float-formats 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +3 -0
- data/License.txt +20 -0
- data/Manifest.txt +29 -0
- data/README.txt +211 -0
- data/Rakefile +4 -0
- data/config/hoe.rb +73 -0
- data/config/requirements.rb +17 -0
- data/lib/float-formats.rb +11 -0
- data/lib/float-formats/bytes.rb +304 -0
- data/lib/float-formats/classes.rb +1550 -0
- data/lib/float-formats/formats.rb +580 -0
- data/lib/float-formats/native.rb +169 -0
- data/lib/float-formats/version.rb +9 -0
- data/log/debug.log +0 -0
- data/script/destroy +14 -0
- data/script/destroy.cmd +1 -0
- data/script/generate +14 -0
- data/script/generate.cmd +1 -0
- data/script/txt2html +74 -0
- data/script/txt2html.cmd +1 -0
- data/setup.rb +1585 -0
- data/tasks/deployment.rake +34 -0
- data/tasks/environment.rake +7 -0
- data/tasks/website.rake +17 -0
- data/test/gen_test_data.rb +119 -0
- data/test/test_data.yaml +1716 -0
- data/test/test_float-formats.rb +112 -0
- data/test/test_helper.rb +2 -0
- data/test/test_native-float.rb +25 -0
- metadata +88 -0
@@ -0,0 +1,580 @@
|
|
1
|
+
# Float-Formats
|
2
|
+
# Definition of common floating-point formats
|
3
|
+
|
4
|
+
require 'nio'
|
5
|
+
require 'nio/sugar'
|
6
|
+
|
7
|
+
require 'enumerator'
|
8
|
+
|
9
|
+
require 'float-formats/classes.rb'
|
10
|
+
|
11
|
+
|
12
|
+
module FltPnt
|
13
|
+
|
14
|
+
|
15
|
+
# Floating Point Format Definitions ==========================================
|
16
|
+
|
17
|
+
# IEEE 754 binary types, as stored in little endian architectures such as Intel, Alpha
|
18
|
+
|
19
|
+
IEEE_SINGLE = BinaryFormat.new(
|
20
|
+
:fields=>[:significand,23,:exponent,8,:sign,1],
|
21
|
+
:bias=>127, :bias_mode=>:normalized_significand,
|
22
|
+
:hidden_bit=>true,
|
23
|
+
:endianness=>:little_endian, :round=>:even,
|
24
|
+
:gradual_underflow=>true, :infinity=>true, :nan=>true
|
25
|
+
)
|
26
|
+
IEEE_DOUBLE = BinaryFormat.new(
|
27
|
+
:fields=>[:significand,52,:exponent,11,:sign,1],
|
28
|
+
:bias=>1023, :bias_mode=>:normalized_significand,
|
29
|
+
:hidden_bit=>true,
|
30
|
+
:endianness=>:little_endian, :round=>:even,
|
31
|
+
:gradual_underflow=>true, :infinity=>true, :nan=>true
|
32
|
+
)
|
33
|
+
IEEE_EXTENDED = BinaryFormat.new(
|
34
|
+
:fields=>[:significand,64,:exponent,15,:sign,1],
|
35
|
+
:bias=>16383, :bias_mode=>:normalized_significand,
|
36
|
+
:hidden_bit=>false, :min_encoded_exp=>1, :round=>:even,
|
37
|
+
:endianness=>:little_endian,
|
38
|
+
:gradual_underflow=>true, :infinity=>true, :nan=>true
|
39
|
+
)
|
40
|
+
IEEE_128 = BinaryFormat.new(
|
41
|
+
:fields=>[:significand,112,:exponent,15,:sign,1],
|
42
|
+
:bias=>16383, :bias_mode=>:normalized_significand,
|
43
|
+
:hidden_bit=>false, :min_encoded_exp=>1, :round=>:even,
|
44
|
+
:endianness=>:little_endian,
|
45
|
+
:gradual_underflow=>true, :infinity=>true, :nan=>true
|
46
|
+
)
|
47
|
+
|
48
|
+
# IEEE 754 in big endian order (SPARC, Motorola 68k, PowerPC)
|
49
|
+
|
50
|
+
IEEE_S_BE = BinaryFormat.new(
|
51
|
+
:fields=>[:significand,23,:exponent,8,:sign,1],
|
52
|
+
:bias=>127, :bias_mode=>:normalized_significand,
|
53
|
+
:hidden_bit=>true,
|
54
|
+
:endianness=>:big_endian,
|
55
|
+
:gradual_underflow=>true, :infinity=>true, :nan=>true)
|
56
|
+
IEEE_D_BE = BinaryFormat.new(
|
57
|
+
:fields=>[:significand,52,:exponent,11,:sign,1],
|
58
|
+
:bias=>1023, :bias_mode=>:normalized_significand,
|
59
|
+
:hidden_bit=>true, :round=>:even,
|
60
|
+
:endianness=>:big_endian,
|
61
|
+
:gradual_underflow=>true, :infinity=>true, :nan=>true
|
62
|
+
)
|
63
|
+
IEEE_X_BE = BinaryFormat.new(
|
64
|
+
:fields=>[:significand,64,:exponent,15,:sign,1],
|
65
|
+
:bias=>16383, :bias_mode=>:normalized_significand,
|
66
|
+
:hidden_bit=>false, :round=>:even,
|
67
|
+
:endianness=>:big_endian,
|
68
|
+
:gradual_underflow=>true, :infinity=>true, :nan=>true
|
69
|
+
)
|
70
|
+
IEEE_128_BE = BinaryFormat.new(
|
71
|
+
:fields=>[:significand,112,:exponent,15,:sign,1],
|
72
|
+
:bias=>16383, :bias_mode=>:normalized_significand,
|
73
|
+
:hidden_bit=>false, :min_encoded_exp=>1, :round=>:even,
|
74
|
+
:endianness=>:big_endian,
|
75
|
+
:gradual_underflow=>true, :infinity=>true, :nan=>true
|
76
|
+
)
|
77
|
+
# Decimal IEEE 754r formats
|
78
|
+
|
79
|
+
IEEE_DEC32 = DPDFormat.new(
|
80
|
+
:fields=>[:significand_continuation,20,:exponent_continuation,6,:combination,5,:sign,1],
|
81
|
+
:endianness=>:big_endian,
|
82
|
+
:gradual_underflow=>true, :infinity=>true, :nan=>true
|
83
|
+
)
|
84
|
+
IEEE_DEC64 = DPDFormat.new(
|
85
|
+
:fields=>[:significand_continuation,50,:exponent_continuation,8,:combination,5,:sign,1],
|
86
|
+
:endianness=>:big_endian,
|
87
|
+
:gradual_underflow=>true, :infinity=>true, :nan=>true
|
88
|
+
)
|
89
|
+
IEEE_DEC128 = DPDFormat.new(
|
90
|
+
:fields=>[:significand_continuation,110,:exponent_continuation,12,:combination,5,:sign,1],
|
91
|
+
:endianness=>:big_endian,
|
92
|
+
:gradual_underflow=>true, :infinity=>true, :nan=>true
|
93
|
+
)
|
94
|
+
|
95
|
+
|
96
|
+
# Excess 128 used by Microsoft Basic in 8-bit micros, Spectrum, ...
|
97
|
+
|
98
|
+
XS128 = BinaryFormat.new(
|
99
|
+
:fields=>[:significand,31,:sign,1,:exponent,8],
|
100
|
+
:bias=>128, :bias_mode=>:fractional_significand,
|
101
|
+
:hidden_bit=>true,
|
102
|
+
:endianness=>:big_endian, :round=>:inf,
|
103
|
+
:endianness=>:big_endian,
|
104
|
+
:gradual_underflow=>false, :infinity=>false, :nan=>false
|
105
|
+
)
|
106
|
+
|
107
|
+
# HP-3000 excess 256 format, HP-Tandem...
|
108
|
+
|
109
|
+
XS256 = BinaryFormat.new(
|
110
|
+
:fields=>[:significand,22,:exponent,9,:sign,1],
|
111
|
+
:bias=>256, :bias_mode=>:normalized_significand,
|
112
|
+
:hidden_bit=>true, :min_encoded_exp=>0,
|
113
|
+
:endianness=>:big_endian, :round=>:inf,
|
114
|
+
:gradual_underflow=>false, :infinity=>false, :nan=>false
|
115
|
+
)
|
116
|
+
XS256_DOUBLE = BinaryFormat.new(
|
117
|
+
:fields=>[:significand,54,:exponent,9,:sign,1],
|
118
|
+
:bias=>256, :bias_mode=>:normalized_significand,
|
119
|
+
:hidden_bit=>true, :min_encoded_exp=>0,
|
120
|
+
:endianness=>:big_endian, :round=>:inf,
|
121
|
+
:gradual_underflow=>false, :infinity=>false, :nan=>false
|
122
|
+
)
|
123
|
+
|
124
|
+
# Borland Pascal 48 bits "Real" Format
|
125
|
+
|
126
|
+
BORLAND48 = BinaryFormat.new(
|
127
|
+
:fields=>[:exponent,8,:significand,39,:sign,1],
|
128
|
+
:bias=>128, :bias_mode=>:fractional_significand,
|
129
|
+
:hidden_bit=>true,
|
130
|
+
:endianness=>:little_endian,
|
131
|
+
:gradual_underflow=>false, :infinity=>false, :nan=>false
|
132
|
+
)
|
133
|
+
|
134
|
+
# Microsoft Binary Floating-point (Quickbasic)
|
135
|
+
|
136
|
+
MBF_SINGLE = BinaryFormat.new(
|
137
|
+
:fields=>[:significand,23,:sign,1,:exponent,8],
|
138
|
+
:bias=>128, :bias_mode=>:fractional_significand,
|
139
|
+
:hidden_bit=>true,
|
140
|
+
:endianness=>:little_endian,
|
141
|
+
:gradual_underflow=>false, :infinity=>false, :nan=>false
|
142
|
+
)
|
143
|
+
MBF_DOUBLE = BinaryFormat.new(
|
144
|
+
:fields=>[:significand,55,:sign,1,:exponent,8],
|
145
|
+
:bias=>128, :bias_mode=>:fractional_significand,
|
146
|
+
:hidden_bit=>true,
|
147
|
+
:endianness=>:little_endian,
|
148
|
+
:gradual_underflow=>false, :infinity=>false, :nan=>false
|
149
|
+
)
|
150
|
+
|
151
|
+
# DEC formats (VAX)
|
152
|
+
|
153
|
+
VAX_F = BinaryFormat.new(
|
154
|
+
:fields=>[:significand, 23, :exponent, 8, :sign, 1],
|
155
|
+
:bias=>128, :bias_mode=>:fractional_significand,
|
156
|
+
:hidden_bit=>true,
|
157
|
+
:endianness=>:little_big_endian,
|
158
|
+
:gradual_underflow=>false, :infinity=>false, :nan=>false
|
159
|
+
)
|
160
|
+
|
161
|
+
VAX_D = BinaryFormat.new(
|
162
|
+
:fields=>[:significand, 55, :exponent, 8, :sign, 1],
|
163
|
+
:bias=>128, :bias_mode=>:fractional_significand,
|
164
|
+
:hidden_bit=>true,
|
165
|
+
:endianness=>:little_big_endian,
|
166
|
+
:gradual_underflow=>false, :infinity=>false, :nan=>false
|
167
|
+
)
|
168
|
+
|
169
|
+
VAX_G = BinaryFormat.new(
|
170
|
+
:fields=>[:significand, 52, :exponent, 11, :sign, 1],
|
171
|
+
:bias=>1024, :bias_mode=>:fractional_significand,
|
172
|
+
:hidden_bit=>true,
|
173
|
+
:endianness=>:little_big_endian,
|
174
|
+
:gradual_underflow=>false, :infinity=>false, :nan=>false
|
175
|
+
)
|
176
|
+
|
177
|
+
VAX_H = BinaryFormat.new(
|
178
|
+
:fields=>[:significand, 112, :exponent, 15, :sign, 1],
|
179
|
+
:bias=>16384, :bias_mode=>:fractional_significand,
|
180
|
+
:hidden_bit=>true,
|
181
|
+
:endianness=>:little_big_endian,
|
182
|
+
:gradual_underflow=>false, :infinity=>false, :nan=>false
|
183
|
+
)
|
184
|
+
|
185
|
+
# DEC PDP 11 variants (minimum exponent used for normalized values other than zero)
|
186
|
+
|
187
|
+
PDP11_F = BinaryFormat.new(
|
188
|
+
:fields=>[:significand, 23, :exponent, 8, :sign, 1],
|
189
|
+
:bias=>128, :bias_mode=>:fractional_significand,
|
190
|
+
:hidden_bit=>true, :min_encoded_exp=>0,
|
191
|
+
:endianness=>:little_big_endian,
|
192
|
+
:gradual_underflow=>false, :infinity=>false, :nan=>false
|
193
|
+
)
|
194
|
+
|
195
|
+
PDP11_D = BinaryFormat.new(
|
196
|
+
:fields=>[:significand, 55, :exponent, 8, :sign, 1],
|
197
|
+
:bias=>128, :bias_mode=>:fractional_significand,
|
198
|
+
:hidden_bit=>true, :min_encoded_exp=>0,
|
199
|
+
:endianness=>:little_big_endian,
|
200
|
+
:gradual_underflow=>false, :infinity=>false, :nan=>false
|
201
|
+
)
|
202
|
+
|
203
|
+
|
204
|
+
# Format used in HP Saturn-based RPL calculators (HP48,HP49,HP50, also HP32s, HP42s --which use RPL internally)
|
205
|
+
|
206
|
+
SATURN = BCDFormat.new(
|
207
|
+
:fields=>[:prolog,5,:exponent,3,:significand,12,:sign,1],
|
208
|
+
:fields_handler=>lambda{|fields| fields[0]=2933},
|
209
|
+
:exponent_mode=>:radix_complement,
|
210
|
+
:endianness=>:little_endian, :round=>:even,
|
211
|
+
:gradual_underflow=>false, :infinity=>false, :nan=>false
|
212
|
+
)
|
213
|
+
SATURN_X = BCDFormat.new(
|
214
|
+
:fields=>[:prolog,5,:exponent,5,:significand,15,:sign,1],
|
215
|
+
:fields_handler=>lambda{|fields| fields[0]=2955},
|
216
|
+
:exponent_mode=>:radix_complement,
|
217
|
+
:endianness=>:little_endian, :round=>:even,
|
218
|
+
:gradual_underflow=>false, :infinity=>false, :nan=>false
|
219
|
+
)
|
220
|
+
|
221
|
+
# Format used in classic HP calculators (HP-35, ... HP-15C) (endianess is unknown)
|
222
|
+
|
223
|
+
HP_CLASSIC = BCDFormat.new(
|
224
|
+
:fields=>[:exponent,3,:significand,10,:sign,1],
|
225
|
+
:exponent_mode=>:radix_complement,
|
226
|
+
:min_exp=>-99, :max_exp=>99, # the most significant nibble of exponent if for sign only
|
227
|
+
:endianness=>:big_endian, :round=>:inf,
|
228
|
+
:gradual_underflow=>false, :infinity=>false, :nan=>false
|
229
|
+
)
|
230
|
+
|
231
|
+
|
232
|
+
# IBM Floating Point Architecture (IBM 360,370, DG Eclipse, ...)
|
233
|
+
|
234
|
+
# short
|
235
|
+
IBM32 = HexadecimalFormat.new(
|
236
|
+
:fields=>[:significand,24,:exponent,7,:sign,1],
|
237
|
+
:bias=>64, :bias_mode=>:fractional_significand,
|
238
|
+
:endianness=>:big_endian
|
239
|
+
)
|
240
|
+
# long
|
241
|
+
IBM64 = HexadecimalFormat.new(
|
242
|
+
:fields=>[:significand,56,:exponent,7,:sign,1],
|
243
|
+
:bias=>64, :bias_mode=>:fractional_significand,
|
244
|
+
:endianness=>:big_endian
|
245
|
+
)
|
246
|
+
|
247
|
+
# extended: two long values pasted together
|
248
|
+
IBM128 = HexadecimalFormat.new(
|
249
|
+
:fields=>[:significand,14*4,:lo_exponent,7,:lo_sign,1,:significand,14*4,:exponent,7,:sign,1],
|
250
|
+
:fields_handler=>lambda{|fields| fields[1]=(fields[4]>=14&&fields[4]<127) ? fields[4]-14 : fields[4];fields[2]=fields[5] },
|
251
|
+
:bias=>64, :bias_mode=>:fractional_significand,
|
252
|
+
:min_encoded_exp=>14, # to avoid out-of-range exponents in the lower half
|
253
|
+
:endianness=>:big_endian
|
254
|
+
)
|
255
|
+
|
256
|
+
# It think this has never been used:
|
257
|
+
IBMX = HexadecimalFormat.new(
|
258
|
+
:fields=>[:significand,14*4,:exponent,7,:unused_sign,1,:significand,14*4,:exponent,7,:sign,1],
|
259
|
+
:fields_handler=>lambda{|fields| fields[2]=0},
|
260
|
+
:bias=>8192, :bias_mode=>:fractional_significand,
|
261
|
+
:endianness=>:big_endian
|
262
|
+
)
|
263
|
+
|
264
|
+
# Cray-1
|
265
|
+
CRAY = BinaryFormat.new(
|
266
|
+
:fields=>[:significand,48,:exponent,15,:sign,1],
|
267
|
+
:bias=>16384, :bias_mode=>:fractional_significand,
|
268
|
+
:hidden_bit=>false,
|
269
|
+
:min_encoded_exp=>8192, :max_encoded_exp=>24575, :zero_encoded_exp=>0,
|
270
|
+
:endianness=>:big_endian,
|
271
|
+
:gradual_underflow=>false, :infinity=>false, :nan=>false
|
272
|
+
)
|
273
|
+
|
274
|
+
# CDC 6600/7600
|
275
|
+
# Byte endianness is arbitrary, since these machines were word-addressable, in 60-bit words,
|
276
|
+
# but the two words used in double precision numbers are in big endian order
|
277
|
+
# TO DO: apply this:
|
278
|
+
# The exponent encoded value 1023 is used for NaN
|
279
|
+
# The exponent encoded value 0 is used for underflow
|
280
|
+
# The exponent encoded value 2047 is used for overflow
|
281
|
+
#
|
282
|
+
# The exponent needs special treatment, because instead of excess encoding, which is equivalent to two's complement followed
|
283
|
+
# by sign bit reversal, one's complement followed by sign bit reversal is used, which is equivalent
|
284
|
+
# to use a bias diminished by one for negative exponents. Note that the exponent encoded value that equals the bias is
|
285
|
+
# not used (is used as a NaN indicator)
|
286
|
+
class CDCFLoatingPoint < BinaryFormat # :nodoc:
|
287
|
+
def encode_exponent(e,mode)
|
288
|
+
ee = super
|
289
|
+
ee -= 1 if e<0
|
290
|
+
ee
|
291
|
+
end
|
292
|
+
def decode_exponent(ee,mode)
|
293
|
+
e = super
|
294
|
+
e += 1 if e<0
|
295
|
+
e
|
296
|
+
end
|
297
|
+
end
|
298
|
+
|
299
|
+
CDC_SINGLE = CDCFLoatingPoint.new(
|
300
|
+
:fields=>[:significand,48, :exponent,11, :sign,1],
|
301
|
+
:bias=>1024, :bias_mode=>:integral_significand,
|
302
|
+
:min_exp=>-1023,
|
303
|
+
:neg_mode=>:diminished_radix_complement,
|
304
|
+
:hidden_bit=>false,
|
305
|
+
:endianess=>:big_endian,
|
306
|
+
:gradual_underflow=>false, :infinity=>false, :nan=>false
|
307
|
+
)
|
308
|
+
|
309
|
+
# the CDC_DOUBLE can be splitted in two CDC_SINGLE values:
|
310
|
+
# get_bitfields(v,[CDC_SINGLE.total_bits]*2,CDC_DOUBLE.endianness).collect{|x| int_to_bytes(x,0,CDC_SINGLE.endianness)}
|
311
|
+
# and the value of the double is the sum of the values of the singles.
|
312
|
+
# unlike the single, we must use :fractional_significand mode because with :integral_significand
|
313
|
+
# the exponent would refer to the whole significand, but it must refer only to the most significant half.
|
314
|
+
# we substract the number of bits in the single to the bias and exponent because of this change,
|
315
|
+
# and add 48 to the min_exponent to avoid the exponent of the low order single to be out of range
|
316
|
+
# because the exponent of the low order single is adjusted to
|
317
|
+
# the position of its digits by substracting 48 from the high order exponent
|
318
|
+
# Note that when computing the low order exponent with the fields handler we must take into account the sign
|
319
|
+
# because for negative numbers all the fields are one-complemented.
|
320
|
+
CDC_DOUBLE= CDCFLoatingPoint.new(
|
321
|
+
:fields=>[:significand,48,:lo_exponent,11,:lo_sign,1,:significand,48,:exponent,11,:sign,1],
|
322
|
+
:fields_handler=>lambda{|fields|
|
323
|
+
fields[1]=(fields[4]>0&&fields[4]<2047) ? fields[4]-((-1)**fields[5])*48 : fields[4]
|
324
|
+
fields[2]=fields[5]
|
325
|
+
},
|
326
|
+
:bias=>1024-48, :bias_mode=>:fractional_significand,
|
327
|
+
:min_encoded_exp=>48+1, # + 1 because the bias for negative is 1023
|
328
|
+
:neg_mode=>:diminished_radix_complement,
|
329
|
+
:hidden_bit=>false,
|
330
|
+
:endianess=>:big_endian,
|
331
|
+
:gradual_underflow=>false, :infinity=>false, :nan=>false
|
332
|
+
)
|
333
|
+
|
334
|
+
|
335
|
+
# Univac 1100
|
336
|
+
# Byte endianness is arbitrary, since these machines were word-addressable, in 36-bit words,
|
337
|
+
# but the two words used in double precision numbers are in big endian order
|
338
|
+
UNIVAC_SINGLE = BinaryFormat.new(
|
339
|
+
:fields=>[:significand,27, :exponent,8, :sign,1],
|
340
|
+
:bias=>128, :bias_mode=>:fractional_significand,
|
341
|
+
:neg_mode=>:diminished_radix_complement,
|
342
|
+
:hidden_bit=>false,
|
343
|
+
:endianess=>:big_endian,
|
344
|
+
:gradual_underflow=>false, :infinity=>false, :nan=>false
|
345
|
+
)
|
346
|
+
|
347
|
+
UNIVAC_DOUBLE = BinaryFormat.new(
|
348
|
+
:fields=>[:significand,60, :exponent,11, :sign,1],
|
349
|
+
:bias=>1024, :bias_mode=>:fractional_significand,
|
350
|
+
:neg_mode=>:diminished_radix_complement,
|
351
|
+
:hidden_bit=>false,
|
352
|
+
:endianess=>:big_endian,
|
353
|
+
:gradual_underflow=>false, :infinity=>false, :nan=>false
|
354
|
+
)
|
355
|
+
|
356
|
+
# Sofware floating point implementatin for the Apple II (6502)
|
357
|
+
# the significand & sign are a single field in two's commplement
|
358
|
+
|
359
|
+
APPLE = BinaryFormat.new(
|
360
|
+
:fields=>[:significand,23,:sign,1,:exponent,8],
|
361
|
+
:bias=>128, :bias_mode=>:normalized_significand,
|
362
|
+
:hidden_bit=>false, :min_encoded_exp=>0,
|
363
|
+
:neg_mode=>:radix_complement_significand,
|
364
|
+
:endianness=>:big_endian,
|
365
|
+
:gradual_underflow=>true, :infinity=>false, :nan=>false) { |fp|
|
366
|
+
|
367
|
+
# This needs a peculiar treatment for the negative values, which not simply use two's complement
|
368
|
+
# but also avoid having the sign and msb of the significand equal.
|
369
|
+
# Note that here we have a separate sign bit, but it can also be considered as the msb of the significand
|
370
|
+
# in two's complement, in which case the radix point is after the two msbs, which are the ones that
|
371
|
+
# should not be equal. (except for zero and other values using the minimum exponent).
|
372
|
+
def fp.neg_significand_exponent(s,f,e)
|
373
|
+
#puts "before: #{s} #{f.to_s(16)}"
|
374
|
+
f,e = super
|
375
|
+
s = (s+1)%2
|
376
|
+
#print "neg #{f.to_s(16)}"
|
377
|
+
if e>@zero_encoded_exp && f==0
|
378
|
+
f = 1<<(significand_digits-1)
|
379
|
+
e += 1
|
380
|
+
else
|
381
|
+
while (e>@zero_encoded_exp) && (f>>(significand_digits-1))&1 == s
|
382
|
+
e -= 1
|
383
|
+
f = (f << 1) & (radix_power(significand_digits)-1)
|
384
|
+
#print " << "
|
385
|
+
end
|
386
|
+
end
|
387
|
+
#puts ""
|
388
|
+
[f,e]
|
389
|
+
end
|
390
|
+
|
391
|
+
}
|
392
|
+
|
393
|
+
|
394
|
+
# Wang 2200 Basic Decimal floating point
|
395
|
+
WANG2200 = BCDFormat.new(
|
396
|
+
:fields=>[:significand,13,:exponent,2,:signs,1],
|
397
|
+
:endiannes=>:big_endian,
|
398
|
+
:bias_mode=>:normalized_significand,
|
399
|
+
:min_exp=>-99, :max_exp=>99,
|
400
|
+
:zero_encoded_exp=>0, :min_encoded_exp=>0
|
401
|
+
) { |wang2200|
|
402
|
+
|
403
|
+
# needs special handling because significand and exponent are both stored
|
404
|
+
# as sign-magnitude, with both signs combined in a single nibble (decimal digit)
|
405
|
+
def wang2200.to_integral_sign_significand_exponent(v)
|
406
|
+
f = to_fields_hash(v)
|
407
|
+
m = f[:significand]
|
408
|
+
e = f[:exponent]
|
409
|
+
ss = f[:signs]
|
410
|
+
s = (ss==9 || ss==1) ? 9 : 0
|
411
|
+
es = (ss==8 || ss==1) ? 9 : 0
|
412
|
+
if m==0
|
413
|
+
# +-zero
|
414
|
+
e = :zero
|
415
|
+
elsif @infinite_encoded_exp && e==@infinite_encoded_exp && m==0
|
416
|
+
# +-inifinity
|
417
|
+
e = :infinity
|
418
|
+
elsif @nan_encoded_exp && e==@nan_encoded_exp && m!=0
|
419
|
+
# NaN
|
420
|
+
e = :nan
|
421
|
+
else
|
422
|
+
# normalized number
|
423
|
+
# reverse exponent nibbles
|
424
|
+
e = ("%0#{exponent_digits}d"%e).reverse.to_i
|
425
|
+
e = -e if es%2!=0
|
426
|
+
e -= (significand_digits-1)
|
427
|
+
end
|
428
|
+
[s,m,e]
|
429
|
+
end
|
430
|
+
|
431
|
+
def wang2200.from_integral_sign_significand_exponent(s,m,e)
|
432
|
+
msb = radix_power(@significand_digits-1)
|
433
|
+
es = 0
|
434
|
+
if e==:zero
|
435
|
+
e = @zero_encoded_exp
|
436
|
+
m = 0
|
437
|
+
elsif e==:infinity
|
438
|
+
e = @infinite_encoded_exp || radix_power(@fields[:exponent])-1
|
439
|
+
m = 0
|
440
|
+
elsif e==:nan
|
441
|
+
e = @infinite_encoded_exp || radix_power(@fields[:exponent])-1
|
442
|
+
s = minus_sign_value # ?
|
443
|
+
m = radix_power(@significand_digits-2) if m==0
|
444
|
+
elsif e==:denormal
|
445
|
+
e = @denormal_encoded_exp
|
446
|
+
else
|
447
|
+
# to do: try to adjust m to keep e in range if out of valid range
|
448
|
+
# to do: reduce m and adjust e if m too big
|
449
|
+
|
450
|
+
min_exp = radix_min_exp(:integral_significand)
|
451
|
+
if m>0
|
452
|
+
while m<msb && e>min_exp
|
453
|
+
e -= 1
|
454
|
+
m *= radix
|
455
|
+
end
|
456
|
+
end
|
457
|
+
if m<msb && @denormal_encoded_exp
|
458
|
+
e = @denormal_encoded_exp
|
459
|
+
elsif m==0 # => && @denormal_encoded_exp.nil?
|
460
|
+
e = 0
|
461
|
+
else
|
462
|
+
e += (significand_digits-1)
|
463
|
+
if e<0
|
464
|
+
e = -e
|
465
|
+
es = 9
|
466
|
+
else
|
467
|
+
es = 0
|
468
|
+
end
|
469
|
+
end
|
470
|
+
end
|
471
|
+
ss = (s%2) + (es==0 ? 0 : 8)
|
472
|
+
# reverse exponent nibbles
|
473
|
+
e = ("%0#{exponent_digits}d"%e).reverse.to_i
|
474
|
+
from_fields_hash :signs=>ss, :significand=>m, :exponent=>e
|
475
|
+
end
|
476
|
+
}
|
477
|
+
|
478
|
+
|
479
|
+
# C51 (C compiler for the Intel 8051) BCD Floating point formats
|
480
|
+
class C51BCDFloatingPoint < BCDFormat # :nodoc:
|
481
|
+
def exponent_radix
|
482
|
+
2
|
483
|
+
end
|
484
|
+
def exponent_digits
|
485
|
+
@fields[:exponent_sign]*4-1
|
486
|
+
end
|
487
|
+
def minus_sign_value
|
488
|
+
1
|
489
|
+
end
|
490
|
+
def to_integral_sign_significand_exponent(v)
|
491
|
+
f = to_fields_hash(v)
|
492
|
+
m = f[:significand]
|
493
|
+
e_s = f[:exponent_sign]
|
494
|
+
exp_bits = exponent_digits
|
495
|
+
e = e_s & (2**exp_bits-1)
|
496
|
+
s = e_s >> exp_bits
|
497
|
+
if m==0
|
498
|
+
# +-zero
|
499
|
+
e = :zero
|
500
|
+
elsif @infinite_encoded_exp && e==@infinite_encoded_exp && m==0
|
501
|
+
# +-inifinity
|
502
|
+
e = :infinity
|
503
|
+
elsif @nan_encoded_exp && e==@nan_encoded_exp && m!=0
|
504
|
+
# NaN
|
505
|
+
e = :nan
|
506
|
+
else
|
507
|
+
# normalized number
|
508
|
+
e = decode_exponent(e, :integral_significand)
|
509
|
+
end
|
510
|
+
[s,m,e]
|
511
|
+
end
|
512
|
+
def bcd_field?(i)
|
513
|
+
@field_meaning[i]==:significand
|
514
|
+
end
|
515
|
+
|
516
|
+
def from_integral_sign_significand_exponent(s,m,e)
|
517
|
+
msb = radix_power(@significand_digits-1)
|
518
|
+
es = 0
|
519
|
+
if e==:zero
|
520
|
+
e = @zero_encoded_exp
|
521
|
+
m = 0
|
522
|
+
elsif e==:infinity
|
523
|
+
e = @infinite_encoded_exp || radix_power(@fields[:exponent])-1
|
524
|
+
m = 0
|
525
|
+
elsif e==:nan
|
526
|
+
e = @infinite_encoded_exp || radix_power(@fields[:exponent])-1
|
527
|
+
s = minus_sign_value # ?
|
528
|
+
m = radix_power(@significand_digits-2) if m==0
|
529
|
+
elsif e==:denormal
|
530
|
+
e = @denormal_encoded_exp
|
531
|
+
else
|
532
|
+
# to do: try to adjust m to keep e in range if out of valid range
|
533
|
+
# to do: reduce m and adjust e if m too big
|
534
|
+
|
535
|
+
min_exp = radix_min_exp(:integral_significand)
|
536
|
+
if m>0
|
537
|
+
while m<msb && e>min_exp
|
538
|
+
e -= 1
|
539
|
+
m *= radix
|
540
|
+
end
|
541
|
+
end
|
542
|
+
if m<msb && @denormal_encoded_exp
|
543
|
+
e = @denormal_encoded_exp
|
544
|
+
elsif m==0 # => && @denormal_encoded_exp.nil?
|
545
|
+
e = 0
|
546
|
+
else
|
547
|
+
e = encode_exponent(e, :integral_significand)
|
548
|
+
end
|
549
|
+
end
|
550
|
+
exp_bits = exponent_digits
|
551
|
+
e_s = e + (s << exp_bits)
|
552
|
+
from_fields_hash :significand=>m, :exponent_sign=>e_s
|
553
|
+
end
|
554
|
+
end
|
555
|
+
|
556
|
+
C51_BCD_FLOAT = C51BCDFloatingPoint.new(
|
557
|
+
:fields=>[:exponent_sign, 2, :significand,6],
|
558
|
+
:endiannes=>:big_endian,
|
559
|
+
:bias=>64, :bias_mode=>:fractional_significand,
|
560
|
+
:zero_encoded_exp=>0, :min_encoded_exp=>0,:max_encoded_exp=>127
|
561
|
+
)
|
562
|
+
C51_BCD_DOUBLE = C51BCDFloatingPoint.new(
|
563
|
+
:fields=>[:exponent_sign, 2, :significand,10],
|
564
|
+
:endiannes=>:big_endian,
|
565
|
+
:bias=>64, :bias_mode=>:fractional_significand,
|
566
|
+
:zero_encoded_exp=>0, :min_encoded_exp=>0,:max_encoded_exp=>127
|
567
|
+
)
|
568
|
+
C51_BCD_LONG_DOUBLE = C51BCDFloatingPoint.new(
|
569
|
+
:fields=>[:exponent_sign, 2, :significand,12],
|
570
|
+
:endiannes=>:big_endian,
|
571
|
+
:bias=>64, :bias_mode=>:fractional_significand,
|
572
|
+
:zero_encoded_exp=>0, :min_encoded_exp=>0,:max_encoded_exp=>127
|
573
|
+
)
|
574
|
+
|
575
|
+
|
576
|
+
|
577
|
+
|
578
|
+
|
579
|
+
end
|
580
|
+
|