figurate_numbers 0.9.7 → 1.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +426 -0
- data/lib/figurate_numbers.rb +1429 -304
- metadata +14 -11
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 7085cfc533bef2883851cae4cf8cece1bbbc85cac5d3c16a9a56001abad29f79
|
4
|
+
data.tar.gz: e49e4db8395eb0c49b9f217d47f14ec5ca4097926f0c2542938f63727b696a82
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 0135ee29332aa3e667d1e084d23b6053c0a84901ed2c8278782958d6aed0f4c3f3b2b657525f3fc0fc2b8aca9480f5cb398c8283b04acd22fd0f3830ae0f5a4d
|
7
|
+
data.tar.gz: d5711e1c67b696e46db5947df721ccb8d56bba6ed4f726c8d87189d66171b0ab6061909430b0dfd52a8f6df0e9b47a85411396290d5329160595767ac47d32bd
|
data/README.md
ADDED
@@ -0,0 +1,426 @@
|
|
1
|
+
# Figurate Numbers
|
2
|
+
|
3
|
+
[](https://badge.fury.io/rb/figurate_numbers)
|
4
|
+
|
5
|
+
`figurate_numbers` is a Ruby module that implements `234 infinite number sequences` based on the formulas from the wonderful book
|
6
|
+
> [Figurate Numbers (2012)](https://books.google.com.pe/books/about/Figurate_Numbers.html?id=ERS7CgAAQBAJ&redir_esc=y) by Elena Deza and Michel Deza.
|
7
|
+
|
8
|
+
This implementation uses the **Enumerator class** to deal with **INFINITE SEQUENCES**.
|
9
|
+
|
10
|
+
Following the order of the book, the methods are divided into 3 types according to the spatial dimension (see complete list below):
|
11
|
+
|
12
|
+
1. **Plane** figurate numbers implemented = `79`
|
13
|
+
2. **Space** figurate numbers implemented = `81`
|
14
|
+
3. **Multidimensional** figurate numbers implemented = `68`
|
15
|
+
4. **Zoo of figurate-related numbers** implemented = `6`
|
16
|
+
|
17
|
+
- [x] **TOTAL** = `234` infinite sequences of figurate numbers implemented
|
18
|
+
|
19
|
+
## Installation and use
|
20
|
+
|
21
|
+
* `gem install figurate_numbers`
|
22
|
+
|
23
|
+
### How to use in Ruby
|
24
|
+
|
25
|
+
If the sequence is defined with `lazy`, to make the numbers explicit we must include the converter method `to_a` at the end.
|
26
|
+
|
27
|
+
```rb
|
28
|
+
require 'figurate_numbers'
|
29
|
+
|
30
|
+
## Using take(integer)
|
31
|
+
FigurateNumbers.pronic_numbers.take(10).to_a
|
32
|
+
|
33
|
+
## Storing and iterating
|
34
|
+
f = FigurateNumbers.centered_octagonal_pyramid_numbers
|
35
|
+
f.next
|
36
|
+
f.next
|
37
|
+
f.next
|
38
|
+
```
|
39
|
+
### How to use in Sonic Pi
|
40
|
+
|
41
|
+
1. Locate or download the file in the path `lib/figurate_numbers.rb`
|
42
|
+
2. Drag the file to a buffer in Sonic Pi (this generates the `<PATH>`)
|
43
|
+
|
44
|
+
```rb
|
45
|
+
run_file "<PATH>"
|
46
|
+
|
47
|
+
pol_num = FigurateNumbers.polygonal_numbers(8)
|
48
|
+
80.times do
|
49
|
+
play pol_num.next % 12 * 7 # Some mathematical function or transformation
|
50
|
+
sleep 0.25
|
51
|
+
end
|
52
|
+
```
|
53
|
+
|
54
|
+
## List of implemented sequences
|
55
|
+
|
56
|
+
* Note that `=` means that you can call the same sequence with different names.
|
57
|
+
|
58
|
+
### 1. Plane Figurate Numbers
|
59
|
+
<ol>
|
60
|
+
<li><code>polygonal_numbers(m)</code></li>
|
61
|
+
<li><code>triangular_numbers</code></li>
|
62
|
+
<li><code>square_numbers</code></li>
|
63
|
+
<li><code>pentagonal_numbers</code></li>
|
64
|
+
<li><code>hexagonal_numbers</code></li>
|
65
|
+
<li><code>heptagonal_numbers</code></li>
|
66
|
+
<li><code>octagonal_numbers</code></li>
|
67
|
+
<li><code>nonagonal_numbers</code></li>
|
68
|
+
<li><code>decagonal_numbers</code></li>
|
69
|
+
<li><code>hendecagonal_numbers</code></li>
|
70
|
+
<li><code>dodecagonal_numbers</code></li>
|
71
|
+
<li><code>tridecagonal_numbers</code></li>
|
72
|
+
<li><code>tetradecagonal_numbers</code></li>
|
73
|
+
<li><code>pentadecagonal_numbers</code></li>
|
74
|
+
<li><code>hexadecagonal_numbers</code></li>
|
75
|
+
<li><code>heptadecagonal_numbers</code></li>
|
76
|
+
<li><code>octadecagonal_numbers</code></li>
|
77
|
+
<li><code>nonadecagonal_numbers</code></li>
|
78
|
+
<li><code>icosagonal_numbers</code></li>
|
79
|
+
<li><code>icosihenagonal_numbers</code></li>
|
80
|
+
<li><code>icosidigonal_numbers</code></li>
|
81
|
+
<li><code>icositrigonal_numbers</code></li>
|
82
|
+
<li><code>icositetragonal_numbers</code></li>
|
83
|
+
<li><code>icosipentagonal_numbers</code></li>
|
84
|
+
<li><code>icosihexagonal_numbers</code></li>
|
85
|
+
<li><code>icosiheptagonal_numbers</code></li>
|
86
|
+
<li><code>icosioctagonal_numbers</code></li>
|
87
|
+
<li><code>icosinonagonal_numbers</code></li>
|
88
|
+
<li><code>triacontagonal_numbers</code></li>
|
89
|
+
<li><code>centered_triangular_numbers</code></li>
|
90
|
+
<li><code>centered_square_numbers = diamond_numbers (equality only by quantity)</code></li>
|
91
|
+
<li><code>centered_pentagonal_numbers</code></li>
|
92
|
+
<li><code>centered_hexagonal_numbers</code></li>
|
93
|
+
<li><code>centered_heptagonal_numbers</code></li>
|
94
|
+
<li><code>centered_octagonal_numbers</code></li>
|
95
|
+
<li><code>centered_nonagonal_numbers</code></li>
|
96
|
+
<li><code>centered_decagonal_numbers</code></li>
|
97
|
+
<li><code>centered_hendecagonal_numbers</code></li>
|
98
|
+
<li><code>centered_dodecagonal_numbers = star_numbers (equality only by quantity)</code></li>
|
99
|
+
<li><code>centered_tridecagonal_numbers</code></li>
|
100
|
+
<li><code>centered_tetradecagonal_numbers</code></li>
|
101
|
+
<li><code>centered_pentadecagonal_numbers</code></li>
|
102
|
+
<li><code>centered_hexadecagonal_numbers</code></li>
|
103
|
+
<li><code>centered_heptadecagonal_numbers</code></li>
|
104
|
+
<li><code>centered_octadecagonal_numbers</code></li>
|
105
|
+
<li><code>centered_nonadecagonal_numbers</code></li>
|
106
|
+
<li><code>centered_icosagonal_numbers</code></li>
|
107
|
+
<li><code>centered_icosihenagonal_numbers</code></li>
|
108
|
+
<li><code>centered_icosidigonal_numbers</code></li>
|
109
|
+
<li><code>centered_icositrigonal_numbers</code></li>
|
110
|
+
<li><code>centered_icositetragonal_numbers</code></li>
|
111
|
+
<li><code>centered_icosipentagonal_numbers</code></li>
|
112
|
+
<li><code>centered_icosihexagonal_numbers</code></li>
|
113
|
+
<li><code>centered_icosiheptagonal_numbers</code></li>
|
114
|
+
<li><code>centered_icosioctagonal_numbers</code></li>
|
115
|
+
<li><code>centered_icosinonagonal_numbers</code></li>
|
116
|
+
<li><code>centered_triacontagonal_numbers</code></li>
|
117
|
+
<li><code>centered_mgonal_numbers(m)</code></li>
|
118
|
+
<li><code>pronic_numbers = heteromecic_numbers = oblong_numbers</code></li>
|
119
|
+
<li><code>polite_numbers</code></li>
|
120
|
+
<li><code>impolite_numbers</code></li>
|
121
|
+
<li><code>cross_numbers</code></li>
|
122
|
+
<li><code>aztec_diamond_numbers</code></li>
|
123
|
+
<li><code>polygram_numbers(m) = centered_star_polygonal_numbers(m)</code></li>
|
124
|
+
<li><code>pentagram_numbers</code></li>
|
125
|
+
<li><code>gnomic_numbers</code></li>
|
126
|
+
<li><code>truncated_triangular_numbers</code></li>
|
127
|
+
<li><code>truncated_square_numbers</code></li>
|
128
|
+
<li><code>truncated_pronic_numbers</code></li>
|
129
|
+
<li><code>truncated_centered_pol_numbers(m) = truncated_centered_mgonal_numbers(m)</code></li>
|
130
|
+
<li><code>truncated_centered_triangular_numbers</code></li>
|
131
|
+
<li><code>truncated_centered_square_numbers</code></li>
|
132
|
+
<li><code>truncated_centered_pentagonal_numbers</code></li>
|
133
|
+
<li><code>truncated_centered_hexagonal_numbers = truncated_hex_numbers</code></li>
|
134
|
+
<li><code>generalized_mgonal_numbers(m, left_index = 0)</code></li>
|
135
|
+
<li><code>generalized_pentagonal_numbers(left_index = 0)</code></li>
|
136
|
+
<li><code>generalized_hexagonal_numbers(left_index = 0)</code></li>
|
137
|
+
<li><code>generalized_centered_pol_numbers(m, left_index = 0)</code></li>
|
138
|
+
<li><code>generalized_pronic_numbers(left_index = 0)</code></li>
|
139
|
+
</ol>
|
140
|
+
|
141
|
+
### 2. Space Figurate Numbers
|
142
|
+
<ol>
|
143
|
+
<li><code>r_pyramidal_numbers(r)</code></li>
|
144
|
+
<li><code>triangular_pyramidal_numbers = tetrahedral_numbers</code></li>
|
145
|
+
<li><code>square_pyramidal_numbers = pyramidal_numbers</code></li>
|
146
|
+
<li><code>pentagonal_pyramidal_numbers</code></li>
|
147
|
+
<li><code>hexagonal_pyramidal_numbers</code></li>
|
148
|
+
<li><code>heptagonal_pyramidal_numbers</code></li>
|
149
|
+
<li><code>octagonal_pyramidal_numbers</code></li>
|
150
|
+
<li><code>nonagonal_pyramidal_numbers</code></li>
|
151
|
+
<li><code>decagonal_pyramidal_numbers</code></li>
|
152
|
+
<li><code>hendecagonal_pyramidal_numbers</code></li>
|
153
|
+
<li><code>dodecagonal_pyramidal_numbers</code></li>
|
154
|
+
<li><code>tridecagonal_pyramidal_numbers</code></li>
|
155
|
+
<li><code>tetradecagonal_pyramidal_numbers</code></li>
|
156
|
+
<li><code>pentadecagonal_pyramidal_numbers</code></li>
|
157
|
+
<li><code>hexadecagonal_pyramidal_numbers</code></li>
|
158
|
+
<li><code>heptadecagonal_pyramidal_numbers</code></li>
|
159
|
+
<li><code>octadecagonal_pyramidal_numbers</code></li>
|
160
|
+
<li><code>nonadecagonal_pyramidal_numbers</code></li>
|
161
|
+
<li><code>icosagonal_pyramidal_numbers</code></li>
|
162
|
+
<li><code>icosihenagonal_pyramidal_numbers</code></li>
|
163
|
+
<li><code>icosidigonal_pyramidal_numbers</code></li>
|
164
|
+
<li><code>icositrigonal_pyramidal_numbers</code></li>
|
165
|
+
<li><code>icositetragonal_pyramidal_numbers</code></li>
|
166
|
+
<li><code>icosipentagonal_pyramidal_numbers</code></li>
|
167
|
+
<li><code>icosihexagonal_pyramidal_numbers</code></li>
|
168
|
+
<li><code>icosiheptagonal_pyramidal_numbers</code></li>
|
169
|
+
<li><code>icosioctagonal_pyramidal_numbers</code></li>
|
170
|
+
<li><code>icosinonagonal_pyramidal_numbers</code></li>
|
171
|
+
<li><code>triacontagonal_pyramidal_numbers</code></li>
|
172
|
+
|
173
|
+
<li><code>cubic_numbers != hex_pyramidal_numbers (equality only by quantity) </code></li>
|
174
|
+
<li><code>tetrahedral_numbers</code></li>
|
175
|
+
<li><code>octahedral_numbers</code></li>
|
176
|
+
<li><code>dodecahedral_numbers</code></li>
|
177
|
+
<li><code>icosahedral_numbers</code></li>
|
178
|
+
<li><code>truncated_tetrahedral_numbers</code></li>
|
179
|
+
<li><code>truncated_cubic_numbers</code></li>
|
180
|
+
<li><code>truncated_octahedral_numbers</code></li>
|
181
|
+
<li><code>stella_octangula_numbers</code></li>
|
182
|
+
<li><code>centered_cube_numbers</code></li>
|
183
|
+
<li><code>rhombic_dodecahedral_numbers</code></li>
|
184
|
+
<li><code>hauy_rhombic_dodecahedral_numbers</code></li>
|
185
|
+
|
186
|
+
<li><code>centered_tetrahedron_numbers = centered_tetrahedral_numbers</code></li>
|
187
|
+
<li><code>centered_square_pyramid_numbers = centered_pyramid_numbers</code></li>
|
188
|
+
<li><code>centered_mgonal_pyramid_numbers(m)</code></li>
|
189
|
+
<li><code>centered_pentagonal_pyramid_numbers != centered octahedron numbers (equality only in quantity)</code></li>
|
190
|
+
<li><code>centered_hexagonal_pyramid_numbers</code></li>
|
191
|
+
<li><code>centered_heptagonal_pyramid_numbers</code></li>
|
192
|
+
<li><code>centered_octagonal_pyramid_numbers</code></li>
|
193
|
+
|
194
|
+
<li><code>centered_octahedron_numbers</code></li>
|
195
|
+
<li><code>centered_icosahedron_numbers = centered_cuboctahedron_numbers</code></li>
|
196
|
+
<li><code>centered_dodecahedron_numbers</code></li>
|
197
|
+
<li><code>centered_truncated_tetrahedron_numbers</code></li>
|
198
|
+
<li><code>centered_truncated_cube_numbers</code></li>
|
199
|
+
<li><code>centered_truncated_octahedron_numbers</code></li>
|
200
|
+
|
201
|
+
<li><code>centered_mgonal_pyramidal_numbers(m)</code></li>
|
202
|
+
<li><code>centered_triangular_pyramidal_numbers</code></li>
|
203
|
+
<li><code>centered_square_pyramidal_numbers</code></li>
|
204
|
+
<li><code>centered_pentagonal_pyramidal_numbers</code></li>
|
205
|
+
<li><code>centered_hexagonal_pyramidal_numbers = hex_pyramidal_numbers</code></li>
|
206
|
+
<li><code>centered_heptagonal_pyramidal_numbers</code></li>
|
207
|
+
<li><code>centered_octagonal_pyramidal_numbers</code></li>
|
208
|
+
<li><code>centered_nonagonal_pyramidal_numbers</code></li>
|
209
|
+
<li><code>centered_decagonal_pyramidal_numbers</code></li>
|
210
|
+
<li><code>centered_hendecagonal_pyramidal_numbers</code></li>
|
211
|
+
<li><code>centered_dodecagonal_pyramidal_numbers</code></li>
|
212
|
+
|
213
|
+
<li><code>hexagonal_prism_numbers</code></li>
|
214
|
+
<li><code>mgonal_prism_numbers(m)</code></li>
|
215
|
+
<li><code>generalized_mgonal_pyramidal_numbers(m, left_index = 0)</code></li>
|
216
|
+
<li><code>generalized_pentagonal_pyramidal_numbers(left_index = 0)</code></li>
|
217
|
+
<li><code>generalized_hexagonal_pyramidal_numbers(left_index = 0)</code></li>
|
218
|
+
<li><code>generalized_cubic_numbers(left_index = 0)</code></li>
|
219
|
+
<li><code>generalized_octahedral_numbers(left_index = 0)</code></li>
|
220
|
+
<li><code>generalized_icosahedral_numbers(left_index = 0)</code></li>
|
221
|
+
<li><code>generalized_dodecahedral_numbers(left_index = 0)</code></li>
|
222
|
+
<li><code>generalized_centered_cube_numbers(left_index = 0)</code></li>
|
223
|
+
<li><code>generalized_centered_tetrahedron_numbers(left_index = 0)</code></li>
|
224
|
+
<li><code>generalized_centered_square_pyramid_numbers(left_index = 0)</code></li>
|
225
|
+
<li><code>generalized_rhombic_dodecahedral_numbers(left_index = 0)</code></li>
|
226
|
+
<li><code>generalized_centered_mgonal_pyramidal_numbers(m, left_index = 0)</code></li>
|
227
|
+
<li><code>generalized_mgonal_prism_numbers(m, left_index = 0)</code></li>
|
228
|
+
<li><code>generalized_hexagonal_prism_numbers(left_index = 0)</code></li>
|
229
|
+
</ol>
|
230
|
+
|
231
|
+
### 3. Multidimensional figurate numbers
|
232
|
+
<ol>
|
233
|
+
<li><code>pentatope_numbers = hypertetrahedral_number = triangulotriangular_number</code></li>
|
234
|
+
<li><code>k_dimensional_hypertetrahedron_numbers(k) = k_hypertetrahedron_numbers(k) = regular_k_polytopic_numbers(k) = figurate_number_of_order_k(k)</code></li>
|
235
|
+
<li><code>five_dimensional_hypertetrahedron_numbers</code></li>
|
236
|
+
<li><code>six_dimensional_hypertetrahedron_numbers</code></li>
|
237
|
+
<li><code>biquadratic_numbers</code></li>
|
238
|
+
<li><code>k_dimensional_hypercube_numbers(k) = k_hypercube_numbers(k)</code></li>
|
239
|
+
<li><code>five_dimensional_hypercube_numbers</code></li>
|
240
|
+
<li><code>six_dimensional_hypercube_numbers</code></li>
|
241
|
+
<li><code>hyperoctahedral_numbers = hexadecachoron_numbers = four_cross_polytope_numbers = four_orthoplex_numbers</code></li>
|
242
|
+
<li><code>hypericosahedral_numbers = tetraplex_numbers = polytetrahedron_numbers = hexacosichoron_numbers</code></li>
|
243
|
+
<li><code>hyperdodecahedral_numbers = hecatonicosachoron_numbers = dodecaplex_numbers = polydodecahedron_numbers</code></li>
|
244
|
+
<li><code>polyoctahedral_numbers = icositetrachoron_numbers = octaplex_numbers = hyperdiamond_numbers</code></li>
|
245
|
+
|
246
|
+
<li><code>four_dimensional_hyperoctahedron_numbers</code></li>
|
247
|
+
<li><code>five_dimensional_hyperoctahedron_numbers</code></li>
|
248
|
+
<li><code>six_dimensional_hyperoctahedron_numbers</code></li>
|
249
|
+
<li><code>seven_dimensional_hyperoctahedron_numbers</code></li>
|
250
|
+
<li><code>eight_dimensional_hyperoctahedron_numbers</code></li>
|
251
|
+
<li><code>nine_dimensional_hyperoctahedron_numbers</code></li>
|
252
|
+
<li><code>ten_dimensional_hyperoctahedron_numbers</code></li>
|
253
|
+
<li><code>k_dimensional_hyperoctahedron_numbers(k) = k_cross_polytope_numbers(k)</code></li>
|
254
|
+
|
255
|
+
<li><code>four_dimensional_mgonal_pyramidal_numbers(m) = mgonal_pyramidal_number_of_the_second_order(m)</code></li>
|
256
|
+
<li><code>four_dimensional_square_pyramidal_numbers</code></li>
|
257
|
+
<li><code>four_dimensional_pentagonal_pyramidal_numbers</code></li>
|
258
|
+
<li><code>four_dimensional_hexagonal_pyramidal_numbers</code></li>
|
259
|
+
<li><code>four_dimensional_heptagonal_pyramidal_numbers</code></li>
|
260
|
+
<li><code>four_dimensional_octagonal_pyramidal_numbers</code></li>
|
261
|
+
<li><code>four_dimensional_nonagonal_pyramidal_numbers</code></li>
|
262
|
+
<li><code>four_dimensional_decagonal_pyramidal_numbers</code></li>
|
263
|
+
<li><code>four_dimensional_hendecagonal_pyramidal_numbers</code></li>
|
264
|
+
<li><code>four_dimensional_dodecagonal_pyramidal_numbers</code></li>
|
265
|
+
|
266
|
+
<li><code>k_dimensional_mgonal_pyramidal_numbers(k, m) = mgonal_pyramidal_number_of_the_k_2_th_order(k, m)</code></li>
|
267
|
+
<li><code>five_dimensional_mgonal_pyramidal_numbers</code></li>
|
268
|
+
<li><code>five_dimensional_square_pyramidal_numbers</code></li>
|
269
|
+
<li><code>five_dimensional_pentagonal_pyramidal_numbers</code></li>
|
270
|
+
<li><code>five_dimensional_hexagonal_pyramidal_numbers</code></li>
|
271
|
+
<li><code>five_dimensional_heptagonal_pyramidal_numbers</code></li>
|
272
|
+
<li><code>five_dimensional_octagonal_pyramidal_numbers</code></li>
|
273
|
+
<li><code>six_dimensional_mgonal_pyramidal_numbers(m)</code></li>
|
274
|
+
<li><code>six_dimensional_square_pyramidal_numbers</code></li>
|
275
|
+
<li><code>six_dimensional_pentagonal_pyramidal_numbers</code></li>
|
276
|
+
<li><code>six_dimensional_hexagonal_pyramidal_numbers</code></li>
|
277
|
+
<li><code>six_dimensional_heptagonal_pyramidal_numbers</code></li>
|
278
|
+
<li><code>six_dimensional_octagonal_pyramidal_numbers</code></li>
|
279
|
+
|
280
|
+
<li><code>centered_biquadratic_numbers</code></li>
|
281
|
+
<li><code>k_dimensional_centered_hypercube_numbers(k)</code></li>
|
282
|
+
<li><code>five_dimensional_centered_hypercube_numbers</code></li>
|
283
|
+
<li><code>six_dimensional_centered_hypercube_numbers</code></li>
|
284
|
+
<li><code>centered_polytope_numbers</code></li>
|
285
|
+
<li><code>k_dimensional_centered_hypertetrahedron_numbers(k)</code></li>
|
286
|
+
<li><code>five_dimensional_centered_hypertetrahedron_numbers(k)</code></li>
|
287
|
+
<li><code>six_dimensional_centered_hypertetrahedron_numbers(k)</code></li>
|
288
|
+
|
289
|
+
<li><code>centered_hyperoctahedral_numbers = orthoplex_numbers</code></li>
|
290
|
+
<li><code>nexus_numbers(k)</code></li>
|
291
|
+
<li><code>k_dimensional_centered_hyperoctahedron_numbers(k)</code></li>
|
292
|
+
<li><code>five_dimensional_centered_hyperoctahedron_numbers</code></li>
|
293
|
+
<li><code>six_dimensional_centered_hyperoctahedron_numbers</code></li>
|
294
|
+
<li><code>generalized_pentatope_numbers(left_index = 0)</code></li>
|
295
|
+
<li><code>generalized_k_dimensional_hypertetrahedron_numbers(k = 5, left_index = 0)</code></li>
|
296
|
+
<li><code>generalized_biquadratic_numbers(left_index = 0)</code></li>
|
297
|
+
<li><code>generalized_k_dimensional_hypercube_numbers(k = 5, left_index = 0)</code></li>
|
298
|
+
<li><code>generalized_hyperoctahedral_numbers(left_index = 0)</code></li>
|
299
|
+
<li><code>generalized_k_dimensional_hyperoctahedron_numbers(k = 5, left_index = 0) [even or odd dimension only changes sign]</code></li>
|
300
|
+
<li><code>generalized_hyperdodecahedral_numbers(left_index = 0)</code></li>
|
301
|
+
<li><code>generalized_hypericosahedral_numbers(left_index = 0)</code></li>
|
302
|
+
<li><code>generalized_polyoctahedral_numbers(left_index = 0)</code></li>
|
303
|
+
<li><code>generalized_k_dimensional_mgonal_pyramidal_numbers(k, m, left_index = 0)</code></li>
|
304
|
+
<li><code>generalized_k_dimensional_centered_hypercube_numbers(k, left_index = 0)</code></li>
|
305
|
+
|
306
|
+
<!-- * Problems with math definition via binomial coeff in helper functions, n < 0 -->
|
307
|
+
<!-- <li><code>generalized_k_dimensional_centered_hypertetrahedron_numbers(k, left_index = 0)</code></li>
|
308
|
+
<li><code>generalized_k_dimensional_centered_hyperoctahedron_numbers(k, left_index = 0)</code></li> -->
|
309
|
+
|
310
|
+
<li><code>generalized_nexus_numbers(k, left_index = 0) [even or odd dimension only changes sign]</code></li>
|
311
|
+
</ol>
|
312
|
+
|
313
|
+
### 6. Zoo of figurate-related numbers
|
314
|
+
<ol>
|
315
|
+
<li><code>cuban_numbers = cuban_prime_numbers</code></li>
|
316
|
+
<li><code>quartan_numbers [Needs to improve the algorithmic complexity for n > 70]</code></li>
|
317
|
+
<li><code>pell_numbers</code></li>
|
318
|
+
<li><code>carmichael_numbers [Needs to improve the algorithmic complexity for n > 20]</code></li>
|
319
|
+
<li><code>stern_prime_numbers(infty = false) [Quick calculations up to 8 terms]</code></li>
|
320
|
+
<li><code>apocalyptic_numbers</code></li>
|
321
|
+
</ol>
|
322
|
+
|
323
|
+
## Errata
|
324
|
+
|
325
|
+
- Chapter 1, formula in the table on page 6 says:
|
326
|
+
|
327
|
+
| Name | Formula | |
|
328
|
+
| ------ | ------------------- | --- |
|
329
|
+
| Square | `1/2 (n^2 - 0 * n)` | |
|
330
|
+
|
331
|
+
|
332
|
+
It should be:
|
333
|
+
| Name | Formula | |
|
334
|
+
| ------ | -------------------- | --- |
|
335
|
+
| Square | `1/2 (2n^2 - 0 * n)` | |
|
336
|
+
|
337
|
+
- Chapter 1, formula in the table on page 51 says:
|
338
|
+
|
339
|
+
| Name | Formula | |
|
340
|
+
| -------------------- | --------------------- | --------------------- |
|
341
|
+
| Cent. icosihexagonal | `1/3n^2 - 13 * n + 1` | `546, 728, 936, 1170` |
|
342
|
+
|
343
|
+
|
344
|
+
It should be:
|
345
|
+
| Name | Formula | |
|
346
|
+
| -------------------- | --------------------- | --------------------- |
|
347
|
+
| Cent. icosihexagonal | `1/3n^2 - 13 * n + 1` | `547, 729, 937, 1171` |
|
348
|
+
|
349
|
+
- Chapter 1, formula in the table on page 51 says:
|
350
|
+
|
351
|
+
| Name | Formula | |
|
352
|
+
| --------------------- | ------- | ----- |
|
353
|
+
| Cent. icosiheptagonal | | `972` |
|
354
|
+
|
355
|
+
|
356
|
+
It should be:
|
357
|
+
| Name | Formula | |
|
358
|
+
| --------------------- | ------- | ----- |
|
359
|
+
| Cent. icosiheptagonal | | `973` |
|
360
|
+
|
361
|
+
- Chapter 1, formula in the table on page 51 says:
|
362
|
+
|
363
|
+
| Name | Formula | |
|
364
|
+
| -------------------- | ------- | ---- |
|
365
|
+
| Cent. icosioctagonal | | `84` |
|
366
|
+
|
367
|
+
|
368
|
+
It should be:
|
369
|
+
| Name | Formula | |
|
370
|
+
| -------------------- | ------- | ---- |
|
371
|
+
| Cent. icosioctagonal | | `85` |
|
372
|
+
|
373
|
+
- Chapter 1, page 65 (polite numbers) says:
|
374
|
+
> `inpolite numbers`
|
375
|
+
|
376
|
+
It should read:
|
377
|
+
|
378
|
+
> `impolite numbers`
|
379
|
+
|
380
|
+
- Chapter 1, formula (truncated centered pentagonal numbers) on page 72 says:
|
381
|
+
> `TCSS_5(n) = (35n^2 - 55n) / 2 + 3`
|
382
|
+
|
383
|
+
It should be:
|
384
|
+
> `TCSS_5(n) = (35n^2 - 55n) / 2 + 11`
|
385
|
+
|
386
|
+
- Chapter 2, formula of octagonal pyramidal number on page 92 says:
|
387
|
+
> `n(n+1)(6n-1) / 6`
|
388
|
+
|
389
|
+
It should be:
|
390
|
+
> `n(n+1)(6n-3) / 6`
|
391
|
+
|
392
|
+
- Chapter 2, page 140 says:
|
393
|
+
> centered square pyramidal numbers are 1, 6, 19, 44, 85, 111, 146, 231, ...
|
394
|
+
|
395
|
+
This sequence must exclude the number 111:
|
396
|
+
|
397
|
+
> centered square pyramidal numbers are 1, 6, 19, 44, 85, ~~111~~, 146, 231, ...
|
398
|
+
|
399
|
+
- Chapter 2, page 155 (generalized centered tetrahedron numbers) says:
|
400
|
+
> `S_3^3(n) = ((2n - 1)(n^2 + n + 3)) / 3`
|
401
|
+
|
402
|
+
Formula must have a negative sign:
|
403
|
+
|
404
|
+
> `S_3^3(n) = ((2n - 1)(n^2 - n + 3)) / 3`
|
405
|
+
|
406
|
+
- Chapter 2, page 156 (generalized centered square pyramid numbers) says:
|
407
|
+
> `S_4^3(n) = ((2n - 1) * (n^2 - n + 2)^2) / 3`
|
408
|
+
|
409
|
+
Formula must write:
|
410
|
+
|
411
|
+
> `S_4^3(n) = ((2n - 1) * (n^2 - n + 2)) / 2`
|
412
|
+
|
413
|
+
- Chapter 3, page 188 (hyperoctahedral numbers) says:
|
414
|
+
> `hexadecahoron numbers`
|
415
|
+
|
416
|
+
It should read:
|
417
|
+
|
418
|
+
> `hexadecachoron numbers`
|
419
|
+
|
420
|
+
- Chapter 3, page 190 (hypericosahedral numbers) says:
|
421
|
+
> `hexacisihoron numbers`
|
422
|
+
|
423
|
+
It should read:
|
424
|
+
|
425
|
+
> `hexacosichoron numbers`
|
426
|
+
|