foliage 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (68) hide show
  1. checksums.yaml +7 -0
  2. data/LICENSE.txt +22 -0
  3. data/README.md +9 -0
  4. data/app/assets/images/.keep +0 -0
  5. data/app/assets/images/map/marker/icon-2x.png +0 -0
  6. data/app/assets/images/map/marker/icon.png +0 -0
  7. data/app/assets/images/map/marker/icon.svg +67 -0
  8. data/app/assets/images/map/marker/shadow.png +0 -0
  9. data/app/assets/javascripts/core_ext.js.coffee +61 -0
  10. data/app/assets/javascripts/foliage.js.coffee +23 -0
  11. data/app/assets/javascripts/foliage/band.js.coffee +99 -0
  12. data/app/assets/javascripts/foliage/bubbles.js.coffee +77 -0
  13. data/app/assets/javascripts/foliage/categories.js.coffee +70 -0
  14. data/app/assets/javascripts/foliage/choropleth.js.coffee +51 -0
  15. data/app/assets/javascripts/foliage/color.js.coffee +39 -0
  16. data/app/assets/javascripts/foliage/gradient.js.coffee +72 -0
  17. data/app/assets/javascripts/foliage/heatmap.js.coffee +49 -0
  18. data/app/assets/javascripts/foliage/leaf.js.coffee +422 -0
  19. data/app/assets/javascripts/foliage/path.js.coffee +76 -0
  20. data/app/assets/javascripts/foliage/paths.js.coffee +131 -0
  21. data/app/assets/javascripts/foliage/point_group.js.coffee +83 -0
  22. data/app/assets/javascripts/foliage/points.js.coffee +79 -0
  23. data/app/assets/javascripts/foliage/simple.js.coffee +35 -0
  24. data/app/assets/javascripts/leaflet/geographic_util.js.coffee +23 -0
  25. data/app/assets/javascripts/leaflet/ghost_label.js.coffee +100 -0
  26. data/app/assets/javascripts/leaflet/ghost_label_cluster.js.coffee +192 -0
  27. data/app/assets/javascripts/leaflet/layers_scheduler.js.coffee +57 -0
  28. data/app/assets/javascripts/leaflet/reactive_measure.js.coffee +414 -0
  29. data/app/assets/stylesheets/all.scss +16 -0
  30. data/app/assets/stylesheets/application.css +15 -0
  31. data/app/assets/stylesheets/compass/reset.scss +3 -0
  32. data/app/assets/stylesheets/compass/reset/utilities.scss +142 -0
  33. data/app/assets/stylesheets/leaflet.scss +1093 -0
  34. data/app/assets/stylesheets/leaflet/label.scss +40 -0
  35. data/app/assets/stylesheets/leaflet/tooltip.scss +42 -0
  36. data/app/assets/stylesheets/mixins.scss +131 -0
  37. data/app/assets/stylesheets/reset.scss +89 -0
  38. data/app/assets/stylesheets/variables.scss +47 -0
  39. data/app/helpers/foliage_helper.rb +23 -0
  40. data/lib/foliage.rb +9 -0
  41. data/lib/foliage/leaf.rb +235 -0
  42. data/lib/foliage/rails.rb +2 -0
  43. data/lib/foliage/rails/engine.rb +7 -0
  44. data/lib/foliage/rails/integration.rb +8 -0
  45. data/lib/foliage/version.rb +3 -0
  46. data/vendor/assets/javascripts/.keep +0 -0
  47. data/vendor/assets/javascripts/autosize.js +211 -0
  48. data/vendor/assets/javascripts/geographiclib.js +3074 -0
  49. data/vendor/assets/javascripts/leaflet.js.erb +9175 -0
  50. data/vendor/assets/javascripts/leaflet/draw.js +3573 -0
  51. data/vendor/assets/javascripts/leaflet/easy-button.js +366 -0
  52. data/vendor/assets/javascripts/leaflet/fullscreen.js +162 -0
  53. data/vendor/assets/javascripts/leaflet/heatmap.js +142 -0
  54. data/vendor/assets/javascripts/leaflet/label.js +545 -0
  55. data/vendor/assets/javascripts/leaflet/measure.js +6966 -0
  56. data/vendor/assets/javascripts/leaflet/modal.js +364 -0
  57. data/vendor/assets/javascripts/leaflet/providers.js +479 -0
  58. data/vendor/assets/javascripts/rbush.js +621 -0
  59. data/vendor/assets/stylesheets/.keep +0 -0
  60. data/vendor/assets/stylesheets/bootstrap/mixins.scss +55 -0
  61. data/vendor/assets/stylesheets/bootstrap/variables.scss +10 -0
  62. data/vendor/assets/stylesheets/leaflet.scss +479 -0
  63. data/vendor/assets/stylesheets/leaflet/draw.scss +282 -0
  64. data/vendor/assets/stylesheets/leaflet/easy-button.scss +56 -0
  65. data/vendor/assets/stylesheets/leaflet/fullscreen.scss +2 -0
  66. data/vendor/assets/stylesheets/leaflet/measure.scss +168 -0
  67. data/vendor/assets/stylesheets/leaflet/modal.scss +85 -0
  68. metadata +171 -0
@@ -0,0 +1,2 @@
1
+ require 'foliage/rails/integration'
2
+ require 'foliage/rails/engine'
@@ -0,0 +1,7 @@
1
+ module Foliage
2
+ module Rails
3
+ class Engine < ::Rails::Engine
4
+ engine_name 'foliage'
5
+ end
6
+ end
7
+ end
@@ -0,0 +1,8 @@
1
+ module Foliage
2
+ module Rails
3
+ module Integration
4
+ module ActionController
5
+ end
6
+ end
7
+ end
8
+ end
@@ -0,0 +1,3 @@
1
+ module Foliage
2
+ VERSION = :'0.1.0'
3
+ end
File without changes
@@ -0,0 +1,211 @@
1
+ /*!
2
+ Autosize 3.0.5
3
+ license: MIT
4
+ http://www.jacklmoore.com/autosize
5
+ */
6
+ (function (global, factory) {
7
+ if (typeof define === 'function' && define.amd) {
8
+ define(['exports', 'module'], factory);
9
+ } else if (typeof exports !== 'undefined' && typeof module !== 'undefined') {
10
+ factory(exports, module);
11
+ } else {
12
+ var mod = {
13
+ exports: {}
14
+ };
15
+ factory(mod.exports, mod);
16
+ global.autosize = mod.exports;
17
+ }
18
+ })(this, function (exports, module) {
19
+ 'use strict';
20
+
21
+ function assign(ta) {
22
+ var _ref = arguments[1] === undefined ? {} : arguments[1];
23
+
24
+ var _ref$setOverflowX = _ref.setOverflowX;
25
+ var setOverflowX = _ref$setOverflowX === undefined ? true : _ref$setOverflowX;
26
+ var _ref$setOverflowY = _ref.setOverflowY;
27
+ var setOverflowY = _ref$setOverflowY === undefined ? true : _ref$setOverflowY;
28
+
29
+ if (!ta || !ta.nodeName || ta.nodeName !== 'TEXTAREA' || ta.hasAttribute('data-autosize-on')) return;
30
+
31
+ var heightOffset = null;
32
+ var overflowY = 'hidden';
33
+
34
+ function init() {
35
+ var style = window.getComputedStyle(ta, null);
36
+
37
+ if (style.resize === 'vertical') {
38
+ ta.style.resize = 'none';
39
+ } else if (style.resize === 'both') {
40
+ ta.style.resize = 'horizontal';
41
+ }
42
+
43
+ if (style.boxSizing === 'content-box') {
44
+ heightOffset = -(parseFloat(style.paddingTop) + parseFloat(style.paddingBottom));
45
+ } else {
46
+ heightOffset = parseFloat(style.borderTopWidth) + parseFloat(style.borderBottomWidth);
47
+ }
48
+
49
+ update();
50
+ }
51
+
52
+ function changeOverflow(value) {
53
+ {
54
+ // Chrome/Safari-specific fix:
55
+ // When the textarea y-overflow is hidden, Chrome/Safari do not reflow the text to account for the space
56
+ // made available by removing the scrollbar. The following forces the necessary text reflow.
57
+ var width = ta.style.width;
58
+ ta.style.width = '0px';
59
+ // Force reflow:
60
+ /* jshint ignore:start */
61
+ ta.offsetWidth;
62
+ /* jshint ignore:end */
63
+ ta.style.width = width;
64
+ }
65
+
66
+ overflowY = value;
67
+
68
+ if (setOverflowY) {
69
+ ta.style.overflowY = value;
70
+ }
71
+
72
+ update();
73
+ }
74
+
75
+ function update() {
76
+ var startHeight = ta.style.height;
77
+ var htmlTop = document.documentElement.scrollTop;
78
+ var bodyTop = document.body.scrollTop;
79
+ var originalHeight = ta.style.height;
80
+
81
+ ta.style.height = 'auto';
82
+
83
+ var endHeight = ta.scrollHeight + heightOffset;
84
+
85
+ if (ta.scrollHeight === 0) {
86
+ // If the scrollHeight is 0, then the element probably has display:none or is detached from the DOM.
87
+ ta.style.height = originalHeight;
88
+ return;
89
+ }
90
+
91
+ ta.style.height = endHeight + 'px';
92
+
93
+ // prevents scroll-position jumping
94
+ document.documentElement.scrollTop = htmlTop;
95
+ document.body.scrollTop = bodyTop;
96
+
97
+ var style = window.getComputedStyle(ta, null);
98
+
99
+ if (style.height !== ta.style.height) {
100
+ if (overflowY !== 'visible') {
101
+ changeOverflow('visible');
102
+ return;
103
+ }
104
+ } else {
105
+ if (overflowY !== 'hidden') {
106
+ changeOverflow('hidden');
107
+ return;
108
+ }
109
+ }
110
+
111
+ if (startHeight !== ta.style.height) {
112
+ var evt = document.createEvent('Event');
113
+ evt.initEvent('autosize:resized', true, false);
114
+ ta.dispatchEvent(evt);
115
+ }
116
+ }
117
+
118
+ var destroy = (function (style) {
119
+ window.removeEventListener('resize', update);
120
+ ta.removeEventListener('input', update);
121
+ ta.removeEventListener('keyup', update);
122
+ ta.removeAttribute('data-autosize-on');
123
+ ta.removeEventListener('autosize:destroy', destroy);
124
+
125
+ Object.keys(style).forEach(function (key) {
126
+ ta.style[key] = style[key];
127
+ });
128
+ }).bind(ta, {
129
+ height: ta.style.height,
130
+ resize: ta.style.resize,
131
+ overflowY: ta.style.overflowY,
132
+ overflowX: ta.style.overflowX,
133
+ wordWrap: ta.style.wordWrap });
134
+
135
+ ta.addEventListener('autosize:destroy', destroy);
136
+
137
+ // IE9 does not fire onpropertychange or oninput for deletions,
138
+ // so binding to onkeyup to catch most of those events.
139
+ // There is no way that I know of to detect something like 'cut' in IE9.
140
+ if ('onpropertychange' in ta && 'oninput' in ta) {
141
+ ta.addEventListener('keyup', update);
142
+ }
143
+
144
+ window.addEventListener('resize', update);
145
+ ta.addEventListener('input', update);
146
+ ta.addEventListener('autosize:update', update);
147
+ ta.setAttribute('data-autosize-on', true);
148
+
149
+ if (setOverflowY) {
150
+ ta.style.overflowY = 'hidden';
151
+ }
152
+ if (setOverflowX) {
153
+ ta.style.overflowX = 'hidden';
154
+ ta.style.wordWrap = 'break-word';
155
+ }
156
+
157
+ init();
158
+ }
159
+
160
+ function destroy(ta) {
161
+ if (!(ta && ta.nodeName && ta.nodeName === 'TEXTAREA')) return;
162
+ var evt = document.createEvent('Event');
163
+ evt.initEvent('autosize:destroy', true, false);
164
+ ta.dispatchEvent(evt);
165
+ }
166
+
167
+ function update(ta) {
168
+ if (!(ta && ta.nodeName && ta.nodeName === 'TEXTAREA')) return;
169
+ var evt = document.createEvent('Event');
170
+ evt.initEvent('autosize:update', true, false);
171
+ ta.dispatchEvent(evt);
172
+ }
173
+
174
+ var autosize = null;
175
+
176
+ // Do nothing in Node.js environment and IE8 (or lower)
177
+ if (typeof window === 'undefined' || typeof window.getComputedStyle !== 'function') {
178
+ autosize = function (el) {
179
+ return el;
180
+ };
181
+ autosize.destroy = function (el) {
182
+ return el;
183
+ };
184
+ autosize.update = function (el) {
185
+ return el;
186
+ };
187
+ } else {
188
+ autosize = function (el, options) {
189
+ if (el) {
190
+ Array.prototype.forEach.call(el.length ? el : [el], function (x) {
191
+ return assign(x, options);
192
+ });
193
+ }
194
+ return el;
195
+ };
196
+ autosize.destroy = function (el) {
197
+ if (el) {
198
+ Array.prototype.forEach.call(el.length ? el : [el], destroy);
199
+ }
200
+ return el;
201
+ };
202
+ autosize.update = function (el) {
203
+ if (el) {
204
+ Array.prototype.forEach.call(el.length ? el : [el], update);
205
+ }
206
+ return el;
207
+ };
208
+ }
209
+
210
+ module.exports = autosize;
211
+ });
@@ -0,0 +1,3074 @@
1
+ /*
2
+ * Geodesic routines from GeographicLib translated to JavaScript. See
3
+ * http://geographiclib.sourceforge.net/html/js/
4
+ *
5
+ * The algorithms are derived in
6
+ *
7
+ * Charles F. F. Karney,
8
+ * Algorithms for geodesics, J. Geodesy 87, 43-55 (2013),
9
+ * https://dx.doi.org/10.1007/s00190-012-0578-z
10
+ * Addenda: http://geographiclib.sourceforge.net/geod-addenda.html
11
+ *
12
+ * This file is the concatenation and compression of the JavaScript files in
13
+ * doc/scripts/GeographicLib in the source tree for GeographicLib.
14
+ *
15
+ * Copyright (c) Charles Karney (2011-2015) <charles@karney.com> and licensed
16
+ * under the MIT/X11 License. For more information, see
17
+ * http://geographiclib.sourceforge.net/
18
+ *
19
+ * Version: 1.46
20
+ * File inventory:
21
+ * Math.js Geodesic.js GeodesicLine.js PolygonArea.js DMS.js
22
+ */
23
+
24
+ (function(cb) {
25
+
26
+ /**************** Math.js ****************/
27
+ /*
28
+ * Math.js
29
+ * Transcription of Math.hpp, Constants.hpp, and Accumulator.hpp into
30
+ * JavaScript.
31
+ *
32
+ * Copyright (c) Charles Karney (2011-2016) <charles@karney.com> and licensed
33
+ * under the MIT/X11 License. For more information, see
34
+ * http://geographiclib.sourceforge.net/
35
+ */
36
+
37
+ /**
38
+ * @namespace GeographicLib
39
+ * @description The parent namespace for the following modules:
40
+ * - {@link module:GeographicLib/Geodesic GeographicLib/Geodesic} The main
41
+ * engine for solving geodesic problems via the
42
+ * {@link module:GeographicLib/Geodesic.Geodesic Geodesic} class.
43
+ * - {@link module:GeographicLib/GeodesicLine GeographicLib/GeodesicLine}
44
+ * computes points along a single geodesic line via the
45
+ * {@link module:GeographicLib/GeodesicLine.GeodesicLine GeodesicLine}
46
+ * class.
47
+ * - {@link module:GeographicLib/PolygonArea GeographicLib/PolygonArea}
48
+ * computes the area of a geodesic polygon via the
49
+ * {@link module:GeographicLib/PolygonArea.PolygonArea PolygonArea}
50
+ * class.
51
+ * - {@link module:GeographicLib/DMS GeographicLib/DMS} handles the decoding
52
+ * and encoding of angles in degree, minutes, and seconds, via static
53
+ * functions in this module.
54
+ * - {@link module:GeographicLib/Constants GeographicLib/Constants} defines
55
+ * constants specifying the version numbers and the parameters for the WGS84
56
+ * ellipsoid.
57
+ *
58
+ * The following modules are used internally by the package:
59
+ * - {@link module:GeographicLib/Math GeographicLib/Math} defines various
60
+ * mathematical functions.
61
+ * - {@link module:GeographicLib/Accumulator GeographicLib/Accumulator}
62
+ * interally used by
63
+ * {@link module:GeographicLib/PolygonArea.PolygonArea PolygonArea} (via the
64
+ * {@link module:GeographicLib/Accumulator.Accumulator Accumulator} class)
65
+ * for summing the contributions to the area of a polygon.
66
+ */
67
+ "use strict";
68
+ var GeographicLib = {};
69
+ GeographicLib.Constants = {};
70
+ GeographicLib.Math = {};
71
+ GeographicLib.Accumulator = {};
72
+
73
+ (function(
74
+ /**
75
+ * @exports GeographicLib/Constants
76
+ * @description Define constants defining the version and WGS84 parameters.
77
+ */
78
+ c) {
79
+
80
+ /**
81
+ * @constant
82
+ * @summary WGS84 parameters.
83
+ * @property {number} a the equatorial radius (meters).
84
+ * @property {number} f the flattening.
85
+ */
86
+ c.WGS84 = { a: 6378137, f: 1/298.257223563 };
87
+ /**
88
+ * @constant
89
+ * @summary an array of version numbers.
90
+ * @property {number} major the major version number.
91
+ * @property {number} minor the minor version number.
92
+ * @property {number} patch the patch number.
93
+ */
94
+ c.version = { major: 1, minor: 46, patch: 0 };
95
+ /**
96
+ * @constant
97
+ * @summary version string
98
+ */
99
+ c.version_string = "1.46";
100
+ })(GeographicLib.Constants);
101
+
102
+ (function(
103
+ /**
104
+ * @exports GeographicLib/Math
105
+ * @description Some useful mathematical constants and functions (mainly for
106
+ * internal use).
107
+ */
108
+ m) {
109
+
110
+ /**
111
+ * @summary The number of digits of precision in floating-point numbers.
112
+ * @constant {number}
113
+ */
114
+ m.digits = 53;
115
+ /**
116
+ * @summary The machine epsilon.
117
+ * @constant {number}
118
+ */
119
+ m.epsilon = Math.pow(0.5, m.digits - 1);
120
+ /**
121
+ * @summary The factor to convert degrees to radians.
122
+ * @constant {number}
123
+ */
124
+ m.degree = Math.PI/180;
125
+
126
+ /**
127
+ * @summary Square a number.
128
+ * @param {number} x the number.
129
+ * @returns {number} the square.
130
+ */
131
+ m.sq = function(x) { return x * x; };
132
+
133
+ /**
134
+ * @summary The hypotenuse function.
135
+ * @param {number} x the first side.
136
+ * @param {number} y the second side.
137
+ * @returns {number} the hypotenuse.
138
+ */
139
+ m.hypot = function(x, y) {
140
+ var a, b;
141
+ x = Math.abs(x);
142
+ y = Math.abs(y);
143
+ a = Math.max(x, y); b = Math.min(x, y) / (a ? a : 1);
144
+ return a * Math.sqrt(1 + b * b);
145
+ };
146
+
147
+ /**
148
+ * @summary Cube root function.
149
+ * @param {number} x the argument.
150
+ * @returns {number} the real cube root.
151
+ */
152
+ m.cbrt = function(x) {
153
+ var y = Math.pow(Math.abs(x), 1/3);
154
+ return x < 0 ? -y : y;
155
+ };
156
+
157
+ /**
158
+ * @summary The log1p function.
159
+ * @param {number} x the argument.
160
+ * @returns {number} log(1 + x).
161
+ */
162
+ m.log1p = function(x) {
163
+ var y = 1 + x,
164
+ z = y - 1;
165
+ // Here's the explanation for this magic: y = 1 + z, exactly, and z
166
+ // approx x, thus log(y)/z (which is nearly constant near z = 0) returns
167
+ // a good approximation to the true log(1 + x)/x. The multiplication x *
168
+ // (log(y)/z) introduces little additional error.
169
+ return z === 0 ? x : x * Math.log(y) / z;
170
+ };
171
+
172
+ /**
173
+ * @summary Inverse hyperbolic tangent.
174
+ * @param {number} x the argument.
175
+ * @returns {number} tanh<sup>&minus;1</sup> x.
176
+ */
177
+ m.atanh = function(x) {
178
+ var y = Math.abs(x); // Enforce odd parity
179
+ y = m.log1p(2 * y/(1 - y))/2;
180
+ return x < 0 ? -y : y;
181
+ };
182
+
183
+ /**
184
+ * @summary Copy the sign.
185
+ * @param {number} x gives the magitude of the result.
186
+ * @param {number} y gives the sign of the result.
187
+ * @returns {number} value with the magnitude of x and with the sign of y.
188
+ */
189
+ m.copysign = function(x, y) {
190
+ return Math.abs(x) * (y < 0 || (y === 0 && 1/y < 0) ? -1 : 1);
191
+ };
192
+
193
+ /**
194
+ * @summary An error-free sum.
195
+ * @param {number} u
196
+ * @param {number} v
197
+ * @returns {object} sum with sum.s = round(u + v) and sum.t is u + v &minus;
198
+ * round(u + v)
199
+ */
200
+ m.sum = function(u, v) {
201
+ var s = u + v,
202
+ up = s - v,
203
+ vpp = s - up,
204
+ t;
205
+ up -= u;
206
+ vpp -= v;
207
+ t = -(up + vpp);
208
+ // u + v = s + t
209
+ // = round(u + v) + t
210
+ return {s: s, t: t};
211
+ };
212
+
213
+ /**
214
+ * @summary Evaluate a polynomial.
215
+ * @param {integer} N the order of the polynomial.
216
+ * @param {array} p the coefficient array (of size N + 1) (leading
217
+ * order coefficient first)
218
+ * @param {number} x the variable.
219
+ * @returns {number} the value of the polynomial.
220
+ */
221
+ m.polyval = function(N, p, s, x) {
222
+ var y = N < 0 ? 0 : p[s++];
223
+ while (--N >= 0) y = y * x + p[s++];
224
+ return y;
225
+ };
226
+
227
+ /**
228
+ * @summary Coarsen a value close to zero.
229
+ * @param {number} x
230
+ * @returns {number} the coarsened value.
231
+ */
232
+ m.AngRound = function(x) {
233
+ // The makes the smallest gap in x = 1/16 - nextafter(1/16, 0) = 1/2^57 for
234
+ // reals = 0.7 pm on the earth if x is an angle in degrees. (This is about
235
+ // 1000 times more resolution than we get with angles around 90 degrees.)
236
+ // We use this to avoid having to deal with near singular cases when x is
237
+ // non-zero but tiny (e.g., 1.0e-200). This converts -0 to +0; however
238
+ // tiny negative numbers get converted to -0.
239
+ if (x === 0) return x;
240
+ var z = 1/16,
241
+ y = Math.abs(x);
242
+ // The compiler mustn't "simplify" z - (z - y) to y
243
+ y = y < z ? z - (z - y) : y;
244
+ return x < 0 ? -y : y;
245
+ };
246
+
247
+ /**
248
+ * @summary Normalize an angle.
249
+ * @param {number} x the angle in degrees.
250
+ * @returns {number} the angle reduced to the range [&minus;180&deg;,
251
+ * 180&deg;).
252
+ */
253
+ m.AngNormalize = function(x) {
254
+ // Place angle in [-180, 180).
255
+ x = x % 360;
256
+ return x < -180 ? x + 360 : (x < 180 ? x : x - 360);
257
+ };
258
+
259
+ /**
260
+ * @summary Normalize a latitude.
261
+ * @param {number} x the angle in degrees.
262
+ * @returns {number} x if it is in the range [&minus;90&deg;, 90&deg;],
263
+ * otherwise return NaN.
264
+ */
265
+ m.LatFix = function(x) {
266
+ // Replace angle with NaN if outside [-90, 90].
267
+ return Math.abs(x) > 90 ? Number.NaN : x;
268
+ };
269
+
270
+ /**
271
+ * @summary The exact difference of two angles reduced to (&minus;180&deg;,
272
+ * 180&deg;]
273
+ * @param {number} x the first angle in degrees.
274
+ * @param {number} y the second angle in degrees.
275
+ * @return {object} diff the exact difference, y &minus; x.
276
+ *
277
+ * This computes z = y &minus; x exactly, reduced to (&minus;180&deg;,
278
+ * 180&deg;]; and then sets diff.s = d = round(z) and diff.t = e = z &minus;
279
+ * round(z). If d = &minus;180, then e &gt; 0; If d = 180, then e &le; 0.
280
+ */
281
+ m.AngDiff = function(x, y) {
282
+ // Compute y - x and reduce to [-180,180] accurately.
283
+ var r = m.sum(m.AngNormalize(x), m.AngNormalize(-y)),
284
+ d = - m.AngNormalize(r.s),
285
+ t = r.t;
286
+ return m.sum(d === 180 && t < 0 ? -180 : d, -t);
287
+ };
288
+
289
+ /**
290
+ * @summary Evaluate the sine and cosine function with the argument in
291
+ * degrees
292
+ * @param {number} x in degrees.
293
+ * @returns {object} r with r.s = sin(x) and r.c = cos(x).
294
+ */
295
+ m.sincosd = function(x) {
296
+ // In order to minimize round-off errors, this function exactly reduces
297
+ // the argument to the range [-45, 45] before converting it to radians.
298
+ var r, q, s, c, sinx, cosx;
299
+ r = x % 360;
300
+ q = Math.floor(r / 90 + 0.5);
301
+ r -= 90 * q;
302
+ // now abs(r) <= 45
303
+ r *= this.degree;
304
+ // Possibly could call the gnu extension sincos
305
+ s = Math.sin(r); c = Math.cos(r);
306
+ switch (q & 3) {
307
+ case 0: sinx = s; cosx = c; break;
308
+ case 1: sinx = c; cosx = 0 - s; break;
309
+ case 2: sinx = 0 - s; cosx = 0 - c; break;
310
+ default: sinx = 0 - c; cosx = s; break; // case 3
311
+ }
312
+ return {s: sinx, c: cosx};
313
+ };
314
+
315
+ /**
316
+ * @summary Evaluate the atan2 function with the result in degrees
317
+ * @param {number} y
318
+ * @param {number} x
319
+ * @returns atan2(y, x) in degrees, in the range [&minus;180&deg;
320
+ * 180&deg;).
321
+ */
322
+ m.atan2d = function(y, x) {
323
+ // In order to minimize round-off errors, this function rearranges the
324
+ // arguments so that result of atan2 is in the range [-pi/4, pi/4] before
325
+ // converting it to degrees and mapping the result to the correct
326
+ // quadrant.
327
+ var q = 0, t, ang;
328
+ if (Math.abs(y) > Math.abs(x)) { t = x; x = y; y = t; q = 2; }
329
+ if (x < 0) { x = -x; ++q; }
330
+ // here x >= 0 and x >= abs(y), so angle is in [-pi/4, pi/4]
331
+ ang = Math.atan2(y, x) / this.degree;
332
+ switch (q) {
333
+ // Note that atan2d(-0.0, 1.0) will return -0. However, we expect that
334
+ // atan2d will not be called with y = -0. If need be, include
335
+ //
336
+ // case 0: ang = 0 + ang; break;
337
+ //
338
+ // and handle mpfr as in AngRound.
339
+ case 1: ang = (y > 0 ? 180 : -180) - ang; break;
340
+ case 2: ang = 90 - ang; break;
341
+ case 3: ang = -90 + ang; break;
342
+ }
343
+ return ang;
344
+ };
345
+ })(GeographicLib.Math);
346
+
347
+ (function(
348
+ /**
349
+ * @exports GeographicLib/Accumulator
350
+ * @description Accurate summation via the
351
+ * {@link module:GeographicLib/Accumulator.Accumulator Accumulator} class
352
+ * (mainly for internal use).
353
+ */
354
+ a, m) {
355
+
356
+ /**
357
+ * @class
358
+ * @summary Accurate summation of many numbers.
359
+ * @classdesc This allows many numbers to be added together with twice the
360
+ * normal precision. In the documentation of the member functions, sum
361
+ * stands for the value currently held in the accumulator.
362
+ * @param {number | Accumulator} [y = 0] set sum = y.
363
+ */
364
+ a.Accumulator = function(y) {
365
+ this.Set(y);
366
+ };
367
+
368
+ /**
369
+ * @summary Set the accumulator to a number.
370
+ * @param {number | Accumulator} [y = 0] set sum = y.
371
+ */
372
+ a.Accumulator.prototype.Set = function(y) {
373
+ if (!y) y = 0;
374
+ if (y.constructor === a.Accumulator) {
375
+ this._s = y._s;
376
+ this._t = y._t;
377
+ } else {
378
+ this._s = y;
379
+ this._t = 0;
380
+ }
381
+ };
382
+
383
+ /**
384
+ * @summary Add a number to the accumulator.
385
+ * @param {number} [y = 0] set sum += y.
386
+ */
387
+ a.Accumulator.prototype.Add = function(y) {
388
+ // Here's Shewchuk's solution...
389
+ // Accumulate starting at least significant end
390
+ var u = m.sum(y, this._t),
391
+ v = m.sum(u.s, this._s);
392
+ u = u.t;
393
+ this._s = v.s;
394
+ this._t = v.t;
395
+ // Start is _s, _t decreasing and non-adjacent. Sum is now (s + t + u)
396
+ // exactly with s, t, u non-adjacent and in decreasing order (except
397
+ // for possible zeros). The following code tries to normalize the
398
+ // result. Ideally, we want _s = round(s+t+u) and _u = round(s+t+u -
399
+ // _s). The follow does an approximate job (and maintains the
400
+ // decreasing non-adjacent property). Here are two "failures" using
401
+ // 3-bit floats:
402
+ //
403
+ // Case 1: _s is not equal to round(s+t+u) -- off by 1 ulp
404
+ // [12, -1] - 8 -> [4, 0, -1] -> [4, -1] = 3 should be [3, 0] = 3
405
+ //
406
+ // Case 2: _s+_t is not as close to s+t+u as it shold be
407
+ // [64, 5] + 4 -> [64, 8, 1] -> [64, 8] = 72 (off by 1)
408
+ // should be [80, -7] = 73 (exact)
409
+ //
410
+ // "Fixing" these problems is probably not worth the expense. The
411
+ // representation inevitably leads to small errors in the accumulated
412
+ // values. The additional errors illustrated here amount to 1 ulp of
413
+ // the less significant word during each addition to the Accumulator
414
+ // and an additional possible error of 1 ulp in the reported sum.
415
+ //
416
+ // Incidentally, the "ideal" representation described above is not
417
+ // canonical, because _s = round(_s + _t) may not be true. For
418
+ // example, with 3-bit floats:
419
+ //
420
+ // [128, 16] + 1 -> [160, -16] -- 160 = round(145).
421
+ // But [160, 0] - 16 -> [128, 16] -- 128 = round(144).
422
+ //
423
+ if (this._s === 0) // This implies t == 0,
424
+ this._s = u; // so result is u
425
+ else
426
+ this._t += u; // otherwise just accumulate u to t.
427
+ };
428
+
429
+ /**
430
+ * @summary Return the result of adding a number to sum (but
431
+ * don't change sum).
432
+ * @param {number} [y = 0] the number to be added to the sum.
433
+ * @return sum + y.
434
+ */
435
+ a.Accumulator.prototype.Sum = function(y) {
436
+ var b;
437
+ if (!y)
438
+ return this._s;
439
+ else {
440
+ b = new a.Accumulator(this);
441
+ b.Add(y);
442
+ return b._s;
443
+ }
444
+ };
445
+
446
+ /**
447
+ * @summary Set sum = &minus;sum.
448
+ */
449
+ a.Accumulator.prototype.Negate = function() {
450
+ this._s *= -1;
451
+ this._t *= -1;
452
+ };
453
+ })(GeographicLib.Accumulator, GeographicLib.Math);
454
+
455
+ /**************** Geodesic.js ****************/
456
+ /*
457
+ * Geodesic.js
458
+ * Transcription of Geodesic.[ch]pp into JavaScript.
459
+ *
460
+ * See the documentation for the C++ class. The conversion is a literal
461
+ * conversion from C++.
462
+ *
463
+ * The algorithms are derived in
464
+ *
465
+ * Charles F. F. Karney,
466
+ * Algorithms for geodesics, J. Geodesy 87, 43-55 (2013);
467
+ * https://dx.doi.org/10.1007/s00190-012-0578-z
468
+ * Addenda: http://geographiclib.sourceforge.net/geod-addenda.html
469
+ *
470
+ * Copyright (c) Charles Karney (2011-2016) <charles@karney.com> and licensed
471
+ * under the MIT/X11 License. For more information, see
472
+ * http://geographiclib.sourceforge.net/
473
+ */
474
+
475
+ // Load AFTER Math.js
476
+
477
+ GeographicLib.Geodesic = {};
478
+ GeographicLib.GeodesicLine = {};
479
+ GeographicLib.PolygonArea = {};
480
+
481
+ (function(
482
+ /**
483
+ * @exports GeographicLib/Geodesic
484
+ * @description Solve geodesic problems via the
485
+ * {@link module:GeographicLib/Geodesic.Geodesic Geodesic} class.
486
+ */
487
+ g, l, p, m, c) {
488
+
489
+ var GEOGRAPHICLIB_GEODESIC_ORDER = 6,
490
+ nA1_ = GEOGRAPHICLIB_GEODESIC_ORDER,
491
+ nA2_ = GEOGRAPHICLIB_GEODESIC_ORDER,
492
+ nA3_ = GEOGRAPHICLIB_GEODESIC_ORDER,
493
+ nA3x_ = nA3_,
494
+ nC3x_, nC4x_,
495
+ maxit1_ = 20,
496
+ maxit2_ = maxit1_ + m.digits + 10,
497
+ tol0_ = m.epsilon,
498
+ tol1_ = 200 * tol0_,
499
+ tol2_ = Math.sqrt(tol0_),
500
+ tolb_ = tol0_ * tol1_,
501
+ xthresh_ = 1000 * tol2_,
502
+ CAP_NONE = 0,
503
+ CAP_ALL = 0x1F,
504
+ CAP_MASK = CAP_ALL,
505
+ OUT_ALL = 0x7F80,
506
+ astroid,
507
+ A1m1f_coeff, C1f_coeff, C1pf_coeff,
508
+ A2m1f_coeff, C2f_coeff,
509
+ A3_coeff, C3_coeff, C4_coeff;
510
+
511
+ g.tiny_ = Math.sqrt(Number.MIN_VALUE);
512
+ g.nC1_ = GEOGRAPHICLIB_GEODESIC_ORDER;
513
+ g.nC1p_ = GEOGRAPHICLIB_GEODESIC_ORDER;
514
+ g.nC2_ = GEOGRAPHICLIB_GEODESIC_ORDER;
515
+ g.nC3_ = GEOGRAPHICLIB_GEODESIC_ORDER;
516
+ g.nC4_ = GEOGRAPHICLIB_GEODESIC_ORDER;
517
+ nC3x_ = (g.nC3_ * (g.nC3_ - 1)) / 2;
518
+ nC4x_ = (g.nC4_ * (g.nC4_ + 1)) / 2;
519
+ g.CAP_C1 = 1<<0;
520
+ g.CAP_C1p = 1<<1;
521
+ g.CAP_C2 = 1<<2;
522
+ g.CAP_C3 = 1<<3;
523
+ g.CAP_C4 = 1<<4;
524
+
525
+ g.NONE = 0;
526
+ g.ARC = 1<<6;
527
+ g.LATITUDE = 1<<7 | CAP_NONE;
528
+ g.LONGITUDE = 1<<8 | g.CAP_C3;
529
+ g.AZIMUTH = 1<<9 | CAP_NONE;
530
+ g.DISTANCE = 1<<10 | g.CAP_C1;
531
+ g.STANDARD = g.LATITUDE | g.LONGITUDE | g.AZIMUTH | g.DISTANCE;
532
+ g.DISTANCE_IN = 1<<11 | g.CAP_C1 | g.CAP_C1p;
533
+ g.REDUCEDLENGTH = 1<<12 | g.CAP_C1 | g.CAP_C2;
534
+ g.GEODESICSCALE = 1<<13 | g.CAP_C1 | g.CAP_C2;
535
+ g.AREA = 1<<14 | g.CAP_C4;
536
+ g.ALL = OUT_ALL| CAP_ALL;
537
+ g.LONG_UNROLL = 1<<15;
538
+ g.OUT_MASK = OUT_ALL| g.LONG_UNROLL;
539
+
540
+ g.SinCosSeries = function(sinp, sinx, cosx, c) {
541
+ // Evaluate
542
+ // y = sinp ? sum(c[i] * sin( 2*i * x), i, 1, n) :
543
+ // sum(c[i] * cos((2*i+1) * x), i, 0, n-1)
544
+ // using Clenshaw summation. N.B. c[0] is unused for sin series
545
+ // Approx operation count = (n + 5) mult and (2 * n + 2) add
546
+ var k = c.length, // Point to one beyond last element
547
+ n = k - (sinp ? 1 : 0),
548
+ ar = 2 * (cosx - sinx) * (cosx + sinx), // 2 * cos(2 * x)
549
+ y0 = n & 1 ? c[--k] : 0, y1 = 0; // accumulators for sum
550
+ // Now n is even
551
+ n = Math.floor(n/2);
552
+ while (n--) {
553
+ // Unroll loop x 2, so accumulators return to their original role
554
+ y1 = ar * y0 - y1 + c[--k];
555
+ y0 = ar * y1 - y0 + c[--k];
556
+ }
557
+ return (sinp ? 2 * sinx * cosx * y0 : // sin(2 * x) * y0
558
+ cosx * (y0 - y1)); // cos(x) * (y0 - y1)
559
+ };
560
+
561
+ astroid = function(x, y) {
562
+ // Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive
563
+ // root k. This solution is adapted from Geocentric::Reverse.
564
+ var k,
565
+ p = m.sq(x),
566
+ q = m.sq(y),
567
+ r = (p + q - 1) / 6,
568
+ S, r2, r3, disc, u, T3, T, ang, v, uv, w;
569
+ if ( !(q === 0 && r <= 0) ) {
570
+ // Avoid possible division by zero when r = 0 by multiplying
571
+ // equations for s and t by r^3 and r, resp.
572
+ S = p * q / 4; // S = r^3 * s
573
+ r2 = m.sq(r);
574
+ r3 = r * r2;
575
+ // The discriminant of the quadratic equation for T3. This is
576
+ // zero on the evolute curve p^(1/3)+q^(1/3) = 1
577
+ disc = S * (S + 2 * r3);
578
+ u = r;
579
+ if (disc >= 0) {
580
+ T3 = S + r3;
581
+ // Pick the sign on the sqrt to maximize abs(T3). This
582
+ // minimizes loss of precision due to cancellation. The
583
+ // result is unchanged because of the way the T is used
584
+ // in definition of u.
585
+ T3 += T3 < 0 ? -Math.sqrt(disc) : Math.sqrt(disc); // T3 = (r * t)^3
586
+ // N.B. cbrt always returns the real root. cbrt(-8) = -2.
587
+ T = m.cbrt(T3); // T = r * t
588
+ // T can be zero; but then r2 / T -> 0.
589
+ u += T + (T !== 0 ? r2 / T : 0);
590
+ } else {
591
+ // T is complex, but the way u is defined the result is real.
592
+ ang = Math.atan2(Math.sqrt(-disc), -(S + r3));
593
+ // There are three possible cube roots. We choose the
594
+ // root which avoids cancellation. Note that disc < 0
595
+ // implies that r < 0.
596
+ u += 2 * r * Math.cos(ang / 3);
597
+ }
598
+ v = Math.sqrt(m.sq(u) + q); // guaranteed positive
599
+ // Avoid loss of accuracy when u < 0.
600
+ uv = u < 0 ? q / (v - u) : u + v; // u+v, guaranteed positive
601
+ w = (uv - q) / (2 * v); // positive?
602
+ // Rearrange expression for k to avoid loss of accuracy due to
603
+ // subtraction. Division by 0 not possible because uv > 0, w >= 0.
604
+ k = uv / (Math.sqrt(uv + m.sq(w)) + w); // guaranteed positive
605
+ } else { // q == 0 && r <= 0
606
+ // y = 0 with |x| <= 1. Handle this case directly.
607
+ // for y small, positive root is k = abs(y)/sqrt(1-x^2)
608
+ k = 0;
609
+ }
610
+ return k;
611
+ };
612
+
613
+ A1m1f_coeff = [
614
+ // (1-eps)*A1-1, polynomial in eps2 of order 3
615
+ +1, 4, 64, 0, 256
616
+ ];
617
+
618
+ // The scale factor A1-1 = mean value of (d/dsigma)I1 - 1
619
+ g.A1m1f = function(eps) {
620
+ var p = Math.floor(nA1_/2),
621
+ t = m.polyval(p, A1m1f_coeff, 0, m.sq(eps)) / A1m1f_coeff[p + 1];
622
+ return (t + eps) / (1 - eps);
623
+ };
624
+
625
+ C1f_coeff = [
626
+ // C1[1]/eps^1, polynomial in eps2 of order 2
627
+ -1, 6, -16, 32,
628
+ // C1[2]/eps^2, polynomial in eps2 of order 2
629
+ -9, 64, -128, 2048,
630
+ // C1[3]/eps^3, polynomial in eps2 of order 1
631
+ +9, -16, 768,
632
+ // C1[4]/eps^4, polynomial in eps2 of order 1
633
+ +3, -5, 512,
634
+ // C1[5]/eps^5, polynomial in eps2 of order 0
635
+ -7, 1280,
636
+ // C1[6]/eps^6, polynomial in eps2 of order 0
637
+ -7, 2048
638
+ ];
639
+
640
+ // The coefficients C1[l] in the Fourier expansion of B1
641
+ g.C1f = function(eps, c) {
642
+ var eps2 = m.sq(eps),
643
+ d = eps,
644
+ o = 0,
645
+ l, p;
646
+ for (l = 1; l <= g.nC1_; ++l) { // l is index of C1p[l]
647
+ p = Math.floor((g.nC1_ - l) / 2); // order of polynomial in eps^2
648
+ c[l] = d * m.polyval(p, C1f_coeff, o, eps2) / C1f_coeff[o + p + 1];
649
+ o += p + 2;
650
+ d *= eps;
651
+ }
652
+ };
653
+
654
+ C1pf_coeff = [
655
+ // C1p[1]/eps^1, polynomial in eps2 of order 2
656
+ +205, -432, 768, 1536,
657
+ // C1p[2]/eps^2, polynomial in eps2 of order 2
658
+ +4005, -4736, 3840, 12288,
659
+ // C1p[3]/eps^3, polynomial in eps2 of order 1
660
+ -225, 116, 384,
661
+ // C1p[4]/eps^4, polynomial in eps2 of order 1
662
+ -7173, 2695, 7680,
663
+ // C1p[5]/eps^5, polynomial in eps2 of order 0
664
+ +3467, 7680,
665
+ // C1p[6]/eps^6, polynomial in eps2 of order 0
666
+ +38081, 61440
667
+ ];
668
+
669
+ // The coefficients C1p[l] in the Fourier expansion of B1p
670
+ g.C1pf = function(eps, c) {
671
+ var eps2 = m.sq(eps),
672
+ d = eps,
673
+ o = 0,
674
+ l, p;
675
+ for (l = 1; l <= g.nC1p_; ++l) { // l is index of C1p[l]
676
+ p = Math.floor((g.nC1p_ - l) / 2); // order of polynomial in eps^2
677
+ c[l] = d * m.polyval(p, C1pf_coeff, o, eps2) / C1pf_coeff[o + p + 1];
678
+ o += p + 2;
679
+ d *= eps;
680
+ }
681
+ };
682
+
683
+ A2m1f_coeff = [
684
+ // (eps+1)*A2-1, polynomial in eps2 of order 3
685
+ -11, -28, -192, 0, 256
686
+ ];
687
+
688
+ // The scale factor A2-1 = mean value of (d/dsigma)I2 - 1
689
+ g.A2m1f = function(eps) {
690
+ var p = Math.floor(nA2_/2),
691
+ t = m.polyval(p, A2m1f_coeff, 0, m.sq(eps)) / A2m1f_coeff[p + 1];
692
+ return (t - eps) / (1 + eps);
693
+ };
694
+
695
+ C2f_coeff = [
696
+ // C2[1]/eps^1, polynomial in eps2 of order 2
697
+ +1, 2, 16, 32,
698
+ // C2[2]/eps^2, polynomial in eps2 of order 2
699
+ +35, 64, 384, 2048,
700
+ // C2[3]/eps^3, polynomial in eps2 of order 1
701
+ +15, 80, 768,
702
+ // C2[4]/eps^4, polynomial in eps2 of order 1
703
+ +7, 35, 512,
704
+ // C2[5]/eps^5, polynomial in eps2 of order 0
705
+ +63, 1280,
706
+ // C2[6]/eps^6, polynomial in eps2 of order 0
707
+ +77, 2048
708
+ ];
709
+
710
+ // The coefficients C2[l] in the Fourier expansion of B2
711
+ g.C2f = function(eps, c) {
712
+ var eps2 = m.sq(eps),
713
+ d = eps,
714
+ o = 0,
715
+ l, p;
716
+ for (l = 1; l <= g.nC2_; ++l) { // l is index of C2[l]
717
+ p = Math.floor((g.nC2_ - l) / 2); // order of polynomial in eps^2
718
+ c[l] = d * m.polyval(p, C2f_coeff, o, eps2) / C2f_coeff[o + p + 1];
719
+ o += p + 2;
720
+ d *= eps;
721
+ }
722
+ };
723
+
724
+ /**
725
+ * @class
726
+ * @property {number} a the equatorial radius (meters).
727
+ * @property {number} f the flattening.
728
+ * @summary Initialize a Geodesic object for a specific ellipsoid.
729
+ * @classdesc Performs geodesic calculations on an ellipsoid of revolution.
730
+ * The routines for solving the direct and inverse problems return an
731
+ * object with some of the following fields set: lat1, lon1, azi1, lat2,
732
+ * lon2, azi2, s12, a12, m12, M12, M21, S12. See {@tutorial 2-interface},
733
+ * "The results".
734
+ * @example
735
+ * var GeographicLib = require("geographiclib"),
736
+ * geod = GeographicLib.Geodesic.WGS84;
737
+ * var inv = geod.Inverse(1,2,3,4);
738
+ * console.log("lat1 = " + inv.lat1 + ", lon1 = " + inv.lon1 +
739
+ * ", lat2 = " + inv.lat2 + ", lon2 = " + inv.lon2 +
740
+ * ",\nazi1 = " + inv.azi1 + ", azi2 = " + inv.azi2 +
741
+ * ", s12 = " + inv.s12);
742
+ * @param {number} a the equatorial radius of the ellipsoid (meters).
743
+ * @param {number} f the flattening of the ellipsoid. Setting f = 0 gives
744
+ * a sphere (on which geodesics are great circles). Negative f gives a
745
+ * prolate ellipsoid.
746
+ * @throws an error if the parameters are illegal.
747
+ */
748
+ g.Geodesic = function(a, f) {
749
+ this.a = a;
750
+ this.f = f;
751
+ this._f1 = 1 - this.f;
752
+ this._e2 = this.f * (2 - this.f);
753
+ this._ep2 = this._e2 / m.sq(this._f1); // e2 / (1 - e2)
754
+ this._n = this.f / ( 2 - this.f);
755
+ this._b = this.a * this._f1;
756
+ // authalic radius squared
757
+ this._c2 = (m.sq(this.a) + m.sq(this._b) *
758
+ (this._e2 === 0 ? 1 :
759
+ (this._e2 > 0 ? m.atanh(Math.sqrt(this._e2)) :
760
+ Math.atan(Math.sqrt(-this._e2))) /
761
+ Math.sqrt(Math.abs(this._e2))))/2;
762
+ // The sig12 threshold for "really short". Using the auxiliary sphere
763
+ // solution with dnm computed at (bet1 + bet2) / 2, the relative error in
764
+ // the azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2.
765
+ // (Error measured for 1/100 < b/a < 100 and abs(f) >= 1/1000. For a given
766
+ // f and sig12, the max error occurs for lines near the pole. If the old
767
+ // rule for computing dnm = (dn1 + dn2)/2 is used, then the error increases
768
+ // by a factor of 2.) Setting this equal to epsilon gives sig12 = etol2.
769
+ // Here 0.1 is a safety factor (error decreased by 100) and max(0.001,
770
+ // abs(f)) stops etol2 getting too large in the nearly spherical case.
771
+ this._etol2 = 0.1 * tol2_ /
772
+ Math.sqrt( Math.max(0.001, Math.abs(this.f)) *
773
+ Math.min(1.0, 1 - this.f/2) / 2 );
774
+ if (!(isFinite(this.a) && this.a > 0))
775
+ throw new Error("Major radius is not positive");
776
+ if (!(isFinite(this._b) && this._b > 0))
777
+ throw new Error("Minor radius is not positive");
778
+ this._A3x = new Array(nA3x_);
779
+ this._C3x = new Array(nC3x_);
780
+ this._C4x = new Array(nC4x_);
781
+ this.A3coeff();
782
+ this.C3coeff();
783
+ this.C4coeff();
784
+ };
785
+
786
+ A3_coeff = [
787
+ // A3, coeff of eps^5, polynomial in n of order 0
788
+ -3, 128,
789
+ // A3, coeff of eps^4, polynomial in n of order 1
790
+ -2, -3, 64,
791
+ // A3, coeff of eps^3, polynomial in n of order 2
792
+ -1, -3, -1, 16,
793
+ // A3, coeff of eps^2, polynomial in n of order 2
794
+ +3, -1, -2, 8,
795
+ // A3, coeff of eps^1, polynomial in n of order 1
796
+ +1, -1, 2,
797
+ // A3, coeff of eps^0, polynomial in n of order 0
798
+ +1, 1
799
+ ];
800
+
801
+ // The scale factor A3 = mean value of (d/dsigma)I3
802
+ g.Geodesic.prototype.A3coeff = function() {
803
+ var o = 0, k = 0,
804
+ j, p;
805
+ for (j = nA3_ - 1; j >= 0; --j) { // coeff of eps^j
806
+ p = Math.min(nA3_ - j - 1, j); // order of polynomial in n
807
+ this._A3x[k++] = m.polyval(p, A3_coeff, o, this._n) /
808
+ A3_coeff[o + p + 1];
809
+ o += p + 2;
810
+ }
811
+ };
812
+
813
+ C3_coeff = [
814
+ // C3[1], coeff of eps^5, polynomial in n of order 0
815
+ +3, 128,
816
+ // C3[1], coeff of eps^4, polynomial in n of order 1
817
+ +2, 5, 128,
818
+ // C3[1], coeff of eps^3, polynomial in n of order 2
819
+ -1, 3, 3, 64,
820
+ // C3[1], coeff of eps^2, polynomial in n of order 2
821
+ -1, 0, 1, 8,
822
+ // C3[1], coeff of eps^1, polynomial in n of order 1
823
+ -1, 1, 4,
824
+ // C3[2], coeff of eps^5, polynomial in n of order 0
825
+ +5, 256,
826
+ // C3[2], coeff of eps^4, polynomial in n of order 1
827
+ +1, 3, 128,
828
+ // C3[2], coeff of eps^3, polynomial in n of order 2
829
+ -3, -2, 3, 64,
830
+ // C3[2], coeff of eps^2, polynomial in n of order 2
831
+ +1, -3, 2, 32,
832
+ // C3[3], coeff of eps^5, polynomial in n of order 0
833
+ +7, 512,
834
+ // C3[3], coeff of eps^4, polynomial in n of order 1
835
+ -10, 9, 384,
836
+ // C3[3], coeff of eps^3, polynomial in n of order 2
837
+ +5, -9, 5, 192,
838
+ // C3[4], coeff of eps^5, polynomial in n of order 0
839
+ +7, 512,
840
+ // C3[4], coeff of eps^4, polynomial in n of order 1
841
+ -14, 7, 512,
842
+ // C3[5], coeff of eps^5, polynomial in n of order 0
843
+ +21, 2560
844
+ ];
845
+
846
+ // The coefficients C3[l] in the Fourier expansion of B3
847
+ g.Geodesic.prototype.C3coeff = function() {
848
+ var o = 0, k = 0,
849
+ l, j, p;
850
+ for (l = 1; l < g.nC3_; ++l) { // l is index of C3[l]
851
+ for (j = g.nC3_ - 1; j >= l; --j) { // coeff of eps^j
852
+ p = Math.min(g.nC3_ - j - 1, j); // order of polynomial in n
853
+ this._C3x[k++] = m.polyval(p, C3_coeff, o, this._n) /
854
+ C3_coeff[o + p + 1];
855
+ o += p + 2;
856
+ }
857
+ }
858
+ };
859
+
860
+ C4_coeff = [
861
+ // C4[0], coeff of eps^5, polynomial in n of order 0
862
+ +97, 15015,
863
+ // C4[0], coeff of eps^4, polynomial in n of order 1
864
+ +1088, 156, 45045,
865
+ // C4[0], coeff of eps^3, polynomial in n of order 2
866
+ -224, -4784, 1573, 45045,
867
+ // C4[0], coeff of eps^2, polynomial in n of order 3
868
+ -10656, 14144, -4576, -858, 45045,
869
+ // C4[0], coeff of eps^1, polynomial in n of order 4
870
+ +64, 624, -4576, 6864, -3003, 15015,
871
+ // C4[0], coeff of eps^0, polynomial in n of order 5
872
+ +100, 208, 572, 3432, -12012, 30030, 45045,
873
+ // C4[1], coeff of eps^5, polynomial in n of order 0
874
+ +1, 9009,
875
+ // C4[1], coeff of eps^4, polynomial in n of order 1
876
+ -2944, 468, 135135,
877
+ // C4[1], coeff of eps^3, polynomial in n of order 2
878
+ +5792, 1040, -1287, 135135,
879
+ // C4[1], coeff of eps^2, polynomial in n of order 3
880
+ +5952, -11648, 9152, -2574, 135135,
881
+ // C4[1], coeff of eps^1, polynomial in n of order 4
882
+ -64, -624, 4576, -6864, 3003, 135135,
883
+ // C4[2], coeff of eps^5, polynomial in n of order 0
884
+ +8, 10725,
885
+ // C4[2], coeff of eps^4, polynomial in n of order 1
886
+ +1856, -936, 225225,
887
+ // C4[2], coeff of eps^3, polynomial in n of order 2
888
+ -8448, 4992, -1144, 225225,
889
+ // C4[2], coeff of eps^2, polynomial in n of order 3
890
+ -1440, 4160, -4576, 1716, 225225,
891
+ // C4[3], coeff of eps^5, polynomial in n of order 0
892
+ -136, 63063,
893
+ // C4[3], coeff of eps^4, polynomial in n of order 1
894
+ +1024, -208, 105105,
895
+ // C4[3], coeff of eps^3, polynomial in n of order 2
896
+ +3584, -3328, 1144, 315315,
897
+ // C4[4], coeff of eps^5, polynomial in n of order 0
898
+ -128, 135135,
899
+ // C4[4], coeff of eps^4, polynomial in n of order 1
900
+ -2560, 832, 405405,
901
+ // C4[5], coeff of eps^5, polynomial in n of order 0
902
+ +128, 99099
903
+ ];
904
+
905
+ g.Geodesic.prototype.C4coeff = function() {
906
+ var o = 0, k = 0,
907
+ l, j, p;
908
+ for (l = 0; l < g.nC4_; ++l) { // l is index of C4[l]
909
+ for (j = g.nC4_ - 1; j >= l; --j) { // coeff of eps^j
910
+ p = g.nC4_ - j - 1; // order of polynomial in n
911
+ this._C4x[k++] = m.polyval(p, C4_coeff, o, this._n) /
912
+ C4_coeff[o + p + 1];
913
+ o += p + 2;
914
+ }
915
+ }
916
+ };
917
+
918
+ g.Geodesic.prototype.A3f = function(eps) {
919
+ // Evaluate A3
920
+ return m.polyval(nA3x_ - 1, this._A3x, 0, eps);
921
+ };
922
+
923
+ g.Geodesic.prototype.C3f = function(eps, c) {
924
+ // Evaluate C3 coeffs
925
+ // Elements c[1] thru c[nC3_ - 1] are set
926
+ var mult = 1,
927
+ o = 0,
928
+ l, p;
929
+ for (l = 1; l < g.nC3_; ++l) { // l is index of C3[l]
930
+ p = g.nC3_ - l - 1; // order of polynomial in eps
931
+ mult *= eps;
932
+ c[l] = mult * m.polyval(p, this._C3x, o, eps);
933
+ o += p + 1;
934
+ }
935
+ };
936
+
937
+ g.Geodesic.prototype.C4f = function(eps, c) {
938
+ // Evaluate C4 coeffs
939
+ // Elements c[0] thru c[g.nC4_ - 1] are set
940
+ var mult = 1,
941
+ o = 0,
942
+ l, p;
943
+ for (l = 0; l < g.nC4_; ++l) { // l is index of C4[l]
944
+ p = g.nC4_ - l - 1; // order of polynomial in eps
945
+ c[l] = mult * m.polyval(p, this._C4x, o, eps);
946
+ o += p + 1;
947
+ mult *= eps;
948
+ }
949
+ };
950
+
951
+ // return s12b, m12b, m0, M12, M21
952
+ g.Geodesic.prototype.Lengths = function(eps, sig12,
953
+ ssig1, csig1, dn1, ssig2, csig2, dn2,
954
+ cbet1, cbet2, outmask,
955
+ C1a, C2a) {
956
+ // Return m12b = (reduced length)/_b; also calculate s12b =
957
+ // distance/_b, and m0 = coefficient of secular term in
958
+ // expression for reduced length.
959
+ outmask &= g.OUT_MASK;
960
+ var vals = {},
961
+ m0x = 0, J12 = 0, A1 = 0, A2 = 0,
962
+ B1, B2, l, csig12, t;
963
+ if (outmask & (g.DISTANCE | g.REDUCEDLENGTH | g.GEODESICSCALE)) {
964
+ A1 = g.A1m1f(eps);
965
+ g.C1f(eps, C1a);
966
+ if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
967
+ A2 = g.A2m1f(eps);
968
+ g.C2f(eps, C2a);
969
+ m0x = A1 - A2;
970
+ A2 = 1 + A2;
971
+ }
972
+ A1 = 1 + A1;
973
+ }
974
+ if (outmask & g.DISTANCE) {
975
+ B1 = g.SinCosSeries(true, ssig2, csig2, C1a) -
976
+ g.SinCosSeries(true, ssig1, csig1, C1a);
977
+ // Missing a factor of _b
978
+ vals.s12b = A1 * (sig12 + B1);
979
+ if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
980
+ B2 = g.SinCosSeries(true, ssig2, csig2, C2a) -
981
+ g.SinCosSeries(true, ssig1, csig1, C2a);
982
+ J12 = m0x * sig12 + (A1 * B1 - A2 * B2);
983
+ }
984
+ } else if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
985
+ // Assume here that nC1_ >= nC2_
986
+ for (l = 1; l <= g.nC2_; ++l)
987
+ C2a[l] = A1 * C1a[l] - A2 * C2a[l];
988
+ J12 = m0x * sig12 + (g.SinCosSeries(true, ssig2, csig2, C2a) -
989
+ g.SinCosSeries(true, ssig1, csig1, C2a));
990
+ }
991
+ if (outmask & g.REDUCEDLENGTH) {
992
+ vals.m0 = m0x;
993
+ // Missing a factor of _b.
994
+ // Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure
995
+ // accurate cancellation in the case of coincident points.
996
+ vals.m12b = dn2 * (csig1 * ssig2) - dn1 * (ssig1 * csig2) -
997
+ csig1 * csig2 * J12;
998
+ }
999
+ if (outmask & g.GEODESICSCALE) {
1000
+ csig12 = csig1 * csig2 + ssig1 * ssig2;
1001
+ t = this._ep2 * (cbet1 - cbet2) * (cbet1 + cbet2) / (dn1 + dn2);
1002
+ vals.M12 = csig12 + (t * ssig2 - csig2 * J12) * ssig1 / dn1;
1003
+ vals.M21 = csig12 - (t * ssig1 - csig1 * J12) * ssig2 / dn2;
1004
+ }
1005
+ return vals;
1006
+ };
1007
+
1008
+ // return sig12, salp1, calp1, salp2, calp2, dnm
1009
+ g.Geodesic.prototype.InverseStart = function(sbet1, cbet1, dn1,
1010
+ sbet2, cbet2, dn2,
1011
+ lam12, slam12, clam12,
1012
+ C1a, C2a) {
1013
+ // Return a starting point for Newton's method in salp1 and calp1
1014
+ // (function value is -1). If Newton's method doesn't need to be
1015
+ // used, return also salp2 and calp2 and function value is sig12.
1016
+ // salp2, calp2 only updated if return val >= 0.
1017
+ var vals = {},
1018
+ // bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0]
1019
+ sbet12 = sbet2 * cbet1 - cbet2 * sbet1,
1020
+ cbet12 = cbet2 * cbet1 + sbet2 * sbet1,
1021
+ sbet12a, shortline, omg12, sbetm2, somg12, comg12, t, ssig12, csig12,
1022
+ x, y, lamscale, betscale, k2, eps, cbet12a, bet12a, m12b, m0, nvals,
1023
+ k, omg12a, lam12x;
1024
+ vals.sig12 = -1; // Return value
1025
+ // Volatile declaration needed to fix inverse cases
1026
+ // 88.202499451857 0 -88.202499451857 179.981022032992859592
1027
+ // 89.262080389218 0 -89.262080389218 179.992207982775375662
1028
+ // 89.333123580033 0 -89.333123580032997687 179.99295812360148422
1029
+ // which otherwise fail with g++ 4.4.4 x86 -O3
1030
+ sbet12a = sbet2 * cbet1;
1031
+ sbet12a += cbet2 * sbet1;
1032
+
1033
+ shortline = cbet12 >= 0 && sbet12 < 0.5 && cbet2 * lam12 < 0.5;
1034
+ if (shortline) {
1035
+ sbetm2 = m.sq(sbet1 + sbet2);
1036
+ // sin((bet1+bet2)/2)^2
1037
+ // = (sbet1 + sbet2)^2 / ((sbet1 + sbet2)^2 + (cbet1 + cbet2)^2)
1038
+ sbetm2 /= sbetm2 + m.sq(cbet1 + cbet2);
1039
+ vals.dnm = Math.sqrt(1 + this._ep2 * sbetm2);
1040
+ omg12 = lam12 / (this._f1 * vals.dnm);
1041
+ somg12 = Math.sin(omg12); comg12 = Math.cos(omg12);
1042
+ } else {
1043
+ somg12 = slam12; comg12 = clam12;
1044
+ }
1045
+
1046
+ vals.salp1 = cbet2 * somg12;
1047
+ vals.calp1 = comg12 >= 0 ?
1048
+ sbet12 + cbet2 * sbet1 * m.sq(somg12) / (1 + comg12) :
1049
+ sbet12a - cbet2 * sbet1 * m.sq(somg12) / (1 - comg12);
1050
+
1051
+ ssig12 = m.hypot(vals.salp1, vals.calp1);
1052
+ csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12;
1053
+ if (shortline && ssig12 < this._etol2) {
1054
+ // really short lines
1055
+ vals.salp2 = cbet1 * somg12;
1056
+ vals.calp2 = sbet12 - cbet1 * sbet2 *
1057
+ (comg12 >= 0 ? m.sq(somg12) / (1 + comg12) : 1 - comg12);
1058
+ // norm(vals.salp2, vals.calp2);
1059
+ t = m.hypot(vals.salp2, vals.calp2); vals.salp2 /= t; vals.calp2 /= t;
1060
+ // Set return value
1061
+ vals.sig12 = Math.atan2(ssig12, csig12);
1062
+ } else if (Math.abs(this._n) > 0.1 || // Skip astroid calc if too eccentric
1063
+ csig12 >= 0 ||
1064
+ ssig12 >= 6 * Math.abs(this._n) * Math.PI * m.sq(cbet1)) {
1065
+ // Nothing to do, zeroth order spherical approximation is OK
1066
+ } else {
1067
+ // Scale lam12 and bet2 to x, y coordinate system where antipodal
1068
+ // point is at origin and singular point is at y = 0, x = -1.
1069
+ lam12x = Math.atan2(-slam12, -clam12); // lam12 - pi
1070
+ if (this.f >= 0) { // In fact f == 0 does not get here
1071
+ // x = dlong, y = dlat
1072
+ k2 = m.sq(sbet1) * this._ep2;
1073
+ eps = k2 / (2 * (1 + Math.sqrt(1 + k2)) + k2);
1074
+ lamscale = this.f * cbet1 * this.A3f(eps) * Math.PI;
1075
+ betscale = lamscale * cbet1;
1076
+
1077
+ x = lam12x / lamscale;
1078
+ y = sbet12a / betscale;
1079
+ } else { // f < 0
1080
+ // x = dlat, y = dlong
1081
+ cbet12a = cbet2 * cbet1 - sbet2 * sbet1;
1082
+ bet12a = Math.atan2(sbet12a, cbet12a);
1083
+ // In the case of lon12 = 180, this repeats a calculation made
1084
+ // in Inverse.
1085
+ nvals = this.Lengths(this._n, Math.PI + bet12a,
1086
+ sbet1, -cbet1, dn1, sbet2, cbet2, dn2,
1087
+ cbet1, cbet2, g.REDUCEDLENGTH, C1a, C2a);
1088
+ m12b = nvals.m12b; m0 = nvals.m0;
1089
+ x = -1 + m12b / (cbet1 * cbet2 * m0 * Math.PI);
1090
+ betscale = x < -0.01 ? sbet12a / x :
1091
+ -this.f * m.sq(cbet1) * Math.PI;
1092
+ lamscale = betscale / cbet1;
1093
+ y = lam12 / lamscale;
1094
+ }
1095
+
1096
+ if (y > -tol1_ && x > -1 - xthresh_) {
1097
+ // strip near cut
1098
+ if (this.f >= 0) {
1099
+ vals.salp1 = Math.min(1, -x);
1100
+ vals.calp1 = - Math.sqrt(1 - m.sq(vals.salp1));
1101
+ } else {
1102
+ vals.calp1 = Math.max(x > -tol1_ ? 0 : -1, x);
1103
+ vals.salp1 = Math.sqrt(1 - m.sq(vals.calp1));
1104
+ }
1105
+ } else {
1106
+ // Estimate alp1, by solving the astroid problem.
1107
+ //
1108
+ // Could estimate alpha1 = theta + pi/2, directly, i.e.,
1109
+ // calp1 = y/k; salp1 = -x/(1+k); for f >= 0
1110
+ // calp1 = x/(1+k); salp1 = -y/k; for f < 0 (need to check)
1111
+ //
1112
+ // However, it's better to estimate omg12 from astroid and use
1113
+ // spherical formula to compute alp1. This reduces the mean number of
1114
+ // Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12
1115
+ // (min 0 max 5). The changes in the number of iterations are as
1116
+ // follows:
1117
+ //
1118
+ // change percent
1119
+ // 1 5
1120
+ // 0 78
1121
+ // -1 16
1122
+ // -2 0.6
1123
+ // -3 0.04
1124
+ // -4 0.002
1125
+ //
1126
+ // The histogram of iterations is (m = number of iterations estimating
1127
+ // alp1 directly, n = number of iterations estimating via omg12, total
1128
+ // number of trials = 148605):
1129
+ //
1130
+ // iter m n
1131
+ // 0 148 186
1132
+ // 1 13046 13845
1133
+ // 2 93315 102225
1134
+ // 3 36189 32341
1135
+ // 4 5396 7
1136
+ // 5 455 1
1137
+ // 6 56 0
1138
+ //
1139
+ // Because omg12 is near pi, estimate work with omg12a = pi - omg12
1140
+ k = astroid(x, y);
1141
+ omg12a = lamscale * ( this.f >= 0 ? -x * k/(1 + k) : -y * (1 + k)/k );
1142
+ somg12 = Math.sin(omg12a); comg12 = -Math.cos(omg12a);
1143
+ // Update spherical estimate of alp1 using omg12 instead of
1144
+ // lam12
1145
+ vals.salp1 = cbet2 * somg12;
1146
+ vals.calp1 = sbet12a -
1147
+ cbet2 * sbet1 * m.sq(somg12) / (1 - comg12);
1148
+ }
1149
+ }
1150
+ // Sanity check on starting guess. Backwards check allows NaN through.
1151
+ if (!(vals.salp1 <= 0.0)) {
1152
+ // norm(vals.salp1, vals.calp1);
1153
+ t = m.hypot(vals.salp1, vals.calp1); vals.salp1 /= t; vals.calp1 /= t;
1154
+ } else {
1155
+ vals.salp1 = 1; vals.calp1 = 0;
1156
+ }
1157
+ return vals;
1158
+ };
1159
+
1160
+ // return lam12, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2, eps,
1161
+ // domg12, dlam12,
1162
+ g.Geodesic.prototype.Lambda12 = function(sbet1, cbet1, dn1, sbet2, cbet2, dn2,
1163
+ salp1, calp1, slam120, clam120,
1164
+ diffp, C1a, C2a, C3a) {
1165
+ var vals = {},
1166
+ t, salp0, calp0,
1167
+ somg1, comg1, somg2, comg2, B312, eta, k2, nvals;
1168
+ if (sbet1 === 0 && calp1 === 0)
1169
+ // Break degeneracy of equatorial line. This case has already been
1170
+ // handled.
1171
+ calp1 = -g.tiny_;
1172
+
1173
+ // sin(alp1) * cos(bet1) = sin(alp0)
1174
+ salp0 = salp1 * cbet1;
1175
+ calp0 = m.hypot(calp1, salp1 * sbet1); // calp0 > 0
1176
+
1177
+ // tan(bet1) = tan(sig1) * cos(alp1)
1178
+ // tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1)
1179
+ vals.ssig1 = sbet1; somg1 = salp0 * sbet1;
1180
+ vals.csig1 = comg1 = calp1 * cbet1;
1181
+ // norm(vals.ssig1, vals.csig1);
1182
+ t = m.hypot(vals.ssig1, vals.csig1); vals.ssig1 /= t; vals.csig1 /= t;
1183
+ // norm(somg1, comg1); -- don't need to normalize!
1184
+
1185
+ // Enforce symmetries in the case abs(bet2) = -bet1. Need to be careful
1186
+ // about this case, since this can yield singularities in the Newton
1187
+ // iteration.
1188
+ // sin(alp2) * cos(bet2) = sin(alp0)
1189
+ vals.salp2 = cbet2 !== cbet1 ? salp0 / cbet2 : salp1;
1190
+ // calp2 = sqrt(1 - sq(salp2))
1191
+ // = sqrt(sq(calp0) - sq(sbet2)) / cbet2
1192
+ // and subst for calp0 and rearrange to give (choose positive sqrt
1193
+ // to give alp2 in [0, pi/2]).
1194
+ vals.calp2 = cbet2 !== cbet1 || Math.abs(sbet2) !== -sbet1 ?
1195
+ Math.sqrt(m.sq(calp1 * cbet1) + (cbet1 < -sbet1 ?
1196
+ (cbet2 - cbet1) * (cbet1 + cbet2) :
1197
+ (sbet1 - sbet2) * (sbet1 + sbet2))) /
1198
+ cbet2 : Math.abs(calp1);
1199
+ // tan(bet2) = tan(sig2) * cos(alp2)
1200
+ // tan(omg2) = sin(alp0) * tan(sig2).
1201
+ vals.ssig2 = sbet2; somg2 = salp0 * sbet2;
1202
+ vals.csig2 = comg2 = vals.calp2 * cbet2;
1203
+ // norm(vals.ssig2, vals.csig2);
1204
+ t = m.hypot(vals.ssig2, vals.csig2); vals.ssig2 /= t; vals.csig2 /= t;
1205
+ // norm(somg2, comg2); -- don't need to normalize!
1206
+
1207
+ // sig12 = sig2 - sig1, limit to [0, pi]
1208
+ vals.sig12 = Math.atan2(Math.max(0, vals.csig1 * vals.ssig2 -
1209
+ vals.ssig1 * vals.csig2),
1210
+ vals.csig1 * vals.csig2 + vals.ssig1 * vals.ssig2);
1211
+
1212
+ // omg12 = omg2 - omg1, limit to [0, pi]
1213
+ vals.somg12 = Math.max(0, comg1 * somg2 - somg1 * comg2);
1214
+ vals.comg12 = comg1 * comg2 + somg1 * somg2;
1215
+ // eta = omg12 - lam120
1216
+ eta = Math.atan2(vals.somg12 * clam120 - vals.comg12 * slam120,
1217
+ vals.comg12 * clam120 + vals.somg12 * slam120);
1218
+ k2 = m.sq(calp0) * this._ep2;
1219
+ vals.eps = k2 / (2 * (1 + Math.sqrt(1 + k2)) + k2);
1220
+ this.C3f(vals.eps, C3a);
1221
+ B312 = (g.SinCosSeries(true, vals.ssig2, vals.csig2, C3a) -
1222
+ g.SinCosSeries(true, vals.ssig1, vals.csig1, C3a));
1223
+ vals.lam12 = eta - this.f * this.A3f(vals.eps) *
1224
+ salp0 * (vals.sig12 + B312);
1225
+ if (diffp) {
1226
+ if (vals.calp2 === 0)
1227
+ vals.dlam12 = - 2 * this._f1 * dn1 / sbet1;
1228
+ else {
1229
+ nvals = this.Lengths(vals.eps, vals.sig12,
1230
+ vals.ssig1, vals.csig1, dn1,
1231
+ vals.ssig2, vals.csig2, dn2,
1232
+ cbet1, cbet2, g.REDUCEDLENGTH, C1a, C2a);
1233
+ vals.dlam12 = nvals.m12b;
1234
+ vals.dlam12 *= this._f1 / (vals.calp2 * cbet2);
1235
+ }
1236
+ }
1237
+ return vals;
1238
+ };
1239
+
1240
+ /**
1241
+ * @summary Solve the inverse geodesic problem.
1242
+ * @param {number} lat1 the latitude of the first point in degrees.
1243
+ * @param {number} lon1 the longitude of the first point in degrees.
1244
+ * @param {number} lat2 the latitude of the second point in degrees.
1245
+ * @param {number} lon2 the longitude of the second point in degrees.
1246
+ * @param {bitmask} [outmask = STANDARD] which results to include.
1247
+ * @returns {object} the requested results
1248
+ * @description The lat1, lon1, lat2, lon2, and a12 fields of the result are
1249
+ * always set. For details on the outmask parameter, see {@tutorial
1250
+ * 2-interface}, "The outmask and caps parameters".
1251
+ */
1252
+ g.Geodesic.prototype.Inverse = function(lat1, lon1, lat2, lon2, outmask) {
1253
+ var r, vals;
1254
+ if (!outmask) outmask = g.STANDARD;
1255
+ if (outmask === g.LONG_UNROLL) outmask |= g.STANDARD;
1256
+ outmask &= g.OUT_MASK;
1257
+ r = this.InverseInt(lat1, lon1, lat2, lon2, outmask);
1258
+ vals = r.vals;
1259
+ if (outmask & g.AZIMUTH) {
1260
+ vals.azi1 = m.atan2d(r.salp1, r.calp1);
1261
+ vals.azi2 = m.atan2d(r.salp2, r.calp2);
1262
+ }
1263
+ return vals;
1264
+ };
1265
+
1266
+ g.Geodesic.prototype.InverseInt = function(lat1, lon1, lat2, lon2, outmask) {
1267
+ var vals = {},
1268
+ lon12, lon12s, lonsign, t, swapp, latsign,
1269
+ sbet1, cbet1, sbet2, cbet2, s12x, m12x,
1270
+ dn1, dn2, lam12, slam12, clam12,
1271
+ sig12, calp1, salp1, calp2, salp2, C1a, C2a, C3a, meridian, nvals,
1272
+ ssig1, csig1, ssig2, csig2, eps, omg12, dnm,
1273
+ numit, salp1a, calp1a, salp1b, calp1b,
1274
+ tripn, tripb, v, dv, dalp1, sdalp1, cdalp1, nsalp1,
1275
+ lengthmask, salp0, calp0, alp12, k2, A4, C4a, B41, B42,
1276
+ somg12, comg12, domg12, dbet1, dbet2, salp12, calp12;
1277
+ // Compute longitude difference (AngDiff does this carefully). Result is
1278
+ // in [-180, 180] but -180 is only for west-going geodesics. 180 is for
1279
+ // east-going and meridional geodesics.
1280
+ vals.lat1 = lat1 = m.LatFix(lat1); vals.lat2 = lat2 = m.LatFix(lat2);
1281
+ // If really close to the equator, treat as on equator.
1282
+ lat1 = m.AngRound(lat1);
1283
+ lat2 = m.AngRound(lat2);
1284
+ lon12 = m.AngDiff(lon1, lon2); lon12s = lon12.t; lon12 = lon12.s;
1285
+ if (outmask & g.LONG_UNROLL) {
1286
+ vals.lon1 = lon1; vals.lon2 = (lon1 + lon12) + lon12s;
1287
+ } else {
1288
+ vals.lon1 = m.AngNormalize(lon1); vals.lon2 = m.AngNormalize(lon2);
1289
+ }
1290
+ // Make longitude difference positive.
1291
+ lonsign = lon12 >= 0 ? 1 : -1;
1292
+ // If very close to being on the same half-meridian, then make it so.
1293
+ lon12 = lonsign * m.AngRound(lon12);
1294
+ lon12s = m.AngRound((180 - lon12) - lonsign * lon12s);
1295
+ lam12 = lon12 * m.degree;
1296
+ t = m.sincosd(lon12 > 90 ? lon12s : lon12);
1297
+ slam12 = t.s; clam12 = (lon12 > 90 ? -1 : 1) * t.c;
1298
+
1299
+ // Swap points so that point with higher (abs) latitude is point 1
1300
+ // If one latitude is a nan, then it becomes lat1.
1301
+ swapp = Math.abs(lat1) < Math.abs(lat2) ? -1 : 1;
1302
+ if (swapp < 0) {
1303
+ lonsign *= -1;
1304
+ t = lat1;
1305
+ lat1 = lat2;
1306
+ lat2 = t;
1307
+ // swap(lat1, lat2);
1308
+ }
1309
+ // Make lat1 <= 0
1310
+ latsign = lat1 < 0 ? 1 : -1;
1311
+ lat1 *= latsign;
1312
+ lat2 *= latsign;
1313
+ // Now we have
1314
+ //
1315
+ // 0 <= lon12 <= 180
1316
+ // -90 <= lat1 <= 0
1317
+ // lat1 <= lat2 <= -lat1
1318
+ //
1319
+ // longsign, swapp, latsign register the transformation to bring the
1320
+ // coordinates to this canonical form. In all cases, 1 means no change was
1321
+ // made. We make these transformations so that there are few cases to
1322
+ // check, e.g., on verifying quadrants in atan2. In addition, this
1323
+ // enforces some symmetries in the results returned.
1324
+
1325
+ t = m.sincosd(lat1); sbet1 = this._f1 * t.s; cbet1 = t.c;
1326
+ // norm(sbet1, cbet1);
1327
+ t = m.hypot(sbet1, cbet1); sbet1 /= t; cbet1 /= t;
1328
+ // Ensure cbet1 = +epsilon at poles
1329
+ cbet1 = Math.max(g.tiny_, cbet1);
1330
+
1331
+ t = m.sincosd(lat2); sbet2 = this._f1 * t.s; cbet2 = t.c;
1332
+ // norm(sbet2, cbet2);
1333
+ t = m.hypot(sbet2, cbet2); sbet2 /= t; cbet2 /= t;
1334
+ // Ensure cbet2 = +epsilon at poles
1335
+ cbet2 = Math.max(g.tiny_, cbet2);
1336
+
1337
+ // If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the
1338
+ // |bet1| - |bet2|. Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is
1339
+ // a better measure. This logic is used in assigning calp2 in Lambda12.
1340
+ // Sometimes these quantities vanish and in that case we force bet2 = +/-
1341
+ // bet1 exactly. An example where is is necessary is the inverse problem
1342
+ // 48.522876735459 0 -48.52287673545898293 179.599720456223079643
1343
+ // which failed with Visual Studio 10 (Release and Debug)
1344
+
1345
+ if (cbet1 < -sbet1) {
1346
+ if (cbet2 === cbet1)
1347
+ sbet2 = sbet2 < 0 ? sbet1 : -sbet1;
1348
+ } else {
1349
+ if (Math.abs(sbet2) === -sbet1)
1350
+ cbet2 = cbet1;
1351
+ }
1352
+
1353
+ dn1 = Math.sqrt(1 + this._ep2 * m.sq(sbet1));
1354
+ dn2 = Math.sqrt(1 + this._ep2 * m.sq(sbet2));
1355
+
1356
+ // index zero elements of these arrays are unused
1357
+ C1a = new Array(g.nC1_ + 1);
1358
+ C2a = new Array(g.nC2_ + 1);
1359
+ C3a = new Array(g.nC3_);
1360
+
1361
+ meridian = lat1 === -90 || slam12 === 0;
1362
+ if (meridian) {
1363
+
1364
+ // Endpoints are on a single full meridian, so the geodesic might
1365
+ // lie on a meridian.
1366
+
1367
+ calp1 = clam12; salp1 = slam12; // Head to the target longitude
1368
+ calp2 = 1; salp2 = 0; // At the target we're heading north
1369
+
1370
+ // tan(bet) = tan(sig) * cos(alp)
1371
+ ssig1 = sbet1; csig1 = calp1 * cbet1;
1372
+ ssig2 = sbet2; csig2 = calp2 * cbet2;
1373
+
1374
+ // sig12 = sig2 - sig1
1375
+ sig12 = Math.atan2(Math.max(0, csig1 * ssig2 - ssig1 * csig2),
1376
+ csig1 * csig2 + ssig1 * ssig2);
1377
+ nvals = this.Lengths(this._n, sig12,
1378
+ ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2,
1379
+ outmask | g.DISTANCE | g.REDUCEDLENGTH,
1380
+ C1a, C2a);
1381
+ s12x = nvals.s12b;
1382
+ m12x = nvals.m12b;
1383
+ // Ignore m0
1384
+ if ((outmask & g.GEODESICSCALE) !== 0) {
1385
+ vals.M12 = nvals.M12;
1386
+ vals.M21 = nvals.M21;
1387
+ }
1388
+ // Add the check for sig12 since zero length geodesics might yield
1389
+ // m12 < 0. Test case was
1390
+ //
1391
+ // echo 20.001 0 20.001 0 | GeodSolve -i
1392
+ //
1393
+ // In fact, we will have sig12 > pi/2 for meridional geodesic
1394
+ // which is not a shortest path.
1395
+ if (sig12 < 1 || m12x >= 0) {
1396
+ // Need at least 2, to handle 90 0 90 180
1397
+ if (sig12 < 3 * g.tiny_)
1398
+ sig12 = m12x = s12x = 0;
1399
+ m12x *= this._b;
1400
+ s12x *= this._b;
1401
+ vals.a12 = sig12 / m.degree;
1402
+ } else
1403
+ // m12 < 0, i.e., prolate and too close to anti-podal
1404
+ meridian = false;
1405
+ }
1406
+
1407
+ somg12 = 2;
1408
+ if (!meridian &&
1409
+ sbet1 === 0 && // and sbet2 == 0
1410
+ (this.f <= 0 || lon12s >= this.f * 180)) {
1411
+
1412
+ // Geodesic runs along equator
1413
+ calp1 = calp2 = 0; salp1 = salp2 = 1;
1414
+ s12x = this.a * lam12;
1415
+ sig12 = omg12 = lam12 / this._f1;
1416
+ m12x = this._b * Math.sin(sig12);
1417
+ if (outmask & g.GEODESICSCALE)
1418
+ vals.M12 = vals.M21 = Math.cos(sig12);
1419
+ vals.a12 = lon12 / this._f1;
1420
+
1421
+ } else if (!meridian) {
1422
+
1423
+ // Now point1 and point2 belong within a hemisphere bounded by a
1424
+ // meridian and geodesic is neither meridional or equatorial.
1425
+
1426
+ // Figure a starting point for Newton's method
1427
+ nvals = this.InverseStart(sbet1, cbet1, dn1, sbet2, cbet2, dn2,
1428
+ lam12, slam12, clam12, C1a, C2a);
1429
+ sig12 = nvals.sig12;
1430
+ salp1 = nvals.salp1;
1431
+ calp1 = nvals.calp1;
1432
+
1433
+ if (sig12 >= 0) {
1434
+ salp2 = nvals.salp2;
1435
+ calp2 = nvals.calp2;
1436
+ // Short lines (InverseStart sets salp2, calp2, dnm)
1437
+
1438
+ dnm = nvals.dnm;
1439
+ s12x = sig12 * this._b * dnm;
1440
+ m12x = m.sq(dnm) * this._b * Math.sin(sig12 / dnm);
1441
+ if (outmask & g.GEODESICSCALE)
1442
+ vals.M12 = vals.M21 = Math.cos(sig12 / dnm);
1443
+ vals.a12 = sig12 / m.degree;
1444
+ omg12 = lam12 / (this._f1 * dnm);
1445
+ } else {
1446
+
1447
+ // Newton's method. This is a straightforward solution of f(alp1) =
1448
+ // lambda12(alp1) - lam12 = 0 with one wrinkle. f(alp) has exactly one
1449
+ // root in the interval (0, pi) and its derivative is positive at the
1450
+ // root. Thus f(alp) is positive for alp > alp1 and negative for alp <
1451
+ // alp1. During the course of the iteration, a range (alp1a, alp1b) is
1452
+ // maintained which brackets the root and with each evaluation of
1453
+ // f(alp) the range is shrunk if possible. Newton's method is
1454
+ // restarted whenever the derivative of f is negative (because the new
1455
+ // value of alp1 is then further from the solution) or if the new
1456
+ // estimate of alp1 lies outside (0,pi); in this case, the new starting
1457
+ // guess is taken to be (alp1a + alp1b) / 2.
1458
+ numit = 0;
1459
+ // Bracketing range
1460
+ salp1a = g.tiny_; calp1a = 1; salp1b = g.tiny_; calp1b = -1;
1461
+ for (tripn = false, tripb = false; numit < maxit2_; ++numit) {
1462
+ // the WGS84 test set: mean = 1.47, sd = 1.25, max = 16
1463
+ // WGS84 and random input: mean = 2.85, sd = 0.60
1464
+ nvals = this.Lambda12(sbet1, cbet1, dn1, sbet2, cbet2, dn2,
1465
+ salp1, calp1, slam12, clam12, numit < maxit1_,
1466
+ C1a, C2a, C3a);
1467
+ v = nvals.lam12;
1468
+ salp2 = nvals.salp2;
1469
+ calp2 = nvals.calp2;
1470
+ sig12 = nvals.sig12;
1471
+ ssig1 = nvals.ssig1;
1472
+ csig1 = nvals.csig1;
1473
+ ssig2 = nvals.ssig2;
1474
+ csig2 = nvals.csig2;
1475
+ eps = nvals.eps;
1476
+ somg12 = nvals.somg12;
1477
+ comg12 = nvals.comg12;
1478
+ dv = nvals.dlam12;
1479
+
1480
+ // 2 * tol0 is approximately 1 ulp for a number in [0, pi].
1481
+ // Reversed test to allow escape with NaNs
1482
+ if (tripb || !(Math.abs(v) >= (tripn ? 8 : 1) * tol0_))
1483
+ break;
1484
+ // Update bracketing values
1485
+ if (v > 0 && (numit < maxit1_ || calp1/salp1 > calp1b/salp1b)) {
1486
+ salp1b = salp1; calp1b = calp1;
1487
+ } else if (v < 0 &&
1488
+ (numit < maxit1_ || calp1/salp1 < calp1a/salp1a)) {
1489
+ salp1a = salp1; calp1a = calp1;
1490
+ }
1491
+ if (numit < maxit1_ && dv > 0) {
1492
+ dalp1 = -v/dv;
1493
+ sdalp1 = Math.sin(dalp1); cdalp1 = Math.cos(dalp1);
1494
+ nsalp1 = salp1 * cdalp1 + calp1 * sdalp1;
1495
+ if (nsalp1 > 0 && Math.abs(dalp1) < Math.PI) {
1496
+ calp1 = calp1 * cdalp1 - salp1 * sdalp1;
1497
+ salp1 = nsalp1;
1498
+ // norm(salp1, calp1);
1499
+ t = m.hypot(salp1, calp1); salp1 /= t; calp1 /= t;
1500
+ // In some regimes we don't get quadratic convergence because
1501
+ // slope -> 0. So use convergence conditions based on epsilon
1502
+ // instead of sqrt(epsilon).
1503
+ tripn = Math.abs(v) <= 16 * tol0_;
1504
+ continue;
1505
+ }
1506
+ }
1507
+ // Either dv was not postive or updated value was outside legal
1508
+ // range. Use the midpoint of the bracket as the next estimate.
1509
+ // This mechanism is not needed for the WGS84 ellipsoid, but it does
1510
+ // catch problems with more eccentric ellipsoids. Its efficacy is
1511
+ // such for the WGS84 test set with the starting guess set to alp1 =
1512
+ // 90deg:
1513
+ // the WGS84 test set: mean = 5.21, sd = 3.93, max = 24
1514
+ // WGS84 and random input: mean = 4.74, sd = 0.99
1515
+ salp1 = (salp1a + salp1b)/2;
1516
+ calp1 = (calp1a + calp1b)/2;
1517
+ // norm(salp1, calp1);
1518
+ t = m.hypot(salp1, calp1); salp1 /= t; calp1 /= t;
1519
+ tripn = false;
1520
+ tripb = (Math.abs(salp1a - salp1) + (calp1a - calp1) < tolb_ ||
1521
+ Math.abs(salp1 - salp1b) + (calp1 - calp1b) < tolb_);
1522
+ }
1523
+ lengthmask = outmask |
1524
+ (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE) ?
1525
+ g.DISTANCE : g.NONE);
1526
+ nvals = this.Lengths(eps, sig12,
1527
+ ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2,
1528
+ lengthmask, C1a, C2a);
1529
+ s12x = nvals.s12b;
1530
+ m12x = nvals.m12b;
1531
+ // Ignore m0
1532
+ if ((outmask & g.GEODESICSCALE) !== 0) {
1533
+ vals.M12 = nvals.M12;
1534
+ vals.M21 = nvals.M21;
1535
+ }
1536
+ m12x *= this._b;
1537
+ s12x *= this._b;
1538
+ vals.a12 = sig12 / m.degree;
1539
+ }
1540
+ }
1541
+
1542
+ if (outmask & g.DISTANCE)
1543
+ vals.s12 = 0 + s12x; // Convert -0 to 0
1544
+
1545
+ if (outmask & g.REDUCEDLENGTH)
1546
+ vals.m12 = 0 + m12x; // Convert -0 to 0
1547
+
1548
+ if (outmask & g.AREA) {
1549
+ // From Lambda12: sin(alp1) * cos(bet1) = sin(alp0)
1550
+ salp0 = salp1 * cbet1;
1551
+ calp0 = m.hypot(calp1, salp1 * sbet1); // calp0 > 0
1552
+ if (calp0 !== 0 && salp0 !== 0) {
1553
+ // From Lambda12: tan(bet) = tan(sig) * cos(alp)
1554
+ ssig1 = sbet1; csig1 = calp1 * cbet1;
1555
+ ssig2 = sbet2; csig2 = calp2 * cbet2;
1556
+ k2 = m.sq(calp0) * this._ep2;
1557
+ eps = k2 / (2 * (1 + Math.sqrt(1 + k2)) + k2);
1558
+ // Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0).
1559
+ A4 = m.sq(this.a) * calp0 * salp0 * this._e2;
1560
+ // norm(ssig1, csig1);
1561
+ t = m.hypot(ssig1, csig1); ssig1 /= t; csig1 /= t;
1562
+ // norm(ssig2, csig2);
1563
+ t = m.hypot(ssig2, csig2); ssig2 /= t; csig2 /= t;
1564
+ C4a = new Array(g.nC4_);
1565
+ this.C4f(eps, C4a);
1566
+ B41 = g.SinCosSeries(false, ssig1, csig1, C4a);
1567
+ B42 = g.SinCosSeries(false, ssig2, csig2, C4a);
1568
+ vals.S12 = A4 * (B42 - B41);
1569
+ } else
1570
+ // Avoid problems with indeterminate sig1, sig2 on equator
1571
+ vals.S12 = 0;
1572
+ if (!meridian) {
1573
+ if (somg12 > 1) {
1574
+ somg12 = Math.sin(omg12); comg12 = Math.cos(omg12);
1575
+ } else {
1576
+ t = m.hypot(somg12, comg12); somg12 /= t; comg12 /= t;
1577
+ }
1578
+ }
1579
+ if (!meridian &&
1580
+ omg12 > -0.7071 && // Long difference not too big
1581
+ sbet2 - sbet1 < 1.75) { // Lat difference not too big
1582
+ // Use tan(Gamma/2) = tan(omg12/2)
1583
+ // * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2))
1584
+ // with tan(x/2) = sin(x)/(1+cos(x))
1585
+ domg12 = 1 + comg12; dbet1 = 1 + cbet1; dbet2 = 1 + cbet2;
1586
+ alp12 = 2 * Math.atan2( somg12 * (sbet1*dbet2 + sbet2*dbet1),
1587
+ domg12 * (sbet1*sbet2 + dbet1*dbet2) );
1588
+ } else {
1589
+ // alp12 = alp2 - alp1, used in atan2 so no need to normalize
1590
+ salp12 = salp2 * calp1 - calp2 * salp1;
1591
+ calp12 = calp2 * calp1 + salp2 * salp1;
1592
+ // The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz
1593
+ // salp12 = -0 and alp12 = -180. However this depends on the sign
1594
+ // being attached to 0 correctly. The following ensures the correct
1595
+ // behavior.
1596
+ if (salp12 === 0 && calp12 < 0) {
1597
+ salp12 = g.tiny_ * calp1;
1598
+ calp12 = -1;
1599
+ }
1600
+ alp12 = Math.atan2(salp12, calp12);
1601
+ }
1602
+ vals.S12 += this._c2 * alp12;
1603
+ vals.S12 *= swapp * lonsign * latsign;
1604
+ // Convert -0 to 0
1605
+ vals.S12 += 0;
1606
+ }
1607
+
1608
+ // Convert calp, salp to azimuth accounting for lonsign, swapp, latsign.
1609
+ if (swapp < 0) {
1610
+ t = salp1;
1611
+ salp1 = salp2;
1612
+ salp2 = t;
1613
+ // swap(salp1, salp2);
1614
+ t = calp1;
1615
+ calp1 = calp2;
1616
+ calp2 = t;
1617
+ // swap(calp1, calp2);
1618
+ if (outmask & g.GEODESICSCALE) {
1619
+ t = vals.M12;
1620
+ vals.M12 = vals.M21;
1621
+ vals.M21 = t;
1622
+ // swap(vals.M12, vals.M21);
1623
+ }
1624
+ }
1625
+
1626
+ salp1 *= swapp * lonsign; calp1 *= swapp * latsign;
1627
+ salp2 *= swapp * lonsign; calp2 *= swapp * latsign;
1628
+
1629
+ return {vals: vals,
1630
+ salp1: salp1, calp1: calp1,
1631
+ salp2: salp2, calp2: calp2};
1632
+ };
1633
+
1634
+ /**
1635
+ * @summary Solve the general direct geodesic problem.
1636
+ * @param {number} lat1 the latitude of the first point in degrees.
1637
+ * @param {number} lon1 the longitude of the first point in degrees.
1638
+ * @param {number} azi1 the azimuth at the first point in degrees.
1639
+ * @param {bool} arcmode is the next parameter an arc length?
1640
+ * @param {number} s12_a12 the (arcmode ? arc length : distance) from the
1641
+ * first point to the second in (arcmode ? degrees : meters).
1642
+ * @param {bitmask} [outmask = STANDARD] which results to include.
1643
+ * @returns {object} the requested results.
1644
+ * @description The lat1, lon1, azi1, and a12 fields of the result are always
1645
+ * set; s12 is included if arcmode is false. For details on the outmask
1646
+ * parameter, see {@tutorial 2-interface}, "The outmask and caps
1647
+ * parameters".
1648
+ */
1649
+ g.Geodesic.prototype.GenDirect = function (lat1, lon1, azi1,
1650
+ arcmode, s12_a12, outmask) {
1651
+ var line;
1652
+ if (!outmask) outmask = g.STANDARD;
1653
+ else if (outmask === g.LONG_UNROLL) outmask |= g.STANDARD;
1654
+ // Automatically supply DISTANCE_IN if necessary
1655
+ if (!arcmode) outmask |= g.DISTANCE_IN;
1656
+ line = new l.GeodesicLine(this, lat1, lon1, azi1, outmask);
1657
+ return line.GenPosition(arcmode, s12_a12, outmask);
1658
+ };
1659
+
1660
+ /**
1661
+ * @summary Solve the direct geodesic problem.
1662
+ * @param {number} lat1 the latitude of the first point in degrees.
1663
+ * @param {number} lon1 the longitude of the first point in degrees.
1664
+ * @param {number} azi1 the azimuth at the first point in degrees.
1665
+ * @param {number} s12 the distance from the first point to the second in
1666
+ * meters.
1667
+ * @param {bitmask} [outmask = STANDARD] which results to include.
1668
+ * @returns {object} the requested results.
1669
+ * @description The lat1, lon1, azi1, s12, and a12 fields of the result are
1670
+ * always set. For details on the outmask parameter, see {@tutorial
1671
+ * 2-interface}, "The outmask and caps parameters".
1672
+ */
1673
+ g.Geodesic.prototype.Direct = function (lat1, lon1, azi1, s12, outmask) {
1674
+ return this.GenDirect(lat1, lon1, azi1, false, s12, outmask);
1675
+ };
1676
+
1677
+ /**
1678
+ * @summary Solve the direct geodesic problem with arc length.
1679
+ * @param {number} lat1 the latitude of the first point in degrees.
1680
+ * @param {number} lon1 the longitude of the first point in degrees.
1681
+ * @param {number} azi1 the azimuth at the first point in degrees.
1682
+ * @param {number} a12 the arc length from the first point to the second in
1683
+ * degrees.
1684
+ * @param {bitmask} [outmask = STANDARD] which results to include.
1685
+ * @returns {object} the requested results.
1686
+ * @description The lat1, lon1, azi1, and a12 fields of the result are
1687
+ * always set. For details on the outmask parameter, see {@tutorial
1688
+ * 2-interface}, "The outmask and caps parameters".
1689
+ */
1690
+ g.Geodesic.prototype.ArcDirect = function (lat1, lon1, azi1, a12, outmask) {
1691
+ return this.GenDirect(lat1, lon1, azi1, true, a12, outmask);
1692
+ };
1693
+
1694
+ /**
1695
+ * @summary Create a {@link module:GeographicLib/GeodesicLine.GeodesicLine
1696
+ * GeodesicLine} object.
1697
+ * @param {number} lat1 the latitude of the first point in degrees.
1698
+ * @param {number} lon1 the longitude of the first point in degrees.
1699
+ * @param {number} azi1 the azimuth at the first point in degrees.
1700
+ * degrees.
1701
+ * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
1702
+ * include.
1703
+ * @returns {object} the
1704
+ * {@link module:GeographicLib/GeodesicLine.GeodesicLine
1705
+ * GeodesicLine} object
1706
+ * @description For details on the caps parameter, see {@tutorial
1707
+ * 2-interface}, "The outmask and caps parameters".
1708
+ */
1709
+ g.Geodesic.prototype.Line = function (lat1, lon1, azi1, caps) {
1710
+ return new l.GeodesicLine(this, lat1, lon1, azi1, caps);
1711
+ };
1712
+
1713
+ /**
1714
+ * @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
1715
+ * GeodesicLine} in terms of the direct geodesic problem specified in terms
1716
+ * of distance.
1717
+ * @param {number} lat1 the latitude of the first point in degrees.
1718
+ * @param {number} lon1 the longitude of the first point in degrees.
1719
+ * @param {number} azi1 the azimuth at the first point in degrees.
1720
+ * degrees.
1721
+ * @param {number} s12 the distance between point 1 and point 2 (meters); it
1722
+ * can be negative.
1723
+ * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
1724
+ * include.
1725
+ * @returns {object} the
1726
+ * {@link module:GeographicLib/GeodesicLine.GeodesicLine
1727
+ * GeodesicLine} object
1728
+ * @description This function sets point 3 of the GeodesicLine to correspond
1729
+ * to point 2 of the direct geodesic problem. For details on the caps
1730
+ * parameter, see {@tutorial 2-interface}, "The outmask and caps
1731
+ * parameters".
1732
+ */
1733
+ g.Geodesic.prototype.DirectLine = function (lat1, lon1, azi1, s12, caps) {
1734
+ return this.GenDirectLine(lat1, lon1, azi1, false, s12, caps);
1735
+ };
1736
+
1737
+ /**
1738
+ * @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
1739
+ * GeodesicLine} in terms of the direct geodesic problem specified in terms
1740
+ * of arc length.
1741
+ * @param {number} lat1 the latitude of the first point in degrees.
1742
+ * @param {number} lon1 the longitude of the first point in degrees.
1743
+ * @param {number} azi1 the azimuth at the first point in degrees.
1744
+ * degrees.
1745
+ * @param {number} a12 the arc length between point 1 and point 2 (degrees);
1746
+ * it can be negative.
1747
+ * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
1748
+ * include.
1749
+ * @returns {object} the
1750
+ * {@link module:GeographicLib/GeodesicLine.GeodesicLine
1751
+ * GeodesicLine} object
1752
+ * @description This function sets point 3 of the GeodesicLine to correspond
1753
+ * to point 2 of the direct geodesic problem. For details on the caps
1754
+ * parameter, see {@tutorial 2-interface}, "The outmask and caps
1755
+ * parameters".
1756
+ */
1757
+ g.Geodesic.prototype.ArcDirectLine = function (lat1, lon1, azi1, a12, caps) {
1758
+ return this.GenDirectLine(lat1, lon1, azi1, true, a12, caps);
1759
+ };
1760
+
1761
+ /**
1762
+ * @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
1763
+ * GeodesicLine} in terms of the direct geodesic problem specified in terms
1764
+ * of either distance or arc length.
1765
+ * @param {number} lat1 the latitude of the first point in degrees.
1766
+ * @param {number} lon1 the longitude of the first point in degrees.
1767
+ * @param {number} azi1 the azimuth at the first point in degrees.
1768
+ * degrees.
1769
+ * @param {bool} arcmode boolean flag determining the meaning of the
1770
+ * s12_a12.
1771
+ * @param {number} s12_a12 if arcmode is false, this is the distance between
1772
+ * point 1 and point 2 (meters); otherwise it is the arc length between
1773
+ * point 1 and point 2 (degrees); it can be negative.
1774
+ * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
1775
+ * include.
1776
+ * @returns {object} the
1777
+ * {@link module:GeographicLib/GeodesicLine.GeodesicLine
1778
+ * GeodesicLine} object
1779
+ * @description This function sets point 3 of the GeodesicLine to correspond
1780
+ * to point 2 of the direct geodesic problem. For details on the caps
1781
+ * parameter, see {@tutorial 2-interface}, "The outmask and caps
1782
+ * parameters".
1783
+ */
1784
+ g.Geodesic.prototype.GenDirectLine = function (lat1, lon1, azi1,
1785
+ arcmode, s12_a12, caps) {
1786
+ var t;
1787
+ if (!caps) caps = g.STANDARD | g.DISTANCE_IN;
1788
+ // Automatically supply DISTANCE_IN if necessary
1789
+ if (!arcmode) caps |= g.DISTANCE_IN;
1790
+ t = new l.GeodesicLine(this, lat1, lon1, azi1, caps);
1791
+ t.GenSetDistance(arcmode, s12_a12);
1792
+ return t;
1793
+ };
1794
+
1795
+ /**
1796
+ * @summary Define a {@link module:GeographicLib/GeodesicLine.GeodesicLine
1797
+ * GeodesicLine} in terms of the inverse geodesic problem.
1798
+ * @param {number} lat1 the latitude of the first point in degrees.
1799
+ * @param {number} lon1 the longitude of the first point in degrees.
1800
+ * @param {number} lat2 the latitude of the second point in degrees.
1801
+ * @param {number} lon2 the longitude of the second point in degrees.
1802
+ * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
1803
+ * include.
1804
+ * @returns {object} the
1805
+ * {@link module:GeographicLib/GeodesicLine.GeodesicLine
1806
+ * GeodesicLine} object
1807
+ * @description This function sets point 3 of the GeodesicLine to correspond
1808
+ * to point 2 of the inverse geodesic problem. For details on the caps
1809
+ * parameter, see {@tutorial 2-interface}, "The outmask and caps
1810
+ * parameters".
1811
+ */
1812
+ g.Geodesic.prototype.InverseLine = function (lat1, lon1, lat2, lon2, caps) {
1813
+ var r, t, azi1;
1814
+ if (!caps) caps = g.STANDARD | g.DISTANCE_IN;
1815
+ r = this.InverseInt(lat1, lon1, lat2, lon2, g.ARC);
1816
+ azi1 = m.atan2d(r.salp1, r.calp1);
1817
+ // Ensure that a12 can be converted to a distance
1818
+ if (caps & (g.OUT_MASK & g.DISTANCE_IN)) caps |= g.DISTANCE;
1819
+ t = new l.GeodesicLine(this, lat1, lon1, azi1, caps, r.salp1, r.calp1);
1820
+ t.SetArc(r.vals.a12);
1821
+ return t;
1822
+ };
1823
+
1824
+ /**
1825
+ * @summary Create a {@link module:GeographicLib/PolygonArea.PolygonArea
1826
+ * PolygonArea} object.
1827
+ * @param {bool} [polyline = false] if true the new PolygonArea object
1828
+ * describes a polyline instead of a polygon.
1829
+ * @returns {object} the
1830
+ * {@link module:GeographicLib/PolygonArea.PolygonArea
1831
+ * PolygonArea} object
1832
+ */
1833
+ g.Geodesic.prototype.Polygon = function (polyline) {
1834
+ return new p.PolygonArea(this, polyline);
1835
+ };
1836
+
1837
+ /**
1838
+ * @summary a {@link module:GeographicLib/Geodesic.Geodesic Geodesic} object
1839
+ * initialized for the WGS84 ellipsoid.
1840
+ * @constant {object}
1841
+ */
1842
+ g.WGS84 = new g.Geodesic(c.WGS84.a, c.WGS84.f);
1843
+ })(GeographicLib.Geodesic, GeographicLib.GeodesicLine,
1844
+ GeographicLib.PolygonArea, GeographicLib.Math, GeographicLib.Constants);
1845
+
1846
+ /**************** GeodesicLine.js ****************/
1847
+ /*
1848
+ * GeodesicLine.js
1849
+ * Transcription of GeodesicLine.[ch]pp into JavaScript.
1850
+ *
1851
+ * See the documentation for the C++ class. The conversion is a literal
1852
+ * conversion from C++.
1853
+ *
1854
+ * The algorithms are derived in
1855
+ *
1856
+ * Charles F. F. Karney,
1857
+ * Algorithms for geodesics, J. Geodesy 87, 43-55 (2013);
1858
+ * https://dx.doi.org/10.1007/s00190-012-0578-z
1859
+ * Addenda: http://geographiclib.sourceforge.net/geod-addenda.html
1860
+ *
1861
+ * Copyright (c) Charles Karney (2011-2016) <charles@karney.com> and licensed
1862
+ * under the MIT/X11 License. For more information, see
1863
+ * http://geographiclib.sourceforge.net/
1864
+ */
1865
+
1866
+ // Load AFTER GeographicLib/Math.js, GeographicLib/Geodesic.js
1867
+
1868
+ (function(
1869
+ g,
1870
+ /**
1871
+ * @exports GeographicLib/GeodesicLine
1872
+ * @description Solve geodesic problems on a single geodesic line via the
1873
+ * {@link module:GeographicLib/GeodesicLine.GeodesicLine GeodesicLine}
1874
+ * class.
1875
+ */
1876
+ l, m) {
1877
+
1878
+ /**
1879
+ * @class
1880
+ * @property {number} a the equatorial radius (meters).
1881
+ * @property {number} f the flattening.
1882
+ * @property {number} lat1 the initial latitude (degrees).
1883
+ * @property {number} lon1 the initial longitude (degrees).
1884
+ * @property {number} azi1 the initial azimuth (degrees).
1885
+ * @property {number} salp1 the sine of the azimuth at the first point.
1886
+ * @property {number} calp1 the cosine the azimuth at the first point.
1887
+ * @property {number} s13 the distance to point 3 (meters).
1888
+ * @property {number} a13 the arc length to point 3 (degrees).
1889
+ * @property {bitmask} caps the capabilities of the object.
1890
+ * @summary Initialize a GeodesicLine object. For details on the caps
1891
+ * parameter, see {@tutorial 2-interface}, "The outmask and caps
1892
+ * parameters".
1893
+ * @classdesc Performs geodesic calculations along a given geodesic line.
1894
+ * This object is usually instantiated by
1895
+ * {@link module:GeographicLib/Geodesic.Geodesic#Line Geodesic.Line}.
1896
+ * The methods
1897
+ * {@link module:GeographicLib/Geodesic.Geodesic#DirectLine
1898
+ * Geodesic.DirectLine} and
1899
+ * {@link module:GeographicLib/Geodesic.Geodesic#InverseLine
1900
+ * Geodesic.InverseLine} set in addition the position of a reference point
1901
+ * 3.
1902
+ * @param {object} geod a {@link module:GeographicLib/Geodesic.Geodesic
1903
+ * Geodesic} object.
1904
+ * @param {number} lat1 the latitude of the first point in degrees.
1905
+ * @param {number} lon1 the longitude of the first point in degrees.
1906
+ * @param {number} azi1 the azimuth at the first point in degrees.
1907
+ * @param {bitmask} [caps = STANDARD | DISTANCE_IN] which capabilities to
1908
+ * include; LATITUDE | AZIMUTH are always included.
1909
+ */
1910
+ l.GeodesicLine = function(geod, lat1, lon1, azi1, caps, salp1, calp1) {
1911
+ var t, cbet1, sbet1, eps, s, c;
1912
+ if (!caps) caps = g.STANDARD | g.DISTANCE_IN;
1913
+
1914
+ this.a = geod.a;
1915
+ this.f = geod.f;
1916
+ this._b = geod._b;
1917
+ this._c2 = geod._c2;
1918
+ this._f1 = geod._f1;
1919
+ this.caps = caps | g.LATITUDE | g.AZIMUTH | g.LONG_UNROLL;
1920
+
1921
+ this.lat1 = m.LatFix(lat1);
1922
+ this.lon1 = lon1;
1923
+ if (typeof salp1 === 'undefined' || typeof calp1 === 'undefined') {
1924
+ this.azi1 = m.AngNormalize(azi1);
1925
+ t = m.sincosd(m.AngRound(this.azi1)); this.salp1 = t.s; this.calp1 = t.c;
1926
+ } else {
1927
+ this.azi1 = azi1; this.salp1 = salp1; this.calp1 = calp1;
1928
+ }
1929
+ t = m.sincosd(m.AngRound(this.lat1)); sbet1 = this._f1 * t.s; cbet1 = t.c;
1930
+ // norm(sbet1, cbet1);
1931
+ t = m.hypot(sbet1, cbet1); sbet1 /= t; cbet1 /= t;
1932
+ // Ensure cbet1 = +epsilon at poles
1933
+ cbet1 = Math.max(g.tiny_, cbet1);
1934
+ this._dn1 = Math.sqrt(1 + geod._ep2 * m.sq(sbet1));
1935
+
1936
+ // Evaluate alp0 from sin(alp1) * cos(bet1) = sin(alp0),
1937
+ this._salp0 = this.salp1 * cbet1; // alp0 in [0, pi/2 - |bet1|]
1938
+ // Alt: calp0 = hypot(sbet1, calp1 * cbet1). The following
1939
+ // is slightly better (consider the case salp1 = 0).
1940
+ this._calp0 = m.hypot(this.calp1, this.salp1 * sbet1);
1941
+ // Evaluate sig with tan(bet1) = tan(sig1) * cos(alp1).
1942
+ // sig = 0 is nearest northward crossing of equator.
1943
+ // With bet1 = 0, alp1 = pi/2, we have sig1 = 0 (equatorial line).
1944
+ // With bet1 = pi/2, alp1 = -pi, sig1 = pi/2
1945
+ // With bet1 = -pi/2, alp1 = 0 , sig1 = -pi/2
1946
+ // Evaluate omg1 with tan(omg1) = sin(alp0) * tan(sig1).
1947
+ // With alp0 in (0, pi/2], quadrants for sig and omg coincide.
1948
+ // No atan2(0,0) ambiguity at poles since cbet1 = +epsilon.
1949
+ // With alp0 = 0, omg1 = 0 for alp1 = 0, omg1 = pi for alp1 = pi.
1950
+ this._ssig1 = sbet1; this._somg1 = this._salp0 * sbet1;
1951
+ this._csig1 = this._comg1 =
1952
+ sbet1 !== 0 || this.calp1 !== 0 ? cbet1 * this.calp1 : 1;
1953
+ // norm(this._ssig1, this._csig1); // sig1 in (-pi, pi]
1954
+ t = m.hypot(this._ssig1, this._csig1);
1955
+ this._ssig1 /= t; this._csig1 /= t;
1956
+ // norm(this._somg1, this._comg1); -- don't need to normalize!
1957
+
1958
+ this._k2 = m.sq(this._calp0) * geod._ep2;
1959
+ eps = this._k2 / (2 * (1 + Math.sqrt(1 + this._k2)) + this._k2);
1960
+
1961
+ if (this.caps & g.CAP_C1) {
1962
+ this._A1m1 = g.A1m1f(eps);
1963
+ this._C1a = new Array(g.nC1_ + 1);
1964
+ g.C1f(eps, this._C1a);
1965
+ this._B11 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C1a);
1966
+ s = Math.sin(this._B11); c = Math.cos(this._B11);
1967
+ // tau1 = sig1 + B11
1968
+ this._stau1 = this._ssig1 * c + this._csig1 * s;
1969
+ this._ctau1 = this._csig1 * c - this._ssig1 * s;
1970
+ // Not necessary because C1pa reverts C1a
1971
+ // _B11 = -SinCosSeries(true, _stau1, _ctau1, _C1pa);
1972
+ }
1973
+
1974
+ if (this.caps & g.CAP_C1p) {
1975
+ this._C1pa = new Array(g.nC1p_ + 1);
1976
+ g.C1pf(eps, this._C1pa);
1977
+ }
1978
+
1979
+ if (this.caps & g.CAP_C2) {
1980
+ this._A2m1 = g.A2m1f(eps);
1981
+ this._C2a = new Array(g.nC2_ + 1);
1982
+ g.C2f(eps, this._C2a);
1983
+ this._B21 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C2a);
1984
+ }
1985
+
1986
+ if (this.caps & g.CAP_C3) {
1987
+ this._C3a = new Array(g.nC3_);
1988
+ geod.C3f(eps, this._C3a);
1989
+ this._A3c = -this.f * this._salp0 * geod.A3f(eps);
1990
+ this._B31 = g.SinCosSeries(true, this._ssig1, this._csig1, this._C3a);
1991
+ }
1992
+
1993
+ if (this.caps & g.CAP_C4) {
1994
+ this._C4a = new Array(g.nC4_); // all the elements of _C4a are used
1995
+ geod.C4f(eps, this._C4a);
1996
+ // Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0)
1997
+ this._A4 = m.sq(this.a) * this._calp0 * this._salp0 * geod._e2;
1998
+ this._B41 = g.SinCosSeries(false, this._ssig1, this._csig1, this._C4a);
1999
+ }
2000
+
2001
+ this.a13 = this.s13 = Number.NaN;
2002
+ };
2003
+
2004
+ /**
2005
+ * @summary Find the position on the line (general case).
2006
+ * @param {bool} arcmode is the next parameter an arc length?
2007
+ * @param {number} s12_a12 the (arcmode ? arc length : distance) from the
2008
+ * first point to the second in (arcmode ? degrees : meters).
2009
+ * @param {bitmask} [outmask = STANDARD] which results to include; this is
2010
+ * subject to the capabilities of the object.
2011
+ * @returns {object} the requested results.
2012
+ * @description The lat1, lon1, azi1, and a12 fields of the result are
2013
+ * always set; s12 is included if arcmode is false. For details on the
2014
+ * outmask parameter, see {@tutorial 2-interface}, "The outmask and caps
2015
+ * parameters".
2016
+ */
2017
+ l.GeodesicLine.prototype.GenPosition = function(arcmode, s12_a12,
2018
+ outmask) {
2019
+ var vals = {},
2020
+ sig12, ssig12, csig12, B12, AB1, ssig2, csig2, tau12, s, c, serr,
2021
+ omg12, lam12, lon12, E, sbet2, cbet2, somg2, comg2, salp2, calp2, dn2,
2022
+ B22, AB2, J12, t, B42, salp12, calp12;
2023
+ if (!outmask) outmask = g.STANDARD;
2024
+ else if (outmask === g.LONG_UNROLL) outmask |= g.STANDARD;
2025
+ outmask &= this.caps & g.OUT_MASK;
2026
+ vals.lat1 = this.lat1; vals.azi1 = this.azi1;
2027
+ vals.lon1 = outmask & g.LONG_UNROLL ?
2028
+ this.lon1 : m.AngNormalize(this.lon1);
2029
+ if (arcmode)
2030
+ vals.a12 = s12_a12;
2031
+ else
2032
+ vals.s12 = s12_a12;
2033
+ if (!( arcmode || (this.caps & g.DISTANCE_IN & g.OUT_MASK) )) {
2034
+ // Uninitialized or impossible distance calculation requested
2035
+ vals.a12 = Number.NaN;
2036
+ return vals;
2037
+ }
2038
+
2039
+ // Avoid warning about uninitialized B12.
2040
+ B12 = 0; AB1 = 0;
2041
+ if (arcmode) {
2042
+ // Interpret s12_a12 as spherical arc length
2043
+ sig12 = s12_a12 * m.degree;
2044
+ t = m.sincosd(s12_a12); ssig12 = t.s; csig12 = t.c;
2045
+ } else {
2046
+ // Interpret s12_a12 as distance
2047
+ tau12 = s12_a12 / (this._b * (1 + this._A1m1));
2048
+ s = Math.sin(tau12);
2049
+ c = Math.cos(tau12);
2050
+ // tau2 = tau1 + tau12
2051
+ B12 = - g.SinCosSeries(true,
2052
+ this._stau1 * c + this._ctau1 * s,
2053
+ this._ctau1 * c - this._stau1 * s,
2054
+ this._C1pa);
2055
+ sig12 = tau12 - (B12 - this._B11);
2056
+ ssig12 = Math.sin(sig12); csig12 = Math.cos(sig12);
2057
+ if (Math.abs(this.f) > 0.01) {
2058
+ // Reverted distance series is inaccurate for |f| > 1/100, so correct
2059
+ // sig12 with 1 Newton iteration. The following table shows the
2060
+ // approximate maximum error for a = WGS_a() and various f relative to
2061
+ // GeodesicExact.
2062
+ // erri = the error in the inverse solution (nm)
2063
+ // errd = the error in the direct solution (series only) (nm)
2064
+ // errda = the error in the direct solution (series + 1 Newton) (nm)
2065
+ //
2066
+ // f erri errd errda
2067
+ // -1/5 12e6 1.2e9 69e6
2068
+ // -1/10 123e3 12e6 765e3
2069
+ // -1/20 1110 108e3 7155
2070
+ // -1/50 18.63 200.9 27.12
2071
+ // -1/100 18.63 23.78 23.37
2072
+ // -1/150 18.63 21.05 20.26
2073
+ // 1/150 22.35 24.73 25.83
2074
+ // 1/100 22.35 25.03 25.31
2075
+ // 1/50 29.80 231.9 30.44
2076
+ // 1/20 5376 146e3 10e3
2077
+ // 1/10 829e3 22e6 1.5e6
2078
+ // 1/5 157e6 3.8e9 280e6
2079
+ ssig2 = this._ssig1 * csig12 + this._csig1 * ssig12;
2080
+ csig2 = this._csig1 * csig12 - this._ssig1 * ssig12;
2081
+ B12 = g.SinCosSeries(true, ssig2, csig2, this._C1a);
2082
+ serr = (1 + this._A1m1) * (sig12 + (B12 - this._B11)) -
2083
+ s12_a12 / this._b;
2084
+ sig12 = sig12 - serr / Math.sqrt(1 + this._k2 * m.sq(ssig2));
2085
+ ssig12 = Math.sin(sig12); csig12 = Math.cos(sig12);
2086
+ // Update B12 below
2087
+ }
2088
+ }
2089
+
2090
+ // sig2 = sig1 + sig12
2091
+ ssig2 = this._ssig1 * csig12 + this._csig1 * ssig12;
2092
+ csig2 = this._csig1 * csig12 - this._ssig1 * ssig12;
2093
+ dn2 = Math.sqrt(1 + this._k2 * m.sq(ssig2));
2094
+ if (outmask & (g.DISTANCE | g.REDUCEDLENGTH | g.GEODESICSCALE)) {
2095
+ if (arcmode || Math.abs(this.f) > 0.01)
2096
+ B12 = g.SinCosSeries(true, ssig2, csig2, this._C1a);
2097
+ AB1 = (1 + this._A1m1) * (B12 - this._B11);
2098
+ }
2099
+ // sin(bet2) = cos(alp0) * sin(sig2)
2100
+ sbet2 = this._calp0 * ssig2;
2101
+ // Alt: cbet2 = hypot(csig2, salp0 * ssig2);
2102
+ cbet2 = m.hypot(this._salp0, this._calp0 * csig2);
2103
+ if (cbet2 === 0)
2104
+ // I.e., salp0 = 0, csig2 = 0. Break the degeneracy in this case
2105
+ cbet2 = csig2 = g.tiny_;
2106
+ // tan(alp0) = cos(sig2)*tan(alp2)
2107
+ salp2 = this._salp0; calp2 = this._calp0 * csig2; // No need to normalize
2108
+
2109
+ if (arcmode && (outmask & g.DISTANCE))
2110
+ vals.s12 = this._b * ((1 + this._A1m1) * sig12 + AB1);
2111
+
2112
+ if (outmask & g.LONGITUDE) {
2113
+ // tan(omg2) = sin(alp0) * tan(sig2)
2114
+ somg2 = this._salp0 * ssig2; comg2 = csig2; // No need to normalize
2115
+ E = m.copysign(1, this._salp0);
2116
+ // omg12 = omg2 - omg1
2117
+ omg12 = outmask & g.LONG_UNROLL ?
2118
+ E * (sig12 -
2119
+ (Math.atan2(ssig2, csig2) -
2120
+ Math.atan2(this._ssig1, this._csig1)) +
2121
+ (Math.atan2(E * somg2, comg2) -
2122
+ Math.atan2(E * this._somg1, this._comg1))) :
2123
+ Math.atan2(somg2 * this._comg1 - comg2 * this._somg1,
2124
+ comg2 * this._comg1 + somg2 * this._somg1);
2125
+ lam12 = omg12 + this._A3c *
2126
+ ( sig12 + (g.SinCosSeries(true, ssig2, csig2, this._C3a) -
2127
+ this._B31));
2128
+ lon12 = lam12 / m.degree;
2129
+ vals.lon2 = outmask & g.LONG_UNROLL ? this.lon1 + lon12 :
2130
+ m.AngNormalize(m.AngNormalize(this.lon1) + m.AngNormalize(lon12));
2131
+ }
2132
+
2133
+ if (outmask & g.LATITUDE)
2134
+ vals.lat2 = m.atan2d(sbet2, this._f1 * cbet2);
2135
+
2136
+ if (outmask & g.AZIMUTH)
2137
+ vals.azi2 = m.atan2d(salp2, calp2);
2138
+
2139
+ if (outmask & (g.REDUCEDLENGTH | g.GEODESICSCALE)) {
2140
+ B22 = g.SinCosSeries(true, ssig2, csig2, this._C2a);
2141
+ AB2 = (1 + this._A2m1) * (B22 - this._B21);
2142
+ J12 = (this._A1m1 - this._A2m1) * sig12 + (AB1 - AB2);
2143
+ if (outmask & g.REDUCEDLENGTH)
2144
+ // Add parens around (_csig1 * ssig2) and (_ssig1 * csig2) to ensure
2145
+ // accurate cancellation in the case of coincident points.
2146
+ vals.m12 = this._b * (( dn2 * (this._csig1 * ssig2) -
2147
+ this._dn1 * (this._ssig1 * csig2)) -
2148
+ this._csig1 * csig2 * J12);
2149
+ if (outmask & g.GEODESICSCALE) {
2150
+ t = this._k2 * (ssig2 - this._ssig1) * (ssig2 + this._ssig1) /
2151
+ (this._dn1 + dn2);
2152
+ vals.M12 = csig12 + (t * ssig2 - csig2 * J12) * this._ssig1 / this._dn1;
2153
+ vals.M21 = csig12 - (t * this._ssig1 - this._csig1 * J12) * ssig2 / dn2;
2154
+ }
2155
+ }
2156
+
2157
+ if (outmask & g.AREA) {
2158
+ B42 = g.SinCosSeries(false, ssig2, csig2, this._C4a);
2159
+ if (this._calp0 === 0 || this._salp0 === 0) {
2160
+ // alp12 = alp2 - alp1, used in atan2 so no need to normalize
2161
+ salp12 = salp2 * this.calp1 - calp2 * this.salp1;
2162
+ calp12 = calp2 * this.calp1 + salp2 * this.salp1;
2163
+ } else {
2164
+ // tan(alp) = tan(alp0) * sec(sig)
2165
+ // tan(alp2-alp1) = (tan(alp2) -tan(alp1)) / (tan(alp2)*tan(alp1)+1)
2166
+ // = calp0 * salp0 * (csig1-csig2) / (salp0^2 + calp0^2 * csig1*csig2)
2167
+ // If csig12 > 0, write
2168
+ // csig1 - csig2 = ssig12 * (csig1 * ssig12 / (1 + csig12) + ssig1)
2169
+ // else
2170
+ // csig1 - csig2 = csig1 * (1 - csig12) + ssig12 * ssig1
2171
+ // No need to normalize
2172
+ salp12 = this._calp0 * this._salp0 *
2173
+ (csig12 <= 0 ? this._csig1 * (1 - csig12) + ssig12 * this._ssig1 :
2174
+ ssig12 * (this._csig1 * ssig12 / (1 + csig12) + this._ssig1));
2175
+ calp12 = m.sq(this._salp0) + m.sq(this._calp0) * this._csig1 * csig2;
2176
+ }
2177
+ vals.S12 = this._c2 * Math.atan2(salp12, calp12) +
2178
+ this._A4 * (B42 - this._B41);
2179
+ }
2180
+
2181
+ if (!arcmode)
2182
+ vals.a12 = sig12 / m.degree;
2183
+ return vals;
2184
+ };
2185
+
2186
+ /**
2187
+ * @summary Find the position on the line given s12.
2188
+ * @param {number} s12 the distance from the first point to the second in
2189
+ * meters.
2190
+ * @param {bitmask} [outmask = STANDARD] which results to include; this is
2191
+ * subject to the capabilities of the object.
2192
+ * @returns {object} the requested results.
2193
+ * @description The lat1, lon1, azi1, s12, and a12 fields of the result are
2194
+ * always set; s12 is included if arcmode is false. For details on the
2195
+ * outmask parameter, see {@tutorial 2-interface}, "The outmask and caps
2196
+ * parameters".
2197
+ */
2198
+ l.GeodesicLine.prototype.Position = function(s12, outmask) {
2199
+ return this.GenPosition(false, s12, outmask);
2200
+ };
2201
+
2202
+ /**
2203
+ * @summary Find the position on the line given a12.
2204
+ * @param {number} a12 the arc length from the first point to the second in
2205
+ * degrees.
2206
+ * @param {bitmask} [outmask = STANDARD] which results to include; this is
2207
+ * subject to the capabilities of the object.
2208
+ * @returns {object} the requested results.
2209
+ * @description The lat1, lon1, azi1, and a12 fields of the result are
2210
+ * always set. For details on the outmask parameter, see {@tutorial
2211
+ * 2-interface}, "The outmask and caps parameters".
2212
+ */
2213
+ l.GeodesicLine.prototype.ArcPosition = function(a12, outmask) {
2214
+ return this.GenPosition(true, a12, outmask);
2215
+ };
2216
+
2217
+ /**
2218
+ * @summary Specify position of point 3 in terms of either distance or arc
2219
+ * length.
2220
+ * @param {bool} arcmode boolean flag determining the meaning of the second
2221
+ * parameter; if arcmode is false, then the GeodesicLine object must have
2222
+ * been constructed with caps |= DISTANCE_IN.
2223
+ * @param {number} s13_a13 if arcmode is false, this is the distance from
2224
+ * point 1 to point 3 (meters); otherwise it is the arc length from
2225
+ * point 1 to point 3 (degrees); it can be negative.
2226
+ **********************************************************************/
2227
+ l.GeodesicLine.prototype.GenSetDistance = function(arcmode, s13_a13) {
2228
+ if (arcmode)
2229
+ this.SetArc(s13_a13);
2230
+ else
2231
+ this.SetDistance(s13_a13);
2232
+ };
2233
+
2234
+ /**
2235
+ * @summary Specify position of point 3 in terms distance.
2236
+ * @param {number} s13 the distance from point 1 to point 3 (meters); it
2237
+ * can be negative.
2238
+ **********************************************************************/
2239
+ l.GeodesicLine.prototype.SetDistance = function(s13) {
2240
+ var r;
2241
+ this.s13 = s13;
2242
+ r = this.GenPosition(false, this.s13, g.ARC);
2243
+ this.a13 = 0 + r.a12; // the 0+ converts undefined into NaN
2244
+ };
2245
+
2246
+ /**
2247
+ * @summary Specify position of point 3 in terms of arc length.
2248
+ * @param {number} a13 the arc length from point 1 to point 3 (degrees);
2249
+ * it can be negative.
2250
+ **********************************************************************/
2251
+ l.GeodesicLine.prototype.SetArc = function(a13) {
2252
+ var r;
2253
+ this.a13 = a13;
2254
+ r = this.GenPosition(true, this.a13, g.DISTANCE);
2255
+ this.s13 = 0 + r.s12; // the 0+ converts undefined into NaN
2256
+ };
2257
+
2258
+ })(GeographicLib.Geodesic, GeographicLib.GeodesicLine, GeographicLib.Math);
2259
+
2260
+ /**************** PolygonArea.js ****************/
2261
+ /*
2262
+ * PolygonArea.js
2263
+ * Transcription of PolygonArea.[ch]pp into JavaScript.
2264
+ *
2265
+ * See the documentation for the C++ class. The conversion is a literal
2266
+ * conversion from C++.
2267
+ *
2268
+ * The algorithms are derived in
2269
+ *
2270
+ * Charles F. F. Karney,
2271
+ * Algorithms for geodesics, J. Geodesy 87, 43-55 (2013);
2272
+ * https://dx.doi.org/10.1007/s00190-012-0578-z
2273
+ * Addenda: http://geographiclib.sourceforge.net/geod-addenda.html
2274
+ *
2275
+ * Copyright (c) Charles Karney (2011-2016) <charles@karney.com> and licensed
2276
+ * under the MIT/X11 License. For more information, see
2277
+ * http://geographiclib.sourceforge.net/
2278
+ */
2279
+
2280
+ // Load AFTER GeographicLib/Math.js and GeographicLib/Geodesic.js
2281
+
2282
+ (function(
2283
+ /**
2284
+ * @exports GeographicLib/PolygonArea
2285
+ * @description Compute the area of geodesic polygons via the
2286
+ * {@link module:GeographicLib/PolygonArea.PolygonArea PolygonArea}
2287
+ * class.
2288
+ */
2289
+ p, g, m, a) {
2290
+
2291
+ var transit, transitdirect;
2292
+ transit = function(lon1, lon2) {
2293
+ // Return 1 or -1 if crossing prime meridian in east or west direction.
2294
+ // Otherwise return zero.
2295
+ var lon12, cross;
2296
+ // Compute lon12 the same way as Geodesic::Inverse.
2297
+ lon1 = m.AngNormalize(lon1);
2298
+ lon2 = m.AngNormalize(lon2);
2299
+ lon12 = m.AngDiff(lon1, lon2).s;
2300
+ cross = lon1 < 0 && lon2 >= 0 && lon12 > 0 ? 1 :
2301
+ (lon2 < 0 && lon1 >= 0 && lon12 < 0 ? -1 : 0);
2302
+ return cross;
2303
+ };
2304
+
2305
+ // an alternate version of transit to deal with longitudes in the direct
2306
+ // problem.
2307
+ transitdirect = function(lon1, lon2) {
2308
+ // We want to compute exactly
2309
+ // int(floor(lon2 / 360)) - int(floor(lon1 / 360))
2310
+ // Since we only need the parity of the result we can use std::remquo but
2311
+ // this is buggy with g++ 4.8.3 and requires C++11. So instead we do
2312
+ lon1 = lon1 % 720.0; lon2 = lon2 % 720.0;
2313
+ return ( ((lon2 >= 0 && lon2 < 360) || lon2 < -360 ? 0 : 1) -
2314
+ ((lon1 >= 0 && lon1 < 360) || lon1 < -360 ? 0 : 1) );
2315
+ };
2316
+
2317
+ /**
2318
+ * @class
2319
+ * @property {number} a the equatorial radius (meters).
2320
+ * @property {number} f the flattening.
2321
+ * @property {bool} polyline whether the PolygonArea object describes a
2322
+ * polyline or a polygon.
2323
+ * @property {number} num the number of vertices so far.
2324
+ * @property {number} lat the current latitude (degrees).
2325
+ * @property {number} lon the current longitude (degrees).
2326
+ * @summary Initialize a PolygonArea object.
2327
+ * @classdesc Computes the area and perimeter of a geodesic polygon.
2328
+ * This object is usually instantiated by
2329
+ * {@link module:GeographicLib/Geodesic.Geodesic#Polygon Geodesic.Polygon}.
2330
+ * @param {object} geod a {@link module:GeographicLib/Geodesic.Geodesic
2331
+ * Geodesic} object.
2332
+ * @param {bool} [polyline = false] if true the new PolygonArea object
2333
+ * describes a polyline instead of a polygon.
2334
+ */
2335
+ p.PolygonArea = function(geod, polyline) {
2336
+ this._geod = geod;
2337
+ this.a = this._geod.a;
2338
+ this.f = this._geod.f;
2339
+ this._area0 = 4 * Math.PI * geod._c2;
2340
+ this.polyline = !polyline ? false : polyline;
2341
+ this._mask = g.LATITUDE | g.LONGITUDE | g.DISTANCE |
2342
+ (this.polyline ? g.NONE : g.AREA | g.LONG_UNROLL);
2343
+ if (!this.polyline)
2344
+ this._areasum = new a.Accumulator(0);
2345
+ this._perimetersum = new a.Accumulator(0);
2346
+ this.Clear();
2347
+ };
2348
+
2349
+ /**
2350
+ * @summary Clear the PolygonArea object, setting the number of vertices to
2351
+ * 0.
2352
+ */
2353
+ p.PolygonArea.prototype.Clear = function() {
2354
+ this.num = 0;
2355
+ this._crossings = 0;
2356
+ if (!this.polyline)
2357
+ this._areasum.Set(0);
2358
+ this._perimetersum.Set(0);
2359
+ this._lat0 = this._lon0 = this.lat = this.lon = Number.NaN;
2360
+ };
2361
+
2362
+ /**
2363
+ * @summary Add the next vertex to the polygon.
2364
+ * @param {number} lat the latitude of the point (degrees).
2365
+ * @param {number} lon the longitude of the point (degrees).
2366
+ * @description This adds an edge from the current vertex to the new vertex.
2367
+ */
2368
+ p.PolygonArea.prototype.AddPoint = function(lat, lon) {
2369
+ var t;
2370
+ if (this.num === 0) {
2371
+ this._lat0 = this.lat = lat;
2372
+ this._lon0 = this.lon = lon;
2373
+ } else {
2374
+ t = this._geod.Inverse(this.lat, this.lon, lat, lon, this._mask);
2375
+ this._perimetersum.Add(t.s12);
2376
+ if (!this.polyline) {
2377
+ this._areasum.Add(t.S12);
2378
+ this._crossings += transit(this.lon, lon);
2379
+ }
2380
+ this.lat = lat;
2381
+ this.lon = lon;
2382
+ }
2383
+ ++this.num;
2384
+ };
2385
+
2386
+ /**
2387
+ * @summary Add the next edge to the polygon.
2388
+ * @param {number} azi the azimuth at the current the point (degrees).
2389
+ * @param {number} s the length of the edge (meters).
2390
+ * @description This specifies the new vertex in terms of the edge from the
2391
+ * current vertex.
2392
+ */
2393
+ p.PolygonArea.prototype.AddEdge = function(azi, s) {
2394
+ var t;
2395
+ if (this.num) {
2396
+ t = this._geod.Direct(this.lat, this.lon, azi, s, this._mask);
2397
+ this._perimetersum.Add(s);
2398
+ if (!this.polyline) {
2399
+ this._areasum.Add(t.S12);
2400
+ this._crossings += transitdirect(this.lon, t.lon2);
2401
+ }
2402
+ this.lat = t.lat2;
2403
+ this.lon = t.lon2;
2404
+ }
2405
+ ++this.num;
2406
+ };
2407
+
2408
+ /**
2409
+ * @summary Compute the perimeter and area of the polygon.
2410
+ * @param {bool} reverse if true then clockwise (instead of
2411
+ * counter-clockwise) traversal counts as a positive area.
2412
+ * @param {bool} sign if true then return a signed result for the area if the
2413
+ * polygon is traversed in the "wrong" direction instead of returning the
2414
+ * area for the rest of the earth.
2415
+ * @returns {object} r where r.number is the number of vertices, r.perimeter
2416
+ * is the perimeter (meters), and r.area (only returned if polyline is
2417
+ * false) is the area (meters<sup>2</sup>).
2418
+ * @description If the object is a polygon (and not a polygon), the perimeter
2419
+ * includes the length of a final edge connecting the current point to the
2420
+ * initial point. If the object is a polyline, then area is nan. More
2421
+ * points can be added to the polygon after this call.
2422
+ */
2423
+ p.PolygonArea.prototype.Compute = function(reverse, sign) {
2424
+ var vals = {number: this.num}, t, tempsum, crossings;
2425
+ if (this.num < 2) {
2426
+ vals.perimeter = 0;
2427
+ if (!this.polyline)
2428
+ vals.area = 0;
2429
+ return vals;
2430
+ }
2431
+ if (this.polyline) {
2432
+ vals.perimeter = this._perimetersum.Sum();
2433
+ return vals;
2434
+ }
2435
+ t = this._geod.Inverse(this.lat, this.lon, this._lat0, this._lon0,
2436
+ this._mask);
2437
+ vals.perimeter = this._perimetersum.Sum(t.s12);
2438
+ tempsum = new a.Accumulator(this._areasum);
2439
+ tempsum.Add(t.S12);
2440
+ crossings = this._crossings + transit(this.lon, this._lon0);
2441
+ if (crossings & 1)
2442
+ tempsum.Add( (tempsum.Sum() < 0 ? 1 : -1) * this._area0/2 );
2443
+ // area is with the clockwise sense. If !reverse convert to
2444
+ // counter-clockwise convention.
2445
+ if (!reverse)
2446
+ tempsum.Negate();
2447
+ // If sign put area in (-area0/2, area0/2], else put area in [0, area0)
2448
+ if (sign) {
2449
+ if (tempsum.Sum() > this._area0/2)
2450
+ tempsum.Add( -this._area0 );
2451
+ else if (tempsum.Sum() <= -this._area0/2)
2452
+ tempsum.Add( +this._area0 );
2453
+ } else {
2454
+ if (tempsum.Sum() >= this._area0)
2455
+ tempsum.Add( -this._area0 );
2456
+ else if (tempsum < 0)
2457
+ tempsum.Add( -this._area0 );
2458
+ }
2459
+ vals.area = tempsum.Sum();
2460
+ return vals;
2461
+ };
2462
+
2463
+ /**
2464
+ * @summary Compute the perimeter and area of the polygon with a tentative
2465
+ * new vertex.
2466
+ * @param {number} lat the latitude of the point (degrees).
2467
+ * @param {number} lon the longitude of the point (degrees).
2468
+ * @param {bool} reverse if true then clockwise (instead of
2469
+ * counter-clockwise) traversal counts as a positive area.
2470
+ * @param {bool} sign if true then return a signed result for the area if the
2471
+ * polygon is traversed in the "wrong" direction instead of returning the
2472
+ * @returns {object} r where r.number is the number of vertices, r.perimeter
2473
+ * is the perimeter (meters), and r.area (only returned if polyline is
2474
+ * false) is the area (meters<sup>2</sup>).
2475
+ * @description A new vertex is *not* added to the polygon.
2476
+ */
2477
+ p.PolygonArea.prototype.TestPoint = function(lat, lon, reverse, sign) {
2478
+ var vals = {number: this.num + 1}, t, tempsum, crossings, i;
2479
+ if (this.num === 0) {
2480
+ vals.perimeter = 0;
2481
+ if (!this.polyline)
2482
+ vals.area = 0;
2483
+ return vals;
2484
+ }
2485
+ vals.perimeter = this._perimetersum.Sum();
2486
+ tempsum = this.polyline ? 0 : this._areasum.Sum();
2487
+ crossings = this._crossings;
2488
+ for (i = 0; i < (this.polyline ? 1 : 2); ++i) {
2489
+ t = this._geod.Inverse(
2490
+ i === 0 ? this.lat : lat, i === 0 ? this.lon : lon,
2491
+ i !== 0 ? this._lat0 : lat, i !== 0 ? this._lon0 : lon,
2492
+ this._mask);
2493
+ vals.perimeter += t.s12;
2494
+ if (!this.polyline) {
2495
+ tempsum += t.S12;
2496
+ crossings += transit(i === 0 ? this.lon : lon,
2497
+ i !== 0 ? this._lon0 : lon);
2498
+ }
2499
+ }
2500
+
2501
+ if (this.polyline)
2502
+ return vals;
2503
+
2504
+ if (crossings & 1)
2505
+ tempsum += (tempsum < 0 ? 1 : -1) * this._area0/2;
2506
+ // area is with the clockwise sense. If !reverse convert to
2507
+ // counter-clockwise convention.
2508
+ if (!reverse)
2509
+ tempsum *= -1;
2510
+ // If sign put area in (-area0/2, area0/2], else put area in [0, area0)
2511
+ if (sign) {
2512
+ if (tempsum > this._area0/2)
2513
+ tempsum -= this._area0;
2514
+ else if (tempsum <= -this._area0/2)
2515
+ tempsum += this._area0;
2516
+ } else {
2517
+ if (tempsum >= this._area0)
2518
+ tempsum -= this._area0;
2519
+ else if (tempsum < 0)
2520
+ tempsum += this._area0;
2521
+ }
2522
+ vals.area = tempsum;
2523
+ return vals;
2524
+ };
2525
+
2526
+ /**
2527
+ * @summary Compute the perimeter and area of the polygon with a tentative
2528
+ * new edge.
2529
+ * @param {number} azi the azimuth of the edge (degrees).
2530
+ * @param {number} s the length of the edge (meters).
2531
+ * @param {bool} reverse if true then clockwise (instead of
2532
+ * counter-clockwise) traversal counts as a positive area.
2533
+ * @param {bool} sign if true then return a signed result for the area if the
2534
+ * polygon is traversed in the "wrong" direction instead of returning the
2535
+ * @returns {object} r where r.number is the number of vertices, r.perimeter
2536
+ * is the perimeter (meters), and r.area (only returned if polyline is
2537
+ * false) is the area (meters<sup>2</sup>).
2538
+ * @description A new vertex is *not* added to the polygon.
2539
+ */
2540
+ p.PolygonArea.prototype.TestEdge = function(azi, s, reverse, sign) {
2541
+ var vals = {number: this.num ? this.num + 1 : 0}, t, tempsum, crossings;
2542
+ if (this.num === 0)
2543
+ return vals;
2544
+ vals.perimeter = this._perimetersum.Sum() + s;
2545
+ if (this.polyline)
2546
+ return vals;
2547
+
2548
+ tempsum = this._areasum.Sum();
2549
+ crossings = this._crossings;
2550
+ t = this._geod.Direct(this.lat, this.lon, azi, s, this._mask);
2551
+ tempsum += t.S12;
2552
+ crossings += transitdirect(this.lon, t.lon2);
2553
+ t = this._geod.Inverse(t.lat2, t.lon2, this._lat0, this._lon0, this._mask);
2554
+ vals.perimeter += t.s12;
2555
+ tempsum += t.S12;
2556
+ crossings += transit(t.lon2, this._lon0);
2557
+
2558
+ if (crossings & 1)
2559
+ tempsum += (tempsum < 0 ? 1 : -1) * this._area0/2;
2560
+ // area is with the clockwise sense. If !reverse convert to
2561
+ // counter-clockwise convention.
2562
+ if (!reverse)
2563
+ tempsum *= -1;
2564
+ // If sign put area in (-area0/2, area0/2], else put area in [0, area0)
2565
+ if (sign) {
2566
+ if (tempsum > this._area0/2)
2567
+ tempsum -= this._area0;
2568
+ else if (tempsum <= -this._area0/2)
2569
+ tempsum += this._area0;
2570
+ } else {
2571
+ if (tempsum >= this._area0)
2572
+ tempsum -= this._area0;
2573
+ else if (tempsum < 0)
2574
+ tempsum += this._area0;
2575
+ }
2576
+ vals.area = tempsum;
2577
+ return vals;
2578
+ };
2579
+
2580
+ })(GeographicLib.PolygonArea, GeographicLib.Geodesic,
2581
+ GeographicLib.Math, GeographicLib.Accumulator);
2582
+
2583
+ /**************** DMS.js ****************/
2584
+ /*
2585
+ * DMS.js
2586
+ * Transcription of DMS.[ch]pp into JavaScript.
2587
+ *
2588
+ * See the documentation for the C++ class. The conversion is a literal
2589
+ * conversion from C++.
2590
+ *
2591
+ * Copyright (c) Charles Karney (2011-2015) <charles@karney.com> and licensed
2592
+ * under the MIT/X11 License. For more information, see
2593
+ * http://geographiclib.sourceforge.net/
2594
+ */
2595
+
2596
+ GeographicLib.DMS = {};
2597
+
2598
+ (function(
2599
+ /**
2600
+ * @exports GeographicLib/DMS
2601
+ * @description Decode/Encode angles expressed as degrees, minutes, and
2602
+ * seconds. This module defines several constants:
2603
+ * - hemisphere indicator (returned by
2604
+ * {@link module:GeographicLib/DMS.Decode Decode}) and a formatting
2605
+ * indicator (used by
2606
+ * {@link module:GeographicLib/DMS.Encode Encode})
2607
+ * - NONE = 0, no designator and format as plain angle;
2608
+ * - LATITUDE = 1, a N/S designator and format as latitude;
2609
+ * - LONGITUDE = 2, an E/W designator and format as longitude;
2610
+ * - AZIMUTH = 3, format as azimuth;
2611
+ * - the specification of the trailing component in
2612
+ * {@link module:GeographicLib/DMS.Encode Encode}
2613
+ * - DEGREE;
2614
+ * - MINUTE;
2615
+ * - SECOND.
2616
+ */
2617
+ d) {
2618
+
2619
+ var lookup, zerofill, internalDecode, numMatch,
2620
+ hemispheres_ = "SNWE",
2621
+ signs_ = "-+",
2622
+ digits_ = "0123456789",
2623
+ dmsindicators_ = "D'\":",
2624
+ // dmsindicatorsu_ = "\u00b0\u2032\u2033"; // Unicode variants
2625
+ dmsindicatorsu_ = "\u00b0'\"", // Use degree symbol
2626
+ components_ = ["degrees", "minutes", "seconds"];
2627
+ lookup = function(s, c) {
2628
+ return s.indexOf(c.toUpperCase());
2629
+ };
2630
+ zerofill = function(s, n) {
2631
+ return String("0000").substr(0, Math.max(0, Math.min(4, n-s.length))) +
2632
+ s;
2633
+ };
2634
+ d.NONE = 0;
2635
+ d.LATITUDE = 1;
2636
+ d.LONGITUDE = 2;
2637
+ d.AZIMUTH = 3;
2638
+ d.DEGREE = 0;
2639
+ d.MINUTE = 1;
2640
+ d.SECOND = 2;
2641
+
2642
+ /**
2643
+ * @summary Decode a DMS string.
2644
+ * @description The interpretation of the string is given in the
2645
+ * documentation of the corresponding function, Decode(string&, flag&)
2646
+ * in the {@link
2647
+ * http://geographiclib.sourceforge.net/html/classGeographicLib_1_1DMS.html
2648
+ * C++ DMS class}
2649
+ * @param {string} dms the string.
2650
+ * @returns {object} r where r.val is the decoded value (degrees) and r.ind
2651
+ * is a hemisphere designator, one of NONE, LATITUDE, LONGITUDE.
2652
+ * @throws an error if the string is illegal.
2653
+ */
2654
+ d.Decode = function(dms) {
2655
+ var dmsa = dms, end,
2656
+ v = 0, i = 0, mi, pi, vals,
2657
+ ind1 = d.NONE, ind2, p, pa, pb;
2658
+ dmsa = dmsa.replace(/\u00b0/g, 'd')
2659
+ .replace(/\u00ba/g, 'd')
2660
+ .replace(/\u2070/g, 'd')
2661
+ .replace(/\u02da/g, 'd')
2662
+ .replace(/\u2032/g, '\'')
2663
+ .replace(/\u00b4/g, '\'')
2664
+ .replace(/\u2019/g, '\'')
2665
+ .replace(/\u2033/g, '"')
2666
+ .replace(/\u201d/g, '"')
2667
+ .replace(/\u2212/g, '-')
2668
+ .replace(/''/g, '"')
2669
+ .trim();
2670
+ end = dmsa.length;
2671
+ // p is pointer to the next piece that needs decoding
2672
+ for (p = 0; p < end; p = pb, ++i) {
2673
+ pa = p;
2674
+ // Skip over initial hemisphere letter (for i == 0)
2675
+ if (i === 0 && lookup(hemispheres_, dmsa.charAt(pa)) >= 0)
2676
+ ++pa;
2677
+ // Skip over initial sign (checking for it if i == 0)
2678
+ if (i > 0 || (pa < end && lookup(signs_, dmsa.charAt(pa)) >= 0))
2679
+ ++pa;
2680
+ // Find next sign
2681
+ mi = dmsa.substr(pa, end - pa).indexOf('-');
2682
+ pi = dmsa.substr(pa, end - pa).indexOf('+');
2683
+ if (mi < 0) mi = end; else mi += pa;
2684
+ if (pi < 0) pi = end; else pi += pa;
2685
+ pb = Math.min(mi, pi);
2686
+ vals = internalDecode(dmsa.substr(p, pb - p));
2687
+ v += vals.val; ind2 = vals.ind;
2688
+ if (ind1 == d.NONE)
2689
+ ind1 = ind2;
2690
+ else if (!(ind2 == d.NONE || ind1 == ind2))
2691
+ throw new Error("Incompatible hemisphere specifies in " +
2692
+ dmsa.substr(0, pb));
2693
+ }
2694
+ if (i === 0)
2695
+ throw new Error("Empty or incomplete DMS string " + dmsa);
2696
+ return {val: v, ind: ind1};
2697
+ };
2698
+
2699
+ internalDecode = function(dmsa) {
2700
+ var vals = {}, errormsg = "",
2701
+ sign, beg, end, ind1, k,
2702
+ ipieces, fpieces, npiece,
2703
+ icurrent, fcurrent, ncurrent, p,
2704
+ pointseen,
2705
+ digcount, intcount,
2706
+ x;
2707
+ do { // Executed once (provides the ability to break)
2708
+ sign = 1;
2709
+ beg = 0; end = dmsa.length;
2710
+ ind1 = d.NONE;
2711
+ k = -1;
2712
+ if (end > beg && (k = lookup(hemispheres_, dmsa.charAt(beg))) >= 0) {
2713
+ ind1 = (k & 2) ? d.LONGITUDE : d.LATITUDE;
2714
+ sign = (k & 1) ? 1 : -1;
2715
+ ++beg;
2716
+ }
2717
+ if (end > beg &&
2718
+ (k = lookup(hemispheres_, dmsa.charAt(end-1))) >= 0) {
2719
+ if (k >= 0) {
2720
+ if (ind1 !== d.NONE) {
2721
+ if (dmsa.charAt(beg - 1).toUpperCase() ===
2722
+ dmsa.charAt(end - 1).toUpperCase())
2723
+ errormsg = "Repeated hemisphere indicators " +
2724
+ dmsa.charAt(beg - 1) + " in " +
2725
+ dmsa.substr(beg - 1, end - beg + 1);
2726
+ else
2727
+ errormsg = "Contradictory hemisphere indicators " +
2728
+ dmsa.charAt(beg - 1) + " and " + dmsa.charAt(end - 1) + " in " +
2729
+ dmsa.substr(beg - 1, end - beg + 1);
2730
+ break;
2731
+ }
2732
+ ind1 = (k & 2) ? d.LONGITUDE : d.LATITUDE;
2733
+ sign = (k & 1) ? 1 : -1;
2734
+ --end;
2735
+ }
2736
+ }
2737
+ if (end > beg && (k = lookup(signs_, dmsa.charAt(beg))) >= 0) {
2738
+ if (k >= 0) {
2739
+ sign *= k ? 1 : -1;
2740
+ ++beg;
2741
+ }
2742
+ }
2743
+ if (end === beg) {
2744
+ errormsg = "Empty or incomplete DMS string " + dmsa;
2745
+ break;
2746
+ }
2747
+ ipieces = [0, 0, 0];
2748
+ fpieces = [0, 0, 0];
2749
+ npiece = 0;
2750
+ icurrent = 0;
2751
+ fcurrent = 0;
2752
+ ncurrent = 0;
2753
+ p = beg;
2754
+ pointseen = false;
2755
+ digcount = 0;
2756
+ intcount = 0;
2757
+ while (p < end) {
2758
+ x = dmsa.charAt(p++);
2759
+ if ((k = lookup(digits_, x)) >= 0) {
2760
+ ++ncurrent;
2761
+ if (digcount > 0) {
2762
+ ++digcount; // Count of decimal digits
2763
+ } else {
2764
+ icurrent = 10 * icurrent + k;
2765
+ ++intcount;
2766
+ }
2767
+ } else if (x === '.') {
2768
+ if (pointseen) {
2769
+ errormsg = "Multiple decimal points in " +
2770
+ dmsa.substr(beg, end - beg);
2771
+ break;
2772
+ }
2773
+ pointseen = true;
2774
+ digcount = 1;
2775
+ } else if ((k = lookup(dmsindicators_, x)) >= 0) {
2776
+ if (k >= 3) {
2777
+ if (p === end) {
2778
+ errormsg = "Illegal for colon to appear at the end of " +
2779
+ dmsa.substr(beg, end - beg);
2780
+ break;
2781
+ }
2782
+ k = npiece;
2783
+ }
2784
+ if (k === npiece - 1) {
2785
+ errormsg = "Repeated " + components_[k] +
2786
+ " component in " + dmsa.substr(beg, end - beg);
2787
+ break;
2788
+ } else if (k < npiece) {
2789
+ errormsg = components_[k] + " component follows " +
2790
+ components_[npiece - 1] + " component in " +
2791
+ dmsa.substr(beg, end - beg);
2792
+ break;
2793
+ }
2794
+ if (ncurrent === 0) {
2795
+ errormsg = "Missing numbers in " + components_[k] +
2796
+ " component of " + dmsa.substr(beg, end - beg);
2797
+ break;
2798
+ }
2799
+ if (digcount > 0) {
2800
+ fcurrent = parseFloat(dmsa.substr(p - intcount - digcount - 1,
2801
+ intcount + digcount));
2802
+ icurrent = 0;
2803
+ }
2804
+ ipieces[k] = icurrent;
2805
+ fpieces[k] = icurrent + fcurrent;
2806
+ if (p < end) {
2807
+ npiece = k + 1;
2808
+ icurrent = fcurrent = 0;
2809
+ ncurrent = digcount = intcount = 0;
2810
+ }
2811
+ } else if (lookup(signs_, x) >= 0) {
2812
+ errormsg = "Internal sign in DMS string " +
2813
+ dmsa.substr(beg, end - beg);
2814
+ break;
2815
+ } else {
2816
+ errormsg = "Illegal character " + x + " in DMS string " +
2817
+ dmsa.substr(beg, end - beg);
2818
+ break;
2819
+ }
2820
+ }
2821
+ if (errormsg.length)
2822
+ break;
2823
+ if (lookup(dmsindicators_, dmsa.charAt(p - 1)) < 0) {
2824
+ if (npiece >= 3) {
2825
+ errormsg = "Extra text following seconds in DMS string " +
2826
+ dmsa.substr(beg, end - beg);
2827
+ break;
2828
+ }
2829
+ if (ncurrent === 0) {
2830
+ errormsg = "Missing numbers in trailing component of " +
2831
+ dmsa.substr(beg, end - beg);
2832
+ break;
2833
+ }
2834
+ if (digcount > 0) {
2835
+ fcurrent = parseFloat(dmsa.substr(p - intcount - digcount,
2836
+ intcount + digcount));
2837
+ icurrent = 0;
2838
+ }
2839
+ ipieces[npiece] = icurrent;
2840
+ fpieces[npiece] = icurrent + fcurrent;
2841
+ }
2842
+ if (pointseen && digcount === 0) {
2843
+ errormsg = "Decimal point in non-terminal component of " +
2844
+ dmsa.substr(beg, end - beg);
2845
+ break;
2846
+ }
2847
+ // Note that we accept 59.999999... even though it rounds to 60.
2848
+ if (ipieces[1] >= 60 || fpieces[1] > 60) {
2849
+ errormsg = "Minutes " + fpieces[1] + " not in range [0,60)";
2850
+ break;
2851
+ }
2852
+ if (ipieces[2] >= 60 || fpieces[2] > 60) {
2853
+ errormsg = "Seconds " + fpieces[2] + " not in range [0,60)";
2854
+ break;
2855
+ }
2856
+ vals.ind = ind1;
2857
+ // Assume check on range of result is made by calling routine (which
2858
+ // might be able to offer a better diagnostic).
2859
+ vals.val = sign *
2860
+ ( fpieces[2] ? (60*(60*fpieces[0] + fpieces[1]) + fpieces[2]) / 3600 :
2861
+ ( fpieces[1] ? (60*fpieces[0] + fpieces[1]) / 60 : fpieces[0] ) );
2862
+ return vals;
2863
+ } while (false);
2864
+ vals.val = numMatch(dmsa);
2865
+ if (vals.val === 0)
2866
+ throw new Error(errormsg);
2867
+ else
2868
+ vals.ind = d.NONE;
2869
+ return vals;
2870
+ };
2871
+
2872
+ numMatch = function(s) {
2873
+ var t, sign, p0, p1;
2874
+ if (s.length < 3)
2875
+ return 0;
2876
+ t = s.toUpperCase().replace(/0+$/,"");
2877
+ sign = t.charAt(0) === '-' ? -1 : 1;
2878
+ p0 = t.charAt(0) === '-' || t.charAt(0) === '+' ? 1 : 0;
2879
+ p1 = t.length - 1;
2880
+ if (p1 + 1 < p0 + 3)
2881
+ return 0;
2882
+ // Strip off sign and trailing 0s
2883
+ t = t.substr(p0, p1 + 1 - p0); // Length at least 3
2884
+ if (t === "NAN" || t === "1.#QNAN" || t === "1.#SNAN" || t === "1.#IND" ||
2885
+ t === "1.#R")
2886
+ return Number.NaN;
2887
+ else if (t === "INF" || t === "1.#INF")
2888
+ return sign * Number.POSITIVE_INFINITY;
2889
+ return 0;
2890
+ };
2891
+
2892
+ /**
2893
+ * @summary Decode two DMS strings interpreting them as a latitude/longitude
2894
+ * pair.
2895
+ * @param {string} stra the first string.
2896
+ * @param {string} strb the first string.
2897
+ * @param {bool} [longfirst = false] if true assume then longitude is given
2898
+ * first (in the absense of any hemisphere indicators).
2899
+ * @returns {object} r where r.lat is the decoded latitude and r.lon is the
2900
+ * decoded longitude (both in degrees).
2901
+ * @throws an error if the strings are illegal.
2902
+ */
2903
+ d.DecodeLatLon = function(stra, strb, longfirst) {
2904
+ var vals = {},
2905
+ valsa = d.Decode(stra),
2906
+ valsb = d.Decode(strb),
2907
+ a = valsa.val, ia = valsa.ind,
2908
+ b = valsb.val, ib = valsb.ind,
2909
+ lat, lon;
2910
+ if (!longfirst) longfirst = false;
2911
+ if (ia === d.NONE && ib === d.NONE) {
2912
+ // Default to lat, long unless longfirst
2913
+ ia = longfirst ? d.LONGITUDE : d.LATITUDE;
2914
+ ib = longfirst ? d.LATITUDE : d.LONGITUDE;
2915
+ } else if (ia === d.NONE)
2916
+ ia = d.LATITUDE + d.LONGITUDE - ib;
2917
+ else if (ib === d.NONE)
2918
+ ib = d.LATITUDE + d.LONGITUDE - ia;
2919
+ if (ia === ib)
2920
+ throw new Error("Both " + stra + " and " + strb + " interpreted as " +
2921
+ (ia === d.LATITUDE ? "latitudes" : "longitudes"));
2922
+ lat = ia === d.LATITUDE ? a : b;
2923
+ lon = ia === d.LATITUDE ? b : a;
2924
+ if (Math.abs(lat) > 90)
2925
+ throw new Error("Latitude " + lat + " not in [-90,90]");
2926
+ vals.lat = lat;
2927
+ vals.lon = lon;
2928
+ return vals;
2929
+ };
2930
+
2931
+ /**
2932
+ * @summary Decode a DMS string interpreting it as an arc length.
2933
+ * @param {string} angstr the string (this must not include a hemisphere
2934
+ * indicator).
2935
+ * @returns {number} the arc length (degrees).
2936
+ * @throws an error if the string is illegal.
2937
+ */
2938
+ d.DecodeAngle = function(angstr) {
2939
+ var vals = d.Decode(angstr),
2940
+ ang = vals.val, ind = vals.ind;
2941
+ if (ind !== d.NONE)
2942
+ throw new Error("Arc angle " + angstr + " includes a hemisphere N/E/W/S");
2943
+ return ang;
2944
+ };
2945
+
2946
+ /**
2947
+ * @summary Decode a DMS string interpreting it as an azimuth.
2948
+ * @param {string} azistr the string (this may include an E/W hemisphere
2949
+ * indicator).
2950
+ * @returns {number} the azimuth (degrees).
2951
+ * @throws an error if the string is illegal.
2952
+ */
2953
+ d.DecodeAzimuth = function(azistr) {
2954
+ var vals = d.Decode(azistr),
2955
+ azi = vals.val, ind = vals.ind;
2956
+ if (ind === d.LATITUDE)
2957
+ throw new Error("Azimuth " + azistr + " has a latitude hemisphere N/S");
2958
+ return azi;
2959
+ };
2960
+
2961
+ /**
2962
+ * @summary Convert angle (in degrees) into a DMS string (using &deg;, ',
2963
+ * and &quot;).
2964
+ * @param {number} angle input angle (degrees).
2965
+ * @param {number} trailing one of DEGREE, MINUTE, or SECOND to indicate
2966
+ * the trailing component of the string (this component is given as a
2967
+ * decimal number if necessary).
2968
+ * @param {number} prec the number of digits after the decimal point for
2969
+ * the trailing component.
2970
+ * @param {number} [ind = NONE] a formatting indicator, one of NONE,
2971
+ * LATITUDE, LONGITUDE, AZIMUTH.
2972
+ * @returns {string} the resulting string formatted as follows:
2973
+ * * NONE, signed result no leading zeros on degrees except in the units
2974
+ * place, e.g., -8&deg;03'.
2975
+ * * LATITUDE, trailing N or S hemisphere designator, no sign, pad
2976
+ * degrees to 2 digits, e.g., 08&deg;03'S.
2977
+ * * LONGITUDE, trailing E or W hemisphere designator, no sign, pad
2978
+ * degrees to 3 digits, e.g., 008&deg;03'W.
2979
+ * * AZIMUTH, convert to the range [0, 360&deg;), no sign, pad degrees to
2980
+ * 3 digits, e.g., 351&deg;57'.
2981
+ */
2982
+ d.Encode = function(angle, trailing, prec, ind) {
2983
+ // Assume check on range of input angle has been made by calling
2984
+ // routine (which might be able to offer a better diagnostic).
2985
+ var scale = 1, i, sign,
2986
+ idegree, fdegree, f, pieces, ip, fp, s;
2987
+ if (!ind) ind = d.NONE;
2988
+ if (!isFinite(angle))
2989
+ return angle < 0 ? String("-inf") :
2990
+ (angle > 0 ? String("inf") : String("nan"));
2991
+
2992
+ // 15 - 2 * trailing = ceiling(log10(2^53/90/60^trailing)).
2993
+ // This suffices to give full real precision for numbers in [-90,90]
2994
+ prec = Math.min(15 - 2 * trailing, prec);
2995
+ for (i = 0; i < trailing; ++i)
2996
+ scale *= 60;
2997
+ for (i = 0; i < prec; ++i)
2998
+ scale *= 10;
2999
+ if (ind === d.AZIMUTH)
3000
+ angle -= Math.floor(angle/360) * 360;
3001
+ sign = angle < 0 ? -1 : 1;
3002
+ angle *= sign;
3003
+
3004
+ // Break off integer part to preserve precision in manipulation of
3005
+ // fractional part.
3006
+ idegree = Math.floor(angle);
3007
+ fdegree = (angle - idegree) * scale + 0.5;
3008
+ f = Math.floor(fdegree);
3009
+ // Implement the "round ties to even" rule
3010
+ fdegree = (f == fdegree && (f & 1)) ? f - 1 : f;
3011
+ fdegree /= scale;
3012
+
3013
+ fdegree = Math.floor((angle - idegree) * scale + 0.5) / scale;
3014
+ if (fdegree >= 1) {
3015
+ idegree += 1;
3016
+ fdegree -= 1;
3017
+ }
3018
+ pieces = [fdegree, 0, 0];
3019
+ for (i = 1; i <= trailing; ++i) {
3020
+ ip = Math.floor(pieces[i - 1]);
3021
+ fp = pieces[i - 1] - ip;
3022
+ pieces[i] = fp * 60;
3023
+ pieces[i - 1] = ip;
3024
+ }
3025
+ pieces[0] += idegree;
3026
+ s = "";
3027
+ if (ind === d.NONE && sign < 0)
3028
+ s += '-';
3029
+ switch (trailing) {
3030
+ case d.DEGREE:
3031
+ s += zerofill(pieces[0].toFixed(prec),
3032
+ ind === d.NONE ? 0 :
3033
+ 1 + Math.min(ind, 2) + prec + (prec ? 1 : 0)) +
3034
+ dmsindicatorsu_.charAt(0);
3035
+ break;
3036
+ default:
3037
+ s += zerofill(pieces[0].toFixed(0),
3038
+ ind === d.NONE ? 0 : 1 + Math.min(ind, 2)) +
3039
+ dmsindicatorsu_.charAt(0);
3040
+ switch (trailing) {
3041
+ case d.MINUTE:
3042
+ s += zerofill(pieces[1].toFixed(prec), 2 + prec + (prec ? 1 : 0)) +
3043
+ dmsindicatorsu_.charAt(1);
3044
+ break;
3045
+ case d.SECOND:
3046
+ s += zerofill(pieces[1].toFixed(0), 2) + dmsindicatorsu_.charAt(1);
3047
+ s += zerofill(pieces[2].toFixed(prec), 2 + prec + (prec ? 1 : 0)) +
3048
+ dmsindicatorsu_.charAt(2);
3049
+ break;
3050
+ default:
3051
+ break;
3052
+ }
3053
+ }
3054
+ if (ind !== d.NONE && ind !== d.AZIMUTH)
3055
+ s += hemispheres_.charAt((ind === d.LATITUDE ? 0 : 2) +
3056
+ (sign < 0 ? 0 : 1));
3057
+ return s;
3058
+ };
3059
+ })(GeographicLib.DMS);
3060
+
3061
+ cb(GeographicLib);
3062
+
3063
+ })(function(geo) {
3064
+ if (typeof module === 'object' && module.exports) {
3065
+ /******** support loading with node's require ********/
3066
+ module.exports = geo;
3067
+ } else if (typeof define === 'function' && define.amd) {
3068
+ /******** support loading with AMD ********/
3069
+ define('geographiclib', [], function() { return geo; });
3070
+ } else {
3071
+ /******** otherwise just pollute our global namespace ********/
3072
+ window.GeographicLib = geo;
3073
+ }
3074
+ });