figurate_numbers 1.3.0 → 1.4.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +305 -283
- data/lib/figurate_numbers/multidimensional_figurate_numbers.rb +842 -0
- data/lib/figurate_numbers/plane_figurate_numbers.rb +627 -0
- data/lib/figurate_numbers/space_figurate_numbers.rb +720 -0
- data/lib/figurate_numbers/utils/utils.rb +38 -0
- data/lib/figurate_numbers/version.rb +3 -0
- data/lib/figurate_numbers.rb +10 -2226
- metadata +9 -4
data/README.md
CHANGED
@@ -1,51 +1,88 @@
|
|
1
|
-
|
1
|
+
<h1 align="center"> Figurate Numbers </h1>
|
2
2
|
|
3
|
-
|
4
|
-
|
5
|
-

|
3
|
+
**Figurate Numbers** is the most comprehensive and specialized gem for figurate numbers written in Ruby to date.
|
4
|
+
It implements **241 infinite number sequences** inspired by the groundbreaking work [*Figurate Numbers*](https://books.google.com.pe/books/about/Figurate_Numbers.html?id=ERS7CgAAQBAJ&redir_esc=y) by Elena Deza and Michel Deza, published in 2012.
|
6
5
|
|
7
|
-
|
8
|
-
|
6
|
+
<p align="center">
|
7
|
+
<img src="https://img.shields.io/gem/v/figurate_numbers" alt="Gem Version">
|
8
|
+
<img src="https://img.shields.io/gem/dt/figurate_numbers" alt="Gem Total Downloads">
|
9
|
+
<img src="https://img.shields.io/github/stars/edelveart/figurate_numbers" alt="GitHub Repo stars">
|
10
|
+
<img src="https://img.shields.io/github/license/edelveart/figurate_numbers" alt="GitHub License">
|
11
|
+
</p>
|
9
12
|
|
10
|
-
|
13
|
+

|
11
14
|
|
12
|
-
|
15
|
+
## Installation
|
13
16
|
|
14
|
-
|
15
|
-
2. **Space** figurate numbers implemented = `86`
|
16
|
-
3. **Multidimensional** figurate numbers implemented = `70`
|
17
|
-
4. **Zoo of figurate-related numbers** implemented = `6`
|
17
|
+
Install it from the gem repository:
|
18
18
|
|
19
|
-
|
19
|
+
```rb
|
20
|
+
gem install figurate_numbers
|
21
|
+
```
|
20
22
|
|
21
|
-
##
|
23
|
+
## Features
|
22
24
|
|
23
|
-
|
25
|
+
This implementation uses the **Enumerator class** to handle **infinite sequences**.
|
26
|
+
It is intended for use in mathematical projects and with Sonic Pi.
|
24
27
|
|
25
|
-
|
28
|
+
Following the order of the book, the methods are divided into 3 types according to the spatial dimension (see complete list below):
|
26
29
|
|
27
|
-
|
30
|
+
1. **PlaneFigurateNumbers** figurate numbers implemented = `79`
|
31
|
+
2. **SpaceFigurateNumbers** figurate numbers implemented = `86`
|
32
|
+
3. **MultiDimensionalFigurateNumbers** figurate numbers implemented = `70`
|
33
|
+
4. **Zoo of figurate-related numbers** implemented = `6` (included in MultiDimensional module)
|
34
|
+
|
35
|
+
- [x] **TOTAL** = `241` infinite sequences of figurate numbers implemented
|
36
|
+
|
37
|
+
## How to use in Ruby
|
28
38
|
|
29
39
|
```rb
|
30
40
|
require 'figurate_numbers'
|
31
41
|
|
32
42
|
## Using take(integer)
|
33
|
-
FigurateNumbers.
|
43
|
+
FigurateNumbers.pentatope.take(10)
|
34
44
|
|
35
45
|
## Storing and iterating
|
36
|
-
f = FigurateNumbers.
|
46
|
+
f = FigurateNumbers.centered_octagonal_pyramid
|
37
47
|
f.next
|
38
48
|
f.next
|
39
49
|
f.next
|
40
50
|
```
|
41
|
-
|
51
|
+
|
52
|
+
If the sequence is defined with `lazy`, to make the numbers explicit we must include the converter method `to_a` at the end.
|
53
|
+
|
54
|
+
Since version **1.4.0**, you can alternatively call from the classes
|
55
|
+
```rb
|
56
|
+
PlaneFigurateNumbers.polygonal(3)
|
57
|
+
SpaceFigurateNumbers.rhombic_dodecahedral
|
58
|
+
MultiDimensionalFigurateNumbers.six_dimensional_hyperoctahedron
|
59
|
+
```
|
60
|
+
|
61
|
+
This ensures that you only use the numbers belonging to each geometric dimension.
|
62
|
+
|
63
|
+
## How to use in Sonic Pi
|
64
|
+
|
65
|
+
### figurate_numbers - Version 1.4.0
|
66
|
+
|
67
|
+
Starting from version **1.4.0**, you can use the library globally through `FigurateNumbers`to access all sequences, or you can use the specific classes mentioned above for separate access.
|
68
|
+
The main change compared to version **1.3.0** is that you now need to import the file using **require** instead of **run_file**; otherwise, it will not function.
|
69
|
+
|
70
|
+
```rb
|
71
|
+
require "<PATH>"
|
72
|
+
```
|
73
|
+
|
74
|
+
Simply copy the entry point path from the `lib/figurate_numbers.rb` file where the *gem* is installed.
|
75
|
+
|
76
|
+
### figurate_numbers - Version 1.3.0
|
77
|
+
|
78
|
+
You can read and comment in the [**Sonic Pi community thread right here!**](https://in-thread.sonic-pi.net/t/figurate-numbers-for-sonic-pi-new-ruby-gem-for-infinite-number-sequences-and-patterns/8962)
|
42
79
|
|
43
80
|
1. Locate or download the file in the path `lib/figurate_numbers.rb`
|
44
81
|
2. Drag the file to a buffer in Sonic Pi (this generates the `<PATH>`)
|
45
82
|
|
46
83
|
```rb
|
47
84
|
run_file "<PATH>"
|
48
|
-
|
85
|
+
sleep 1 # see the quote below
|
49
86
|
pol_num = FigurateNumbers.polygonal_numbers(8)
|
50
87
|
80.times do
|
51
88
|
play pol_num.next % 12 * 7 # Some mathematical function or transformation
|
@@ -53,279 +90,264 @@ pol_num = FigurateNumbers.polygonal_numbers(8)
|
|
53
90
|
end
|
54
91
|
```
|
55
92
|
|
93
|
+
> `sleep 1` #to allow **figurate_numbers** to complete load and setup otherwise first run can give error ([Robin Newman](https://in-thread.sonic-pi.net/t/figurate-numbers-for-sonic-pi-new-ruby-gem-for-infinite-number-sequences-and-patterns/8962/12) - Sonic Pi Core Team)
|
94
|
+
|
56
95
|
## List of implemented sequences
|
57
96
|
|
58
97
|
* Note that `=` means that you can call the same sequence with different names.
|
59
98
|
|
60
99
|
### 1. Plane Figurate Numbers
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
|
141
|
-
</ol>
|
100
|
+
|
101
|
+
1. `polygonal(m)`
|
102
|
+
2. `triangular`
|
103
|
+
3. `square`
|
104
|
+
4. `pentagonal`
|
105
|
+
5. `hexagonal`
|
106
|
+
6. `heptagonal`
|
107
|
+
7. `octagonal`
|
108
|
+
8. `nonagonal`
|
109
|
+
9. `decagonal`
|
110
|
+
10. `hendecagonal`
|
111
|
+
11. `dodecagonal`
|
112
|
+
12. `tridecagonal`
|
113
|
+
13. `tetradecagonal`
|
114
|
+
14. `pentadecagonal`
|
115
|
+
15. `hexadecagonal`
|
116
|
+
16. `heptadecagonal`
|
117
|
+
17. `octadecagonal`
|
118
|
+
18. `nonadecagonal`
|
119
|
+
19. `icosagonal`
|
120
|
+
20. `icosihenagonal`
|
121
|
+
21. `icosidigonal`
|
122
|
+
22. `icositrigonal`
|
123
|
+
23. `icositetragonal`
|
124
|
+
24. `icosipentagonal`
|
125
|
+
25. `icosihexagonal`
|
126
|
+
26. `icosiheptagonal`
|
127
|
+
27. `icosioctagonal`
|
128
|
+
28. `icosinonagonal`
|
129
|
+
29. `triacontagonal`
|
130
|
+
30. `centered_triangular`
|
131
|
+
31. `centered_square` = `diamond` (equality only by quantity)
|
132
|
+
32. `centered_pentagonal`
|
133
|
+
33. `centered_hexagonal`
|
134
|
+
34. `centered_heptagonal`
|
135
|
+
35. `centered_octagonal`
|
136
|
+
36. `centered_nonagonal`
|
137
|
+
37. `centered_decagonal`
|
138
|
+
38. `centered_hendecagonal`
|
139
|
+
39. `centered_dodecagonal` = `star` (equality only by quantity)
|
140
|
+
40. `centered_tridecagonal`
|
141
|
+
41. `centered_tetradecagonal`
|
142
|
+
42. `centered_pentadecagonal`
|
143
|
+
43. `centered_hexadecagonal`
|
144
|
+
44. `centered_heptadecagonal`
|
145
|
+
45. `centered_octadecagonal`
|
146
|
+
46. `centered_nonadecagonal`
|
147
|
+
47. `centered_icosagonal`
|
148
|
+
48. `centered_icosihenagonal`
|
149
|
+
49. `centered_icosidigonal`
|
150
|
+
50. `centered_icositrigonal`
|
151
|
+
51. `centered_icositetragonal`
|
152
|
+
52. `centered_icosipentagonal`
|
153
|
+
53. `centered_icosihexagonal`
|
154
|
+
54. `centered_icosiheptagonal`
|
155
|
+
55. `centered_icosioctagonal`
|
156
|
+
56. `centered_icosinonagonal`
|
157
|
+
57. `centered_triacontagonal`
|
158
|
+
58. `centered_mgonal(m)`
|
159
|
+
59. `pronic` = `heteromecic` = `oblong`
|
160
|
+
60. `polite`
|
161
|
+
61. `impolite`
|
162
|
+
62. `cross`
|
163
|
+
63. `aztec_diamond`
|
164
|
+
64. `polygram(m)` = `centered_star_polygonal(m)`
|
165
|
+
65. `pentagram`
|
166
|
+
66. `gnomic`
|
167
|
+
67. `truncated_triangular`
|
168
|
+
68. `truncated_square`
|
169
|
+
69. `truncated_pronic`
|
170
|
+
70. `truncated_centered_pol(m)` = `truncated_centered_mgonal(m)`
|
171
|
+
71. `truncated_centered_triangular`
|
172
|
+
72. `truncated_centered_square`
|
173
|
+
73. `truncated_centered_pentagonal`
|
174
|
+
74. `truncated_centered_hexagonal` = `truncated_hex`
|
175
|
+
75. `generalized_mgonal(m, left_index = 0)`
|
176
|
+
76. `generalized_pentagonal(left_index = 0)`
|
177
|
+
77. `generalized_hexagonal(left_index = 0)`
|
178
|
+
78. `generalized_centered_pol(m, left_index = 0)`
|
179
|
+
79. `generalized_pronic(left_index = 0)`
|
142
180
|
|
143
181
|
### 2. Space Figurate Numbers
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
|
160
|
-
|
161
|
-
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
|
196
|
-
|
197
|
-
|
198
|
-
|
199
|
-
|
200
|
-
|
201
|
-
|
202
|
-
|
203
|
-
|
204
|
-
|
205
|
-
|
206
|
-
|
207
|
-
|
208
|
-
|
209
|
-
|
210
|
-
|
211
|
-
|
212
|
-
|
213
|
-
|
214
|
-
|
215
|
-
|
216
|
-
|
217
|
-
|
218
|
-
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
|
231
|
-
<li><code>generalized_centered_tetrahedron_numbers(left_index = 0)</code></li>
|
232
|
-
<li><code>generalized_centered_square_pyramid_numbers(left_index = 0)</code></li>
|
233
|
-
<li><code>generalized_rhombic_dodecahedral_numbers(left_index = 0)</code></li>
|
234
|
-
<li><code>generalized_centered_mgonal_pyramidal_numbers(m, left_index = 0)</code></li>
|
235
|
-
<li><code>generalized_mgonal_prism_numbers(m, left_index = 0)</code></li>
|
236
|
-
<li><code>generalized_hexagonal_prism_numbers(left_index = 0)</code></li>
|
237
|
-
</ol>
|
182
|
+
|
183
|
+
1. `r_pyramidal(r)`
|
184
|
+
2. `triangular_pyramidal = tetrahedral`
|
185
|
+
3. `square_pyramidal = pyramidal`
|
186
|
+
4. `pentagonal_pyramidal`
|
187
|
+
5. `hexagonal_pyramidal`
|
188
|
+
6. `heptagonal_pyramidal`
|
189
|
+
7. `octagonal_pyramidal`
|
190
|
+
8. `nonagonal_pyramidal`
|
191
|
+
9. `decagonal_pyramidal`
|
192
|
+
10. `hendecagonal_pyramidal`
|
193
|
+
11. `dodecagonal_pyramidal`
|
194
|
+
12. `tridecagonal_pyramidal`
|
195
|
+
13. `tetradecagonal_pyramidal`
|
196
|
+
14. `pentadecagonal_pyramidal`
|
197
|
+
15. `hexadecagonal_pyramidal`
|
198
|
+
16. `heptadecagonal_pyramidal`
|
199
|
+
17. `octadecagonal_pyramidal`
|
200
|
+
18. `nonadecagonal_pyramidal`
|
201
|
+
19. `icosagonal_pyramidal`
|
202
|
+
20. `icosihenagonal_pyramidal`
|
203
|
+
21. `icosidigonal_pyramidal`
|
204
|
+
22. `icositrigonal_pyramidal`
|
205
|
+
23. `icositetragonal_pyramidal`
|
206
|
+
24. `icosipentagonal_pyramidal`
|
207
|
+
25. `icosihexagonal_pyramidal`
|
208
|
+
26. `icosiheptagonal_pyramidal`
|
209
|
+
27. `icosioctagonal_pyramidal`
|
210
|
+
28. `icosinonagonal_pyramidal`
|
211
|
+
29. `triacontagonal_pyramidal`
|
212
|
+
30. `triangular_tetrahedral [finite]`
|
213
|
+
31. `triangular_square_pyramidal [finite]`
|
214
|
+
32. `square_tetrahedral [finite]`
|
215
|
+
33. `square_square_pyramidal [finite]`
|
216
|
+
34. `tetrahedral_square_pyramidal_number [finite]`
|
217
|
+
35. `cubic = perfect_cube != hex_pyramidal (equality only by quantity)`
|
218
|
+
36. `tetrahedral`
|
219
|
+
37. `octahedral`
|
220
|
+
38. `dodecahedral`
|
221
|
+
39. `icosahedral`
|
222
|
+
40. `truncated_tetrahedral`
|
223
|
+
41. `truncated_cubic`
|
224
|
+
42. `truncated_octahedral`
|
225
|
+
43. `stella_octangula`
|
226
|
+
44. `centered_cube`
|
227
|
+
45. `rhombic_dodecahedral`
|
228
|
+
46. `hauy_rhombic_dodecahedral`
|
229
|
+
47. `centered_tetrahedron = centered_tetrahedral`
|
230
|
+
48. `centered_square_pyramid = centered_pyramid`
|
231
|
+
49. `centered_mgonal_pyramid(m)`
|
232
|
+
50. `centered_pentagonal_pyramid != centered_octahedron (equality only in quantity)`
|
233
|
+
51. `centered_hexagonal_pyramid`
|
234
|
+
52. `centered_heptagonal_pyramid`
|
235
|
+
53. `centered_octagonal_pyramid`
|
236
|
+
54. `centered_octahedron`
|
237
|
+
55. `centered_icosahedron = centered_cuboctahedron`
|
238
|
+
56. `centered_dodecahedron`
|
239
|
+
57. `centered_truncated_tetrahedron`
|
240
|
+
58. `centered_truncated_cube`
|
241
|
+
59. `centered_truncated_octahedron`
|
242
|
+
60. `centered_mgonal_pyramidal(m)`
|
243
|
+
61. `centered_triangular_pyramidal`
|
244
|
+
62. `centered_square_pyramidal`
|
245
|
+
63. `centered_pentagonal_pyramidal`
|
246
|
+
64. `centered_hexagonal_pyramidal = hex_pyramidal`
|
247
|
+
65. `centered_heptagonal_pyramidal`
|
248
|
+
66. `centered_octagonal_pyramidal`
|
249
|
+
67. `centered_nonagonal_pyramidal`
|
250
|
+
68. `centered_decagonal_pyramidal`
|
251
|
+
69. `centered_hendecagonal_pyramidal`
|
252
|
+
70. `centered_dodecagonal_pyramidal`
|
253
|
+
71. `hexagonal_prism`
|
254
|
+
72. `mgonal_prism(m)`
|
255
|
+
73. `generalized_mgonal_pyramidal(m, left_index = 0)`
|
256
|
+
74. `generalized_pentagonal_pyramidal(left_index = 0)`
|
257
|
+
75. `generalized_hexagonal_pyramidal(left_index = 0)`
|
258
|
+
76. `generalized_cubic(left_index = 0)`
|
259
|
+
77. `generalized_octahedral(left_index = 0)`
|
260
|
+
78. `generalized_icosahedral(left_index = 0)`
|
261
|
+
79. `generalized_dodecahedral(left_index = 0)`
|
262
|
+
80. `generalized_centered_cube(left_index = 0)`
|
263
|
+
81. `generalized_centered_tetrahedron(left_index = 0)`
|
264
|
+
82. `generalized_centered_square_pyramid(left_index = 0)`
|
265
|
+
83. `generalized_rhombic_dodecahedral(left_index = 0)`
|
266
|
+
84. `generalized_centered_mgonal_pyramidal(m, left_index = 0)`
|
267
|
+
85. `generalized_mgonal_prism(m, left_index = 0)`
|
268
|
+
86. `generalized_hexagonal_prism(left_index = 0)`
|
238
269
|
|
239
270
|
### 3. Multidimensional figurate numbers
|
240
|
-
|
241
|
-
|
242
|
-
|
243
|
-
|
244
|
-
|
245
|
-
|
246
|
-
|
247
|
-
|
248
|
-
|
249
|
-
|
250
|
-
|
251
|
-
|
252
|
-
|
253
|
-
|
254
|
-
|
255
|
-
|
256
|
-
|
257
|
-
|
258
|
-
|
259
|
-
|
260
|
-
|
261
|
-
|
262
|
-
|
263
|
-
|
264
|
-
|
265
|
-
|
266
|
-
|
267
|
-
|
268
|
-
|
269
|
-
|
270
|
-
|
271
|
-
|
272
|
-
|
273
|
-
|
274
|
-
|
275
|
-
|
276
|
-
|
277
|
-
|
278
|
-
|
279
|
-
|
280
|
-
|
281
|
-
|
282
|
-
|
283
|
-
|
284
|
-
|
285
|
-
|
286
|
-
|
287
|
-
|
288
|
-
|
289
|
-
|
290
|
-
|
291
|
-
|
292
|
-
|
293
|
-
|
294
|
-
|
295
|
-
|
296
|
-
|
297
|
-
|
298
|
-
|
299
|
-
|
300
|
-
|
301
|
-
|
302
|
-
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
|
309
|
-
|
310
|
-
|
311
|
-
<li><code>generalized_k_dimensional_mgonal_pyramidal_numbers(k, m, left_index = 0)</code></li>
|
312
|
-
<li><code>generalized_k_dimensional_centered_hypercube_numbers(k, left_index = 0)</code></li>
|
313
|
-
|
314
|
-
<li><code>generalized_k_dimensional_centered_hypertetrahedron_numbers(k, left_index = 0)[provisional symmetry]</code></li>
|
315
|
-
<li><code>generalized_k_dimensional_centered_hyperoctahedron_numbers(k, left_index = 0)[provisional symmetry]</code></li>
|
316
|
-
|
317
|
-
<li><code>generalized_nexus_numbers(k, left_index = 0) [even or odd dimension only changes sign]</code></li>
|
318
|
-
</ol>
|
271
|
+
|
272
|
+
1. `pentatope = hypertetrahedral = triangulotriangular`
|
273
|
+
2. `k_dimensional_hypertetrahedron(k) = k_hypertetrahedron(k) = regular_k_polytopic(k) = figurate_numbers_of_order_k(k)`
|
274
|
+
3. `five_dimensional_hypertetrahedron`
|
275
|
+
4. `six_dimensional_hypertetrahedron`
|
276
|
+
5. `biquadratic`
|
277
|
+
6. `k_dimensional_hypercube(k) = k_hypercube(k)`
|
278
|
+
7. `five_dimensional_hypercube`
|
279
|
+
8. `six_dimensional_hypercube`
|
280
|
+
9. `hyperoctahedral = hexadecachoron = four_cross_polytope = four_orthoplex`
|
281
|
+
10. `hypericosahedral = tetraplex = polytetrahedron = hexacosichoron`
|
282
|
+
11. `hyperdodecahedral = hecatonicosachoron = dodecaplex = polydodecahedron`
|
283
|
+
12. `polyoctahedral = icositetrachoron = octaplex = hyperdiamond`
|
284
|
+
13. `four_dimensional_hyperoctahedron`
|
285
|
+
14. `five_dimensional_hyperoctahedron`
|
286
|
+
15. `six_dimensional_hyperoctahedron`
|
287
|
+
16. `seven_dimensional_hyperoctahedron`
|
288
|
+
17. `eight_dimensional_hyperoctahedron`
|
289
|
+
18. `nine_dimensional_hyperoctahedron`
|
290
|
+
19. `ten_dimensional_hyperoctahedron`
|
291
|
+
20. `k_dimensional_hyperoctahedron(k) = k_cross_polytope(k)`
|
292
|
+
21. `four_dimensional_mgonal_pyramidal(m) = mgonal_pyramidal_numbers_of_the_second_order(m)`
|
293
|
+
22. `four_dimensional_square_pyramidal`
|
294
|
+
23. `four_dimensional_pentagonal_pyramidal`
|
295
|
+
24. `four_dimensional_hexagonal_pyramidal`
|
296
|
+
25. `four_dimensional_heptagonal_pyramidal`
|
297
|
+
26. `four_dimensional_octagonal_pyramidal`
|
298
|
+
27. `four_dimensional_nonagonal_pyramidal`
|
299
|
+
28. `four_dimensional_decagonal_pyramidal`
|
300
|
+
29. `four_dimensional_hendecagonal_pyramidal`
|
301
|
+
30. `four_dimensional_dodecagonal_pyramidal`
|
302
|
+
31. `k_dimensional_mgonal_pyramidal(k, m) = mgonal_pyramidal_of_the_k_2_th_order(k, m)`
|
303
|
+
32. `five_dimensional_mgonal_pyramidal(m)`
|
304
|
+
33. `five_dimensional_square_pyramidal`
|
305
|
+
34. `five_dimensional_pentagonal_pyramidal`
|
306
|
+
35. `five_dimensional_hexagonal_pyramidal`
|
307
|
+
36. `five_dimensional_heptagonal_pyramidal`
|
308
|
+
37. `five_dimensional_octagonal_pyramidal`
|
309
|
+
38. `six_dimensional_mgonal_pyramidal(m)`
|
310
|
+
39. `six_dimensional_square_pyramidal`
|
311
|
+
40. `six_dimensional_pentagonal_pyramidal`
|
312
|
+
41. `six_dimensional_hexagonal_pyramidal`
|
313
|
+
42. `six_dimensional_heptagonal_pyramidal`
|
314
|
+
43. `six_dimensional_octagonal_pyramidal`
|
315
|
+
44. `centered_biquadratic`
|
316
|
+
45. `k_dimensional_centered_hypercube(k)`
|
317
|
+
46. `five_dimensional_centered_hypercube`
|
318
|
+
47. `six_dimensional_centered_hypercube`
|
319
|
+
48. `centered_polytope`
|
320
|
+
49. `k_dimensional_centered_hypertetrahedron(k)`
|
321
|
+
50. `five_dimensional_centered_hypertetrahedron(k)`
|
322
|
+
51. `six_dimensional_centered_hypertetrahedron(k)`
|
323
|
+
52. `centered_hyperoctahedral = orthoplex`
|
324
|
+
53. `nexus(k)`
|
325
|
+
54. `k_dimensional_centered_hyperoctahedron(k)`
|
326
|
+
55. `five_dimensional_centered_hyperoctahedron`
|
327
|
+
56. `six_dimensional_centered_hyperoctahedron`
|
328
|
+
57. `generalized_pentatope(left_index = 0)`
|
329
|
+
58. `generalized_k_dimensional_hypertetrahedron(k = 5, left_index = 0)`
|
330
|
+
59. `generalized_biquadratic(left_index = 0)`
|
331
|
+
60. `generalized_k_dimensional_hypercube(k = 5, left_index = 0)`
|
332
|
+
61. `generalized_hyperoctahedral(left_index = 0)`
|
333
|
+
62. `generalized_k_dimensional_hyperoctahedron(k = 5, left_index = 0) [even or odd dimension only changes sign]`
|
334
|
+
63. `generalized_hyperdodecahedral(left_index = 0)`
|
335
|
+
64. `generalized_hypericosahedral(left_index = 0)`
|
336
|
+
65. `generalized_polyoctahedral(left_index = 0)`
|
337
|
+
66. `generalized_k_dimensional_mgonal_pyramidal(k, m, left_index = 0)`
|
338
|
+
67. `generalized_k_dimensional_centered_hypercube(k, left_index = 0)`
|
339
|
+
68. `generalized_k_dimensional_centered_hypertetrahedron(k, left_index = 0)[provisional symmetry]`
|
340
|
+
69. `generalized_k_dimensional_centered_hyperoctahedron(k, left_index = 0)[provisional symmetry]`
|
341
|
+
70. `generalized_nexus(k, left_index = 0) [even or odd dimension only changes sign]`
|
319
342
|
|
320
343
|
### 6. Zoo of figurate-related numbers
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
|
327
|
-
|
328
|
-
</ol>
|
344
|
+
|
345
|
+
1. `cuban_numbers = cuban_prime_numbers`
|
346
|
+
2. `quartan_numbers [Needs to improve the algorithmic complexity for n > 70]`
|
347
|
+
3. `pell_numbers`
|
348
|
+
4. `carmichael_numbers [Needs to improve the algorithmic complexity for n > 20]`
|
349
|
+
4. `stern_prime_numbers(infty = false) [Quick calculations up to 8 terms]`
|
350
|
+
5. `apocalyptic_numbers`
|
329
351
|
|
330
352
|
## Errata
|
331
353
|
|