faiss 0.2.7 → 0.3.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +10 -0
- data/LICENSE.txt +1 -1
- data/README.md +1 -1
- data/ext/faiss/extconf.rb +9 -2
- data/ext/faiss/index.cpp +1 -1
- data/ext/faiss/index_binary.cpp +2 -2
- data/ext/faiss/product_quantizer.cpp +1 -1
- data/lib/faiss/version.rb +1 -1
- data/lib/faiss.rb +1 -1
- data/vendor/faiss/faiss/AutoTune.cpp +7 -7
- data/vendor/faiss/faiss/AutoTune.h +0 -1
- data/vendor/faiss/faiss/Clustering.cpp +4 -18
- data/vendor/faiss/faiss/Clustering.h +31 -21
- data/vendor/faiss/faiss/IVFlib.cpp +22 -11
- data/vendor/faiss/faiss/Index.cpp +1 -1
- data/vendor/faiss/faiss/Index.h +20 -5
- data/vendor/faiss/faiss/Index2Layer.cpp +7 -7
- data/vendor/faiss/faiss/IndexAdditiveQuantizer.cpp +176 -166
- data/vendor/faiss/faiss/IndexAdditiveQuantizerFastScan.cpp +15 -15
- data/vendor/faiss/faiss/IndexBinary.cpp +9 -4
- data/vendor/faiss/faiss/IndexBinary.h +8 -19
- data/vendor/faiss/faiss/IndexBinaryFromFloat.cpp +2 -1
- data/vendor/faiss/faiss/IndexBinaryHNSW.cpp +24 -31
- data/vendor/faiss/faiss/IndexBinaryHash.cpp +25 -50
- data/vendor/faiss/faiss/IndexBinaryIVF.cpp +106 -187
- data/vendor/faiss/faiss/IndexFastScan.cpp +90 -159
- data/vendor/faiss/faiss/IndexFastScan.h +9 -8
- data/vendor/faiss/faiss/IndexFlat.cpp +195 -3
- data/vendor/faiss/faiss/IndexFlat.h +20 -1
- data/vendor/faiss/faiss/IndexFlatCodes.cpp +11 -0
- data/vendor/faiss/faiss/IndexFlatCodes.h +3 -1
- data/vendor/faiss/faiss/IndexHNSW.cpp +112 -316
- data/vendor/faiss/faiss/IndexHNSW.h +12 -48
- data/vendor/faiss/faiss/IndexIDMap.cpp +69 -28
- data/vendor/faiss/faiss/IndexIDMap.h +24 -2
- data/vendor/faiss/faiss/IndexIVF.cpp +159 -53
- data/vendor/faiss/faiss/IndexIVF.h +37 -5
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.cpp +18 -26
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizer.h +3 -2
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizerFastScan.cpp +19 -46
- data/vendor/faiss/faiss/IndexIVFAdditiveQuantizerFastScan.h +4 -3
- data/vendor/faiss/faiss/IndexIVFFastScan.cpp +433 -405
- data/vendor/faiss/faiss/IndexIVFFastScan.h +56 -26
- data/vendor/faiss/faiss/IndexIVFFlat.cpp +15 -5
- data/vendor/faiss/faiss/IndexIVFFlat.h +3 -2
- data/vendor/faiss/faiss/IndexIVFIndependentQuantizer.cpp +172 -0
- data/vendor/faiss/faiss/IndexIVFIndependentQuantizer.h +56 -0
- data/vendor/faiss/faiss/IndexIVFPQ.cpp +78 -122
- data/vendor/faiss/faiss/IndexIVFPQ.h +6 -7
- data/vendor/faiss/faiss/IndexIVFPQFastScan.cpp +18 -50
- data/vendor/faiss/faiss/IndexIVFPQFastScan.h +4 -3
- data/vendor/faiss/faiss/IndexIVFPQR.cpp +45 -29
- data/vendor/faiss/faiss/IndexIVFPQR.h +5 -2
- data/vendor/faiss/faiss/IndexIVFSpectralHash.cpp +25 -27
- data/vendor/faiss/faiss/IndexIVFSpectralHash.h +6 -6
- data/vendor/faiss/faiss/IndexLSH.cpp +14 -16
- data/vendor/faiss/faiss/IndexNNDescent.cpp +3 -4
- data/vendor/faiss/faiss/IndexNSG.cpp +11 -27
- data/vendor/faiss/faiss/IndexNSG.h +10 -10
- data/vendor/faiss/faiss/IndexPQ.cpp +72 -88
- data/vendor/faiss/faiss/IndexPQ.h +1 -4
- data/vendor/faiss/faiss/IndexPQFastScan.cpp +1 -1
- data/vendor/faiss/faiss/IndexPreTransform.cpp +25 -31
- data/vendor/faiss/faiss/IndexRefine.cpp +49 -19
- data/vendor/faiss/faiss/IndexRefine.h +7 -0
- data/vendor/faiss/faiss/IndexReplicas.cpp +23 -26
- data/vendor/faiss/faiss/IndexScalarQuantizer.cpp +22 -16
- data/vendor/faiss/faiss/IndexScalarQuantizer.h +6 -4
- data/vendor/faiss/faiss/IndexShards.cpp +21 -29
- data/vendor/faiss/faiss/IndexShardsIVF.cpp +1 -2
- data/vendor/faiss/faiss/MatrixStats.cpp +17 -32
- data/vendor/faiss/faiss/MatrixStats.h +21 -9
- data/vendor/faiss/faiss/MetaIndexes.cpp +35 -35
- data/vendor/faiss/faiss/VectorTransform.cpp +13 -26
- data/vendor/faiss/faiss/VectorTransform.h +7 -7
- data/vendor/faiss/faiss/clone_index.cpp +15 -10
- data/vendor/faiss/faiss/clone_index.h +3 -0
- data/vendor/faiss/faiss/gpu/GpuCloner.cpp +87 -4
- data/vendor/faiss/faiss/gpu/GpuCloner.h +22 -0
- data/vendor/faiss/faiss/gpu/GpuClonerOptions.h +7 -0
- data/vendor/faiss/faiss/gpu/GpuDistance.h +46 -38
- data/vendor/faiss/faiss/gpu/GpuIndex.h +28 -4
- data/vendor/faiss/faiss/gpu/GpuIndexFlat.h +4 -4
- data/vendor/faiss/faiss/gpu/GpuIndexIVF.h +8 -9
- data/vendor/faiss/faiss/gpu/GpuIndexIVFFlat.h +18 -3
- data/vendor/faiss/faiss/gpu/GpuIndexIVFPQ.h +22 -11
- data/vendor/faiss/faiss/gpu/GpuIndexIVFScalarQuantizer.h +1 -3
- data/vendor/faiss/faiss/gpu/GpuResources.cpp +24 -3
- data/vendor/faiss/faiss/gpu/GpuResources.h +39 -11
- data/vendor/faiss/faiss/gpu/StandardGpuResources.cpp +117 -17
- data/vendor/faiss/faiss/gpu/StandardGpuResources.h +57 -3
- data/vendor/faiss/faiss/gpu/perf/PerfClustering.cpp +1 -1
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexBinaryFlat.cpp +25 -0
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexFlat.cpp +129 -9
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFFlat.cpp +267 -40
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFPQ.cpp +299 -208
- data/vendor/faiss/faiss/gpu/test/TestGpuMemoryException.cpp +1 -0
- data/vendor/faiss/faiss/gpu/utils/RaftUtils.h +75 -0
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.cpp +3 -1
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.h +5 -5
- data/vendor/faiss/faiss/impl/AuxIndexStructures.cpp +1 -1
- data/vendor/faiss/faiss/impl/AuxIndexStructures.h +1 -2
- data/vendor/faiss/faiss/impl/DistanceComputer.h +24 -1
- data/vendor/faiss/faiss/impl/FaissException.h +13 -34
- data/vendor/faiss/faiss/impl/HNSW.cpp +321 -70
- data/vendor/faiss/faiss/impl/HNSW.h +9 -8
- data/vendor/faiss/faiss/impl/IDSelector.h +4 -4
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.cpp +3 -1
- data/vendor/faiss/faiss/impl/NNDescent.cpp +29 -19
- data/vendor/faiss/faiss/impl/NSG.h +1 -1
- data/vendor/faiss/faiss/impl/PolysemousTraining.cpp +14 -12
- data/vendor/faiss/faiss/impl/ProductAdditiveQuantizer.h +1 -1
- data/vendor/faiss/faiss/impl/ProductQuantizer.cpp +24 -22
- data/vendor/faiss/faiss/impl/ProductQuantizer.h +1 -1
- data/vendor/faiss/faiss/impl/Quantizer.h +1 -1
- data/vendor/faiss/faiss/impl/ResidualQuantizer.cpp +27 -1015
- data/vendor/faiss/faiss/impl/ResidualQuantizer.h +5 -63
- data/vendor/faiss/faiss/impl/ResultHandler.h +232 -176
- data/vendor/faiss/faiss/impl/ScalarQuantizer.cpp +444 -104
- data/vendor/faiss/faiss/impl/ScalarQuantizer.h +0 -8
- data/vendor/faiss/faiss/impl/code_distance/code_distance-avx2.h +280 -42
- data/vendor/faiss/faiss/impl/code_distance/code_distance-generic.h +21 -14
- data/vendor/faiss/faiss/impl/code_distance/code_distance.h +22 -12
- data/vendor/faiss/faiss/impl/index_read.cpp +45 -19
- data/vendor/faiss/faiss/impl/index_write.cpp +60 -41
- data/vendor/faiss/faiss/impl/io.cpp +10 -10
- data/vendor/faiss/faiss/impl/lattice_Zn.cpp +1 -1
- data/vendor/faiss/faiss/impl/platform_macros.h +18 -1
- data/vendor/faiss/faiss/impl/pq4_fast_scan.cpp +3 -0
- data/vendor/faiss/faiss/impl/pq4_fast_scan.h +7 -6
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_1.cpp +52 -38
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_qbs.cpp +40 -49
- data/vendor/faiss/faiss/impl/residual_quantizer_encode_steps.cpp +960 -0
- data/vendor/faiss/faiss/impl/residual_quantizer_encode_steps.h +176 -0
- data/vendor/faiss/faiss/impl/simd_result_handlers.h +374 -202
- data/vendor/faiss/faiss/index_factory.cpp +10 -7
- data/vendor/faiss/faiss/invlists/DirectMap.cpp +1 -1
- data/vendor/faiss/faiss/invlists/InvertedLists.cpp +27 -9
- data/vendor/faiss/faiss/invlists/InvertedLists.h +12 -3
- data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.cpp +3 -3
- data/vendor/faiss/faiss/python/python_callbacks.cpp +1 -1
- data/vendor/faiss/faiss/utils/Heap.cpp +3 -1
- data/vendor/faiss/faiss/utils/WorkerThread.h +1 -0
- data/vendor/faiss/faiss/utils/distances.cpp +128 -74
- data/vendor/faiss/faiss/utils/distances.h +81 -4
- data/vendor/faiss/faiss/utils/distances_fused/avx512.cpp +5 -5
- data/vendor/faiss/faiss/utils/distances_fused/avx512.h +2 -2
- data/vendor/faiss/faiss/utils/distances_fused/distances_fused.cpp +2 -2
- data/vendor/faiss/faiss/utils/distances_fused/distances_fused.h +1 -1
- data/vendor/faiss/faiss/utils/distances_fused/simdlib_based.cpp +5 -5
- data/vendor/faiss/faiss/utils/distances_fused/simdlib_based.h +1 -1
- data/vendor/faiss/faiss/utils/distances_simd.cpp +428 -70
- data/vendor/faiss/faiss/utils/fp16-arm.h +29 -0
- data/vendor/faiss/faiss/utils/fp16.h +2 -0
- data/vendor/faiss/faiss/utils/hamming.cpp +162 -110
- data/vendor/faiss/faiss/utils/hamming.h +58 -0
- data/vendor/faiss/faiss/utils/hamming_distance/avx2-inl.h +16 -89
- data/vendor/faiss/faiss/utils/hamming_distance/common.h +1 -0
- data/vendor/faiss/faiss/utils/hamming_distance/generic-inl.h +15 -87
- data/vendor/faiss/faiss/utils/hamming_distance/hamdis-inl.h +57 -0
- data/vendor/faiss/faiss/utils/hamming_distance/neon-inl.h +14 -104
- data/vendor/faiss/faiss/utils/partitioning.cpp +3 -4
- data/vendor/faiss/faiss/utils/prefetch.h +77 -0
- data/vendor/faiss/faiss/utils/quantize_lut.cpp +0 -14
- data/vendor/faiss/faiss/utils/simdlib_avx2.h +0 -6
- data/vendor/faiss/faiss/utils/simdlib_neon.h +72 -77
- data/vendor/faiss/faiss/utils/sorting.cpp +140 -5
- data/vendor/faiss/faiss/utils/sorting.h +27 -0
- data/vendor/faiss/faiss/utils/utils.cpp +112 -6
- data/vendor/faiss/faiss/utils/utils.h +57 -20
- metadata +11 -4
@@ -18,7 +18,9 @@ namespace faiss {
|
|
18
18
|
|
19
19
|
/** Index that stores the full vectors and performs exhaustive search */
|
20
20
|
struct IndexFlat : IndexFlatCodes {
|
21
|
-
explicit IndexFlat(
|
21
|
+
explicit IndexFlat(
|
22
|
+
idx_t d, ///< dimensionality of the input vectors
|
23
|
+
MetricType metric = METRIC_L2);
|
22
24
|
|
23
25
|
void search(
|
24
26
|
idx_t n,
|
@@ -76,8 +78,25 @@ struct IndexFlatIP : IndexFlat {
|
|
76
78
|
};
|
77
79
|
|
78
80
|
struct IndexFlatL2 : IndexFlat {
|
81
|
+
// Special cache for L2 norms.
|
82
|
+
// If this cache is set, then get_distance_computer() returns
|
83
|
+
// a special version that computes the distance using dot products
|
84
|
+
// and l2 norms.
|
85
|
+
std::vector<float> cached_l2norms;
|
86
|
+
|
87
|
+
/**
|
88
|
+
* @param d dimensionality of the input vectors
|
89
|
+
*/
|
79
90
|
explicit IndexFlatL2(idx_t d) : IndexFlat(d, METRIC_L2) {}
|
80
91
|
IndexFlatL2() {}
|
92
|
+
|
93
|
+
// override for l2 norms cache.
|
94
|
+
FlatCodesDistanceComputer* get_FlatCodesDistanceComputer() const override;
|
95
|
+
|
96
|
+
// compute L2 norms
|
97
|
+
void sync_l2norms();
|
98
|
+
// clear L2 norms
|
99
|
+
void clear_l2norms();
|
81
100
|
};
|
82
101
|
|
83
102
|
/// optimized version for 1D "vectors".
|
@@ -103,4 +103,15 @@ CodePacker* IndexFlatCodes::get_CodePacker() const {
|
|
103
103
|
return new CodePackerFlat(code_size);
|
104
104
|
}
|
105
105
|
|
106
|
+
void IndexFlatCodes::permute_entries(const idx_t* perm) {
|
107
|
+
std::vector<uint8_t> new_codes(codes.size());
|
108
|
+
|
109
|
+
for (idx_t i = 0; i < ntotal; i++) {
|
110
|
+
memcpy(new_codes.data() + i * code_size,
|
111
|
+
codes.data() + perm[i] * code_size,
|
112
|
+
code_size);
|
113
|
+
}
|
114
|
+
std::swap(codes, new_codes);
|
115
|
+
}
|
116
|
+
|
106
117
|
} // namespace faiss
|
@@ -34,7 +34,6 @@ struct IndexFlatCodes : Index {
|
|
34
34
|
|
35
35
|
void reset() override;
|
36
36
|
|
37
|
-
/// reconstruction using the codec interface
|
38
37
|
void reconstruct_n(idx_t i0, idx_t ni, float* recons) const override;
|
39
38
|
|
40
39
|
void reconstruct(idx_t key, float* recons) const override;
|
@@ -59,6 +58,9 @@ struct IndexFlatCodes : Index {
|
|
59
58
|
void check_compatible_for_merge(const Index& otherIndex) const override;
|
60
59
|
|
61
60
|
virtual void merge_from(Index& otherIndex, idx_t add_id = 0) override;
|
61
|
+
|
62
|
+
// permute_entries. perm of size ntotal maps new to old positions
|
63
|
+
void permute_entries(const idx_t* perm);
|
62
64
|
};
|
63
65
|
|
64
66
|
} // namespace faiss
|
@@ -20,16 +20,16 @@
|
|
20
20
|
#include <queue>
|
21
21
|
#include <unordered_set>
|
22
22
|
|
23
|
-
#include <stdint.h>
|
24
23
|
#include <sys/stat.h>
|
25
24
|
#include <sys/types.h>
|
25
|
+
#include <cstdint>
|
26
26
|
|
27
27
|
#include <faiss/Index2Layer.h>
|
28
28
|
#include <faiss/IndexFlat.h>
|
29
29
|
#include <faiss/IndexIVFPQ.h>
|
30
30
|
#include <faiss/impl/AuxIndexStructures.h>
|
31
31
|
#include <faiss/impl/FaissAssert.h>
|
32
|
-
#include <faiss/
|
32
|
+
#include <faiss/impl/ResultHandler.h>
|
33
33
|
#include <faiss/utils/distances.h>
|
34
34
|
#include <faiss/utils/random.h>
|
35
35
|
#include <faiss/utils/sorting.h>
|
@@ -87,6 +87,23 @@ struct NegativeDistanceComputer : DistanceComputer {
|
|
87
87
|
return -(*basedis)(i);
|
88
88
|
}
|
89
89
|
|
90
|
+
void distances_batch_4(
|
91
|
+
const idx_t idx0,
|
92
|
+
const idx_t idx1,
|
93
|
+
const idx_t idx2,
|
94
|
+
const idx_t idx3,
|
95
|
+
float& dis0,
|
96
|
+
float& dis1,
|
97
|
+
float& dis2,
|
98
|
+
float& dis3) override {
|
99
|
+
basedis->distances_batch_4(
|
100
|
+
idx0, idx1, idx2, idx3, dis0, dis1, dis2, dis3);
|
101
|
+
dis0 = -dis0;
|
102
|
+
dis1 = -dis1;
|
103
|
+
dis2 = -dis2;
|
104
|
+
dis3 = -dis3;
|
105
|
+
}
|
106
|
+
|
90
107
|
/// compute distance between two stored vectors
|
91
108
|
float symmetric_dis(idx_t i, idx_t j) override {
|
92
109
|
return -basedis->symmetric_dis(i, j);
|
@@ -192,9 +209,8 @@ void hnsw_add_vertices(
|
|
192
209
|
{
|
193
210
|
VisitedTable vt(ntotal);
|
194
211
|
|
195
|
-
DistanceComputer
|
196
|
-
storage_distance_computer(index_hnsw.storage);
|
197
|
-
ScopeDeleter1<DistanceComputer> del(dis);
|
212
|
+
std::unique_ptr<DistanceComputer> dis(
|
213
|
+
storage_distance_computer(index_hnsw.storage));
|
198
214
|
int prev_display =
|
199
215
|
verbose && omp_get_thread_num() == 0 ? 0 : -1;
|
200
216
|
size_t counter = 0;
|
@@ -250,18 +266,10 @@ void hnsw_add_vertices(
|
|
250
266
|
**************************************************************/
|
251
267
|
|
252
268
|
IndexHNSW::IndexHNSW(int d, int M, MetricType metric)
|
253
|
-
: Index(d, metric),
|
254
|
-
hnsw(M),
|
255
|
-
own_fields(false),
|
256
|
-
storage(nullptr),
|
257
|
-
reconstruct_from_neighbors(nullptr) {}
|
269
|
+
: Index(d, metric), hnsw(M) {}
|
258
270
|
|
259
271
|
IndexHNSW::IndexHNSW(Index* storage, int M)
|
260
|
-
: Index(storage->d, storage->metric_type),
|
261
|
-
hnsw(M),
|
262
|
-
own_fields(false),
|
263
|
-
storage(storage),
|
264
|
-
reconstruct_from_neighbors(nullptr) {}
|
272
|
+
: Index(storage->d, storage->metric_type), hnsw(M), storage(storage) {}
|
265
273
|
|
266
274
|
IndexHNSW::~IndexHNSW() {
|
267
275
|
if (own_fields) {
|
@@ -278,18 +286,20 @@ void IndexHNSW::train(idx_t n, const float* x) {
|
|
278
286
|
is_trained = true;
|
279
287
|
}
|
280
288
|
|
281
|
-
|
289
|
+
namespace {
|
290
|
+
|
291
|
+
template <class BlockResultHandler>
|
292
|
+
void hnsw_search(
|
293
|
+
const IndexHNSW* index,
|
282
294
|
idx_t n,
|
283
295
|
const float* x,
|
284
|
-
|
285
|
-
|
286
|
-
idx_t* labels,
|
287
|
-
const SearchParameters* params_in) const {
|
288
|
-
FAISS_THROW_IF_NOT(k > 0);
|
296
|
+
BlockResultHandler& bres,
|
297
|
+
const SearchParameters* params_in) {
|
289
298
|
FAISS_THROW_IF_NOT_MSG(
|
290
|
-
storage,
|
299
|
+
index->storage,
|
291
300
|
"Please use IndexHNSWFlat (or variants) instead of IndexHNSW directly");
|
292
301
|
const SearchParametersHNSW* params = nullptr;
|
302
|
+
const HNSW& hnsw = index->hnsw;
|
293
303
|
|
294
304
|
int efSearch = hnsw.efSearch;
|
295
305
|
if (params_in) {
|
@@ -299,61 +309,81 @@ void IndexHNSW::search(
|
|
299
309
|
}
|
300
310
|
size_t n1 = 0, n2 = 0, n3 = 0, ndis = 0, nreorder = 0;
|
301
311
|
|
302
|
-
idx_t check_period =
|
303
|
-
|
312
|
+
idx_t check_period = InterruptCallback::get_period_hint(
|
313
|
+
hnsw.max_level * index->d * efSearch);
|
304
314
|
|
305
315
|
for (idx_t i0 = 0; i0 < n; i0 += check_period) {
|
306
316
|
idx_t i1 = std::min(i0 + check_period, n);
|
307
317
|
|
308
318
|
#pragma omp parallel
|
309
319
|
{
|
310
|
-
VisitedTable vt(ntotal);
|
320
|
+
VisitedTable vt(index->ntotal);
|
321
|
+
typename BlockResultHandler::SingleResultHandler res(bres);
|
311
322
|
|
312
|
-
DistanceComputer
|
313
|
-
|
323
|
+
std::unique_ptr<DistanceComputer> dis(
|
324
|
+
storage_distance_computer(index->storage));
|
314
325
|
|
315
|
-
#pragma omp for reduction(+ : n1, n2, n3, ndis, nreorder)
|
326
|
+
#pragma omp for reduction(+ : n1, n2, n3, ndis, nreorder) schedule(guided)
|
316
327
|
for (idx_t i = i0; i < i1; i++) {
|
317
|
-
|
318
|
-
|
319
|
-
dis->set_query(x + i * d);
|
328
|
+
res.begin(i);
|
329
|
+
dis->set_query(x + i * index->d);
|
320
330
|
|
321
|
-
|
322
|
-
HNSWStats stats = hnsw.search(*dis, k, idxi, simi, vt, params);
|
331
|
+
HNSWStats stats = hnsw.search(*dis, res, vt, params);
|
323
332
|
n1 += stats.n1;
|
324
333
|
n2 += stats.n2;
|
325
334
|
n3 += stats.n3;
|
326
335
|
ndis += stats.ndis;
|
327
336
|
nreorder += stats.nreorder;
|
328
|
-
|
329
|
-
|
330
|
-
if (reconstruct_from_neighbors &&
|
331
|
-
reconstruct_from_neighbors->k_reorder != 0) {
|
332
|
-
int k_reorder = reconstruct_from_neighbors->k_reorder;
|
333
|
-
if (k_reorder == -1 || k_reorder > k)
|
334
|
-
k_reorder = k;
|
335
|
-
|
336
|
-
nreorder += reconstruct_from_neighbors->compute_distances(
|
337
|
-
k_reorder, idxi, x + i * d, simi);
|
338
|
-
|
339
|
-
// sort top k_reorder
|
340
|
-
maxheap_heapify(
|
341
|
-
k_reorder, simi, idxi, simi, idxi, k_reorder);
|
342
|
-
maxheap_reorder(k_reorder, simi, idxi);
|
343
|
-
}
|
337
|
+
res.end();
|
344
338
|
}
|
345
339
|
}
|
346
340
|
InterruptCallback::check();
|
347
341
|
}
|
348
342
|
|
349
|
-
|
343
|
+
hnsw_stats.combine({n1, n2, n3, ndis, nreorder});
|
344
|
+
}
|
345
|
+
|
346
|
+
} // anonymous namespace
|
347
|
+
|
348
|
+
void IndexHNSW::search(
|
349
|
+
idx_t n,
|
350
|
+
const float* x,
|
351
|
+
idx_t k,
|
352
|
+
float* distances,
|
353
|
+
idx_t* labels,
|
354
|
+
const SearchParameters* params_in) const {
|
355
|
+
FAISS_THROW_IF_NOT(k > 0);
|
356
|
+
|
357
|
+
using RH = HeapBlockResultHandler<HNSW::C>;
|
358
|
+
RH bres(n, distances, labels, k);
|
359
|
+
|
360
|
+
hnsw_search(this, n, x, bres, params_in);
|
361
|
+
|
362
|
+
if (is_similarity_metric(this->metric_type)) {
|
350
363
|
// we need to revert the negated distances
|
351
364
|
for (size_t i = 0; i < k * n; i++) {
|
352
365
|
distances[i] = -distances[i];
|
353
366
|
}
|
354
367
|
}
|
368
|
+
}
|
355
369
|
|
356
|
-
|
370
|
+
void IndexHNSW::range_search(
|
371
|
+
idx_t n,
|
372
|
+
const float* x,
|
373
|
+
float radius,
|
374
|
+
RangeSearchResult* result,
|
375
|
+
const SearchParameters* params) const {
|
376
|
+
using RH = RangeSearchBlockResultHandler<HNSW::C>;
|
377
|
+
RH bres(result, radius);
|
378
|
+
|
379
|
+
hnsw_search(this, n, x, bres, params);
|
380
|
+
|
381
|
+
if (is_similarity_metric(this->metric_type)) {
|
382
|
+
// we need to revert the negated distances
|
383
|
+
for (size_t i = 0; i < result->lims[result->nq]; i++) {
|
384
|
+
result->distances[i] = -result->distances[i];
|
385
|
+
}
|
386
|
+
}
|
357
387
|
}
|
358
388
|
|
359
389
|
void IndexHNSW::add(idx_t n, const float* x) {
|
@@ -381,8 +411,8 @@ void IndexHNSW::reconstruct(idx_t key, float* recons) const {
|
|
381
411
|
void IndexHNSW::shrink_level_0_neighbors(int new_size) {
|
382
412
|
#pragma omp parallel
|
383
413
|
{
|
384
|
-
DistanceComputer
|
385
|
-
|
414
|
+
std::unique_ptr<DistanceComputer> dis(
|
415
|
+
storage_distance_computer(storage));
|
386
416
|
|
387
417
|
#pragma omp for
|
388
418
|
for (idx_t i = 0; i < ntotal; i++) {
|
@@ -429,35 +459,33 @@ void IndexHNSW::search_level_0(
|
|
429
459
|
|
430
460
|
storage_idx_t ntotal = hnsw.levels.size();
|
431
461
|
|
462
|
+
using RH = HeapBlockResultHandler<HNSW::C>;
|
463
|
+
RH bres(n, distances, labels, k);
|
464
|
+
|
432
465
|
#pragma omp parallel
|
433
466
|
{
|
434
467
|
std::unique_ptr<DistanceComputer> qdis(
|
435
468
|
storage_distance_computer(storage));
|
436
469
|
HNSWStats search_stats;
|
437
470
|
VisitedTable vt(ntotal);
|
471
|
+
RH::SingleResultHandler res(bres);
|
438
472
|
|
439
473
|
#pragma omp for
|
440
474
|
for (idx_t i = 0; i < n; i++) {
|
441
|
-
|
442
|
-
float* simi = distances + i * k;
|
443
|
-
|
475
|
+
res.begin(i);
|
444
476
|
qdis->set_query(x + i * d);
|
445
|
-
maxheap_heapify(k, simi, idxi);
|
446
477
|
|
447
478
|
hnsw.search_level_0(
|
448
479
|
*qdis.get(),
|
449
|
-
|
450
|
-
idxi,
|
451
|
-
simi,
|
480
|
+
res,
|
452
481
|
nprobe,
|
453
482
|
nearest + i * nprobe,
|
454
483
|
nearest_d + i * nprobe,
|
455
484
|
search_type,
|
456
485
|
search_stats,
|
457
486
|
vt);
|
458
|
-
|
487
|
+
res.end();
|
459
488
|
vt.advance();
|
460
|
-
maxheap_reorder(k, simi, idxi);
|
461
489
|
}
|
462
490
|
#pragma omp critical
|
463
491
|
{ hnsw_stats.combine(search_stats); }
|
@@ -515,8 +543,8 @@ void IndexHNSW::init_level_0_from_entry_points(
|
|
515
543
|
{
|
516
544
|
VisitedTable vt(ntotal);
|
517
545
|
|
518
|
-
DistanceComputer
|
519
|
-
|
546
|
+
std::unique_ptr<DistanceComputer> dis(
|
547
|
+
storage_distance_computer(storage));
|
520
548
|
std::vector<float> vec(storage->d);
|
521
549
|
|
522
550
|
#pragma omp for schedule(dynamic)
|
@@ -551,8 +579,8 @@ void IndexHNSW::reorder_links() {
|
|
551
579
|
std::vector<float> distances(M);
|
552
580
|
std::vector<size_t> order(M);
|
553
581
|
std::vector<storage_idx_t> tmp(M);
|
554
|
-
DistanceComputer
|
555
|
-
|
582
|
+
std::unique_ptr<DistanceComputer> dis(
|
583
|
+
storage_distance_computer(storage));
|
556
584
|
|
557
585
|
#pragma omp for
|
558
586
|
for (storage_idx_t i = 0; i < ntotal; i++) {
|
@@ -614,245 +642,12 @@ void IndexHNSW::link_singletons() {
|
|
614
642
|
}
|
615
643
|
}
|
616
644
|
|
617
|
-
|
618
|
-
|
619
|
-
|
620
|
-
|
621
|
-
|
622
|
-
|
623
|
-
size_t k,
|
624
|
-
size_t nsq)
|
625
|
-
: index(index), k(k), nsq(nsq) {
|
626
|
-
M = index.hnsw.nb_neighbors(0);
|
627
|
-
FAISS_ASSERT(k <= 256);
|
628
|
-
code_size = k == 1 ? 0 : nsq;
|
629
|
-
ntotal = 0;
|
630
|
-
d = index.d;
|
631
|
-
FAISS_ASSERT(d % nsq == 0);
|
632
|
-
dsub = d / nsq;
|
633
|
-
k_reorder = -1;
|
634
|
-
}
|
635
|
-
|
636
|
-
void ReconstructFromNeighbors::reconstruct(
|
637
|
-
storage_idx_t i,
|
638
|
-
float* x,
|
639
|
-
float* tmp) const {
|
640
|
-
const HNSW& hnsw = index.hnsw;
|
641
|
-
size_t begin, end;
|
642
|
-
hnsw.neighbor_range(i, 0, &begin, &end);
|
643
|
-
|
644
|
-
if (k == 1 || nsq == 1) {
|
645
|
-
const float* beta;
|
646
|
-
if (k == 1) {
|
647
|
-
beta = codebook.data();
|
648
|
-
} else {
|
649
|
-
int idx = codes[i];
|
650
|
-
beta = codebook.data() + idx * (M + 1);
|
651
|
-
}
|
652
|
-
|
653
|
-
float w0 = beta[0]; // weight of image itself
|
654
|
-
index.storage->reconstruct(i, tmp);
|
655
|
-
|
656
|
-
for (int l = 0; l < d; l++)
|
657
|
-
x[l] = w0 * tmp[l];
|
658
|
-
|
659
|
-
for (size_t j = begin; j < end; j++) {
|
660
|
-
storage_idx_t ji = hnsw.neighbors[j];
|
661
|
-
if (ji < 0)
|
662
|
-
ji = i;
|
663
|
-
float w = beta[j - begin + 1];
|
664
|
-
index.storage->reconstruct(ji, tmp);
|
665
|
-
for (int l = 0; l < d; l++)
|
666
|
-
x[l] += w * tmp[l];
|
667
|
-
}
|
668
|
-
} else if (nsq == 2) {
|
669
|
-
int idx0 = codes[2 * i];
|
670
|
-
int idx1 = codes[2 * i + 1];
|
671
|
-
|
672
|
-
const float* beta0 = codebook.data() + idx0 * (M + 1);
|
673
|
-
const float* beta1 = codebook.data() + (idx1 + k) * (M + 1);
|
674
|
-
|
675
|
-
index.storage->reconstruct(i, tmp);
|
676
|
-
|
677
|
-
float w0;
|
678
|
-
|
679
|
-
w0 = beta0[0];
|
680
|
-
for (int l = 0; l < dsub; l++)
|
681
|
-
x[l] = w0 * tmp[l];
|
682
|
-
|
683
|
-
w0 = beta1[0];
|
684
|
-
for (int l = dsub; l < d; l++)
|
685
|
-
x[l] = w0 * tmp[l];
|
686
|
-
|
687
|
-
for (size_t j = begin; j < end; j++) {
|
688
|
-
storage_idx_t ji = hnsw.neighbors[j];
|
689
|
-
if (ji < 0)
|
690
|
-
ji = i;
|
691
|
-
index.storage->reconstruct(ji, tmp);
|
692
|
-
float w;
|
693
|
-
w = beta0[j - begin + 1];
|
694
|
-
for (int l = 0; l < dsub; l++)
|
695
|
-
x[l] += w * tmp[l];
|
696
|
-
|
697
|
-
w = beta1[j - begin + 1];
|
698
|
-
for (int l = dsub; l < d; l++)
|
699
|
-
x[l] += w * tmp[l];
|
700
|
-
}
|
701
|
-
} else {
|
702
|
-
std::vector<const float*> betas(nsq);
|
703
|
-
{
|
704
|
-
const float* b = codebook.data();
|
705
|
-
const uint8_t* c = &codes[i * code_size];
|
706
|
-
for (int sq = 0; sq < nsq; sq++) {
|
707
|
-
betas[sq] = b + (*c++) * (M + 1);
|
708
|
-
b += (M + 1) * k;
|
709
|
-
}
|
710
|
-
}
|
711
|
-
|
712
|
-
index.storage->reconstruct(i, tmp);
|
713
|
-
{
|
714
|
-
int d0 = 0;
|
715
|
-
for (int sq = 0; sq < nsq; sq++) {
|
716
|
-
float w = *(betas[sq]++);
|
717
|
-
int d1 = d0 + dsub;
|
718
|
-
for (int l = d0; l < d1; l++) {
|
719
|
-
x[l] = w * tmp[l];
|
720
|
-
}
|
721
|
-
d0 = d1;
|
722
|
-
}
|
723
|
-
}
|
724
|
-
|
725
|
-
for (size_t j = begin; j < end; j++) {
|
726
|
-
storage_idx_t ji = hnsw.neighbors[j];
|
727
|
-
if (ji < 0)
|
728
|
-
ji = i;
|
729
|
-
|
730
|
-
index.storage->reconstruct(ji, tmp);
|
731
|
-
int d0 = 0;
|
732
|
-
for (int sq = 0; sq < nsq; sq++) {
|
733
|
-
float w = *(betas[sq]++);
|
734
|
-
int d1 = d0 + dsub;
|
735
|
-
for (int l = d0; l < d1; l++) {
|
736
|
-
x[l] += w * tmp[l];
|
737
|
-
}
|
738
|
-
d0 = d1;
|
739
|
-
}
|
740
|
-
}
|
741
|
-
}
|
742
|
-
}
|
743
|
-
|
744
|
-
void ReconstructFromNeighbors::reconstruct_n(
|
745
|
-
storage_idx_t n0,
|
746
|
-
storage_idx_t ni,
|
747
|
-
float* x) const {
|
748
|
-
#pragma omp parallel
|
749
|
-
{
|
750
|
-
std::vector<float> tmp(index.d);
|
751
|
-
#pragma omp for
|
752
|
-
for (storage_idx_t i = 0; i < ni; i++) {
|
753
|
-
reconstruct(n0 + i, x + i * index.d, tmp.data());
|
754
|
-
}
|
755
|
-
}
|
756
|
-
}
|
757
|
-
|
758
|
-
size_t ReconstructFromNeighbors::compute_distances(
|
759
|
-
size_t n,
|
760
|
-
const idx_t* shortlist,
|
761
|
-
const float* query,
|
762
|
-
float* distances) const {
|
763
|
-
std::vector<float> tmp(2 * index.d);
|
764
|
-
size_t ncomp = 0;
|
765
|
-
for (int i = 0; i < n; i++) {
|
766
|
-
if (shortlist[i] < 0)
|
767
|
-
break;
|
768
|
-
reconstruct(shortlist[i], tmp.data(), tmp.data() + index.d);
|
769
|
-
distances[i] = fvec_L2sqr(query, tmp.data(), index.d);
|
770
|
-
ncomp++;
|
771
|
-
}
|
772
|
-
return ncomp;
|
773
|
-
}
|
774
|
-
|
775
|
-
void ReconstructFromNeighbors::get_neighbor_table(storage_idx_t i, float* tmp1)
|
776
|
-
const {
|
777
|
-
const HNSW& hnsw = index.hnsw;
|
778
|
-
size_t begin, end;
|
779
|
-
hnsw.neighbor_range(i, 0, &begin, &end);
|
780
|
-
size_t d = index.d;
|
781
|
-
|
782
|
-
index.storage->reconstruct(i, tmp1);
|
783
|
-
|
784
|
-
for (size_t j = begin; j < end; j++) {
|
785
|
-
storage_idx_t ji = hnsw.neighbors[j];
|
786
|
-
if (ji < 0)
|
787
|
-
ji = i;
|
788
|
-
index.storage->reconstruct(ji, tmp1 + (j - begin + 1) * d);
|
789
|
-
}
|
790
|
-
}
|
791
|
-
|
792
|
-
/// called by add_codes
|
793
|
-
void ReconstructFromNeighbors::estimate_code(
|
794
|
-
const float* x,
|
795
|
-
storage_idx_t i,
|
796
|
-
uint8_t* code) const {
|
797
|
-
// fill in tmp table with the neighbor values
|
798
|
-
float* tmp1 = new float[d * (M + 1) + (d * k)];
|
799
|
-
float* tmp2 = tmp1 + d * (M + 1);
|
800
|
-
ScopeDeleter<float> del(tmp1);
|
801
|
-
|
802
|
-
// collect coordinates of base
|
803
|
-
get_neighbor_table(i, tmp1);
|
804
|
-
|
805
|
-
for (size_t sq = 0; sq < nsq; sq++) {
|
806
|
-
int d0 = sq * dsub;
|
807
|
-
|
808
|
-
{
|
809
|
-
FINTEGER ki = k, di = d, m1 = M + 1;
|
810
|
-
FINTEGER dsubi = dsub;
|
811
|
-
float zero = 0, one = 1;
|
812
|
-
|
813
|
-
sgemm_("N",
|
814
|
-
"N",
|
815
|
-
&dsubi,
|
816
|
-
&ki,
|
817
|
-
&m1,
|
818
|
-
&one,
|
819
|
-
tmp1 + d0,
|
820
|
-
&di,
|
821
|
-
codebook.data() + sq * (m1 * k),
|
822
|
-
&m1,
|
823
|
-
&zero,
|
824
|
-
tmp2,
|
825
|
-
&dsubi);
|
826
|
-
}
|
827
|
-
|
828
|
-
float min = HUGE_VAL;
|
829
|
-
int argmin = -1;
|
830
|
-
for (size_t j = 0; j < k; j++) {
|
831
|
-
float dis = fvec_L2sqr(x + d0, tmp2 + j * dsub, dsub);
|
832
|
-
if (dis < min) {
|
833
|
-
min = dis;
|
834
|
-
argmin = j;
|
835
|
-
}
|
836
|
-
}
|
837
|
-
code[sq] = argmin;
|
838
|
-
}
|
839
|
-
}
|
840
|
-
|
841
|
-
void ReconstructFromNeighbors::add_codes(size_t n, const float* x) {
|
842
|
-
if (k == 1) { // nothing to encode
|
843
|
-
ntotal += n;
|
844
|
-
return;
|
845
|
-
}
|
846
|
-
codes.resize(codes.size() + code_size * n);
|
847
|
-
#pragma omp parallel for
|
848
|
-
for (int i = 0; i < n; i++) {
|
849
|
-
estimate_code(
|
850
|
-
x + i * index.d,
|
851
|
-
ntotal + i,
|
852
|
-
codes.data() + (ntotal + i) * code_size);
|
853
|
-
}
|
854
|
-
ntotal += n;
|
855
|
-
FAISS_ASSERT(codes.size() == ntotal * code_size);
|
645
|
+
void IndexHNSW::permute_entries(const idx_t* perm) {
|
646
|
+
auto flat_storage = dynamic_cast<IndexFlatCodes*>(storage);
|
647
|
+
FAISS_THROW_IF_NOT_MSG(
|
648
|
+
flat_storage, "don't know how to permute this index");
|
649
|
+
flat_storage->permute_entries(perm);
|
650
|
+
hnsw.permute_entries(perm);
|
856
651
|
}
|
857
652
|
|
858
653
|
/**************************************************************
|
@@ -864,7 +659,10 @@ IndexHNSWFlat::IndexHNSWFlat() {
|
|
864
659
|
}
|
865
660
|
|
866
661
|
IndexHNSWFlat::IndexHNSWFlat(int d, int M, MetricType metric)
|
867
|
-
: IndexHNSW(
|
662
|
+
: IndexHNSW(
|
663
|
+
(metric == METRIC_L2) ? new IndexFlatL2(d)
|
664
|
+
: new IndexFlat(d, metric),
|
665
|
+
M) {
|
868
666
|
own_fields = true;
|
869
667
|
is_trained = true;
|
870
668
|
}
|
@@ -873,10 +671,10 @@ IndexHNSWFlat::IndexHNSWFlat(int d, int M, MetricType metric)
|
|
873
671
|
* IndexHNSWPQ implementation
|
874
672
|
**************************************************************/
|
875
673
|
|
876
|
-
IndexHNSWPQ::IndexHNSWPQ()
|
674
|
+
IndexHNSWPQ::IndexHNSWPQ() = default;
|
877
675
|
|
878
|
-
IndexHNSWPQ::IndexHNSWPQ(int d, int pq_m, int M)
|
879
|
-
: IndexHNSW(new IndexPQ(d, pq_m,
|
676
|
+
IndexHNSWPQ::IndexHNSWPQ(int d, int pq_m, int M, int pq_nbits)
|
677
|
+
: IndexHNSW(new IndexPQ(d, pq_m, pq_nbits), M) {
|
880
678
|
own_fields = true;
|
881
679
|
is_trained = false;
|
882
680
|
}
|
@@ -896,11 +694,11 @@ IndexHNSWSQ::IndexHNSWSQ(
|
|
896
694
|
int M,
|
897
695
|
MetricType metric)
|
898
696
|
: IndexHNSW(new IndexScalarQuantizer(d, qtype, metric), M) {
|
899
|
-
is_trained =
|
697
|
+
is_trained = this->storage->is_trained;
|
900
698
|
own_fields = true;
|
901
699
|
}
|
902
700
|
|
903
|
-
IndexHNSWSQ::IndexHNSWSQ()
|
701
|
+
IndexHNSWSQ::IndexHNSWSQ() = default;
|
904
702
|
|
905
703
|
/**************************************************************
|
906
704
|
* IndexHNSW2Level implementation
|
@@ -916,7 +714,7 @@ IndexHNSW2Level::IndexHNSW2Level(
|
|
916
714
|
is_trained = false;
|
917
715
|
}
|
918
716
|
|
919
|
-
IndexHNSW2Level::IndexHNSW2Level()
|
717
|
+
IndexHNSW2Level::IndexHNSW2Level() = default;
|
920
718
|
|
921
719
|
namespace {
|
922
720
|
|
@@ -935,7 +733,6 @@ int search_from_candidates_2(
|
|
935
733
|
int level,
|
936
734
|
int nres_in = 0) {
|
937
735
|
int nres = nres_in;
|
938
|
-
int ndis = 0;
|
939
736
|
for (int i = 0; i < candidates.size(); i++) {
|
940
737
|
idx_t v1 = candidates.ids[i];
|
941
738
|
FAISS_ASSERT(v1 >= 0);
|
@@ -958,7 +755,6 @@ int search_from_candidates_2(
|
|
958
755
|
if (vt.visited[v1] == vt.visno + 1) {
|
959
756
|
// nothing to do
|
960
757
|
} else {
|
961
|
-
ndis++;
|
962
758
|
float d = qdis(v1);
|
963
759
|
candidates.push(v1, d);
|
964
760
|
|
@@ -1030,8 +826,8 @@ void IndexHNSW2Level::search(
|
|
1030
826
|
#pragma omp parallel
|
1031
827
|
{
|
1032
828
|
VisitedTable vt(ntotal);
|
1033
|
-
DistanceComputer
|
1034
|
-
|
829
|
+
std::unique_ptr<DistanceComputer> dis(
|
830
|
+
storage_distance_computer(storage));
|
1035
831
|
|
1036
832
|
int candidates_size = hnsw.upper_beam;
|
1037
833
|
MinimaxHeap candidates(candidates_size);
|