figurate_numbers 1.4.0 → 1.4.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
data/docs/METHODS.md ADDED
@@ -0,0 +1,262 @@
1
+ # List of Implemented Sequences in `figurate_numbers`
2
+
3
+ ### Table of Contents
4
+ - 🟦 [Plane Figurate Numbers](#1-plane-figurate-numbers)
5
+ - 🟥 [Space Figurate Numbers](#2-space-figurate-numbers)
6
+ - 🟨 [Multidimensional Figurate Numbers](#3-multidimensional-figurate-numbers)
7
+ - 🧬 [Zoo of figurate-related numbers](#6-zoo-of-figurate-related-numbers)
8
+
9
+ > Note that `=` means that you can call the same sequence with different names.
10
+
11
+ ## 1. Plane Figurate Numbers
12
+
13
+ 1. `polygonal(m)`
14
+ 2. `triangular`
15
+ 3. `square`
16
+ 4. `pentagonal`
17
+ 5. `hexagonal`
18
+ 6. `heptagonal`
19
+ 7. `octagonal`
20
+ 8. `nonagonal`
21
+ 9. `decagonal`
22
+ 10. `hendecagonal`
23
+ 11. `dodecagonal`
24
+ 12. `tridecagonal`
25
+ 13. `tetradecagonal`
26
+ 14. `pentadecagonal`
27
+ 15. `hexadecagonal`
28
+ 16. `heptadecagonal`
29
+ 17. `octadecagonal`
30
+ 18. `nonadecagonal`
31
+ 19. `icosagonal`
32
+ 20. `icosihenagonal`
33
+ 21. `icosidigonal`
34
+ 22. `icositrigonal`
35
+ 23. `icositetragonal`
36
+ 24. `icosipentagonal`
37
+ 25. `icosihexagonal`
38
+ 26. `icosiheptagonal`
39
+ 27. `icosioctagonal`
40
+ 28. `icosinonagonal`
41
+ 29. `triacontagonal`
42
+ 30. `centered_triangular`
43
+ 31. `centered_square` = `diamond` (equality only by quantity)
44
+ 32. `centered_pentagonal`
45
+ 33. `centered_hexagonal`
46
+ 34. `centered_heptagonal`
47
+ 35. `centered_octagonal`
48
+ 36. `centered_nonagonal`
49
+ 37. `centered_decagonal`
50
+ 38. `centered_hendecagonal`
51
+ 39. `centered_dodecagonal` = `star` (equality only by quantity)
52
+ 40. `centered_tridecagonal`
53
+ 41. `centered_tetradecagonal`
54
+ 42. `centered_pentadecagonal`
55
+ 43. `centered_hexadecagonal`
56
+ 44. `centered_heptadecagonal`
57
+ 45. `centered_octadecagonal`
58
+ 46. `centered_nonadecagonal`
59
+ 47. `centered_icosagonal`
60
+ 48. `centered_icosihenagonal`
61
+ 49. `centered_icosidigonal`
62
+ 50. `centered_icositrigonal`
63
+ 51. `centered_icositetragonal`
64
+ 52. `centered_icosipentagonal`
65
+ 53. `centered_icosihexagonal`
66
+ 54. `centered_icosiheptagonal`
67
+ 55. `centered_icosioctagonal`
68
+ 56. `centered_icosinonagonal`
69
+ 57. `centered_triacontagonal`
70
+ 58. `centered_mgonal(m)`
71
+ 59. `pronic` = `heteromecic` = `oblong`
72
+ 60. `polite`
73
+ 61. `impolite`
74
+ 62. `cross`
75
+ 63. `aztec_diamond`
76
+ 64. `polygram(m)` = `centered_star_polygonal(m)`
77
+ 65. `pentagram`
78
+ 66. `gnomic`
79
+ 67. `truncated_triangular`
80
+ 68. `truncated_square`
81
+ 69. `truncated_pronic`
82
+ 70. `truncated_centered_pol(m)` = `truncated_centered_mgonal(m)`
83
+ 71. `truncated_centered_triangular`
84
+ 72. `truncated_centered_square`
85
+ 73. `truncated_centered_pentagonal`
86
+ 74. `truncated_centered_hexagonal` = `truncated_hex`
87
+ 75. `generalized_mgonal(m, left_index = 0)`
88
+ 76. `generalized_pentagonal(left_index = 0)`
89
+ 77. `generalized_hexagonal(left_index = 0)`
90
+ 78. `generalized_centered_pol(m, left_index = 0)`
91
+ 79. `generalized_pronic(left_index = 0)`
92
+
93
+ ## 2. Space Figurate Numbers
94
+
95
+ 1. `r_pyramidal(r)`
96
+ 2. `triangular_pyramidal = tetrahedral`
97
+ 3. `square_pyramidal = pyramidal`
98
+ 4. `pentagonal_pyramidal`
99
+ 5. `hexagonal_pyramidal`
100
+ 6. `heptagonal_pyramidal`
101
+ 7. `octagonal_pyramidal`
102
+ 8. `nonagonal_pyramidal`
103
+ 9. `decagonal_pyramidal`
104
+ 10. `hendecagonal_pyramidal`
105
+ 11. `dodecagonal_pyramidal`
106
+ 12. `tridecagonal_pyramidal`
107
+ 13. `tetradecagonal_pyramidal`
108
+ 14. `pentadecagonal_pyramidal`
109
+ 15. `hexadecagonal_pyramidal`
110
+ 16. `heptadecagonal_pyramidal`
111
+ 17. `octadecagonal_pyramidal`
112
+ 18. `nonadecagonal_pyramidal`
113
+ 19. `icosagonal_pyramidal`
114
+ 20. `icosihenagonal_pyramidal`
115
+ 21. `icosidigonal_pyramidal`
116
+ 22. `icositrigonal_pyramidal`
117
+ 23. `icositetragonal_pyramidal`
118
+ 24. `icosipentagonal_pyramidal`
119
+ 25. `icosihexagonal_pyramidal`
120
+ 26. `icosiheptagonal_pyramidal`
121
+ 27. `icosioctagonal_pyramidal`
122
+ 28. `icosinonagonal_pyramidal`
123
+ 29. `triacontagonal_pyramidal`
124
+ 30. `triangular_tetrahedral [finite]`
125
+ 31. `triangular_square_pyramidal [finite]`
126
+ 32. `square_tetrahedral [finite]`
127
+ 33. `square_square_pyramidal [finite]`
128
+ 34. `tetrahedral_square_pyramidal_number [finite]`
129
+ 35. `cubic = perfect_cube != hex_pyramidal (equality only by quantity)`
130
+ 36. `tetrahedral`
131
+ 37. `octahedral`
132
+ 38. `dodecahedral`
133
+ 39. `icosahedral`
134
+ 40. `truncated_tetrahedral`
135
+ 41. `truncated_cubic`
136
+ 42. `truncated_octahedral`
137
+ 43. `stella_octangula`
138
+ 44. `centered_cube`
139
+ 45. `rhombic_dodecahedral`
140
+ 46. `hauy_rhombic_dodecahedral`
141
+ 47. `centered_tetrahedron = centered_tetrahedral`
142
+ 48. `centered_square_pyramid = centered_pyramid`
143
+ 49. `centered_mgonal_pyramid(m)`
144
+ 50. `centered_pentagonal_pyramid != centered_octahedron (equality only in quantity)`
145
+ 51. `centered_hexagonal_pyramid`
146
+ 52. `centered_heptagonal_pyramid`
147
+ 53. `centered_octagonal_pyramid`
148
+ 54. `centered_octahedron`
149
+ 55. `centered_icosahedron = centered_cuboctahedron`
150
+ 56. `centered_dodecahedron`
151
+ 57. `centered_truncated_tetrahedron`
152
+ 58. `centered_truncated_cube`
153
+ 59. `centered_truncated_octahedron`
154
+ 60. `centered_mgonal_pyramidal(m)`
155
+ 61. `centered_triangular_pyramidal`
156
+ 62. `centered_square_pyramidal`
157
+ 63. `centered_pentagonal_pyramidal`
158
+ 64. `centered_hexagonal_pyramidal = hex_pyramidal`
159
+ 65. `centered_heptagonal_pyramidal`
160
+ 66. `centered_octagonal_pyramidal`
161
+ 67. `centered_nonagonal_pyramidal`
162
+ 68. `centered_decagonal_pyramidal`
163
+ 69. `centered_hendecagonal_pyramidal`
164
+ 70. `centered_dodecagonal_pyramidal`
165
+ 71. `hexagonal_prism`
166
+ 72. `mgonal_prism(m)`
167
+ 73. `generalized_mgonal_pyramidal(m, left_index = 0)`
168
+ 74. `generalized_pentagonal_pyramidal(left_index = 0)`
169
+ 75. `generalized_hexagonal_pyramidal(left_index = 0)`
170
+ 76. `generalized_cubic(left_index = 0)`
171
+ 77. `generalized_octahedral(left_index = 0)`
172
+ 78. `generalized_icosahedral(left_index = 0)`
173
+ 79. `generalized_dodecahedral(left_index = 0)`
174
+ 80. `generalized_centered_cube(left_index = 0)`
175
+ 81. `generalized_centered_tetrahedron(left_index = 0)`
176
+ 82. `generalized_centered_square_pyramid(left_index = 0)`
177
+ 83. `generalized_rhombic_dodecahedral(left_index = 0)`
178
+ 84. `generalized_centered_mgonal_pyramidal(m, left_index = 0)`
179
+ 85. `generalized_mgonal_prism(m, left_index = 0)`
180
+ 86. `generalized_hexagonal_prism(left_index = 0)`
181
+
182
+ ## 3. Multidimensional figurate numbers
183
+
184
+ 1. `pentatope = hypertetrahedral = triangulotriangular`
185
+ 2. `k_dimensional_hypertetrahedron(k) = k_hypertetrahedron(k) = regular_k_polytopic(k) = figurate_numbers_of_order_k(k)`
186
+ 3. `five_dimensional_hypertetrahedron`
187
+ 4. `six_dimensional_hypertetrahedron`
188
+ 5. `biquadratic`
189
+ 6. `k_dimensional_hypercube(k) = k_hypercube(k)`
190
+ 7. `five_dimensional_hypercube`
191
+ 8. `six_dimensional_hypercube`
192
+ 9. `hyperoctahedral = hexadecachoron = four_cross_polytope = four_orthoplex`
193
+ 10. `hypericosahedral = tetraplex = polytetrahedron = hexacosichoron`
194
+ 11. `hyperdodecahedral = hecatonicosachoron = dodecaplex = polydodecahedron`
195
+ 12. `polyoctahedral = icositetrachoron = octaplex = hyperdiamond`
196
+ 13. `four_dimensional_hyperoctahedron`
197
+ 14. `five_dimensional_hyperoctahedron`
198
+ 15. `six_dimensional_hyperoctahedron`
199
+ 16. `seven_dimensional_hyperoctahedron`
200
+ 17. `eight_dimensional_hyperoctahedron`
201
+ 18. `nine_dimensional_hyperoctahedron`
202
+ 19. `ten_dimensional_hyperoctahedron`
203
+ 20. `k_dimensional_hyperoctahedron(k) = k_cross_polytope(k)`
204
+ 21. `four_dimensional_mgonal_pyramidal(m) = mgonal_pyramidal_numbers_of_the_second_order(m)`
205
+ 22. `four_dimensional_square_pyramidal`
206
+ 23. `four_dimensional_pentagonal_pyramidal`
207
+ 24. `four_dimensional_hexagonal_pyramidal`
208
+ 25. `four_dimensional_heptagonal_pyramidal`
209
+ 26. `four_dimensional_octagonal_pyramidal`
210
+ 27. `four_dimensional_nonagonal_pyramidal`
211
+ 28. `four_dimensional_decagonal_pyramidal`
212
+ 29. `four_dimensional_hendecagonal_pyramidal`
213
+ 30. `four_dimensional_dodecagonal_pyramidal`
214
+ 31. `k_dimensional_mgonal_pyramidal(k, m) = mgonal_pyramidal_of_the_k_2_th_order(k, m)`
215
+ 32. `five_dimensional_mgonal_pyramidal(m)`
216
+ 33. `five_dimensional_square_pyramidal`
217
+ 34. `five_dimensional_pentagonal_pyramidal`
218
+ 35. `five_dimensional_hexagonal_pyramidal`
219
+ 36. `five_dimensional_heptagonal_pyramidal`
220
+ 37. `five_dimensional_octagonal_pyramidal`
221
+ 38. `six_dimensional_mgonal_pyramidal(m)`
222
+ 39. `six_dimensional_square_pyramidal`
223
+ 40. `six_dimensional_pentagonal_pyramidal`
224
+ 41. `six_dimensional_hexagonal_pyramidal`
225
+ 42. `six_dimensional_heptagonal_pyramidal`
226
+ 43. `six_dimensional_octagonal_pyramidal`
227
+ 44. `centered_biquadratic`
228
+ 45. `k_dimensional_centered_hypercube(k)`
229
+ 46. `five_dimensional_centered_hypercube`
230
+ 47. `six_dimensional_centered_hypercube`
231
+ 48. `centered_polytope`
232
+ 49. `k_dimensional_centered_hypertetrahedron(k)`
233
+ 50. `five_dimensional_centered_hypertetrahedron(k)`
234
+ 51. `six_dimensional_centered_hypertetrahedron(k)`
235
+ 52. `centered_hyperoctahedral = orthoplex`
236
+ 53. `nexus(k)`
237
+ 54. `k_dimensional_centered_hyperoctahedron(k)`
238
+ 55. `five_dimensional_centered_hyperoctahedron`
239
+ 56. `six_dimensional_centered_hyperoctahedron`
240
+ 57. `generalized_pentatope(left_index = 0)`
241
+ 58. `generalized_k_dimensional_hypertetrahedron(k = 5, left_index = 0)`
242
+ 59. `generalized_biquadratic(left_index = 0)`
243
+ 60. `generalized_k_dimensional_hypercube(k = 5, left_index = 0)`
244
+ 61. `generalized_hyperoctahedral(left_index = 0)`
245
+ 62. `generalized_k_dimensional_hyperoctahedron(k = 5, left_index = 0) [even or odd dimension only changes sign]`
246
+ 63. `generalized_hyperdodecahedral(left_index = 0)`
247
+ 64. `generalized_hypericosahedral(left_index = 0)`
248
+ 65. `generalized_polyoctahedral(left_index = 0)`
249
+ 66. `generalized_k_dimensional_mgonal_pyramidal(k, m, left_index = 0)`
250
+ 67. `generalized_k_dimensional_centered_hypercube(k, left_index = 0)`
251
+ 68. `generalized_k_dimensional_centered_hypertetrahedron(k, left_index = 0)[provisional symmetry]`
252
+ 69. `generalized_k_dimensional_centered_hyperoctahedron(k, left_index = 0)[provisional symmetry]`
253
+ 70. `generalized_nexus(k, left_index = 0) [even or odd dimension only changes sign]`
254
+
255
+ ### 6. Zoo of figurate-related numbers
256
+
257
+ 1. `cuban_numbers = cuban_prime_numbers`
258
+ 2. `quartan_numbers [Needs to improve the algorithmic complexity for n > 70]`
259
+ 3. `pell_numbers`
260
+ 4. `carmichael_numbers [Needs to improve the algorithmic complexity for n > 20]`
261
+ 4. `stern_prime_numbers(infty = false) [Quick calculations up to 8 terms]`
262
+ 5. `apocalyptic_numbers`