fluent-plugin-bigquery-test 2.2.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.github/ISSUE_TEMPLATE.md +16 -0
- data/.gitignore +21 -0
- data/.travis.yml +14 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +13 -0
- data/README.md +602 -0
- data/Rakefile +12 -0
- data/fluent-plugin-bigquery.gemspec +29 -0
- data/gemfiles/activesupport-4.gemfile +6 -0
- data/lib/fluent/plugin/bigquery/errors.rb +84 -0
- data/lib/fluent/plugin/bigquery/helper.rb +33 -0
- data/lib/fluent/plugin/bigquery/schema.rb +281 -0
- data/lib/fluent/plugin/bigquery/version.rb +5 -0
- data/lib/fluent/plugin/bigquery/writer.rb +356 -0
- data/lib/fluent/plugin/out_bigquery_base.rb +221 -0
- data/lib/fluent/plugin/out_bigquery_insert.rb +125 -0
- data/lib/fluent/plugin/out_bigquery_load.rb +221 -0
- data/test/helper.rb +20 -0
- data/test/plugin/test_out_bigquery_base.rb +579 -0
- data/test/plugin/test_out_bigquery_insert.rb +544 -0
- data/test/plugin/test_out_bigquery_load.rb +348 -0
- data/test/plugin/test_record_schema.rb +186 -0
- data/test/plugin/testdata/apache.schema +98 -0
- data/test/plugin/testdata/json_key.json +7 -0
- data/test/plugin/testdata/sudo.schema +27 -0
- data/test/run_test.rb +9 -0
- metadata +197 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: ff14eb5085151de11780105f37826c8c6359e064e8b03b151593a825392743bb
|
4
|
+
data.tar.gz: 04ba1a56eef89610cdce659129de4b887141a992b1836114df07a0bc546e5d95
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 8016409a53493922cd2df4d1e1628fb47ca2189392fb3c0eef154e512ee34ce59bb491af4f6dca0d9841af52b81326fd2525f22971a174ff1b1ac2a6f627ac79
|
7
|
+
data.tar.gz: 2ec49bcf6281f40887128c079ded78a62f837737a4c264933cb8750233dd64cbdf76ab018260d071a6f2fa0f064b39fa340026e2d3bb20656be448a058a853c9
|
@@ -0,0 +1,16 @@
|
|
1
|
+
<!-- Please check your config and docs of fluentd !! -->
|
2
|
+
|
3
|
+
## Environments
|
4
|
+
|
5
|
+
- fluentd version:
|
6
|
+
- plugin version:
|
7
|
+
|
8
|
+
## Configuration
|
9
|
+
<!-- Please write your configuration -->
|
10
|
+
|
11
|
+
## Expected Behavior
|
12
|
+
|
13
|
+
## Actual Behavior
|
14
|
+
|
15
|
+
## Log (if you have)
|
16
|
+
|
data/.gitignore
ADDED
@@ -0,0 +1,21 @@
|
|
1
|
+
*.gem
|
2
|
+
*.rbc
|
3
|
+
.bundle
|
4
|
+
.config
|
5
|
+
.yardoc
|
6
|
+
.ruby-version
|
7
|
+
Gemfile.lock
|
8
|
+
InstalledFiles
|
9
|
+
_yardoc
|
10
|
+
coverage
|
11
|
+
doc/
|
12
|
+
lib/bundler/man
|
13
|
+
pkg
|
14
|
+
rdoc
|
15
|
+
spec/reports
|
16
|
+
test/tmp
|
17
|
+
test/version_tmp
|
18
|
+
tmp
|
19
|
+
script/
|
20
|
+
|
21
|
+
fluentd-0.12
|
data/.travis.yml
ADDED
data/Gemfile
ADDED
data/LICENSE.txt
ADDED
@@ -0,0 +1,13 @@
|
|
1
|
+
Copyright (c) 2012- TAGOMORI Satoshi
|
2
|
+
|
3
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
you may not use this file except in compliance with the License.
|
5
|
+
You may obtain a copy of the License at
|
6
|
+
|
7
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
Unless required by applicable law or agreed to in writing, software
|
10
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
See the License for the specific language governing permissions and
|
13
|
+
limitations under the License.
|
data/README.md
ADDED
@@ -0,0 +1,602 @@
|
|
1
|
+
# fluent-plugin-bigquery
|
2
|
+
|
3
|
+
## Notice
|
4
|
+
|
5
|
+
We will transfer fluent-plugin-bigquery repository to [fluent-plugins-nursery](https://github.com/fluent-plugins-nursery) organization.
|
6
|
+
It does not change maintenance plan.
|
7
|
+
The main purpose is that it solves mismatch between maintainers and current organization.
|
8
|
+
|
9
|
+
---
|
10
|
+
|
11
|
+
[Fluentd](http://fluentd.org) output plugin to load/insert data into Google BigQuery.
|
12
|
+
|
13
|
+
- **Plugin type**: Output
|
14
|
+
|
15
|
+
* insert data over streaming inserts
|
16
|
+
* plugin type is `bigquery_insert`
|
17
|
+
* for continuous real-time insertions
|
18
|
+
* https://developers.google.com/bigquery/streaming-data-into-bigquery#usecases
|
19
|
+
* load data
|
20
|
+
* plugin type is `bigquery_load`
|
21
|
+
* for data loading as batch jobs, for big amount of data
|
22
|
+
* https://developers.google.com/bigquery/loading-data-into-bigquery
|
23
|
+
|
24
|
+
Current version of this plugin supports Google API with Service Account Authentication, but does not support
|
25
|
+
OAuth flow for installed applications.
|
26
|
+
|
27
|
+
## Support Version
|
28
|
+
|
29
|
+
| plugin version | fluentd version | ruby version |
|
30
|
+
| :----------- | :----------- | :----------- |
|
31
|
+
| v0.4.x | 0.12.x | 2.0 or later |
|
32
|
+
| v1.x.x | 0.14.x or later | 2.2 or later |
|
33
|
+
| v2.x.x | 0.14.x or later | 2.3 or later |
|
34
|
+
|
35
|
+
## With docker image
|
36
|
+
If you use official alpine based fluentd docker image (https://github.com/fluent/fluentd-docker-image),
|
37
|
+
You need to install `bigdecimal` gem on your own dockerfile.
|
38
|
+
Because alpine based image has only minimal ruby environment in order to reduce image size.
|
39
|
+
And in most case, dependency to embedded gem is not written on gemspec.
|
40
|
+
Because embbeded gem dependency sometimes restricts ruby environment.
|
41
|
+
|
42
|
+
## Configuration
|
43
|
+
|
44
|
+
### Options
|
45
|
+
|
46
|
+
#### common
|
47
|
+
|
48
|
+
| name | type | required? | placeholder? | default | description |
|
49
|
+
| :-------------------------------------------- | :------------ | :----------- | :---------- | :------------------------- | :----------------------- |
|
50
|
+
| auth_method | enum | yes | no | private_key | `private_key` or `json_key` or `compute_engine` or `application_default` |
|
51
|
+
| email | string | yes (private_key) | no | nil | GCP Service Account Email |
|
52
|
+
| private_key_path | string | yes (private_key) | no | nil | GCP Private Key file path |
|
53
|
+
| private_key_passphrase | string | yes (private_key) | no | nil | GCP Private Key Passphrase |
|
54
|
+
| json_key | string | yes (json_key) | no | nil | GCP JSON Key file path or JSON Key string |
|
55
|
+
| location | string | no | no | nil | BigQuery Data Location. The geographic location of the job. Required except for US and EU. |
|
56
|
+
| project | string | yes | yes | nil | |
|
57
|
+
| dataset | string | yes | yes | nil | |
|
58
|
+
| table | string | yes (either `tables`) | yes | nil | |
|
59
|
+
| tables | array(string) | yes (either `table`) | yes | nil | can set multi table names splitted by `,` |
|
60
|
+
| auto_create_table | bool | no | no | false | If true, creates table automatically |
|
61
|
+
| ignore_unknown_values | bool | no | no | false | Accept rows that contain values that do not match the schema. The unknown values are ignored. |
|
62
|
+
| schema | array | yes (either `fetch_schema` or `schema_path`) | no | nil | Schema Definition. It is formatted by JSON. |
|
63
|
+
| schema_path | string | yes (either `fetch_schema`) | no | nil | Schema Definition file path. It is formatted by JSON. |
|
64
|
+
| fetch_schema | bool | yes (either `schema_path`) | no | false | If true, fetch table schema definition from Bigquery table automatically. |
|
65
|
+
| fetch_schema_table | string | no | yes | nil | If set, fetch table schema definition from this table, If fetch_schema is false, this param is ignored |
|
66
|
+
| schema_cache_expire | integer | no | no | 600 | Value is second. If current time is after expiration interval, re-fetch table schema definition. |
|
67
|
+
| request_timeout_sec | integer | no | no | nil | Bigquery API response timeout |
|
68
|
+
| request_open_timeout_sec | integer | no | no | 60 | Bigquery API connection, and request timeout. If you send big data to Bigquery, set large value. |
|
69
|
+
| time_partitioning_type | enum | no (either day) | no | nil | Type of bigquery time partitioning feature. |
|
70
|
+
| time_partitioning_field | string | no | no | nil | Field used to determine how to create a time-based partition. |
|
71
|
+
| time_partitioning_expiration | time | no | no | nil | Expiration milliseconds for bigquery time partitioning. |
|
72
|
+
| clustering_fields | array(string) | no | no | nil | One or more fields on which data should be clustered. The order of the specified columns determines the sort order of the data. |
|
73
|
+
|
74
|
+
#### bigquery_insert
|
75
|
+
|
76
|
+
| name | type | required? | placeholder? | default | description |
|
77
|
+
| :------------------------------------- | :------------ | :----------- | :---------- | :------------------------- | :----------------------- |
|
78
|
+
| template_suffix | string | no | yes | nil | can use `%{time_slice}` placeholder replaced by `time_slice_format` |
|
79
|
+
| skip_invalid_rows | bool | no | no | false | |
|
80
|
+
| insert_id_field | string | no | no | nil | Use key as `insert_id` of Streaming Insert API parameter. see. https://docs.fluentd.org/v1.0/articles/api-plugin-helper-record_accessor |
|
81
|
+
| add_insert_timestamp | string | no | no | nil | Adds a timestamp column just before sending the rows to BigQuery, so that buffering time is not taken into account. Gives a field in BigQuery which represents the insert time of the row. |
|
82
|
+
| allow_retry_insert_errors | bool | no | no | false | Retry to insert rows when an insertErrors occurs. There is a possibility that rows are inserted in duplicate. |
|
83
|
+
|
84
|
+
#### bigquery_load
|
85
|
+
|
86
|
+
| name | type | required? | placeholder? | default | description |
|
87
|
+
| :------------------------------------- | :------------ | :----------- | :---------- | :------------------------- | :----------------------- |
|
88
|
+
| source_format | enum | no | no | json | Specify source format `json` or `csv` or `avro`. If you change this parameter, you must change formatter plugin via `<format>` config section. |
|
89
|
+
| max_bad_records | integer | no | no | 0 | If the number of bad records exceeds this value, an invalid error is returned in the job result. |
|
90
|
+
|
91
|
+
### Buffer section
|
92
|
+
|
93
|
+
| name | type | required? | default | description |
|
94
|
+
| :------------------------------------- | :------------ | :----------- | :------------------------- | :----------------------- |
|
95
|
+
| @type | string | no | memory (insert) or file (load) | |
|
96
|
+
| chunk_limit_size | integer | no | 1MB (insert) or 1GB (load) | |
|
97
|
+
| total_limit_size | integer | no | 1GB (insert) or 32GB (load) | |
|
98
|
+
| chunk_records_limit | integer | no | 500 (insert) or nil (load) | |
|
99
|
+
| flush_mode | enum | no | interval | default, lazy, interval, immediate |
|
100
|
+
| flush_interval | float | no | 1.0 (insert) or 3600 (load) | |
|
101
|
+
| flush_thread_interval | float | no | 0.05 (insert) or 5 (load) | |
|
102
|
+
| flush_thread_burst_interval | float | no | 0.05 (insert) or 5 (load) | |
|
103
|
+
|
104
|
+
And, other params (defined by base class) are available
|
105
|
+
|
106
|
+
see. https://github.com/fluent/fluentd/blob/master/lib/fluent/plugin/output.rb
|
107
|
+
|
108
|
+
### Inject section
|
109
|
+
|
110
|
+
It is replacement of previous version `time_field` and `time_format`.
|
111
|
+
|
112
|
+
For example.
|
113
|
+
|
114
|
+
```
|
115
|
+
<inject>
|
116
|
+
time_key time_field_name
|
117
|
+
time_type string
|
118
|
+
time_format %Y-%m-%d %H:%M:%S
|
119
|
+
</inject>
|
120
|
+
```
|
121
|
+
|
122
|
+
| name | type | required? | default | description |
|
123
|
+
| :------------------------------------- | :------------ | :----------- | :------------------------- | :----------------------- |
|
124
|
+
| hostname_key | string | no | nil | |
|
125
|
+
| hostname | string | no | nil | |
|
126
|
+
| tag_key | string | no | nil | |
|
127
|
+
| time_key | string | no | nil | |
|
128
|
+
| time_type | string | no | nil | |
|
129
|
+
| time_format | string | no | nil | |
|
130
|
+
| localtime | bool | no | true | |
|
131
|
+
| utc | bool | no | false | |
|
132
|
+
| timezone | string | no | nil | |
|
133
|
+
|
134
|
+
see. https://github.com/fluent/fluentd/blob/master/lib/fluent/plugin_helper/inject.rb
|
135
|
+
|
136
|
+
### Formatter section
|
137
|
+
|
138
|
+
This section is for `load` mode only.
|
139
|
+
If you use `insert` mode, used formatter is `json` only.
|
140
|
+
|
141
|
+
Bigquery supports `csv`, `json` and `avro` format. Default is `json`
|
142
|
+
I recommend to use `json` for now.
|
143
|
+
|
144
|
+
For example.
|
145
|
+
|
146
|
+
```
|
147
|
+
source_format csv
|
148
|
+
|
149
|
+
<format>
|
150
|
+
@type csv
|
151
|
+
fields col1, col2, col3
|
152
|
+
</format>
|
153
|
+
```
|
154
|
+
|
155
|
+
see. https://github.com/fluent/fluentd/blob/master/lib/fluent/plugin_helper/formatter.rb
|
156
|
+
|
157
|
+
## Examples
|
158
|
+
|
159
|
+
### Streaming inserts
|
160
|
+
|
161
|
+
Configure insert specifications with target table schema, with your credentials. This is minimum configurations:
|
162
|
+
|
163
|
+
```apache
|
164
|
+
<match dummy>
|
165
|
+
@type bigquery_insert
|
166
|
+
|
167
|
+
auth_method private_key # default
|
168
|
+
email xxxxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxx@developer.gserviceaccount.com
|
169
|
+
private_key_path /home/username/.keys/00000000000000000000000000000000-privatekey.p12
|
170
|
+
# private_key_passphrase notasecret # default
|
171
|
+
|
172
|
+
project yourproject_id
|
173
|
+
dataset yourdataset_id
|
174
|
+
table tablename
|
175
|
+
|
176
|
+
schema [
|
177
|
+
{"name": "time", "type": "INTEGER"},
|
178
|
+
{"name": "status", "type": "INTEGER"},
|
179
|
+
{"name": "bytes", "type": "INTEGER"},
|
180
|
+
{"name": "vhost", "type": "STRING"},
|
181
|
+
{"name": "path", "type": "STRING"},
|
182
|
+
{"name": "method", "type": "STRING"},
|
183
|
+
{"name": "protocol", "type": "STRING"},
|
184
|
+
{"name": "agent", "type": "STRING"},
|
185
|
+
{"name": "referer", "type": "STRING"},
|
186
|
+
{"name": "remote", "type": "RECORD", "fields": [
|
187
|
+
{"name": "host", "type": "STRING"},
|
188
|
+
{"name": "ip", "type": "STRING"},
|
189
|
+
{"name": "user", "type": "STRING"}
|
190
|
+
]},
|
191
|
+
{"name": "requesttime", "type": "FLOAT"},
|
192
|
+
{"name": "bot_access", "type": "BOOLEAN"},
|
193
|
+
{"name": "loginsession", "type": "BOOLEAN"}
|
194
|
+
]
|
195
|
+
</match>
|
196
|
+
```
|
197
|
+
|
198
|
+
For high rate inserts over streaming inserts, you should specify flush intervals and buffer chunk options:
|
199
|
+
|
200
|
+
```apache
|
201
|
+
<match dummy>
|
202
|
+
@type bigquery_insert
|
203
|
+
|
204
|
+
<buffer>
|
205
|
+
flush_interval 0.1 # flush as frequent as possible
|
206
|
+
|
207
|
+
total_limit_size 10g
|
208
|
+
|
209
|
+
flush_thread_count 16
|
210
|
+
</buffer>
|
211
|
+
|
212
|
+
auth_method private_key # default
|
213
|
+
email xxxxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxx@developer.gserviceaccount.com
|
214
|
+
private_key_path /home/username/.keys/00000000000000000000000000000000-privatekey.p12
|
215
|
+
# private_key_passphrase notasecret # default
|
216
|
+
|
217
|
+
project yourproject_id
|
218
|
+
dataset yourdataset_id
|
219
|
+
tables accesslog1,accesslog2,accesslog3
|
220
|
+
|
221
|
+
schema [
|
222
|
+
{"name": "time", "type": "INTEGER"},
|
223
|
+
{"name": "status", "type": "INTEGER"},
|
224
|
+
{"name": "bytes", "type": "INTEGER"},
|
225
|
+
{"name": "vhost", "type": "STRING"},
|
226
|
+
{"name": "path", "type": "STRING"},
|
227
|
+
{"name": "method", "type": "STRING"},
|
228
|
+
{"name": "protocol", "type": "STRING"},
|
229
|
+
{"name": "agent", "type": "STRING"},
|
230
|
+
{"name": "referer", "type": "STRING"},
|
231
|
+
{"name": "remote", "type": "RECORD", "fields": [
|
232
|
+
{"name": "host", "type": "STRING"},
|
233
|
+
{"name": "ip", "type": "STRING"},
|
234
|
+
{"name": "user", "type": "STRING"}
|
235
|
+
]},
|
236
|
+
{"name": "requesttime", "type": "FLOAT"},
|
237
|
+
{"name": "bot_access", "type": "BOOLEAN"},
|
238
|
+
{"name": "loginsession", "type": "BOOLEAN"}
|
239
|
+
]
|
240
|
+
</match>
|
241
|
+
```
|
242
|
+
|
243
|
+
Important options for high rate events are:
|
244
|
+
|
245
|
+
* `tables`
|
246
|
+
* 2 or more tables are available with ',' separator
|
247
|
+
* `out_bigquery` uses these tables for Table Sharding inserts
|
248
|
+
* these must have same schema
|
249
|
+
* `buffer/chunk_limit_size`
|
250
|
+
* max size of an insert or chunk (default 1000000 or 1MB)
|
251
|
+
* the max size is limited to 1MB on BigQuery
|
252
|
+
* `buffer/chunk_records_limit`
|
253
|
+
* number of records over streaming inserts API call is limited as 500, per insert or chunk
|
254
|
+
* `out_bigquery` flushes buffer with 500 records for 1 inserts API call
|
255
|
+
* `buffer/queue_length_limit`
|
256
|
+
* BigQuery streaming inserts needs very small buffer chunks
|
257
|
+
* for high-rate events, `buffer_queue_limit` should be configured with big number
|
258
|
+
* Max 1GB memory may be used under network problem in default configuration
|
259
|
+
* `chunk_limit_size (default 1MB)` x `queue_length_limit (default 1024)`
|
260
|
+
* `buffer/flush_thread_count`
|
261
|
+
* threads for insert api calls in parallel
|
262
|
+
* specify this option for 100 or more records per seconds
|
263
|
+
* 10 or more threads seems good for inserts over internet
|
264
|
+
* less threads may be good for Google Compute Engine instances (with low latency for BigQuery)
|
265
|
+
* `buffer/flush_interval`
|
266
|
+
* interval between data flushes (default 0.25)
|
267
|
+
* you can set subsecond values such as `0.15` on Fluentd v0.10.42 or later
|
268
|
+
|
269
|
+
See [Quota policy](https://cloud.google.com/bigquery/streaming-data-into-bigquery#quota)
|
270
|
+
section in the Google BigQuery document.
|
271
|
+
|
272
|
+
### Load
|
273
|
+
```apache
|
274
|
+
<match bigquery>
|
275
|
+
@type bigquery_load
|
276
|
+
|
277
|
+
<buffer>
|
278
|
+
path bigquery.*.buffer
|
279
|
+
flush_at_shutdown true
|
280
|
+
timekey_use_utc
|
281
|
+
</buffer>
|
282
|
+
|
283
|
+
auth_method json_key
|
284
|
+
json_key json_key_path.json
|
285
|
+
|
286
|
+
project yourproject_id
|
287
|
+
dataset yourdataset_id
|
288
|
+
auto_create_table true
|
289
|
+
table yourtable%{time_slice}
|
290
|
+
schema_path bq_schema.json
|
291
|
+
</match>
|
292
|
+
```
|
293
|
+
|
294
|
+
I recommend to use file buffer and long flush interval.
|
295
|
+
|
296
|
+
### Authentication
|
297
|
+
|
298
|
+
There are four methods supported to fetch access token for the service account.
|
299
|
+
|
300
|
+
1. Public-Private key pair of GCP(Google Cloud Platform)'s service account
|
301
|
+
2. JSON key of GCP(Google Cloud Platform)'s service account
|
302
|
+
3. Predefined access token (Compute Engine only)
|
303
|
+
4. Google application default credentials (http://goo.gl/IUuyuX)
|
304
|
+
|
305
|
+
#### Public-Private key pair of GCP's service account
|
306
|
+
|
307
|
+
The examples above use the first one. You first need to create a service account (client ID),
|
308
|
+
download its private key and deploy the key with fluentd.
|
309
|
+
|
310
|
+
#### JSON key of GCP(Google Cloud Platform)'s service account
|
311
|
+
|
312
|
+
You first need to create a service account (client ID),
|
313
|
+
download its JSON key and deploy the key with fluentd.
|
314
|
+
|
315
|
+
```apache
|
316
|
+
<match dummy>
|
317
|
+
@type bigquery_insert
|
318
|
+
|
319
|
+
auth_method json_key
|
320
|
+
json_key /home/username/.keys/00000000000000000000000000000000-jsonkey.json
|
321
|
+
|
322
|
+
project yourproject_id
|
323
|
+
dataset yourdataset_id
|
324
|
+
table tablename
|
325
|
+
...
|
326
|
+
</match>
|
327
|
+
```
|
328
|
+
|
329
|
+
You can also provide `json_key` as embedded JSON string like this.
|
330
|
+
You need to only include `private_key` and `client_email` key from JSON key file.
|
331
|
+
|
332
|
+
```apache
|
333
|
+
<match dummy>
|
334
|
+
@type bigquery_insert
|
335
|
+
|
336
|
+
auth_method json_key
|
337
|
+
json_key {"private_key": "-----BEGIN PRIVATE KEY-----\n...", "client_email": "xxx@developer.gserviceaccount.com"}
|
338
|
+
|
339
|
+
project yourproject_id
|
340
|
+
dataset yourdataset_id
|
341
|
+
table tablename
|
342
|
+
...
|
343
|
+
</match>
|
344
|
+
```
|
345
|
+
|
346
|
+
#### Predefined access token (Compute Engine only)
|
347
|
+
|
348
|
+
When you run fluentd on Googlce Compute Engine instance,
|
349
|
+
you don't need to explicitly create a service account for fluentd.
|
350
|
+
In this authentication method, you need to add the API scope "https://www.googleapis.com/auth/bigquery" to the scope list of your
|
351
|
+
Compute Engine instance, then you can configure fluentd like this.
|
352
|
+
|
353
|
+
```apache
|
354
|
+
<match dummy>
|
355
|
+
@type bigquery_insert
|
356
|
+
|
357
|
+
auth_method compute_engine
|
358
|
+
|
359
|
+
project yourproject_id
|
360
|
+
dataset yourdataset_id
|
361
|
+
table tablename
|
362
|
+
|
363
|
+
...
|
364
|
+
</match>
|
365
|
+
```
|
366
|
+
|
367
|
+
#### Application default credentials
|
368
|
+
|
369
|
+
The Application Default Credentials provide a simple way to get authorization credentials for use in calling Google APIs, which are described in detail at http://goo.gl/IUuyuX.
|
370
|
+
|
371
|
+
In this authentication method, the credentials returned are determined by the environment the code is running in. Conditions are checked in the following order:credentials are get from following order.
|
372
|
+
|
373
|
+
1. The environment variable `GOOGLE_APPLICATION_CREDENTIALS` is checked. If this variable is specified it should point to a JSON key file that defines the credentials.
|
374
|
+
2. The environment variable `GOOGLE_PRIVATE_KEY` and `GOOGLE_CLIENT_EMAIL` are checked. If this variables are specified `GOOGLE_PRIVATE_KEY` should point to `private_key`, `GOOGLE_CLIENT_EMAIL` should point to `client_email` in a JSON key.
|
375
|
+
3. Well known path is checked. If file is exists, the file used as a JSON key file. This path is `$HOME/.config/gcloud/application_default_credentials.json`.
|
376
|
+
4. System default path is checked. If file is exists, the file used as a JSON key file. This path is `/etc/google/auth/application_default_credentials.json`.
|
377
|
+
5. If you are running in Google Compute Engine production, the built-in service account associated with the virtual machine instance will be used.
|
378
|
+
6. If none of these conditions is true, an error will occur.
|
379
|
+
|
380
|
+
### Table id formatting
|
381
|
+
|
382
|
+
this plugin supports fluentd-0.14 style placeholder.
|
383
|
+
|
384
|
+
#### strftime formatting
|
385
|
+
`table` and `tables` options accept [Time#strftime](http://ruby-doc.org/core-1.9.3/Time.html#method-i-strftime)
|
386
|
+
format to construct table ids.
|
387
|
+
Table ids are formatted at runtime
|
388
|
+
using the chunk key time.
|
389
|
+
|
390
|
+
see. http://docs.fluentd.org/v0.14/articles/output-plugin-overview
|
391
|
+
|
392
|
+
For example, with the configuration below,
|
393
|
+
data is inserted into tables `accesslog_2014_08`, `accesslog_2014_09` and so on.
|
394
|
+
|
395
|
+
```apache
|
396
|
+
<match dummy>
|
397
|
+
@type bigquery_insert
|
398
|
+
|
399
|
+
...
|
400
|
+
|
401
|
+
project yourproject_id
|
402
|
+
dataset yourdataset_id
|
403
|
+
table accesslog_%Y_%m
|
404
|
+
|
405
|
+
<buffer time>
|
406
|
+
timekey 1d
|
407
|
+
</buffer>
|
408
|
+
...
|
409
|
+
</match>
|
410
|
+
```
|
411
|
+
|
412
|
+
#### record attribute formatting
|
413
|
+
The format can be suffixed with attribute name.
|
414
|
+
|
415
|
+
__CAUTION: format is different with previous version__
|
416
|
+
|
417
|
+
```apache
|
418
|
+
<match dummy>
|
419
|
+
...
|
420
|
+
table accesslog_${status_code}
|
421
|
+
|
422
|
+
<buffer status_code>
|
423
|
+
</buffer>
|
424
|
+
...
|
425
|
+
</match>
|
426
|
+
```
|
427
|
+
|
428
|
+
If attribute name is given, the time to be used for formatting is value of each row.
|
429
|
+
The value for the time should be a UNIX time.
|
430
|
+
|
431
|
+
#### time_slice_key formatting
|
432
|
+
|
433
|
+
Instead, Use strftime formatting.
|
434
|
+
|
435
|
+
strftime formatting of current version is based on chunk key.
|
436
|
+
That is same with previous time_slice_key formatting .
|
437
|
+
|
438
|
+
### Date partitioned table support
|
439
|
+
this plugin can insert (load) into date partitioned table.
|
440
|
+
|
441
|
+
Use placeholder.
|
442
|
+
|
443
|
+
```apache
|
444
|
+
<match dummy>
|
445
|
+
@type bigquery_load
|
446
|
+
|
447
|
+
...
|
448
|
+
table accesslog$%Y%m%d
|
449
|
+
|
450
|
+
<buffer time>
|
451
|
+
timekey 1d
|
452
|
+
</buffer>
|
453
|
+
...
|
454
|
+
</match>
|
455
|
+
```
|
456
|
+
|
457
|
+
But, Dynamic table creating doesn't support date partitioned table yet.
|
458
|
+
And streaming insert is not allowed to insert with `$%Y%m%d` suffix.
|
459
|
+
If you use date partitioned table with streaming insert, Please omit `$%Y%m%d` suffix from `table`.
|
460
|
+
|
461
|
+
### Dynamic table creating
|
462
|
+
|
463
|
+
When `auto_create_table` is set to `true`, try to create the table using BigQuery API when insertion failed with code=404 "Not Found: Table ...".
|
464
|
+
Next retry of insertion is expected to be success.
|
465
|
+
|
466
|
+
NOTE: `auto_create_table` option cannot be used with `fetch_schema`. You should create the table on ahead to use `fetch_schema`.
|
467
|
+
|
468
|
+
```apache
|
469
|
+
<match dummy>
|
470
|
+
@type bigquery_insert
|
471
|
+
|
472
|
+
...
|
473
|
+
|
474
|
+
auto_create_table true
|
475
|
+
table accesslog_%Y_%m
|
476
|
+
|
477
|
+
...
|
478
|
+
</match>
|
479
|
+
```
|
480
|
+
|
481
|
+
Also, you can create clustered table by using `clustering_fields`.
|
482
|
+
|
483
|
+
### Table schema
|
484
|
+
|
485
|
+
There are three methods to describe the schema of the target table.
|
486
|
+
|
487
|
+
1. List fields in fluent.conf
|
488
|
+
2. Load a schema file in JSON.
|
489
|
+
3. Fetch a schema using BigQuery API
|
490
|
+
|
491
|
+
The examples above use the first method. In this method,
|
492
|
+
you can also specify nested fields by prefixing their belonging record fields.
|
493
|
+
|
494
|
+
```apache
|
495
|
+
<match dummy>
|
496
|
+
@type bigquery_insert
|
497
|
+
|
498
|
+
...
|
499
|
+
|
500
|
+
schema [
|
501
|
+
{"name": "time", "type": "INTEGER"},
|
502
|
+
{"name": "status", "type": "INTEGER"},
|
503
|
+
{"name": "bytes", "type": "INTEGER"},
|
504
|
+
{"name": "vhost", "type": "STRING"},
|
505
|
+
{"name": "path", "type": "STRING"},
|
506
|
+
{"name": "method", "type": "STRING"},
|
507
|
+
{"name": "protocol", "type": "STRING"},
|
508
|
+
{"name": "agent", "type": "STRING"},
|
509
|
+
{"name": "referer", "type": "STRING"},
|
510
|
+
{"name": "remote", "type": "RECORD", "fields": [
|
511
|
+
{"name": "host", "type": "STRING"},
|
512
|
+
{"name": "ip", "type": "STRING"},
|
513
|
+
{"name": "user", "type": "STRING"}
|
514
|
+
]},
|
515
|
+
{"name": "requesttime", "type": "FLOAT"},
|
516
|
+
{"name": "bot_access", "type": "BOOLEAN"},
|
517
|
+
{"name": "loginsession", "type": "BOOLEAN"}
|
518
|
+
]
|
519
|
+
</match>
|
520
|
+
```
|
521
|
+
|
522
|
+
This schema accepts structured JSON data like:
|
523
|
+
|
524
|
+
```json
|
525
|
+
{
|
526
|
+
"request":{
|
527
|
+
"time":1391748126.7000976,
|
528
|
+
"vhost":"www.example.com",
|
529
|
+
"path":"/",
|
530
|
+
"method":"GET",
|
531
|
+
"protocol":"HTTP/1.1",
|
532
|
+
"agent":"HotJava",
|
533
|
+
"bot_access":false
|
534
|
+
},
|
535
|
+
"remote":{ "ip": "192.0.2.1" },
|
536
|
+
"response":{
|
537
|
+
"status":200,
|
538
|
+
"bytes":1024
|
539
|
+
}
|
540
|
+
}
|
541
|
+
```
|
542
|
+
|
543
|
+
The second method is to specify a path to a BigQuery schema file instead of listing fields. In this case, your fluent.conf looks like:
|
544
|
+
|
545
|
+
```apache
|
546
|
+
<match dummy>
|
547
|
+
@type bigquery_insert
|
548
|
+
|
549
|
+
...
|
550
|
+
|
551
|
+
schema_path /path/to/httpd.schema
|
552
|
+
</match>
|
553
|
+
```
|
554
|
+
where /path/to/httpd.schema is a path to the JSON-encoded schema file which you used for creating the table on BigQuery. By using external schema file you are able to write full schema that does support NULLABLE/REQUIRED/REPEATED, this feature is really useful and adds full flexbility.
|
555
|
+
|
556
|
+
The third method is to set `fetch_schema` to `true` to enable fetch a schema using BigQuery API. In this case, your fluent.conf looks like:
|
557
|
+
|
558
|
+
```apache
|
559
|
+
<match dummy>
|
560
|
+
@type bigquery_insert
|
561
|
+
|
562
|
+
...
|
563
|
+
|
564
|
+
fetch_schema true
|
565
|
+
# fetch_schema_table other_table # if you want to fetch schema from other table
|
566
|
+
</match>
|
567
|
+
```
|
568
|
+
|
569
|
+
If you specify multiple tables in configuration file, plugin get all schema data from BigQuery and merge it.
|
570
|
+
|
571
|
+
NOTE: Since JSON does not define how to encode data of TIMESTAMP type,
|
572
|
+
you are still recommended to specify JSON types for TIMESTAMP fields as "time" field does in the example, if you use second or third method.
|
573
|
+
|
574
|
+
### Specifying insertId property
|
575
|
+
|
576
|
+
BigQuery uses `insertId` property to detect duplicate insertion requests (see [data consistency](https://cloud.google.com/bigquery/streaming-data-into-bigquery#dataconsistency) in Google BigQuery documents).
|
577
|
+
You can set `insert_id_field` option to specify the field to use as `insertId` property.
|
578
|
+
`insert_id_field` can use fluentd record_accessor format like `$['key1'][0]['key2']`.
|
579
|
+
(detail. https://docs.fluentd.org/v1.0/articles/api-plugin-helper-record_accessor)
|
580
|
+
|
581
|
+
```apache
|
582
|
+
<match dummy>
|
583
|
+
@type bigquery_insert
|
584
|
+
|
585
|
+
...
|
586
|
+
|
587
|
+
insert_id_field uuid
|
588
|
+
schema [{"name": "uuid", "type": "STRING"}]
|
589
|
+
</match>
|
590
|
+
```
|
591
|
+
|
592
|
+
## TODO
|
593
|
+
|
594
|
+
* OAuth installed application credentials support
|
595
|
+
* Google API discovery expiration
|
596
|
+
* check row size limits
|
597
|
+
|
598
|
+
## Authors
|
599
|
+
|
600
|
+
* @tagomoris: First author, original version
|
601
|
+
* KAIZEN platform Inc.: Maintener, Since 2014.08.19
|
602
|
+
* @joker1007
|