faiss 0.3.0 → 0.3.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +5 -0
- data/LICENSE.txt +1 -1
- data/README.md +1 -1
- data/ext/faiss/extconf.rb +9 -2
- data/ext/faiss/index.cpp +1 -1
- data/ext/faiss/index_binary.cpp +2 -2
- data/ext/faiss/product_quantizer.cpp +1 -1
- data/lib/faiss/version.rb +1 -1
- data/vendor/faiss/faiss/AutoTune.cpp +7 -7
- data/vendor/faiss/faiss/AutoTune.h +0 -1
- data/vendor/faiss/faiss/Clustering.cpp +4 -18
- data/vendor/faiss/faiss/Clustering.h +31 -21
- data/vendor/faiss/faiss/IVFlib.cpp +22 -11
- data/vendor/faiss/faiss/Index.cpp +1 -1
- data/vendor/faiss/faiss/Index.h +20 -5
- data/vendor/faiss/faiss/Index2Layer.cpp +7 -7
- data/vendor/faiss/faiss/IndexAdditiveQuantizer.cpp +176 -166
- data/vendor/faiss/faiss/IndexAdditiveQuantizerFastScan.cpp +15 -15
- data/vendor/faiss/faiss/IndexBinary.cpp +9 -4
- data/vendor/faiss/faiss/IndexBinary.h +8 -19
- data/vendor/faiss/faiss/IndexBinaryFromFloat.cpp +2 -1
- data/vendor/faiss/faiss/IndexBinaryHNSW.cpp +24 -31
- data/vendor/faiss/faiss/IndexBinaryHash.cpp +25 -50
- data/vendor/faiss/faiss/IndexBinaryIVF.cpp +106 -187
- data/vendor/faiss/faiss/IndexFastScan.cpp +90 -159
- data/vendor/faiss/faiss/IndexFastScan.h +9 -8
- data/vendor/faiss/faiss/IndexFlat.cpp +195 -3
- data/vendor/faiss/faiss/IndexFlat.h +20 -1
- data/vendor/faiss/faiss/IndexFlatCodes.cpp +11 -0
- data/vendor/faiss/faiss/IndexFlatCodes.h +3 -1
- data/vendor/faiss/faiss/IndexHNSW.cpp +112 -316
- data/vendor/faiss/faiss/IndexHNSW.h +12 -48
- data/vendor/faiss/faiss/IndexIDMap.cpp +69 -28
- data/vendor/faiss/faiss/IndexIDMap.h +24 -2
- data/vendor/faiss/faiss/IndexIVF.cpp +159 -53
- data/vendor/faiss/faiss/IndexIVF.h +37 -5
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.cpp +18 -26
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.h +3 -2
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizerFastScan.cpp +19 -46
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizerFastScan.h +4 -3
- data/vendor/faiss/faiss/IndexIVFFastScan.cpp +433 -405
- data/vendor/faiss/faiss/IndexIVFFastScan.h +56 -26
- data/vendor/faiss/faiss/IndexIVFFlat.cpp +15 -5
- data/vendor/faiss/faiss/IndexIVFFlat.h +3 -2
- data/vendor/faiss/faiss/IndexIVFIndependentQuantizer.cpp +172 -0
- data/vendor/faiss/faiss/IndexIVFIndependentQuantizer.h +56 -0
- data/vendor/faiss/faiss/IndexIVFPQ.cpp +78 -122
- data/vendor/faiss/faiss/IndexIVFPQ.h +6 -7
- data/vendor/faiss/faiss/IndexIVFPQFastScan.cpp +18 -50
- data/vendor/faiss/faiss/IndexIVFPQFastScan.h +4 -3
- data/vendor/faiss/faiss/IndexIVFPQR.cpp +45 -29
- data/vendor/faiss/faiss/IndexIVFPQR.h +5 -2
- data/vendor/faiss/faiss/IndexIVFSpectralHash.cpp +25 -27
- data/vendor/faiss/faiss/IndexIVFSpectralHash.h +6 -6
- data/vendor/faiss/faiss/IndexLSH.cpp +14 -16
- data/vendor/faiss/faiss/IndexNNDescent.cpp +3 -4
- data/vendor/faiss/faiss/IndexNSG.cpp +11 -27
- data/vendor/faiss/faiss/IndexNSG.h +10 -10
- data/vendor/faiss/faiss/IndexPQ.cpp +72 -88
- data/vendor/faiss/faiss/IndexPQ.h +1 -4
- data/vendor/faiss/faiss/IndexPQFastScan.cpp +1 -1
- data/vendor/faiss/faiss/IndexPreTransform.cpp +25 -31
- data/vendor/faiss/faiss/IndexRefine.cpp +49 -19
- data/vendor/faiss/faiss/IndexRefine.h +7 -0
- data/vendor/faiss/faiss/IndexReplicas.cpp +23 -26
- data/vendor/faiss/faiss/IndexScalarQuantizer.cpp +22 -16
- data/vendor/faiss/faiss/IndexScalarQuantizer.h +6 -4
- data/vendor/faiss/faiss/IndexShards.cpp +21 -29
- data/vendor/faiss/faiss/IndexShardsIVF.cpp +1 -2
- data/vendor/faiss/faiss/MatrixStats.cpp +17 -32
- data/vendor/faiss/faiss/MatrixStats.h +21 -9
- data/vendor/faiss/faiss/MetaIndexes.cpp +35 -35
- data/vendor/faiss/faiss/VectorTransform.cpp +13 -26
- data/vendor/faiss/faiss/VectorTransform.h +7 -7
- data/vendor/faiss/faiss/clone_index.cpp +15 -10
- data/vendor/faiss/faiss/clone_index.h +3 -0
- data/vendor/faiss/faiss/gpu/GpuCloner.cpp +87 -4
- data/vendor/faiss/faiss/gpu/GpuCloner.h +22 -0
- data/vendor/faiss/faiss/gpu/GpuClonerOptions.h +7 -0
- data/vendor/faiss/faiss/gpu/GpuDistance.h +46 -38
- data/vendor/faiss/faiss/gpu/GpuIndex.h +28 -4
- data/vendor/faiss/faiss/gpu/GpuIndexFlat.h +4 -4
- data/vendor/faiss/faiss/gpu/GpuIndexIVF.h +8 -9
- data/vendor/faiss/faiss/gpu/GpuIndexIVFFlat.h +18 -3
- data/vendor/faiss/faiss/gpu/GpuIndexIVFPQ.h +22 -11
- data/vendor/faiss/faiss/gpu/GpuIndexIVFScalarQuantizer.h +1 -3
- data/vendor/faiss/faiss/gpu/GpuResources.cpp +24 -3
- data/vendor/faiss/faiss/gpu/GpuResources.h +39 -11
- data/vendor/faiss/faiss/gpu/StandardGpuResources.cpp +117 -17
- data/vendor/faiss/faiss/gpu/StandardGpuResources.h +57 -3
- data/vendor/faiss/faiss/gpu/perf/PerfClustering.cpp +1 -1
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexBinaryFlat.cpp +25 -0
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexFlat.cpp +129 -9
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFFlat.cpp +267 -40
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFPQ.cpp +299 -208
- data/vendor/faiss/faiss/gpu/test/TestGpuMemoryException.cpp +1 -0
- data/vendor/faiss/faiss/gpu/utils/RaftUtils.h +75 -0
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.cpp +3 -1
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.h +5 -5
- data/vendor/faiss/faiss/impl/AuxIndexStructures.cpp +1 -1
- data/vendor/faiss/faiss/impl/AuxIndexStructures.h +1 -2
- data/vendor/faiss/faiss/impl/DistanceComputer.h +24 -1
- data/vendor/faiss/faiss/impl/FaissException.h +13 -34
- data/vendor/faiss/faiss/impl/HNSW.cpp +321 -70
- data/vendor/faiss/faiss/impl/HNSW.h +9 -8
- data/vendor/faiss/faiss/impl/IDSelector.h +4 -4
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.cpp +3 -1
- data/vendor/faiss/faiss/impl/NNDescent.cpp +29 -19
- data/vendor/faiss/faiss/impl/NSG.h +1 -1
- data/vendor/faiss/faiss/impl/PolysemousTraining.cpp +14 -12
- data/vendor/faiss/faiss/impl/ProductAdditiveQuantizer.h +1 -1
- data/vendor/faiss/faiss/impl/ProductQuantizer.cpp +24 -22
- data/vendor/faiss/faiss/impl/ProductQuantizer.h +1 -1
- data/vendor/faiss/faiss/impl/Quantizer.h +1 -1
- data/vendor/faiss/faiss/impl/ResidualQuantizer.cpp +27 -1015
- data/vendor/faiss/faiss/impl/ResidualQuantizer.h +5 -63
- data/vendor/faiss/faiss/impl/ResultHandler.h +232 -176
- data/vendor/faiss/faiss/impl/ScalarQuantizer.cpp +444 -104
- data/vendor/faiss/faiss/impl/ScalarQuantizer.h +0 -8
- data/vendor/faiss/faiss/impl/code_distance/code_distance-avx2.h +280 -42
- data/vendor/faiss/faiss/impl/code_distance/code_distance-generic.h +21 -14
- data/vendor/faiss/faiss/impl/code_distance/code_distance.h +22 -12
- data/vendor/faiss/faiss/impl/index_read.cpp +45 -19
- data/vendor/faiss/faiss/impl/index_write.cpp +60 -41
- data/vendor/faiss/faiss/impl/io.cpp +10 -10
- data/vendor/faiss/faiss/impl/lattice_Zn.cpp +1 -1
- data/vendor/faiss/faiss/impl/platform_macros.h +18 -1
- data/vendor/faiss/faiss/impl/pq4_fast_scan.cpp +3 -0
- data/vendor/faiss/faiss/impl/pq4_fast_scan.h +7 -6
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_1.cpp +52 -38
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_qbs.cpp +40 -49
- data/vendor/faiss/faiss/impl/residual_quantizer_encode_steps.cpp +960 -0
- data/vendor/faiss/faiss/impl/residual_quantizer_encode_steps.h +176 -0
- data/vendor/faiss/faiss/impl/simd_result_handlers.h +374 -202
- data/vendor/faiss/faiss/index_factory.cpp +10 -7
- data/vendor/faiss/faiss/invlists/DirectMap.cpp +1 -1
- data/vendor/faiss/faiss/invlists/InvertedLists.cpp +27 -9
- data/vendor/faiss/faiss/invlists/InvertedLists.h +12 -3
- data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.cpp +3 -3
- data/vendor/faiss/faiss/python/python_callbacks.cpp +1 -1
- data/vendor/faiss/faiss/utils/Heap.cpp +3 -1
- data/vendor/faiss/faiss/utils/WorkerThread.h +1 -0
- data/vendor/faiss/faiss/utils/distances.cpp +128 -74
- data/vendor/faiss/faiss/utils/distances.h +81 -4
- data/vendor/faiss/faiss/utils/distances_fused/avx512.cpp +5 -5
- data/vendor/faiss/faiss/utils/distances_fused/avx512.h +2 -2
- data/vendor/faiss/faiss/utils/distances_fused/distances_fused.cpp +2 -2
- data/vendor/faiss/faiss/utils/distances_fused/distances_fused.h +1 -1
- data/vendor/faiss/faiss/utils/distances_fused/simdlib_based.cpp +5 -5
- data/vendor/faiss/faiss/utils/distances_fused/simdlib_based.h +1 -1
- data/vendor/faiss/faiss/utils/distances_simd.cpp +428 -70
- data/vendor/faiss/faiss/utils/fp16-arm.h +29 -0
- data/vendor/faiss/faiss/utils/fp16.h +2 -0
- data/vendor/faiss/faiss/utils/hamming.cpp +162 -110
- data/vendor/faiss/faiss/utils/hamming.h +58 -0
- data/vendor/faiss/faiss/utils/hamming_distance/avx2-inl.h +16 -89
- data/vendor/faiss/faiss/utils/hamming_distance/common.h +1 -0
- data/vendor/faiss/faiss/utils/hamming_distance/generic-inl.h +15 -87
- data/vendor/faiss/faiss/utils/hamming_distance/hamdis-inl.h +57 -0
- data/vendor/faiss/faiss/utils/hamming_distance/neon-inl.h +14 -104
- data/vendor/faiss/faiss/utils/partitioning.cpp +3 -4
- data/vendor/faiss/faiss/utils/prefetch.h +77 -0
- data/vendor/faiss/faiss/utils/quantize_lut.cpp +0 -14
- data/vendor/faiss/faiss/utils/simdlib_avx2.h +0 -6
- data/vendor/faiss/faiss/utils/simdlib_neon.h +72 -77
- data/vendor/faiss/faiss/utils/sorting.cpp +140 -5
- data/vendor/faiss/faiss/utils/sorting.h +27 -0
- data/vendor/faiss/faiss/utils/utils.cpp +112 -6
- data/vendor/faiss/faiss/utils/utils.h +57 -20
- metadata +10 -3
@@ -43,6 +43,8 @@ IndexIVFFastScan::IndexIVFFastScan(
|
|
43
43
|
size_t code_size,
|
44
44
|
MetricType metric)
|
45
45
|
: IndexIVF(quantizer, d, nlist, code_size, metric) {
|
46
|
+
// unlike other indexes, we prefer no residuals for performance reasons.
|
47
|
+
by_residual = false;
|
46
48
|
FAISS_THROW_IF_NOT(metric == METRIC_L2 || metric == METRIC_INNER_PRODUCT);
|
47
49
|
}
|
48
50
|
|
@@ -50,6 +52,7 @@ IndexIVFFastScan::IndexIVFFastScan() {
|
|
50
52
|
bbs = 0;
|
51
53
|
M2 = 0;
|
52
54
|
is_trained = false;
|
55
|
+
by_residual = false;
|
53
56
|
}
|
54
57
|
|
55
58
|
void IndexIVFFastScan::init_fastscan(
|
@@ -79,7 +82,7 @@ void IndexIVFFastScan::init_code_packer() {
|
|
79
82
|
bil->packer = get_CodePacker();
|
80
83
|
}
|
81
84
|
|
82
|
-
IndexIVFFastScan::~IndexIVFFastScan()
|
85
|
+
IndexIVFFastScan::~IndexIVFFastScan() = default;
|
83
86
|
|
84
87
|
/*********************************************************
|
85
88
|
* Code management functions
|
@@ -195,7 +198,7 @@ CodePacker* IndexIVFFastScan::get_CodePacker() const {
|
|
195
198
|
|
196
199
|
namespace {
|
197
200
|
|
198
|
-
template <class C, typename dis_t
|
201
|
+
template <class C, typename dis_t>
|
199
202
|
void estimators_from_tables_generic(
|
200
203
|
const IndexIVFFastScan& index,
|
201
204
|
const uint8_t* codes,
|
@@ -206,22 +209,26 @@ void estimators_from_tables_generic(
|
|
206
209
|
size_t k,
|
207
210
|
typename C::T* heap_dis,
|
208
211
|
int64_t* heap_ids,
|
209
|
-
const
|
212
|
+
const NormTableScaler* scaler) {
|
210
213
|
using accu_t = typename C::T;
|
214
|
+
int nscale = scaler ? scaler->nscale : 0;
|
211
215
|
for (size_t j = 0; j < ncodes; ++j) {
|
212
216
|
BitstringReader bsr(codes + j * index.code_size, index.code_size);
|
213
217
|
accu_t dis = bias;
|
214
218
|
const dis_t* __restrict dt = dis_table;
|
215
|
-
|
219
|
+
|
220
|
+
for (size_t m = 0; m < index.M - nscale; m++) {
|
216
221
|
uint64_t c = bsr.read(index.nbits);
|
217
222
|
dis += dt[c];
|
218
223
|
dt += index.ksub;
|
219
224
|
}
|
220
225
|
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
226
|
+
if (scaler) {
|
227
|
+
for (size_t m = 0; m < nscale; m++) {
|
228
|
+
uint64_t c = bsr.read(index.nbits);
|
229
|
+
dis += scaler->scale_one(dt[c]);
|
230
|
+
dt += index.ksub;
|
231
|
+
}
|
225
232
|
}
|
226
233
|
|
227
234
|
if (C::cmp(heap_dis[0], dis)) {
|
@@ -242,18 +249,15 @@ using namespace quantize_lut;
|
|
242
249
|
void IndexIVFFastScan::compute_LUT_uint8(
|
243
250
|
size_t n,
|
244
251
|
const float* x,
|
245
|
-
const
|
246
|
-
const float* coarse_dis,
|
252
|
+
const CoarseQuantized& cq,
|
247
253
|
AlignedTable<uint8_t>& dis_tables,
|
248
254
|
AlignedTable<uint16_t>& biases,
|
249
255
|
float* normalizers) const {
|
250
256
|
AlignedTable<float> dis_tables_float;
|
251
257
|
AlignedTable<float> biases_float;
|
252
258
|
|
253
|
-
|
254
|
-
|
255
|
-
IVFFastScan_stats.t_compute_distance_tables += get_cy() - t0;
|
256
|
-
|
259
|
+
compute_LUT(n, x, cq, dis_tables_float, biases_float);
|
260
|
+
size_t nprobe = cq.nprobe;
|
257
261
|
bool lut_is_3d = lookup_table_is_3d();
|
258
262
|
size_t dim123 = ksub * M;
|
259
263
|
size_t dim123_2 = ksub * M2;
|
@@ -265,7 +269,6 @@ void IndexIVFFastScan::compute_LUT_uint8(
|
|
265
269
|
if (biases_float.get()) {
|
266
270
|
biases.resize(n * nprobe);
|
267
271
|
}
|
268
|
-
uint64_t t1 = get_cy();
|
269
272
|
|
270
273
|
#pragma omp parallel for if (n > 100)
|
271
274
|
for (int64_t i = 0; i < n; i++) {
|
@@ -291,7 +294,6 @@ void IndexIVFFastScan::compute_LUT_uint8(
|
|
291
294
|
normalizers + 2 * i,
|
292
295
|
normalizers + 2 * i + 1);
|
293
296
|
}
|
294
|
-
IVFFastScan_stats.t_round += get_cy() - t1;
|
295
297
|
}
|
296
298
|
|
297
299
|
/*********************************************************
|
@@ -305,44 +307,161 @@ void IndexIVFFastScan::search(
|
|
305
307
|
float* distances,
|
306
308
|
idx_t* labels,
|
307
309
|
const SearchParameters* params) const {
|
310
|
+
auto paramsi = dynamic_cast<const SearchParametersIVF*>(params);
|
311
|
+
FAISS_THROW_IF_NOT_MSG(!params || paramsi, "need IVFSearchParameters");
|
312
|
+
search_preassigned(
|
313
|
+
n, x, k, nullptr, nullptr, distances, labels, false, paramsi);
|
314
|
+
}
|
315
|
+
|
316
|
+
void IndexIVFFastScan::search_preassigned(
|
317
|
+
idx_t n,
|
318
|
+
const float* x,
|
319
|
+
idx_t k,
|
320
|
+
const idx_t* assign,
|
321
|
+
const float* centroid_dis,
|
322
|
+
float* distances,
|
323
|
+
idx_t* labels,
|
324
|
+
bool store_pairs,
|
325
|
+
const IVFSearchParameters* params,
|
326
|
+
IndexIVFStats* stats) const {
|
327
|
+
size_t nprobe = this->nprobe;
|
328
|
+
if (params) {
|
329
|
+
FAISS_THROW_IF_NOT_MSG(
|
330
|
+
!params->quantizer_params, "quantizer params not supported");
|
331
|
+
FAISS_THROW_IF_NOT(params->max_codes == 0);
|
332
|
+
nprobe = params->nprobe;
|
333
|
+
}
|
308
334
|
FAISS_THROW_IF_NOT_MSG(
|
309
|
-
!
|
335
|
+
!store_pairs, "store_pairs not supported for this index");
|
336
|
+
FAISS_THROW_IF_NOT_MSG(!stats, "stats not supported for this index");
|
310
337
|
FAISS_THROW_IF_NOT(k > 0);
|
311
338
|
|
312
|
-
|
313
|
-
|
314
|
-
|
339
|
+
const CoarseQuantized cq = {nprobe, centroid_dis, assign};
|
340
|
+
search_dispatch_implem(n, x, k, distances, labels, cq, nullptr);
|
341
|
+
}
|
342
|
+
|
343
|
+
void IndexIVFFastScan::range_search(
|
344
|
+
idx_t n,
|
345
|
+
const float* x,
|
346
|
+
float radius,
|
347
|
+
RangeSearchResult* result,
|
348
|
+
const SearchParameters* params) const {
|
349
|
+
FAISS_THROW_IF_NOT(!params);
|
350
|
+
const CoarseQuantized cq = {nprobe, nullptr, nullptr};
|
351
|
+
range_search_dispatch_implem(n, x, radius, *result, cq, nullptr);
|
352
|
+
}
|
353
|
+
|
354
|
+
namespace {
|
355
|
+
|
356
|
+
template <class C>
|
357
|
+
ResultHandlerCompare<C, true>* make_knn_handler_fixC(
|
358
|
+
int impl,
|
359
|
+
idx_t n,
|
360
|
+
idx_t k,
|
361
|
+
float* distances,
|
362
|
+
idx_t* labels) {
|
363
|
+
using HeapHC = HeapHandler<C, true>;
|
364
|
+
using ReservoirHC = ReservoirHandler<C, true>;
|
365
|
+
using SingleResultHC = SingleResultHandler<C, true>;
|
366
|
+
|
367
|
+
if (k == 1) {
|
368
|
+
return new SingleResultHC(n, 0, distances, labels);
|
369
|
+
} else if (impl % 2 == 0) {
|
370
|
+
return new HeapHC(n, 0, k, distances, labels);
|
371
|
+
} else /* if (impl % 2 == 1) */ {
|
372
|
+
return new ReservoirHC(n, 0, k, 2 * k, distances, labels);
|
373
|
+
}
|
374
|
+
}
|
375
|
+
|
376
|
+
SIMDResultHandlerToFloat* make_knn_handler(
|
377
|
+
bool is_max,
|
378
|
+
int impl,
|
379
|
+
idx_t n,
|
380
|
+
idx_t k,
|
381
|
+
float* distances,
|
382
|
+
idx_t* labels) {
|
383
|
+
if (is_max) {
|
384
|
+
return make_knn_handler_fixC<CMax<uint16_t, int64_t>>(
|
385
|
+
impl, n, k, distances, labels);
|
315
386
|
} else {
|
316
|
-
|
387
|
+
return make_knn_handler_fixC<CMin<uint16_t, int64_t>>(
|
388
|
+
impl, n, k, distances, labels);
|
317
389
|
}
|
318
390
|
}
|
319
391
|
|
320
|
-
|
321
|
-
|
322
|
-
|
323
|
-
|
324
|
-
|
325
|
-
|
326
|
-
|
392
|
+
using CoarseQuantized = IndexIVFFastScan::CoarseQuantized;
|
393
|
+
|
394
|
+
struct CoarseQuantizedWithBuffer : CoarseQuantized {
|
395
|
+
explicit CoarseQuantizedWithBuffer(const CoarseQuantized& cq)
|
396
|
+
: CoarseQuantized(cq) {}
|
397
|
+
|
398
|
+
bool done() const {
|
399
|
+
return ids != nullptr;
|
400
|
+
}
|
401
|
+
|
402
|
+
std::vector<idx_t> ids_buffer;
|
403
|
+
std::vector<float> dis_buffer;
|
404
|
+
|
405
|
+
void quantize(const Index* quantizer, idx_t n, const float* x) {
|
406
|
+
dis_buffer.resize(nprobe * n);
|
407
|
+
ids_buffer.resize(nprobe * n);
|
408
|
+
quantizer->search(n, x, nprobe, dis_buffer.data(), ids_buffer.data());
|
409
|
+
dis = dis_buffer.data();
|
410
|
+
ids = ids_buffer.data();
|
411
|
+
}
|
412
|
+
};
|
413
|
+
|
414
|
+
struct CoarseQuantizedSlice : CoarseQuantizedWithBuffer {
|
415
|
+
size_t i0, i1;
|
416
|
+
CoarseQuantizedSlice(const CoarseQuantized& cq, size_t i0, size_t i1)
|
417
|
+
: CoarseQuantizedWithBuffer(cq), i0(i0), i1(i1) {
|
418
|
+
if (done()) {
|
419
|
+
dis += nprobe * i0;
|
420
|
+
ids += nprobe * i0;
|
421
|
+
}
|
422
|
+
}
|
423
|
+
|
424
|
+
void quantize_slice(const Index* quantizer, const float* x) {
|
425
|
+
quantize(quantizer, i1 - i0, x + quantizer->d * i0);
|
426
|
+
}
|
427
|
+
};
|
428
|
+
|
429
|
+
int compute_search_nslice(
|
430
|
+
const IndexIVFFastScan* index,
|
431
|
+
size_t n,
|
432
|
+
size_t nprobe) {
|
433
|
+
int nslice;
|
434
|
+
if (n <= omp_get_max_threads()) {
|
435
|
+
nslice = n;
|
436
|
+
} else if (index->lookup_table_is_3d()) {
|
437
|
+
// make sure we don't make too big LUT tables
|
438
|
+
size_t lut_size_per_query = index->M * index->ksub * nprobe *
|
439
|
+
(sizeof(float) + sizeof(uint8_t));
|
440
|
+
|
441
|
+
size_t max_lut_size = precomputed_table_max_bytes;
|
442
|
+
// how many queries we can handle within mem budget
|
443
|
+
size_t nq_ok = std::max(max_lut_size / lut_size_per_query, size_t(1));
|
444
|
+
nslice = roundup(
|
445
|
+
std::max(size_t(n / nq_ok), size_t(1)), omp_get_max_threads());
|
446
|
+
} else {
|
447
|
+
// LUTs unlikely to be a limiting factor
|
448
|
+
nslice = omp_get_max_threads();
|
449
|
+
}
|
450
|
+
return nslice;
|
327
451
|
}
|
328
452
|
|
329
|
-
|
453
|
+
} // namespace
|
454
|
+
|
330
455
|
void IndexIVFFastScan::search_dispatch_implem(
|
331
456
|
idx_t n,
|
332
457
|
const float* x,
|
333
458
|
idx_t k,
|
334
459
|
float* distances,
|
335
460
|
idx_t* labels,
|
336
|
-
const
|
337
|
-
|
338
|
-
|
339
|
-
|
340
|
-
CMin<float, int64_t>>::type;
|
341
|
-
|
342
|
-
using C = typename std::conditional<
|
343
|
-
is_max,
|
344
|
-
CMax<uint16_t, int64_t>,
|
345
|
-
CMin<uint16_t, int64_t>>::type;
|
461
|
+
const CoarseQuantized& cq_in,
|
462
|
+
const NormTableScaler* scaler) const {
|
463
|
+
bool is_max = !is_similarity_metric(metric_type);
|
464
|
+
using RH = SIMDResultHandlerToFloat;
|
346
465
|
|
347
466
|
if (n == 0) {
|
348
467
|
return;
|
@@ -357,70 +476,74 @@ void IndexIVFFastScan::search_dispatch_implem(
|
|
357
476
|
} else {
|
358
477
|
impl = 10;
|
359
478
|
}
|
360
|
-
if (k > 20) {
|
479
|
+
if (k > 20) { // use reservoir rather than heap
|
361
480
|
impl++;
|
362
481
|
}
|
363
482
|
}
|
364
483
|
|
484
|
+
bool multiple_threads =
|
485
|
+
n > 1 && impl >= 10 && impl <= 13 && omp_get_max_threads() > 1;
|
486
|
+
if (impl >= 100) {
|
487
|
+
multiple_threads = false;
|
488
|
+
impl -= 100;
|
489
|
+
}
|
490
|
+
|
491
|
+
CoarseQuantizedWithBuffer cq(cq_in);
|
492
|
+
|
493
|
+
if (!cq.done() && !multiple_threads) {
|
494
|
+
// we do the coarse quantization here execpt when search is
|
495
|
+
// sliced over threads (then it is more efficient to have each thread do
|
496
|
+
// its own coarse quantization)
|
497
|
+
cq.quantize(quantizer, n, x);
|
498
|
+
}
|
499
|
+
|
365
500
|
if (impl == 1) {
|
366
|
-
|
501
|
+
if (is_max) {
|
502
|
+
search_implem_1<CMax<float, int64_t>>(
|
503
|
+
n, x, k, distances, labels, cq, scaler);
|
504
|
+
} else {
|
505
|
+
search_implem_1<CMin<float, int64_t>>(
|
506
|
+
n, x, k, distances, labels, cq, scaler);
|
507
|
+
}
|
367
508
|
} else if (impl == 2) {
|
368
|
-
|
509
|
+
if (is_max) {
|
510
|
+
search_implem_2<CMax<uint16_t, int64_t>>(
|
511
|
+
n, x, k, distances, labels, cq, scaler);
|
512
|
+
} else {
|
513
|
+
search_implem_2<CMin<uint16_t, int64_t>>(
|
514
|
+
n, x, k, distances, labels, cq, scaler);
|
515
|
+
}
|
369
516
|
|
370
517
|
} else if (impl >= 10 && impl <= 15) {
|
371
518
|
size_t ndis = 0, nlist_visited = 0;
|
372
519
|
|
373
|
-
if (
|
520
|
+
if (!multiple_threads) {
|
521
|
+
// clang-format off
|
374
522
|
if (impl == 12 || impl == 13) {
|
375
|
-
|
376
|
-
|
377
|
-
x,
|
378
|
-
|
379
|
-
|
380
|
-
labels,
|
381
|
-
impl,
|
382
|
-
&ndis,
|
383
|
-
&nlist_visited,
|
384
|
-
scaler);
|
523
|
+
std::unique_ptr<RH> handler(make_knn_handler(is_max, impl, n, k, distances, labels));
|
524
|
+
search_implem_12(
|
525
|
+
n, x, *handler.get(),
|
526
|
+
cq, &ndis, &nlist_visited, scaler);
|
527
|
+
|
385
528
|
} else if (impl == 14 || impl == 15) {
|
386
|
-
|
529
|
+
|
530
|
+
search_implem_14(
|
531
|
+
n, x, k, distances, labels,
|
532
|
+
cq, impl, scaler);
|
387
533
|
} else {
|
388
|
-
|
389
|
-
|
390
|
-
x,
|
391
|
-
|
392
|
-
distances,
|
393
|
-
labels,
|
394
|
-
impl,
|
395
|
-
&ndis,
|
396
|
-
&nlist_visited,
|
397
|
-
scaler);
|
534
|
+
std::unique_ptr<RH> handler(make_knn_handler(is_max, impl, n, k, distances, labels));
|
535
|
+
search_implem_10(
|
536
|
+
n, x, *handler.get(), cq,
|
537
|
+
&ndis, &nlist_visited, scaler);
|
398
538
|
}
|
539
|
+
// clang-format on
|
399
540
|
} else {
|
400
541
|
// explicitly slice over threads
|
401
|
-
int nslice;
|
402
|
-
if (
|
403
|
-
|
404
|
-
|
405
|
-
|
406
|
-
size_t lut_size_per_query =
|
407
|
-
M * ksub * nprobe * (sizeof(float) + sizeof(uint8_t));
|
408
|
-
|
409
|
-
size_t max_lut_size = precomputed_table_max_bytes;
|
410
|
-
// how many queries we can handle within mem budget
|
411
|
-
size_t nq_ok =
|
412
|
-
std::max(max_lut_size / lut_size_per_query, size_t(1));
|
413
|
-
nslice =
|
414
|
-
roundup(std::max(size_t(n / nq_ok), size_t(1)),
|
415
|
-
omp_get_max_threads());
|
416
|
-
} else {
|
417
|
-
// LUTs unlikely to be a limiting factor
|
418
|
-
nslice = omp_get_max_threads();
|
419
|
-
}
|
420
|
-
if (impl == 14 ||
|
421
|
-
impl == 15) { // this might require slicing if there are too
|
422
|
-
// many queries (for now we keep this simple)
|
423
|
-
search_implem_14<C>(n, x, k, distances, labels, impl, scaler);
|
542
|
+
int nslice = compute_search_nslice(this, n, cq.nprobe);
|
543
|
+
if (impl == 14 || impl == 15) {
|
544
|
+
// this might require slicing if there are too
|
545
|
+
// many queries (for now we keep this simple)
|
546
|
+
search_implem_14(n, x, k, distances, labels, cq, impl, scaler);
|
424
547
|
} else {
|
425
548
|
#pragma omp parallel for reduction(+ : ndis, nlist_visited)
|
426
549
|
for (int slice = 0; slice < nslice; slice++) {
|
@@ -428,29 +551,23 @@ void IndexIVFFastScan::search_dispatch_implem(
|
|
428
551
|
idx_t i1 = n * (slice + 1) / nslice;
|
429
552
|
float* dis_i = distances + i0 * k;
|
430
553
|
idx_t* lab_i = labels + i0 * k;
|
554
|
+
CoarseQuantizedSlice cq_i(cq, i0, i1);
|
555
|
+
if (!cq_i.done()) {
|
556
|
+
cq_i.quantize_slice(quantizer, x);
|
557
|
+
}
|
558
|
+
std::unique_ptr<RH> handler(make_knn_handler(
|
559
|
+
is_max, impl, i1 - i0, k, dis_i, lab_i));
|
560
|
+
// clang-format off
|
431
561
|
if (impl == 12 || impl == 13) {
|
432
|
-
search_implem_12
|
433
|
-
i1 - i0,
|
434
|
-
|
435
|
-
k,
|
436
|
-
dis_i,
|
437
|
-
lab_i,
|
438
|
-
impl,
|
439
|
-
&ndis,
|
440
|
-
&nlist_visited,
|
441
|
-
scaler);
|
562
|
+
search_implem_12(
|
563
|
+
i1 - i0, x + i0 * d, *handler.get(),
|
564
|
+
cq_i, &ndis, &nlist_visited, scaler);
|
442
565
|
} else {
|
443
|
-
search_implem_10
|
444
|
-
i1 - i0,
|
445
|
-
|
446
|
-
k,
|
447
|
-
dis_i,
|
448
|
-
lab_i,
|
449
|
-
impl,
|
450
|
-
&ndis,
|
451
|
-
&nlist_visited,
|
452
|
-
scaler);
|
566
|
+
search_implem_10(
|
567
|
+
i1 - i0, x + i0 * d, *handler.get(),
|
568
|
+
cq_i, &ndis, &nlist_visited, scaler);
|
453
569
|
}
|
570
|
+
// clang-format on
|
454
571
|
}
|
455
572
|
}
|
456
573
|
}
|
@@ -462,31 +579,139 @@ void IndexIVFFastScan::search_dispatch_implem(
|
|
462
579
|
}
|
463
580
|
}
|
464
581
|
|
465
|
-
|
582
|
+
void IndexIVFFastScan::range_search_dispatch_implem(
|
583
|
+
idx_t n,
|
584
|
+
const float* x,
|
585
|
+
float radius,
|
586
|
+
RangeSearchResult& rres,
|
587
|
+
const CoarseQuantized& cq_in,
|
588
|
+
const NormTableScaler* scaler) const {
|
589
|
+
bool is_max = !is_similarity_metric(metric_type);
|
590
|
+
|
591
|
+
if (n == 0) {
|
592
|
+
return;
|
593
|
+
}
|
594
|
+
|
595
|
+
// actual implementation used
|
596
|
+
int impl = implem;
|
597
|
+
|
598
|
+
if (impl == 0) {
|
599
|
+
if (bbs == 32) {
|
600
|
+
impl = 12;
|
601
|
+
} else {
|
602
|
+
impl = 10;
|
603
|
+
}
|
604
|
+
}
|
605
|
+
|
606
|
+
CoarseQuantizedWithBuffer cq(cq_in);
|
607
|
+
|
608
|
+
bool multiple_threads =
|
609
|
+
n > 1 && impl >= 10 && impl <= 13 && omp_get_max_threads() > 1;
|
610
|
+
if (impl >= 100) {
|
611
|
+
multiple_threads = false;
|
612
|
+
impl -= 100;
|
613
|
+
}
|
614
|
+
|
615
|
+
if (!multiple_threads && !cq.done()) {
|
616
|
+
cq.quantize(quantizer, n, x);
|
617
|
+
}
|
618
|
+
|
619
|
+
size_t ndis = 0, nlist_visited = 0;
|
620
|
+
|
621
|
+
if (!multiple_threads) { // single thread
|
622
|
+
std::unique_ptr<SIMDResultHandlerToFloat> handler;
|
623
|
+
if (is_max) {
|
624
|
+
handler.reset(new RangeHandler<CMax<uint16_t, int64_t>, true>(
|
625
|
+
rres, radius, 0));
|
626
|
+
} else {
|
627
|
+
handler.reset(new RangeHandler<CMin<uint16_t, int64_t>, true>(
|
628
|
+
rres, radius, 0));
|
629
|
+
}
|
630
|
+
if (impl == 12) {
|
631
|
+
search_implem_12(
|
632
|
+
n, x, *handler.get(), cq, &ndis, &nlist_visited, scaler);
|
633
|
+
} else if (impl == 10) {
|
634
|
+
search_implem_10(
|
635
|
+
n, x, *handler.get(), cq, &ndis, &nlist_visited, scaler);
|
636
|
+
} else {
|
637
|
+
FAISS_THROW_FMT("Range search implem %d not impemented", impl);
|
638
|
+
}
|
639
|
+
} else {
|
640
|
+
// explicitly slice over threads
|
641
|
+
int nslice = compute_search_nslice(this, n, cq.nprobe);
|
642
|
+
#pragma omp parallel
|
643
|
+
{
|
644
|
+
RangeSearchPartialResult pres(&rres);
|
645
|
+
|
646
|
+
#pragma omp for reduction(+ : ndis, nlist_visited)
|
647
|
+
for (int slice = 0; slice < nslice; slice++) {
|
648
|
+
idx_t i0 = n * slice / nslice;
|
649
|
+
idx_t i1 = n * (slice + 1) / nslice;
|
650
|
+
CoarseQuantizedSlice cq_i(cq, i0, i1);
|
651
|
+
if (!cq_i.done()) {
|
652
|
+
cq_i.quantize_slice(quantizer, x);
|
653
|
+
}
|
654
|
+
std::unique_ptr<SIMDResultHandlerToFloat> handler;
|
655
|
+
if (is_max) {
|
656
|
+
handler.reset(new PartialRangeHandler<
|
657
|
+
CMax<uint16_t, int64_t>,
|
658
|
+
true>(pres, radius, 0, i0, i1));
|
659
|
+
} else {
|
660
|
+
handler.reset(new PartialRangeHandler<
|
661
|
+
CMin<uint16_t, int64_t>,
|
662
|
+
true>(pres, radius, 0, i0, i1));
|
663
|
+
}
|
664
|
+
|
665
|
+
if (impl == 12 || impl == 13) {
|
666
|
+
search_implem_12(
|
667
|
+
i1 - i0,
|
668
|
+
x + i0 * d,
|
669
|
+
*handler.get(),
|
670
|
+
cq_i,
|
671
|
+
&ndis,
|
672
|
+
&nlist_visited,
|
673
|
+
scaler);
|
674
|
+
} else {
|
675
|
+
search_implem_10(
|
676
|
+
i1 - i0,
|
677
|
+
x + i0 * d,
|
678
|
+
*handler.get(),
|
679
|
+
cq_i,
|
680
|
+
&ndis,
|
681
|
+
&nlist_visited,
|
682
|
+
scaler);
|
683
|
+
}
|
684
|
+
}
|
685
|
+
pres.finalize();
|
686
|
+
}
|
687
|
+
}
|
688
|
+
|
689
|
+
indexIVF_stats.nq += n;
|
690
|
+
indexIVF_stats.ndis += ndis;
|
691
|
+
indexIVF_stats.nlist += nlist_visited;
|
692
|
+
}
|
693
|
+
|
694
|
+
template <class C>
|
466
695
|
void IndexIVFFastScan::search_implem_1(
|
467
696
|
idx_t n,
|
468
697
|
const float* x,
|
469
698
|
idx_t k,
|
470
699
|
float* distances,
|
471
700
|
idx_t* labels,
|
472
|
-
const
|
701
|
+
const CoarseQuantized& cq,
|
702
|
+
const NormTableScaler* scaler) const {
|
473
703
|
FAISS_THROW_IF_NOT(orig_invlists);
|
474
704
|
|
475
|
-
std::unique_ptr<idx_t[]> coarse_ids(new idx_t[n * nprobe]);
|
476
|
-
std::unique_ptr<float[]> coarse_dis(new float[n * nprobe]);
|
477
|
-
|
478
|
-
quantizer->search(n, x, nprobe, coarse_dis.get(), coarse_ids.get());
|
479
|
-
|
480
705
|
size_t dim12 = ksub * M;
|
481
706
|
AlignedTable<float> dis_tables;
|
482
707
|
AlignedTable<float> biases;
|
483
708
|
|
484
|
-
compute_LUT(n, x,
|
709
|
+
compute_LUT(n, x, cq, dis_tables, biases);
|
485
710
|
|
486
711
|
bool single_LUT = !lookup_table_is_3d();
|
487
712
|
|
488
713
|
size_t ndis = 0, nlist_visited = 0;
|
489
|
-
|
714
|
+
size_t nprobe = cq.nprobe;
|
490
715
|
#pragma omp parallel for reduction(+ : ndis, nlist_visited)
|
491
716
|
for (idx_t i = 0; i < n; i++) {
|
492
717
|
int64_t* heap_ids = labels + i * k;
|
@@ -501,7 +726,7 @@ void IndexIVFFastScan::search_implem_1(
|
|
501
726
|
if (!single_LUT) {
|
502
727
|
LUT = dis_tables.get() + (i * nprobe + j) * dim12;
|
503
728
|
}
|
504
|
-
idx_t list_no =
|
729
|
+
idx_t list_no = cq.ids[i * nprobe + j];
|
505
730
|
if (list_no < 0)
|
506
731
|
continue;
|
507
732
|
size_t ls = orig_invlists->list_size(list_no);
|
@@ -533,38 +758,28 @@ void IndexIVFFastScan::search_implem_1(
|
|
533
758
|
indexIVF_stats.nlist += nlist_visited;
|
534
759
|
}
|
535
760
|
|
536
|
-
template <class C
|
761
|
+
template <class C>
|
537
762
|
void IndexIVFFastScan::search_implem_2(
|
538
763
|
idx_t n,
|
539
764
|
const float* x,
|
540
765
|
idx_t k,
|
541
766
|
float* distances,
|
542
767
|
idx_t* labels,
|
543
|
-
const
|
768
|
+
const CoarseQuantized& cq,
|
769
|
+
const NormTableScaler* scaler) const {
|
544
770
|
FAISS_THROW_IF_NOT(orig_invlists);
|
545
771
|
|
546
|
-
std::unique_ptr<idx_t[]> coarse_ids(new idx_t[n * nprobe]);
|
547
|
-
std::unique_ptr<float[]> coarse_dis(new float[n * nprobe]);
|
548
|
-
|
549
|
-
quantizer->search(n, x, nprobe, coarse_dis.get(), coarse_ids.get());
|
550
|
-
|
551
772
|
size_t dim12 = ksub * M2;
|
552
773
|
AlignedTable<uint8_t> dis_tables;
|
553
774
|
AlignedTable<uint16_t> biases;
|
554
775
|
std::unique_ptr<float[]> normalizers(new float[2 * n]);
|
555
776
|
|
556
|
-
compute_LUT_uint8(
|
557
|
-
n,
|
558
|
-
x,
|
559
|
-
coarse_ids.get(),
|
560
|
-
coarse_dis.get(),
|
561
|
-
dis_tables,
|
562
|
-
biases,
|
563
|
-
normalizers.get());
|
777
|
+
compute_LUT_uint8(n, x, cq, dis_tables, biases, normalizers.get());
|
564
778
|
|
565
779
|
bool single_LUT = !lookup_table_is_3d();
|
566
780
|
|
567
781
|
size_t ndis = 0, nlist_visited = 0;
|
782
|
+
size_t nprobe = cq.nprobe;
|
568
783
|
|
569
784
|
#pragma omp parallel for reduction(+ : ndis, nlist_visited)
|
570
785
|
for (idx_t i = 0; i < n; i++) {
|
@@ -581,7 +796,7 @@ void IndexIVFFastScan::search_implem_2(
|
|
581
796
|
if (!single_LUT) {
|
582
797
|
LUT = dis_tables.get() + (i * nprobe + j) * dim12;
|
583
798
|
}
|
584
|
-
idx_t list_no =
|
799
|
+
idx_t list_no = cq.ids[i * nprobe + j];
|
585
800
|
if (list_no < 0)
|
586
801
|
continue;
|
587
802
|
size_t ls = orig_invlists->list_size(list_no);
|
@@ -626,171 +841,99 @@ void IndexIVFFastScan::search_implem_2(
|
|
626
841
|
indexIVF_stats.nlist += nlist_visited;
|
627
842
|
}
|
628
843
|
|
629
|
-
template <class C, class Scaler>
|
630
844
|
void IndexIVFFastScan::search_implem_10(
|
631
845
|
idx_t n,
|
632
846
|
const float* x,
|
633
|
-
|
634
|
-
|
635
|
-
idx_t* labels,
|
636
|
-
int impl,
|
847
|
+
SIMDResultHandlerToFloat& handler,
|
848
|
+
const CoarseQuantized& cq,
|
637
849
|
size_t* ndis_out,
|
638
850
|
size_t* nlist_out,
|
639
|
-
const
|
640
|
-
memset(distances, -1, sizeof(float) * k * n);
|
641
|
-
memset(labels, -1, sizeof(idx_t) * k * n);
|
642
|
-
|
643
|
-
using HeapHC = HeapHandler<C, true>;
|
644
|
-
using ReservoirHC = ReservoirHandler<C, true>;
|
645
|
-
using SingleResultHC = SingleResultHandler<C, true>;
|
646
|
-
|
647
|
-
std::unique_ptr<idx_t[]> coarse_ids(new idx_t[n * nprobe]);
|
648
|
-
std::unique_ptr<float[]> coarse_dis(new float[n * nprobe]);
|
649
|
-
|
650
|
-
uint64_t times[10];
|
651
|
-
memset(times, 0, sizeof(times));
|
652
|
-
int ti = 0;
|
653
|
-
#define TIC times[ti++] = get_cy()
|
654
|
-
TIC;
|
655
|
-
|
656
|
-
quantizer->search(n, x, nprobe, coarse_dis.get(), coarse_ids.get());
|
657
|
-
|
658
|
-
TIC;
|
659
|
-
|
851
|
+
const NormTableScaler* scaler) const {
|
660
852
|
size_t dim12 = ksub * M2;
|
661
853
|
AlignedTable<uint8_t> dis_tables;
|
662
854
|
AlignedTable<uint16_t> biases;
|
663
855
|
std::unique_ptr<float[]> normalizers(new float[2 * n]);
|
664
856
|
|
665
|
-
compute_LUT_uint8(
|
666
|
-
n,
|
667
|
-
x,
|
668
|
-
coarse_ids.get(),
|
669
|
-
coarse_dis.get(),
|
670
|
-
dis_tables,
|
671
|
-
biases,
|
672
|
-
normalizers.get());
|
673
|
-
|
674
|
-
TIC;
|
857
|
+
compute_LUT_uint8(n, x, cq, dis_tables, biases, normalizers.get());
|
675
858
|
|
676
859
|
bool single_LUT = !lookup_table_is_3d();
|
677
860
|
|
678
|
-
|
679
|
-
|
861
|
+
size_t ndis = 0;
|
862
|
+
int qmap1[1];
|
680
863
|
|
681
|
-
|
682
|
-
|
683
|
-
|
684
|
-
const uint8_t* LUT = nullptr;
|
685
|
-
int qmap1[1] = {0};
|
686
|
-
std::unique_ptr<SIMDResultHandler<C, true>> handler;
|
687
|
-
|
688
|
-
if (k == 1) {
|
689
|
-
handler.reset(new SingleResultHC(1, 0));
|
690
|
-
} else if (impl == 10) {
|
691
|
-
handler.reset(new HeapHC(
|
692
|
-
1, tmp_distances.get(), labels + i * k, k, 0));
|
693
|
-
} else if (impl == 11) {
|
694
|
-
handler.reset(new ReservoirHC(1, 0, k, 2 * k));
|
695
|
-
} else {
|
696
|
-
FAISS_THROW_MSG("invalid");
|
697
|
-
}
|
864
|
+
handler.q_map = qmap1;
|
865
|
+
handler.begin(skip & 16 ? nullptr : normalizers.get());
|
866
|
+
size_t nprobe = cq.nprobe;
|
698
867
|
|
699
|
-
|
868
|
+
for (idx_t i = 0; i < n; i++) {
|
869
|
+
const uint8_t* LUT = nullptr;
|
870
|
+
qmap1[0] = i;
|
700
871
|
|
701
|
-
|
702
|
-
|
872
|
+
if (single_LUT) {
|
873
|
+
LUT = dis_tables.get() + i * dim12;
|
874
|
+
}
|
875
|
+
for (idx_t j = 0; j < nprobe; j++) {
|
876
|
+
size_t ij = i * nprobe + j;
|
877
|
+
if (!single_LUT) {
|
878
|
+
LUT = dis_tables.get() + ij * dim12;
|
879
|
+
}
|
880
|
+
if (biases.get()) {
|
881
|
+
handler.dbias = biases.get() + ij;
|
703
882
|
}
|
704
|
-
for (idx_t j = 0; j < nprobe; j++) {
|
705
|
-
size_t ij = i * nprobe + j;
|
706
|
-
if (!single_LUT) {
|
707
|
-
LUT = dis_tables.get() + ij * dim12;
|
708
|
-
}
|
709
|
-
if (biases.get()) {
|
710
|
-
handler->dbias = biases.get() + ij;
|
711
|
-
}
|
712
|
-
|
713
|
-
idx_t list_no = coarse_ids[ij];
|
714
|
-
if (list_no < 0)
|
715
|
-
continue;
|
716
|
-
size_t ls = invlists->list_size(list_no);
|
717
|
-
if (ls == 0)
|
718
|
-
continue;
|
719
883
|
|
720
|
-
|
721
|
-
|
884
|
+
idx_t list_no = cq.ids[ij];
|
885
|
+
if (list_no < 0) {
|
886
|
+
continue;
|
887
|
+
}
|
888
|
+
size_t ls = invlists->list_size(list_no);
|
889
|
+
if (ls == 0) {
|
890
|
+
continue;
|
891
|
+
}
|
722
892
|
|
723
|
-
|
724
|
-
|
893
|
+
InvertedLists::ScopedCodes codes(invlists, list_no);
|
894
|
+
InvertedLists::ScopedIds ids(invlists, list_no);
|
725
895
|
|
726
|
-
|
727
|
-
|
728
|
-
auto* res = static_cast<classHC*>(handler.get()); \
|
729
|
-
pq4_accumulate_loop( \
|
730
|
-
1, roundup(ls, bbs), bbs, M2, codes.get(), LUT, *res, scaler); \
|
731
|
-
}
|
732
|
-
DISPATCH(HeapHC)
|
733
|
-
else DISPATCH(ReservoirHC) else DISPATCH(SingleResultHC)
|
734
|
-
#undef DISPATCH
|
896
|
+
handler.ntotal = ls;
|
897
|
+
handler.id_map = ids.get();
|
735
898
|
|
736
|
-
|
737
|
-
|
738
|
-
|
899
|
+
pq4_accumulate_loop(
|
900
|
+
1,
|
901
|
+
roundup(ls, bbs),
|
902
|
+
bbs,
|
903
|
+
M2,
|
904
|
+
codes.get(),
|
905
|
+
LUT,
|
906
|
+
handler,
|
907
|
+
scaler);
|
739
908
|
|
740
|
-
|
741
|
-
distances + i * k,
|
742
|
-
labels + i * k,
|
743
|
-
skip & 16 ? nullptr : normalizers.get() + i * 2);
|
909
|
+
ndis++;
|
744
910
|
}
|
745
911
|
}
|
912
|
+
handler.end();
|
746
913
|
*ndis_out = ndis;
|
747
914
|
*nlist_out = nlist;
|
748
915
|
}
|
749
916
|
|
750
|
-
template <class C, class Scaler>
|
751
917
|
void IndexIVFFastScan::search_implem_12(
|
752
918
|
idx_t n,
|
753
919
|
const float* x,
|
754
|
-
|
755
|
-
|
756
|
-
idx_t* labels,
|
757
|
-
int impl,
|
920
|
+
SIMDResultHandlerToFloat& handler,
|
921
|
+
const CoarseQuantized& cq,
|
758
922
|
size_t* ndis_out,
|
759
923
|
size_t* nlist_out,
|
760
|
-
const
|
924
|
+
const NormTableScaler* scaler) const {
|
761
925
|
if (n == 0) { // does not work well with reservoir
|
762
926
|
return;
|
763
927
|
}
|
764
928
|
FAISS_THROW_IF_NOT(bbs == 32);
|
765
929
|
|
766
|
-
std::unique_ptr<idx_t[]> coarse_ids(new idx_t[n * nprobe]);
|
767
|
-
std::unique_ptr<float[]> coarse_dis(new float[n * nprobe]);
|
768
|
-
|
769
|
-
uint64_t times[10];
|
770
|
-
memset(times, 0, sizeof(times));
|
771
|
-
int ti = 0;
|
772
|
-
#define TIC times[ti++] = get_cy()
|
773
|
-
TIC;
|
774
|
-
|
775
|
-
quantizer->search(n, x, nprobe, coarse_dis.get(), coarse_ids.get());
|
776
|
-
|
777
|
-
TIC;
|
778
|
-
|
779
930
|
size_t dim12 = ksub * M2;
|
780
931
|
AlignedTable<uint8_t> dis_tables;
|
781
932
|
AlignedTable<uint16_t> biases;
|
782
933
|
std::unique_ptr<float[]> normalizers(new float[2 * n]);
|
783
934
|
|
784
|
-
compute_LUT_uint8(
|
785
|
-
|
786
|
-
x,
|
787
|
-
coarse_ids.get(),
|
788
|
-
coarse_dis.get(),
|
789
|
-
dis_tables,
|
790
|
-
biases,
|
791
|
-
normalizers.get());
|
792
|
-
|
793
|
-
TIC;
|
935
|
+
compute_LUT_uint8(n, x, cq, dis_tables, biases, normalizers.get());
|
936
|
+
handler.begin(skip & 16 ? nullptr : normalizers.get());
|
794
937
|
|
795
938
|
struct QC {
|
796
939
|
int qno; // sequence number of the query
|
@@ -798,14 +941,15 @@ void IndexIVFFastScan::search_implem_12(
|
|
798
941
|
int rank; // this is the rank'th result of the coarse quantizer
|
799
942
|
};
|
800
943
|
bool single_LUT = !lookup_table_is_3d();
|
944
|
+
size_t nprobe = cq.nprobe;
|
801
945
|
|
802
946
|
std::vector<QC> qcs;
|
803
947
|
{
|
804
948
|
int ij = 0;
|
805
949
|
for (int i = 0; i < n; i++) {
|
806
950
|
for (int j = 0; j < nprobe; j++) {
|
807
|
-
if (
|
808
|
-
qcs.push_back(QC{i, int(
|
951
|
+
if (cq.ids[ij] >= 0) {
|
952
|
+
qcs.push_back(QC{i, int(cq.ids[ij]), int(j)});
|
809
953
|
}
|
810
954
|
ij++;
|
811
955
|
}
|
@@ -814,42 +958,21 @@ void IndexIVFFastScan::search_implem_12(
|
|
814
958
|
return a.list_no < b.list_no;
|
815
959
|
});
|
816
960
|
}
|
817
|
-
TIC;
|
818
|
-
|
819
961
|
// prepare the result handlers
|
820
962
|
|
821
|
-
std::unique_ptr<SIMDResultHandler<C, true>> handler;
|
822
|
-
AlignedTable<uint16_t> tmp_distances;
|
823
|
-
|
824
|
-
using HeapHC = HeapHandler<C, true>;
|
825
|
-
using ReservoirHC = ReservoirHandler<C, true>;
|
826
|
-
using SingleResultHC = SingleResultHandler<C, true>;
|
827
|
-
|
828
|
-
if (k == 1) {
|
829
|
-
handler.reset(new SingleResultHC(n, 0));
|
830
|
-
} else if (impl == 12) {
|
831
|
-
tmp_distances.resize(n * k);
|
832
|
-
handler.reset(new HeapHC(n, tmp_distances.get(), labels, k, 0));
|
833
|
-
} else if (impl == 13) {
|
834
|
-
handler.reset(new ReservoirHC(n, 0, k, 2 * k));
|
835
|
-
}
|
836
|
-
|
837
963
|
int qbs2 = this->qbs2 ? this->qbs2 : 11;
|
838
964
|
|
839
965
|
std::vector<uint16_t> tmp_bias;
|
840
966
|
if (biases.get()) {
|
841
967
|
tmp_bias.resize(qbs2);
|
842
|
-
handler
|
968
|
+
handler.dbias = tmp_bias.data();
|
843
969
|
}
|
844
|
-
TIC;
|
845
970
|
|
846
971
|
size_t ndis = 0;
|
847
972
|
|
848
973
|
size_t i0 = 0;
|
849
974
|
uint64_t t_copy_pack = 0, t_scan = 0;
|
850
975
|
while (i0 < qcs.size()) {
|
851
|
-
uint64_t tt0 = get_cy();
|
852
|
-
|
853
976
|
// find all queries that access this inverted list
|
854
977
|
int list_no = qcs[i0].list_no;
|
855
978
|
size_t i1 = i0 + 1;
|
@@ -897,93 +1020,47 @@ void IndexIVFFastScan::search_implem_12(
|
|
897
1020
|
|
898
1021
|
// prepare the handler
|
899
1022
|
|
900
|
-
handler
|
901
|
-
handler
|
902
|
-
handler
|
903
|
-
uint64_t tt1 = get_cy();
|
904
|
-
|
905
|
-
#define DISPATCH(classHC) \
|
906
|
-
if (dynamic_cast<classHC*>(handler.get())) { \
|
907
|
-
auto* res = static_cast<classHC*>(handler.get()); \
|
908
|
-
pq4_accumulate_loop_qbs( \
|
909
|
-
qbs, list_size, M2, codes.get(), LUT.get(), *res, scaler); \
|
910
|
-
}
|
911
|
-
DISPATCH(HeapHC)
|
912
|
-
else DISPATCH(ReservoirHC) else DISPATCH(SingleResultHC)
|
913
|
-
|
914
|
-
// prepare for next loop
|
915
|
-
i0 = i1;
|
1023
|
+
handler.ntotal = list_size;
|
1024
|
+
handler.q_map = q_map.data();
|
1025
|
+
handler.id_map = ids.get();
|
916
1026
|
|
917
|
-
|
918
|
-
|
919
|
-
|
1027
|
+
pq4_accumulate_loop_qbs(
|
1028
|
+
qbs, list_size, M2, codes.get(), LUT.get(), handler, scaler);
|
1029
|
+
// prepare for next loop
|
1030
|
+
i0 = i1;
|
920
1031
|
}
|
921
|
-
TIC;
|
922
|
-
|
923
|
-
// labels is in-place for HeapHC
|
924
|
-
handler->to_flat_arrays(
|
925
|
-
distances, labels, skip & 16 ? nullptr : normalizers.get());
|
926
1032
|
|
927
|
-
|
1033
|
+
handler.end();
|
928
1034
|
|
929
1035
|
// these stats are not thread-safe
|
930
1036
|
|
931
|
-
for (int i = 1; i < ti; i++) {
|
932
|
-
IVFFastScan_stats.times[i] += times[i] - times[i - 1];
|
933
|
-
}
|
934
1037
|
IVFFastScan_stats.t_copy_pack += t_copy_pack;
|
935
1038
|
IVFFastScan_stats.t_scan += t_scan;
|
936
1039
|
|
937
|
-
if (auto* rh = dynamic_cast<ReservoirHC*>(handler.get())) {
|
938
|
-
for (int i = 0; i < 4; i++) {
|
939
|
-
IVFFastScan_stats.reservoir_times[i] += rh->times[i];
|
940
|
-
}
|
941
|
-
}
|
942
|
-
|
943
1040
|
*ndis_out = ndis;
|
944
1041
|
*nlist_out = nlist;
|
945
1042
|
}
|
946
1043
|
|
947
|
-
template <class C, class Scaler>
|
948
1044
|
void IndexIVFFastScan::search_implem_14(
|
949
1045
|
idx_t n,
|
950
1046
|
const float* x,
|
951
1047
|
idx_t k,
|
952
1048
|
float* distances,
|
953
1049
|
idx_t* labels,
|
1050
|
+
const CoarseQuantized& cq,
|
954
1051
|
int impl,
|
955
|
-
const
|
1052
|
+
const NormTableScaler* scaler) const {
|
956
1053
|
if (n == 0) { // does not work well with reservoir
|
957
1054
|
return;
|
958
1055
|
}
|
959
1056
|
FAISS_THROW_IF_NOT(bbs == 32);
|
960
1057
|
|
961
|
-
std::unique_ptr<idx_t[]> coarse_ids(new idx_t[n * nprobe]);
|
962
|
-
std::unique_ptr<float[]> coarse_dis(new float[n * nprobe]);
|
963
|
-
|
964
|
-
uint64_t ttg0 = get_cy();
|
965
|
-
|
966
|
-
quantizer->search(n, x, nprobe, coarse_dis.get(), coarse_ids.get());
|
967
|
-
|
968
|
-
uint64_t ttg1 = get_cy();
|
969
|
-
uint64_t coarse_search_tt = ttg1 - ttg0;
|
970
|
-
|
971
1058
|
size_t dim12 = ksub * M2;
|
972
1059
|
AlignedTable<uint8_t> dis_tables;
|
973
1060
|
AlignedTable<uint16_t> biases;
|
974
1061
|
std::unique_ptr<float[]> normalizers(new float[2 * n]);
|
975
1062
|
|
976
|
-
compute_LUT_uint8(
|
977
|
-
n,
|
978
|
-
x,
|
979
|
-
coarse_ids.get(),
|
980
|
-
coarse_dis.get(),
|
981
|
-
dis_tables,
|
982
|
-
biases,
|
983
|
-
normalizers.get());
|
984
|
-
|
985
|
-
uint64_t ttg2 = get_cy();
|
986
|
-
uint64_t lut_compute_tt = ttg2 - ttg1;
|
1063
|
+
compute_LUT_uint8(n, x, cq, dis_tables, biases, normalizers.get());
|
987
1064
|
|
988
1065
|
struct QC {
|
989
1066
|
int qno; // sequence number of the query
|
@@ -991,14 +1068,15 @@ void IndexIVFFastScan::search_implem_14(
|
|
991
1068
|
int rank; // this is the rank'th result of the coarse quantizer
|
992
1069
|
};
|
993
1070
|
bool single_LUT = !lookup_table_is_3d();
|
1071
|
+
size_t nprobe = cq.nprobe;
|
994
1072
|
|
995
1073
|
std::vector<QC> qcs;
|
996
1074
|
{
|
997
1075
|
int ij = 0;
|
998
1076
|
for (int i = 0; i < n; i++) {
|
999
1077
|
for (int j = 0; j < nprobe; j++) {
|
1000
|
-
if (
|
1001
|
-
qcs.push_back(QC{i, int(
|
1078
|
+
if (cq.ids[ij] >= 0) {
|
1079
|
+
qcs.push_back(QC{i, int(cq.ids[ij]), int(j)});
|
1002
1080
|
}
|
1003
1081
|
ij++;
|
1004
1082
|
}
|
@@ -1036,14 +1114,13 @@ void IndexIVFFastScan::search_implem_14(
|
|
1036
1114
|
ses.push_back(SE{i0_l, i1, list_size});
|
1037
1115
|
i0_l = i1;
|
1038
1116
|
}
|
1039
|
-
uint64_t ttg3 = get_cy();
|
1040
|
-
uint64_t compute_clusters_tt = ttg3 - ttg2;
|
1041
1117
|
|
1042
1118
|
// function to handle the global heap
|
1119
|
+
bool is_max = !is_similarity_metric(metric_type);
|
1043
1120
|
using HeapForIP = CMin<float, idx_t>;
|
1044
1121
|
using HeapForL2 = CMax<float, idx_t>;
|
1045
1122
|
auto init_result = [&](float* simi, idx_t* idxi) {
|
1046
|
-
if (
|
1123
|
+
if (!is_max) {
|
1047
1124
|
heap_heapify<HeapForIP>(k, simi, idxi);
|
1048
1125
|
} else {
|
1049
1126
|
heap_heapify<HeapForL2>(k, simi, idxi);
|
@@ -1054,7 +1131,7 @@ void IndexIVFFastScan::search_implem_14(
|
|
1054
1131
|
const idx_t* local_idx,
|
1055
1132
|
float* simi,
|
1056
1133
|
idx_t* idxi) {
|
1057
|
-
if (
|
1134
|
+
if (!is_max) {
|
1058
1135
|
heap_addn<HeapForIP>(k, simi, idxi, local_dis, local_idx, k);
|
1059
1136
|
} else {
|
1060
1137
|
heap_addn<HeapForL2>(k, simi, idxi, local_dis, local_idx, k);
|
@@ -1062,14 +1139,12 @@ void IndexIVFFastScan::search_implem_14(
|
|
1062
1139
|
};
|
1063
1140
|
|
1064
1141
|
auto reorder_result = [&](float* simi, idx_t* idxi) {
|
1065
|
-
if (
|
1142
|
+
if (!is_max) {
|
1066
1143
|
heap_reorder<HeapForIP>(k, simi, idxi);
|
1067
1144
|
} else {
|
1068
1145
|
heap_reorder<HeapForL2>(k, simi, idxi);
|
1069
1146
|
}
|
1070
1147
|
};
|
1071
|
-
uint64_t ttg4 = get_cy();
|
1072
|
-
uint64_t fn_tt = ttg4 - ttg3;
|
1073
1148
|
|
1074
1149
|
size_t ndis = 0;
|
1075
1150
|
size_t nlist_visited = 0;
|
@@ -1081,22 +1156,9 @@ void IndexIVFFastScan::search_implem_14(
|
|
1081
1156
|
std::vector<float> local_dis(k * n);
|
1082
1157
|
|
1083
1158
|
// prepare the result handlers
|
1084
|
-
std::unique_ptr<
|
1085
|
-
|
1086
|
-
|
1087
|
-
using HeapHC = HeapHandler<C, true>;
|
1088
|
-
using ReservoirHC = ReservoirHandler<C, true>;
|
1089
|
-
using SingleResultHC = SingleResultHandler<C, true>;
|
1090
|
-
|
1091
|
-
if (k == 1) {
|
1092
|
-
handler.reset(new SingleResultHC(n, 0));
|
1093
|
-
} else if (impl == 14) {
|
1094
|
-
tmp_distances.resize(n * k);
|
1095
|
-
handler.reset(
|
1096
|
-
new HeapHC(n, tmp_distances.get(), local_idx.data(), k, 0));
|
1097
|
-
} else if (impl == 15) {
|
1098
|
-
handler.reset(new ReservoirHC(n, 0, k, 2 * k));
|
1099
|
-
}
|
1159
|
+
std::unique_ptr<SIMDResultHandlerToFloat> handler(make_knn_handler(
|
1160
|
+
is_max, impl, n, k, local_dis.data(), local_idx.data()));
|
1161
|
+
handler->begin(normalizers.get());
|
1100
1162
|
|
1101
1163
|
int qbs2 = this->qbs2 ? this->qbs2 : 11;
|
1102
1164
|
|
@@ -1105,15 +1167,10 @@ void IndexIVFFastScan::search_implem_14(
|
|
1105
1167
|
tmp_bias.resize(qbs2);
|
1106
1168
|
handler->dbias = tmp_bias.data();
|
1107
1169
|
}
|
1108
|
-
|
1109
|
-
uint64_t ttg5 = get_cy();
|
1110
|
-
uint64_t handler_tt = ttg5 - ttg4;
|
1111
|
-
|
1112
1170
|
std::set<int> q_set;
|
1113
1171
|
uint64_t t_copy_pack = 0, t_scan = 0;
|
1114
1172
|
#pragma omp for schedule(dynamic)
|
1115
1173
|
for (idx_t cluster = 0; cluster < ses.size(); cluster++) {
|
1116
|
-
uint64_t tt0 = get_cy();
|
1117
1174
|
size_t i0 = ses[cluster].start;
|
1118
1175
|
size_t i1 = ses[cluster].end;
|
1119
1176
|
size_t list_size = ses[cluster].list_size;
|
@@ -1153,28 +1210,21 @@ void IndexIVFFastScan::search_implem_14(
|
|
1153
1210
|
handler->ntotal = list_size;
|
1154
1211
|
handler->q_map = q_map.data();
|
1155
1212
|
handler->id_map = ids.get();
|
1156
|
-
uint64_t tt1 = get_cy();
|
1157
|
-
|
1158
|
-
#define DISPATCH(classHC) \
|
1159
|
-
if (dynamic_cast<classHC*>(handler.get())) { \
|
1160
|
-
auto* res = static_cast<classHC*>(handler.get()); \
|
1161
|
-
pq4_accumulate_loop_qbs( \
|
1162
|
-
qbs, list_size, M2, codes.get(), LUT.get(), *res, scaler); \
|
1163
|
-
}
|
1164
|
-
DISPATCH(HeapHC)
|
1165
|
-
else DISPATCH(ReservoirHC) else DISPATCH(SingleResultHC)
|
1166
1213
|
|
1167
|
-
|
1168
|
-
|
1169
|
-
|
1214
|
+
pq4_accumulate_loop_qbs(
|
1215
|
+
qbs,
|
1216
|
+
list_size,
|
1217
|
+
M2,
|
1218
|
+
codes.get(),
|
1219
|
+
LUT.get(),
|
1220
|
+
*handler.get(),
|
1221
|
+
scaler);
|
1170
1222
|
}
|
1171
1223
|
|
1172
1224
|
// labels is in-place for HeapHC
|
1173
|
-
handler->
|
1174
|
-
local_dis.data(),
|
1175
|
-
local_idx.data(),
|
1176
|
-
skip & 16 ? nullptr : normalizers.get());
|
1225
|
+
handler->end();
|
1177
1226
|
|
1227
|
+
// merge per-thread results
|
1178
1228
|
#pragma omp single
|
1179
1229
|
{
|
1180
1230
|
// we init the results as a heap
|
@@ -1197,12 +1247,6 @@ void IndexIVFFastScan::search_implem_14(
|
|
1197
1247
|
|
1198
1248
|
IVFFastScan_stats.t_copy_pack += t_copy_pack;
|
1199
1249
|
IVFFastScan_stats.t_scan += t_scan;
|
1200
|
-
|
1201
|
-
if (auto* rh = dynamic_cast<ReservoirHC*>(handler.get())) {
|
1202
|
-
for (int i = 0; i < 4; i++) {
|
1203
|
-
IVFFastScan_stats.reservoir_times[i] += rh->times[i];
|
1204
|
-
}
|
1205
|
-
}
|
1206
1250
|
}
|
1207
1251
|
#pragma omp barrier
|
1208
1252
|
#pragma omp single
|
@@ -1272,20 +1316,4 @@ void IndexIVFFastScan::reconstruct_orig_invlists() {
|
|
1272
1316
|
|
1273
1317
|
IVFFastScanStats IVFFastScan_stats;
|
1274
1318
|
|
1275
|
-
template void IndexIVFFastScan::search_dispatch_implem<true, NormTableScaler>(
|
1276
|
-
idx_t n,
|
1277
|
-
const float* x,
|
1278
|
-
idx_t k,
|
1279
|
-
float* distances,
|
1280
|
-
idx_t* labels,
|
1281
|
-
const NormTableScaler& scaler) const;
|
1282
|
-
|
1283
|
-
template void IndexIVFFastScan::search_dispatch_implem<false, NormTableScaler>(
|
1284
|
-
idx_t n,
|
1285
|
-
const float* x,
|
1286
|
-
idx_t k,
|
1287
|
-
float* distances,
|
1288
|
-
idx_t* labels,
|
1289
|
-
const NormTableScaler& scaler) const;
|
1290
|
-
|
1291
1319
|
} // namespace faiss
|