fluent-plugin-bigquery-custom 0.3.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +19 -0
- data/.travis.yml +10 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +13 -0
- data/README.md +424 -0
- data/Rakefile +11 -0
- data/fluent-plugin-bigquery-custom.gemspec +34 -0
- data/lib/fluent/plugin/bigquery/version.rb +6 -0
- data/lib/fluent/plugin/out_bigquery.rb +727 -0
- data/test/helper.rb +34 -0
- data/test/plugin/test_out_bigquery.rb +1015 -0
- data/test/plugin/testdata/apache.schema +98 -0
- data/test/plugin/testdata/json_key.json +7 -0
- data/test/plugin/testdata/sudo.schema +27 -0
- metadata +218 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA1:
|
3
|
+
metadata.gz: 9f634996c0de109e264c651d08ac1e118a9694d2
|
4
|
+
data.tar.gz: edfb078ea6100688d83c5bcce0f7f5298a4e7d84
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: d960bd5956b8ae9da5522f1372e698afaa0807e35ce67d2fe2cdc56837c626d822d43938e4162aa43c151affd52ff5cf02f8cf8fac2c50303aa0f4af0712b232
|
7
|
+
data.tar.gz: c8a4e351374c459aebd6ec3a72970c96f8895f9f54140ebf6dc1cadd828ba093407ddd2995a75f95e00bd7d2ac245ef36cf05e8152702bce0723bfa26bd8003d
|
data/.gitignore
ADDED
data/.travis.yml
ADDED
data/Gemfile
ADDED
data/LICENSE.txt
ADDED
@@ -0,0 +1,13 @@
|
|
1
|
+
Copyright (c) 2012- TAGOMORI Satoshi
|
2
|
+
|
3
|
+
Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
you may not use this file except in compliance with the License.
|
5
|
+
You may obtain a copy of the License at
|
6
|
+
|
7
|
+
http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
|
9
|
+
Unless required by applicable law or agreed to in writing, software
|
10
|
+
distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
See the License for the specific language governing permissions and
|
13
|
+
limitations under the License.
|
data/README.md
ADDED
@@ -0,0 +1,424 @@
|
|
1
|
+
# fluent-plugin-bigquery-custom
|
2
|
+
[![Build Status](https://travis-ci.org/joker1007/fluent-plugin-bigquery.svg?branch=master)](https://travis-ci.org/joker1007/fluent-plugin-bigquery)
|
3
|
+
|
4
|
+
forked from [kaizenplatform/fluent-plugin-bigquery](https://github.com/kaizenplatform/fluent-plugin-bigquery "kaizenplatform/fluent-plugin-bigquery")
|
5
|
+
|
6
|
+
-----------
|
7
|
+
|
8
|
+
[Fluentd](http://fluentd.org) output plugin to load/insert data into Google BigQuery.
|
9
|
+
|
10
|
+
* insert data over streaming inserts
|
11
|
+
* for continuous real-time insertions
|
12
|
+
* https://developers.google.com/bigquery/streaming-data-into-bigquery#usecases
|
13
|
+
* load data
|
14
|
+
* for data loading as batch jobs, for big amount of data
|
15
|
+
* https://developers.google.com/bigquery/loading-data-into-bigquery
|
16
|
+
|
17
|
+
Current version of this plugin supports Google API with Service Account Authentication, but does not support
|
18
|
+
OAuth flow for installed applications.
|
19
|
+
|
20
|
+
## Difference with original
|
21
|
+
- Implement load method
|
22
|
+
- Use google-api-client v0.9.pre
|
23
|
+
- TimeSlicedOutput based
|
24
|
+
- Use `%{time_slice}` placeholder in `table` parameter
|
25
|
+
- Add config parameters
|
26
|
+
- `skip_invalid_rows`
|
27
|
+
- `max_bad_records`
|
28
|
+
- `ignore_unknown_values`
|
29
|
+
- Improve error handling
|
30
|
+
|
31
|
+
## Configuration
|
32
|
+
|
33
|
+
### Streaming inserts
|
34
|
+
|
35
|
+
Configure insert specifications with target table schema, with your credentials. This is minimum configurations:
|
36
|
+
|
37
|
+
```apache
|
38
|
+
<match dummy>
|
39
|
+
type bigquery
|
40
|
+
|
41
|
+
method insert # default
|
42
|
+
|
43
|
+
auth_method private_key # default
|
44
|
+
email xxxxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxx@developer.gserviceaccount.com
|
45
|
+
private_key_path /home/username/.keys/00000000000000000000000000000000-privatekey.p12
|
46
|
+
# private_key_passphrase notasecret # default
|
47
|
+
|
48
|
+
project yourproject_id
|
49
|
+
dataset yourdataset_id
|
50
|
+
table tablename
|
51
|
+
|
52
|
+
time_format %s
|
53
|
+
time_field time
|
54
|
+
|
55
|
+
field_integer time,status,bytes
|
56
|
+
field_string rhost,vhost,path,method,protocol,agent,referer
|
57
|
+
field_float requesttime
|
58
|
+
field_boolean bot_access,loginsession
|
59
|
+
</match>
|
60
|
+
```
|
61
|
+
|
62
|
+
For high rate inserts over streaming inserts, you should specify flush intervals and buffer chunk options:
|
63
|
+
|
64
|
+
```apache
|
65
|
+
<match dummy>
|
66
|
+
type bigquery
|
67
|
+
|
68
|
+
method insert # default
|
69
|
+
|
70
|
+
flush_interval 1 # flush as frequent as possible
|
71
|
+
|
72
|
+
buffer_chunk_records_limit 300 # default rate limit for users is 100
|
73
|
+
buffer_queue_limit 10240 # 1MB * 10240 -> 10GB!
|
74
|
+
|
75
|
+
num_threads 16
|
76
|
+
|
77
|
+
auth_method private_key # default
|
78
|
+
email xxxxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxx@developer.gserviceaccount.com
|
79
|
+
private_key_path /home/username/.keys/00000000000000000000000000000000-privatekey.p12
|
80
|
+
# private_key_passphrase notasecret # default
|
81
|
+
|
82
|
+
project yourproject_id
|
83
|
+
dataset yourdataset_id
|
84
|
+
tables accesslog1,accesslog2,accesslog3
|
85
|
+
|
86
|
+
time_format %s
|
87
|
+
time_field time
|
88
|
+
|
89
|
+
field_integer time,status,bytes
|
90
|
+
field_string rhost,vhost,path,method,protocol,agent,referer
|
91
|
+
field_float requesttime
|
92
|
+
field_boolean bot_access,loginsession
|
93
|
+
</match>
|
94
|
+
```
|
95
|
+
|
96
|
+
Important options for high rate events are:
|
97
|
+
|
98
|
+
* `tables`
|
99
|
+
* 2 or more tables are available with ',' separator
|
100
|
+
* `out_bigquery` uses these tables for Table Sharding inserts
|
101
|
+
* these must have same schema
|
102
|
+
* `buffer_chunk_limit`
|
103
|
+
* max size of an insert or chunk (default 1000000 or 1MB)
|
104
|
+
* the max size is limited to 1MB on BigQuery
|
105
|
+
* `buffer_chunk_records_limit`
|
106
|
+
* number of records over streaming inserts API call is limited as 500, per insert or chunk
|
107
|
+
* `out_bigquery` flushes buffer with 500 records for 1 inserts API call
|
108
|
+
* `buffer_queue_limit`
|
109
|
+
* BigQuery streaming inserts needs very small buffer chunks
|
110
|
+
* for high-rate events, `buffer_queue_limit` should be configured with big number
|
111
|
+
* Max 1GB memory may be used under network problem in default configuration
|
112
|
+
* `buffer_chunk_limit (default 1MB)` x `buffer_queue_limit (default 1024)`
|
113
|
+
* `num_threads`
|
114
|
+
* threads for insert api calls in parallel
|
115
|
+
* specify this option for 100 or more records per seconds
|
116
|
+
* 10 or more threads seems good for inserts over internet
|
117
|
+
* less threads may be good for Google Compute Engine instances (with low latency for BigQuery)
|
118
|
+
* `flush_interval`
|
119
|
+
* interval between data flushes (default 0.25)
|
120
|
+
* you can set subsecond values such as `0.15` on Fluentd v0.10.42 or later
|
121
|
+
|
122
|
+
See [Quota policy](https://cloud.google.com/bigquery/streaming-data-into-bigquery#quota)
|
123
|
+
section in the Google BigQuery document.
|
124
|
+
|
125
|
+
### Load
|
126
|
+
```apache
|
127
|
+
<match bigquery>
|
128
|
+
type bigquery
|
129
|
+
|
130
|
+
method load
|
131
|
+
buffer_type file
|
132
|
+
buffer_path bigquery.*.buffer
|
133
|
+
flush_interval 1800
|
134
|
+
flush_at_shutdown true
|
135
|
+
try_flush_interval 1
|
136
|
+
utc
|
137
|
+
|
138
|
+
auth_method json_key
|
139
|
+
json_key json_key_path.json
|
140
|
+
|
141
|
+
time_format %s
|
142
|
+
time_field time
|
143
|
+
|
144
|
+
project yourproject_id
|
145
|
+
dataset yourdataset_id
|
146
|
+
auto_create_table true
|
147
|
+
table yourtable%{time_slice}
|
148
|
+
schema_path bq_schema.json
|
149
|
+
</match>
|
150
|
+
```
|
151
|
+
|
152
|
+
I recommend to use file buffer and long flush interval.
|
153
|
+
|
154
|
+
### Authentication
|
155
|
+
|
156
|
+
There are two methods supported to fetch access token for the service account.
|
157
|
+
|
158
|
+
1. Public-Private key pair of GCP(Google Cloud Platform)'s service account
|
159
|
+
2. JSON key of GCP(Google Cloud Platform)'s service account
|
160
|
+
3. Predefined access token (Compute Engine only)
|
161
|
+
4. Google application default credentials (http://goo.gl/IUuyuX)
|
162
|
+
|
163
|
+
#### Public-Private key pair of GCP's service account
|
164
|
+
|
165
|
+
The examples above use the first one. You first need to create a service account (client ID),
|
166
|
+
download its private key and deploy the key with fluentd.
|
167
|
+
|
168
|
+
#### JSON key of GCP(Google Cloud Platform)'s service account
|
169
|
+
|
170
|
+
You first need to create a service account (client ID),
|
171
|
+
download its JSON key and deploy the key with fluentd.
|
172
|
+
|
173
|
+
```apache
|
174
|
+
<match dummy>
|
175
|
+
type bigquery
|
176
|
+
|
177
|
+
auth_method json_key
|
178
|
+
json_key /home/username/.keys/00000000000000000000000000000000-jsonkey.json
|
179
|
+
|
180
|
+
project yourproject_id
|
181
|
+
dataset yourdataset_id
|
182
|
+
table tablename
|
183
|
+
...
|
184
|
+
</match>
|
185
|
+
```
|
186
|
+
|
187
|
+
You can also provide `json_key` as embedded JSON string like this.
|
188
|
+
You need to only include `private_key` and `client_email` key from JSON key file.
|
189
|
+
|
190
|
+
```apache
|
191
|
+
<match dummy>
|
192
|
+
type bigquery
|
193
|
+
|
194
|
+
auth_method json_key
|
195
|
+
json_key {"private_key": "-----BEGIN PRIVATE KEY-----\n...", "client_email": "xxx@developer.gserviceaccount.com"}
|
196
|
+
|
197
|
+
project yourproject_id
|
198
|
+
dataset yourdataset_id
|
199
|
+
table tablename
|
200
|
+
...
|
201
|
+
</match>
|
202
|
+
```
|
203
|
+
|
204
|
+
#### Predefined access token (Compute Engine only)
|
205
|
+
|
206
|
+
When you run fluentd on Googlce Compute Engine instance,
|
207
|
+
you don't need to explicitly create a service account for fluentd.
|
208
|
+
In this authentication method, you need to add the API scope "https://www.googleapis.com/auth/bigquery" to the scope list of your
|
209
|
+
Compute Engine instance, then you can configure fluentd like this.
|
210
|
+
|
211
|
+
```apache
|
212
|
+
<match dummy>
|
213
|
+
type bigquery
|
214
|
+
|
215
|
+
auth_method compute_engine
|
216
|
+
|
217
|
+
project yourproject_id
|
218
|
+
dataset yourdataset_id
|
219
|
+
table tablename
|
220
|
+
|
221
|
+
time_format %s
|
222
|
+
time_field time
|
223
|
+
|
224
|
+
field_integer time,status,bytes
|
225
|
+
field_string rhost,vhost,path,method,protocol,agent,referer
|
226
|
+
field_float requesttime
|
227
|
+
field_boolean bot_access,loginsession
|
228
|
+
</match>
|
229
|
+
```
|
230
|
+
|
231
|
+
#### Application default credentials
|
232
|
+
|
233
|
+
The Application Default Credentials provide a simple way to get authorization credentials for use in calling Google APIs, which are described in detail at http://goo.gl/IUuyuX.
|
234
|
+
|
235
|
+
In this authentication method, the credentials returned are determined by the environment the code is running in. Conditions are checked in the following order:credentials are get from following order.
|
236
|
+
|
237
|
+
1. The environment variable `GOOGLE_APPLICATION_CREDENTIALS` is checked. If this variable is specified it should point to a JSON key file that defines the credentials.
|
238
|
+
2. The environment variable `GOOGLE_PRIVATE_KEY` and `GOOGLE_CLIENT_EMAIL` are checked. If this variables are specified `GOOGLE_PRIVATE_KEY` should point to `private_key`, `GOOGLE_CLIENT_EMAIL` should point to `client_email` in a JSON key.
|
239
|
+
3. Well known path is checked. If file is exists, the file used as a JSON key file. This path is `$HOME/.config/gcloud/application_default_credentials.json`.
|
240
|
+
4. System default path is checked. If file is exists, the file used as a JSON key file. This path is `/etc/google/auth/application_default_credentials.json`.
|
241
|
+
5. If you are running in Google Compute Engine production, the built-in service account associated with the virtual machine instance will be used.
|
242
|
+
6. If none of these conditions is true, an error will occur.
|
243
|
+
|
244
|
+
### Table id formatting
|
245
|
+
|
246
|
+
`table` and `tables` options accept [Time#strftime](http://ruby-doc.org/core-1.9.3/Time.html#method-i-strftime)
|
247
|
+
format to construct table ids.
|
248
|
+
Table ids are formatted at runtime
|
249
|
+
using the local time of the fluentd server.
|
250
|
+
|
251
|
+
For example, with the configuration below,
|
252
|
+
data is inserted into tables `accesslog_2014_08`, `accesslog_2014_09` and so on.
|
253
|
+
|
254
|
+
```apache
|
255
|
+
<match dummy>
|
256
|
+
type bigquery
|
257
|
+
|
258
|
+
...
|
259
|
+
|
260
|
+
project yourproject_id
|
261
|
+
dataset yourdataset_id
|
262
|
+
table accesslog_%Y_%m
|
263
|
+
|
264
|
+
...
|
265
|
+
</match>
|
266
|
+
```
|
267
|
+
|
268
|
+
Note that the timestamp of logs and the date in the table id do not always match,
|
269
|
+
because there is a time lag between collection and transmission of logs.
|
270
|
+
|
271
|
+
Or, the options can use `%{time_slice}` placeholder.
|
272
|
+
`%{time_slice}` is replaced by formatted time slice key at runtime.
|
273
|
+
|
274
|
+
```apache
|
275
|
+
<match dummy>
|
276
|
+
type bigquery
|
277
|
+
|
278
|
+
...
|
279
|
+
|
280
|
+
project yourproject_id
|
281
|
+
dataset yourdataset_id
|
282
|
+
table accesslog%{time_slice}
|
283
|
+
|
284
|
+
...
|
285
|
+
</match>
|
286
|
+
```
|
287
|
+
|
288
|
+
### Dynamic table creating
|
289
|
+
|
290
|
+
When `auto_create_table` is set to `true`, try to create the table using BigQuery API when insertion failed with code=404 "Not Found: Table ...".
|
291
|
+
Next retry of insertion is expected to be success.
|
292
|
+
|
293
|
+
NOTE: `auto_create_table` option cannot be used with `fetch_schema`. You should create the table on ahead to use `fetch_schema`.
|
294
|
+
|
295
|
+
```apache
|
296
|
+
<match dummy>
|
297
|
+
type bigquery
|
298
|
+
|
299
|
+
...
|
300
|
+
|
301
|
+
auto_create_table true
|
302
|
+
table accesslog_%Y_%m
|
303
|
+
|
304
|
+
...
|
305
|
+
</match>
|
306
|
+
```
|
307
|
+
|
308
|
+
### Table schema
|
309
|
+
|
310
|
+
There are three methods to describe the schema of the target table.
|
311
|
+
|
312
|
+
1. List fields in fluent.conf
|
313
|
+
2. Load a schema file in JSON.
|
314
|
+
3. Fetch a schema using BigQuery API
|
315
|
+
|
316
|
+
The examples above use the first method. In this method,
|
317
|
+
you can also specify nested fields by prefixing their belonging record fields.
|
318
|
+
|
319
|
+
```apache
|
320
|
+
<match dummy>
|
321
|
+
type bigquery
|
322
|
+
|
323
|
+
...
|
324
|
+
|
325
|
+
time_format %s
|
326
|
+
time_field time
|
327
|
+
|
328
|
+
field_integer time,response.status,response.bytes
|
329
|
+
field_string request.vhost,request.path,request.method,request.protocol,request.agent,request.referer,remote.host,remote.ip,remote.user
|
330
|
+
field_float request.time
|
331
|
+
field_boolean request.bot_access,request.loginsession
|
332
|
+
</match>
|
333
|
+
```
|
334
|
+
|
335
|
+
This schema accepts structured JSON data like:
|
336
|
+
|
337
|
+
```json
|
338
|
+
{
|
339
|
+
"request":{
|
340
|
+
"time":1391748126.7000976,
|
341
|
+
"vhost":"www.example.com",
|
342
|
+
"path":"/",
|
343
|
+
"method":"GET",
|
344
|
+
"protocol":"HTTP/1.1",
|
345
|
+
"agent":"HotJava",
|
346
|
+
"bot_access":false
|
347
|
+
},
|
348
|
+
"remote":{ "ip": "192.0.2.1" },
|
349
|
+
"response":{
|
350
|
+
"status":200,
|
351
|
+
"bytes":1024
|
352
|
+
}
|
353
|
+
}
|
354
|
+
```
|
355
|
+
|
356
|
+
The second method is to specify a path to a BigQuery schema file instead of listing fields. In this case, your fluent.conf looks like:
|
357
|
+
|
358
|
+
```apache
|
359
|
+
<match dummy>
|
360
|
+
type bigquery
|
361
|
+
|
362
|
+
...
|
363
|
+
|
364
|
+
time_format %s
|
365
|
+
time_field time
|
366
|
+
|
367
|
+
schema_path /path/to/httpd.schema
|
368
|
+
field_integer time
|
369
|
+
</match>
|
370
|
+
```
|
371
|
+
where /path/to/httpd.schema is a path to the JSON-encoded schema file which you used for creating the table on BigQuery.
|
372
|
+
|
373
|
+
The third method is to set `fetch_schema` to `true` to enable fetch a schema using BigQuery API. In this case, your fluent.conf looks like:
|
374
|
+
|
375
|
+
```apache
|
376
|
+
<match dummy>
|
377
|
+
type bigquery
|
378
|
+
|
379
|
+
...
|
380
|
+
|
381
|
+
time_format %s
|
382
|
+
time_field time
|
383
|
+
|
384
|
+
fetch_schema true
|
385
|
+
field_integer time
|
386
|
+
</match>
|
387
|
+
```
|
388
|
+
|
389
|
+
If you specify multiple tables in configuration file, plugin get all schema data from BigQuery and merge it.
|
390
|
+
|
391
|
+
NOTE: Since JSON does not define how to encode data of TIMESTAMP type,
|
392
|
+
you are still recommended to specify JSON types for TIMESTAMP fields as "time" field does in the example, if you use second or third method.
|
393
|
+
|
394
|
+
### Specifying insertId property
|
395
|
+
|
396
|
+
BigQuery uses `insertId` property to detect duplicate insertion requests (see [data consistency](https://cloud.google.com/bigquery/streaming-data-into-bigquery#dataconsistency) in Google BigQuery documents).
|
397
|
+
You can set `insert_id_field` option to specify the field to use as `insertId` property.
|
398
|
+
|
399
|
+
```apache
|
400
|
+
<match dummy>
|
401
|
+
type bigquery
|
402
|
+
|
403
|
+
...
|
404
|
+
|
405
|
+
insert_id_field uuid
|
406
|
+
field_string uuid
|
407
|
+
</match>
|
408
|
+
```
|
409
|
+
|
410
|
+
## TODO
|
411
|
+
|
412
|
+
* Automatically configured flush/buffer options
|
413
|
+
* support optional data fields
|
414
|
+
* support NULLABLE/REQUIRED/REPEATED field options in field list style of configuration
|
415
|
+
* OAuth installed application credentials support
|
416
|
+
* Google API discovery expiration
|
417
|
+
* Error classes
|
418
|
+
* check row size limits
|
419
|
+
|
420
|
+
## Authors
|
421
|
+
|
422
|
+
* @tagomoris: First author, original version
|
423
|
+
* KAIZEN platform Inc.: Maintener, Since 2014.08.19 (original version)
|
424
|
+
* @joker1007 (forked version)
|