | 
| 
      
 606 
     | 
    
         
            +
             
     | 
| 
      
 607 
     | 
    
         
            +
            end
         
     |