faiss 0.1.5 → 0.2.2
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +24 -0
- data/README.md +12 -0
- data/ext/faiss/ext.cpp +1 -1
- data/ext/faiss/extconf.rb +6 -2
- data/ext/faiss/index.cpp +114 -43
- data/ext/faiss/index_binary.cpp +24 -30
- data/ext/faiss/kmeans.cpp +20 -16
- data/ext/faiss/numo.hpp +867 -0
- data/ext/faiss/pca_matrix.cpp +13 -14
- data/ext/faiss/product_quantizer.cpp +23 -24
- data/ext/faiss/utils.cpp +10 -37
- data/ext/faiss/utils.h +2 -13
- data/lib/faiss.rb +0 -5
- data/lib/faiss/version.rb +1 -1
- data/vendor/faiss/faiss/AutoTune.cpp +292 -291
- data/vendor/faiss/faiss/AutoTune.h +55 -56
- data/vendor/faiss/faiss/Clustering.cpp +334 -195
- data/vendor/faiss/faiss/Clustering.h +88 -35
- data/vendor/faiss/faiss/IVFlib.cpp +171 -195
- data/vendor/faiss/faiss/IVFlib.h +48 -51
- data/vendor/faiss/faiss/Index.cpp +85 -103
- data/vendor/faiss/faiss/Index.h +54 -48
- data/vendor/faiss/faiss/Index2Layer.cpp +139 -164
- data/vendor/faiss/faiss/Index2Layer.h +22 -22
- data/vendor/faiss/faiss/IndexBinary.cpp +45 -37
- data/vendor/faiss/faiss/IndexBinary.h +140 -132
- data/vendor/faiss/faiss/IndexBinaryFlat.cpp +73 -53
- data/vendor/faiss/faiss/IndexBinaryFlat.h +29 -24
- data/vendor/faiss/faiss/IndexBinaryFromFloat.cpp +46 -43
- data/vendor/faiss/faiss/IndexBinaryFromFloat.h +16 -15
- data/vendor/faiss/faiss/IndexBinaryHNSW.cpp +215 -232
- data/vendor/faiss/faiss/IndexBinaryHNSW.h +25 -24
- data/vendor/faiss/faiss/IndexBinaryHash.cpp +182 -177
- data/vendor/faiss/faiss/IndexBinaryHash.h +41 -34
- data/vendor/faiss/faiss/IndexBinaryIVF.cpp +489 -461
- data/vendor/faiss/faiss/IndexBinaryIVF.h +97 -68
- data/vendor/faiss/faiss/IndexFlat.cpp +116 -147
- data/vendor/faiss/faiss/IndexFlat.h +35 -46
- data/vendor/faiss/faiss/IndexHNSW.cpp +372 -348
- data/vendor/faiss/faiss/IndexHNSW.h +57 -41
- data/vendor/faiss/faiss/IndexIVF.cpp +474 -454
- data/vendor/faiss/faiss/IndexIVF.h +146 -113
- data/vendor/faiss/faiss/IndexIVFFlat.cpp +248 -250
- data/vendor/faiss/faiss/IndexIVFFlat.h +48 -51
- data/vendor/faiss/faiss/IndexIVFPQ.cpp +457 -516
- data/vendor/faiss/faiss/IndexIVFPQ.h +74 -66
- data/vendor/faiss/faiss/IndexIVFPQFastScan.cpp +406 -372
- data/vendor/faiss/faiss/IndexIVFPQFastScan.h +82 -57
- data/vendor/faiss/faiss/IndexIVFPQR.cpp +104 -102
- data/vendor/faiss/faiss/IndexIVFPQR.h +33 -28
- data/vendor/faiss/faiss/IndexIVFSpectralHash.cpp +125 -133
- data/vendor/faiss/faiss/IndexIVFSpectralHash.h +19 -21
- data/vendor/faiss/faiss/IndexLSH.cpp +75 -96
- data/vendor/faiss/faiss/IndexLSH.h +21 -26
- data/vendor/faiss/faiss/IndexLattice.cpp +42 -56
- data/vendor/faiss/faiss/IndexLattice.h +11 -16
- data/vendor/faiss/faiss/IndexNNDescent.cpp +231 -0
- data/vendor/faiss/faiss/IndexNNDescent.h +72 -0
- data/vendor/faiss/faiss/IndexNSG.cpp +303 -0
- data/vendor/faiss/faiss/IndexNSG.h +85 -0
- data/vendor/faiss/faiss/IndexPQ.cpp +405 -464
- data/vendor/faiss/faiss/IndexPQ.h +64 -67
- data/vendor/faiss/faiss/IndexPQFastScan.cpp +143 -170
- data/vendor/faiss/faiss/IndexPQFastScan.h +46 -32
- data/vendor/faiss/faiss/IndexPreTransform.cpp +120 -150
- data/vendor/faiss/faiss/IndexPreTransform.h +33 -36
- data/vendor/faiss/faiss/IndexRefine.cpp +115 -131
- data/vendor/faiss/faiss/IndexRefine.h +22 -23
- data/vendor/faiss/faiss/IndexReplicas.cpp +147 -153
- data/vendor/faiss/faiss/IndexReplicas.h +62 -56
- data/vendor/faiss/faiss/IndexResidual.cpp +291 -0
- data/vendor/faiss/faiss/IndexResidual.h +152 -0
- data/vendor/faiss/faiss/IndexScalarQuantizer.cpp +120 -155
- data/vendor/faiss/faiss/IndexScalarQuantizer.h +41 -45
- data/vendor/faiss/faiss/IndexShards.cpp +256 -240
- data/vendor/faiss/faiss/IndexShards.h +85 -73
- data/vendor/faiss/faiss/MatrixStats.cpp +112 -97
- data/vendor/faiss/faiss/MatrixStats.h +7 -10
- data/vendor/faiss/faiss/MetaIndexes.cpp +135 -157
- data/vendor/faiss/faiss/MetaIndexes.h +40 -34
- data/vendor/faiss/faiss/MetricType.h +7 -7
- data/vendor/faiss/faiss/VectorTransform.cpp +652 -474
- data/vendor/faiss/faiss/VectorTransform.h +61 -89
- data/vendor/faiss/faiss/clone_index.cpp +77 -73
- data/vendor/faiss/faiss/clone_index.h +4 -9
- data/vendor/faiss/faiss/gpu/GpuAutoTune.cpp +33 -38
- data/vendor/faiss/faiss/gpu/GpuAutoTune.h +11 -9
- data/vendor/faiss/faiss/gpu/GpuCloner.cpp +197 -170
- data/vendor/faiss/faiss/gpu/GpuCloner.h +53 -35
- data/vendor/faiss/faiss/gpu/GpuClonerOptions.cpp +12 -14
- data/vendor/faiss/faiss/gpu/GpuClonerOptions.h +27 -25
- data/vendor/faiss/faiss/gpu/GpuDistance.h +116 -112
- data/vendor/faiss/faiss/gpu/GpuFaissAssert.h +1 -2
- data/vendor/faiss/faiss/gpu/GpuIndex.h +134 -137
- data/vendor/faiss/faiss/gpu/GpuIndexBinaryFlat.h +76 -73
- data/vendor/faiss/faiss/gpu/GpuIndexFlat.h +173 -162
- data/vendor/faiss/faiss/gpu/GpuIndexIVF.h +67 -64
- data/vendor/faiss/faiss/gpu/GpuIndexIVFFlat.h +89 -86
- data/vendor/faiss/faiss/gpu/GpuIndexIVFPQ.h +150 -141
- data/vendor/faiss/faiss/gpu/GpuIndexIVFScalarQuantizer.h +101 -103
- data/vendor/faiss/faiss/gpu/GpuIndicesOptions.h +17 -16
- data/vendor/faiss/faiss/gpu/GpuResources.cpp +116 -128
- data/vendor/faiss/faiss/gpu/GpuResources.h +182 -186
- data/vendor/faiss/faiss/gpu/StandardGpuResources.cpp +433 -422
- data/vendor/faiss/faiss/gpu/StandardGpuResources.h +131 -130
- data/vendor/faiss/faiss/gpu/impl/InterleavedCodes.cpp +468 -456
- data/vendor/faiss/faiss/gpu/impl/InterleavedCodes.h +25 -19
- data/vendor/faiss/faiss/gpu/impl/RemapIndices.cpp +22 -20
- data/vendor/faiss/faiss/gpu/impl/RemapIndices.h +9 -8
- data/vendor/faiss/faiss/gpu/perf/IndexWrapper-inl.h +39 -44
- data/vendor/faiss/faiss/gpu/perf/IndexWrapper.h +16 -14
- data/vendor/faiss/faiss/gpu/perf/PerfClustering.cpp +77 -71
- data/vendor/faiss/faiss/gpu/perf/PerfIVFPQAdd.cpp +109 -88
- data/vendor/faiss/faiss/gpu/perf/WriteIndex.cpp +75 -64
- data/vendor/faiss/faiss/gpu/test/TestCodePacking.cpp +230 -215
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexBinaryFlat.cpp +80 -86
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexFlat.cpp +284 -277
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFFlat.cpp +416 -416
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFPQ.cpp +611 -517
- data/vendor/faiss/faiss/gpu/test/TestGpuIndexIVFScalarQuantizer.cpp +166 -164
- data/vendor/faiss/faiss/gpu/test/TestGpuMemoryException.cpp +61 -53
- data/vendor/faiss/faiss/gpu/test/TestUtils.cpp +274 -238
- data/vendor/faiss/faiss/gpu/test/TestUtils.h +73 -57
- data/vendor/faiss/faiss/gpu/test/demo_ivfpq_indexing_gpu.cpp +47 -50
- data/vendor/faiss/faiss/gpu/utils/DeviceUtils.h +79 -72
- data/vendor/faiss/faiss/gpu/utils/StackDeviceMemory.cpp +140 -146
- data/vendor/faiss/faiss/gpu/utils/StackDeviceMemory.h +69 -71
- data/vendor/faiss/faiss/gpu/utils/StaticUtils.h +21 -16
- data/vendor/faiss/faiss/gpu/utils/Timer.cpp +25 -29
- data/vendor/faiss/faiss/gpu/utils/Timer.h +30 -29
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.cpp +270 -0
- data/vendor/faiss/faiss/impl/AdditiveQuantizer.h +115 -0
- data/vendor/faiss/faiss/impl/AuxIndexStructures.cpp +90 -120
- data/vendor/faiss/faiss/impl/AuxIndexStructures.h +81 -65
- data/vendor/faiss/faiss/impl/FaissAssert.h +73 -58
- data/vendor/faiss/faiss/impl/FaissException.cpp +56 -48
- data/vendor/faiss/faiss/impl/FaissException.h +41 -29
- data/vendor/faiss/faiss/impl/HNSW.cpp +595 -611
- data/vendor/faiss/faiss/impl/HNSW.h +179 -200
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.cpp +672 -0
- data/vendor/faiss/faiss/impl/LocalSearchQuantizer.h +172 -0
- data/vendor/faiss/faiss/impl/NNDescent.cpp +487 -0
- data/vendor/faiss/faiss/impl/NNDescent.h +154 -0
- data/vendor/faiss/faiss/impl/NSG.cpp +682 -0
- data/vendor/faiss/faiss/impl/NSG.h +199 -0
- data/vendor/faiss/faiss/impl/PolysemousTraining.cpp +484 -454
- data/vendor/faiss/faiss/impl/PolysemousTraining.h +52 -55
- data/vendor/faiss/faiss/impl/ProductQuantizer-inl.h +26 -47
- data/vendor/faiss/faiss/impl/ProductQuantizer.cpp +469 -459
- data/vendor/faiss/faiss/impl/ProductQuantizer.h +76 -87
- data/vendor/faiss/faiss/impl/ResidualQuantizer.cpp +448 -0
- data/vendor/faiss/faiss/impl/ResidualQuantizer.h +130 -0
- data/vendor/faiss/faiss/impl/ResultHandler.h +96 -132
- data/vendor/faiss/faiss/impl/ScalarQuantizer.cpp +648 -701
- data/vendor/faiss/faiss/impl/ScalarQuantizer.h +48 -46
- data/vendor/faiss/faiss/impl/ThreadedIndex-inl.h +129 -131
- data/vendor/faiss/faiss/impl/ThreadedIndex.h +61 -55
- data/vendor/faiss/faiss/impl/index_read.cpp +547 -479
- data/vendor/faiss/faiss/impl/index_write.cpp +497 -407
- data/vendor/faiss/faiss/impl/io.cpp +75 -94
- data/vendor/faiss/faiss/impl/io.h +31 -41
- data/vendor/faiss/faiss/impl/io_macros.h +40 -29
- data/vendor/faiss/faiss/impl/lattice_Zn.cpp +137 -186
- data/vendor/faiss/faiss/impl/lattice_Zn.h +40 -51
- data/vendor/faiss/faiss/impl/platform_macros.h +29 -8
- data/vendor/faiss/faiss/impl/pq4_fast_scan.cpp +77 -124
- data/vendor/faiss/faiss/impl/pq4_fast_scan.h +39 -48
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_1.cpp +41 -52
- data/vendor/faiss/faiss/impl/pq4_fast_scan_search_qbs.cpp +80 -117
- data/vendor/faiss/faiss/impl/simd_result_handlers.h +109 -137
- data/vendor/faiss/faiss/index_factory.cpp +269 -218
- data/vendor/faiss/faiss/index_factory.h +6 -7
- data/vendor/faiss/faiss/index_io.h +23 -26
- data/vendor/faiss/faiss/invlists/BlockInvertedLists.cpp +67 -75
- data/vendor/faiss/faiss/invlists/BlockInvertedLists.h +22 -24
- data/vendor/faiss/faiss/invlists/DirectMap.cpp +96 -112
- data/vendor/faiss/faiss/invlists/DirectMap.h +29 -33
- data/vendor/faiss/faiss/invlists/InvertedLists.cpp +307 -364
- data/vendor/faiss/faiss/invlists/InvertedLists.h +151 -151
- data/vendor/faiss/faiss/invlists/InvertedListsIOHook.cpp +29 -34
- data/vendor/faiss/faiss/invlists/InvertedListsIOHook.h +17 -18
- data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.cpp +257 -293
- data/vendor/faiss/faiss/invlists/OnDiskInvertedLists.h +50 -45
- data/vendor/faiss/faiss/python/python_callbacks.cpp +23 -26
- data/vendor/faiss/faiss/python/python_callbacks.h +9 -16
- data/vendor/faiss/faiss/utils/AlignedTable.h +79 -44
- data/vendor/faiss/faiss/utils/Heap.cpp +40 -48
- data/vendor/faiss/faiss/utils/Heap.h +186 -209
- data/vendor/faiss/faiss/utils/WorkerThread.cpp +67 -76
- data/vendor/faiss/faiss/utils/WorkerThread.h +32 -33
- data/vendor/faiss/faiss/utils/distances.cpp +301 -310
- data/vendor/faiss/faiss/utils/distances.h +133 -118
- data/vendor/faiss/faiss/utils/distances_simd.cpp +456 -516
- data/vendor/faiss/faiss/utils/extra_distances-inl.h +117 -0
- data/vendor/faiss/faiss/utils/extra_distances.cpp +113 -232
- data/vendor/faiss/faiss/utils/extra_distances.h +30 -29
- data/vendor/faiss/faiss/utils/hamming-inl.h +260 -209
- data/vendor/faiss/faiss/utils/hamming.cpp +375 -469
- data/vendor/faiss/faiss/utils/hamming.h +62 -85
- data/vendor/faiss/faiss/utils/ordered_key_value.h +16 -18
- data/vendor/faiss/faiss/utils/partitioning.cpp +393 -318
- data/vendor/faiss/faiss/utils/partitioning.h +26 -21
- data/vendor/faiss/faiss/utils/quantize_lut.cpp +78 -66
- data/vendor/faiss/faiss/utils/quantize_lut.h +22 -20
- data/vendor/faiss/faiss/utils/random.cpp +39 -63
- data/vendor/faiss/faiss/utils/random.h +13 -16
- data/vendor/faiss/faiss/utils/simdlib.h +4 -2
- data/vendor/faiss/faiss/utils/simdlib_avx2.h +88 -85
- data/vendor/faiss/faiss/utils/simdlib_emulated.h +226 -165
- data/vendor/faiss/faiss/utils/simdlib_neon.h +832 -0
- data/vendor/faiss/faiss/utils/utils.cpp +304 -287
- data/vendor/faiss/faiss/utils/utils.h +53 -48
- metadata +24 -10
- data/lib/faiss/index.rb +0 -20
- data/lib/faiss/index_binary.rb +0 -20
- data/lib/faiss/kmeans.rb +0 -15
- data/lib/faiss/pca_matrix.rb +0 -15
- data/lib/faiss/product_quantizer.rb +0 -22
@@ -0,0 +1,672 @@
|
|
1
|
+
/**
|
2
|
+
* Copyright (c) Facebook, Inc. and its affiliates.
|
3
|
+
*
|
4
|
+
* This source code is licensed under the MIT license found in the
|
5
|
+
* LICENSE file in the root directory of this source tree.
|
6
|
+
*/
|
7
|
+
|
8
|
+
// -*- c++ -*-
|
9
|
+
|
10
|
+
#include <faiss/impl/FaissAssert.h>
|
11
|
+
#include <faiss/impl/LocalSearchQuantizer.h>
|
12
|
+
|
13
|
+
#include <cstddef>
|
14
|
+
#include <cstdio>
|
15
|
+
#include <cstring>
|
16
|
+
#include <memory>
|
17
|
+
#include <random>
|
18
|
+
|
19
|
+
#include <algorithm>
|
20
|
+
|
21
|
+
#include <faiss/utils/distances.h>
|
22
|
+
#include <faiss/utils/hamming.h> // BitstringWriter
|
23
|
+
#include <faiss/utils/utils.h>
|
24
|
+
|
25
|
+
extern "C" {
|
26
|
+
// LU decomoposition of a general matrix
|
27
|
+
void sgetrf_(
|
28
|
+
FINTEGER* m,
|
29
|
+
FINTEGER* n,
|
30
|
+
float* a,
|
31
|
+
FINTEGER* lda,
|
32
|
+
FINTEGER* ipiv,
|
33
|
+
FINTEGER* info);
|
34
|
+
|
35
|
+
// generate inverse of a matrix given its LU decomposition
|
36
|
+
void sgetri_(
|
37
|
+
FINTEGER* n,
|
38
|
+
float* a,
|
39
|
+
FINTEGER* lda,
|
40
|
+
FINTEGER* ipiv,
|
41
|
+
float* work,
|
42
|
+
FINTEGER* lwork,
|
43
|
+
FINTEGER* info);
|
44
|
+
|
45
|
+
// solves a system of linear equations
|
46
|
+
void sgetrs_(
|
47
|
+
const char* trans,
|
48
|
+
FINTEGER* n,
|
49
|
+
FINTEGER* nrhs,
|
50
|
+
float* A,
|
51
|
+
FINTEGER* lda,
|
52
|
+
FINTEGER* ipiv,
|
53
|
+
float* b,
|
54
|
+
FINTEGER* ldb,
|
55
|
+
FINTEGER* info);
|
56
|
+
|
57
|
+
// general matrix multiplication
|
58
|
+
int sgemm_(
|
59
|
+
const char* transa,
|
60
|
+
const char* transb,
|
61
|
+
FINTEGER* m,
|
62
|
+
FINTEGER* n,
|
63
|
+
FINTEGER* k,
|
64
|
+
const float* alpha,
|
65
|
+
const float* a,
|
66
|
+
FINTEGER* lda,
|
67
|
+
const float* b,
|
68
|
+
FINTEGER* ldb,
|
69
|
+
float* beta,
|
70
|
+
float* c,
|
71
|
+
FINTEGER* ldc);
|
72
|
+
}
|
73
|
+
|
74
|
+
namespace {
|
75
|
+
|
76
|
+
// c and a and b can overlap
|
77
|
+
void fvec_add(size_t d, const float* a, const float* b, float* c) {
|
78
|
+
for (size_t i = 0; i < d; i++) {
|
79
|
+
c[i] = a[i] + b[i];
|
80
|
+
}
|
81
|
+
}
|
82
|
+
|
83
|
+
void fmat_inverse(float* a, int n) {
|
84
|
+
int info;
|
85
|
+
int lwork = n * n;
|
86
|
+
std::vector<int> ipiv(n);
|
87
|
+
std::vector<float> workspace(lwork);
|
88
|
+
|
89
|
+
sgetrf_(&n, &n, a, &n, ipiv.data(), &info);
|
90
|
+
FAISS_THROW_IF_NOT(info == 0);
|
91
|
+
sgetri_(&n, a, &n, ipiv.data(), workspace.data(), &lwork, &info);
|
92
|
+
FAISS_THROW_IF_NOT(info == 0);
|
93
|
+
}
|
94
|
+
|
95
|
+
void random_int32(
|
96
|
+
std::vector<int32_t>& x,
|
97
|
+
int32_t min,
|
98
|
+
int32_t max,
|
99
|
+
std::mt19937& gen) {
|
100
|
+
std::uniform_int_distribution<int32_t> distrib(min, max);
|
101
|
+
for (size_t i = 0; i < x.size(); i++) {
|
102
|
+
x[i] = distrib(gen);
|
103
|
+
}
|
104
|
+
}
|
105
|
+
|
106
|
+
} // anonymous namespace
|
107
|
+
|
108
|
+
namespace faiss {
|
109
|
+
|
110
|
+
LSQTimer lsq_timer;
|
111
|
+
|
112
|
+
LocalSearchQuantizer::LocalSearchQuantizer(size_t d, size_t M, size_t nbits) {
|
113
|
+
FAISS_THROW_IF_NOT((M * nbits) % 8 == 0);
|
114
|
+
|
115
|
+
this->d = d;
|
116
|
+
this->M = M;
|
117
|
+
this->nbits = std::vector<size_t>(M, nbits);
|
118
|
+
|
119
|
+
// set derived values
|
120
|
+
set_derived_values();
|
121
|
+
|
122
|
+
is_trained = false;
|
123
|
+
verbose = false;
|
124
|
+
|
125
|
+
K = (1 << nbits);
|
126
|
+
|
127
|
+
train_iters = 25;
|
128
|
+
train_ils_iters = 8;
|
129
|
+
icm_iters = 4;
|
130
|
+
|
131
|
+
encode_ils_iters = 16;
|
132
|
+
|
133
|
+
p = 0.5f;
|
134
|
+
lambd = 1e-2f;
|
135
|
+
|
136
|
+
chunk_size = 10000;
|
137
|
+
nperts = 4;
|
138
|
+
|
139
|
+
random_seed = 0x12345;
|
140
|
+
std::srand(random_seed);
|
141
|
+
}
|
142
|
+
|
143
|
+
void LocalSearchQuantizer::train(size_t n, const float* x) {
|
144
|
+
FAISS_THROW_IF_NOT(K == (1 << nbits[0]));
|
145
|
+
FAISS_THROW_IF_NOT(nperts <= M);
|
146
|
+
|
147
|
+
lsq_timer.reset();
|
148
|
+
if (verbose) {
|
149
|
+
lsq_timer.start("train");
|
150
|
+
printf("Training LSQ, with %zd subcodes on %zd %zdD vectors\n",
|
151
|
+
M,
|
152
|
+
n,
|
153
|
+
d);
|
154
|
+
}
|
155
|
+
|
156
|
+
// allocate memory for codebooks, size [M, K, d]
|
157
|
+
codebooks.resize(M * K * d);
|
158
|
+
|
159
|
+
// randomly intialize codes
|
160
|
+
std::mt19937 gen(random_seed);
|
161
|
+
std::vector<int32_t> codes(n * M); // [n, M]
|
162
|
+
random_int32(codes, 0, K - 1, gen);
|
163
|
+
|
164
|
+
// compute standard derivations of each dimension
|
165
|
+
std::vector<float> stddev(d, 0);
|
166
|
+
|
167
|
+
#pragma omp parallel for
|
168
|
+
for (int64_t i = 0; i < d; i++) {
|
169
|
+
float mean = 0;
|
170
|
+
for (size_t j = 0; j < n; j++) {
|
171
|
+
mean += x[j * d + i];
|
172
|
+
}
|
173
|
+
mean = mean / n;
|
174
|
+
|
175
|
+
float sum = 0;
|
176
|
+
for (size_t j = 0; j < n; j++) {
|
177
|
+
float xi = x[j * d + i] - mean;
|
178
|
+
sum += xi * xi;
|
179
|
+
}
|
180
|
+
stddev[i] = sqrtf(sum / n);
|
181
|
+
}
|
182
|
+
|
183
|
+
if (verbose) {
|
184
|
+
float obj = evaluate(codes.data(), x, n);
|
185
|
+
printf("Before training: obj = %lf\n", obj);
|
186
|
+
}
|
187
|
+
|
188
|
+
for (size_t i = 0; i < train_iters; i++) {
|
189
|
+
// 1. update codebooks given x and codes
|
190
|
+
// 2. add perturbation to codebooks (SR-D)
|
191
|
+
// 3. refine codes given x and codebooks using icm
|
192
|
+
|
193
|
+
// update codebooks
|
194
|
+
update_codebooks(x, codes.data(), n);
|
195
|
+
|
196
|
+
if (verbose) {
|
197
|
+
float obj = evaluate(codes.data(), x, n);
|
198
|
+
printf("iter %zd:\n", i);
|
199
|
+
printf("\tafter updating codebooks: obj = %lf\n", obj);
|
200
|
+
}
|
201
|
+
|
202
|
+
// SR-D: perturb codebooks
|
203
|
+
float T = pow((1.0f - (i + 1.0f) / train_iters), p);
|
204
|
+
perturb_codebooks(T, stddev, gen);
|
205
|
+
|
206
|
+
if (verbose) {
|
207
|
+
float obj = evaluate(codes.data(), x, n);
|
208
|
+
printf("\tafter perturbing codebooks: obj = %lf\n", obj);
|
209
|
+
}
|
210
|
+
|
211
|
+
// refine codes
|
212
|
+
icm_encode(x, codes.data(), n, train_ils_iters, gen);
|
213
|
+
|
214
|
+
if (verbose) {
|
215
|
+
float obj = evaluate(codes.data(), x, n);
|
216
|
+
printf("\tafter updating codes: obj = %lf\n", obj);
|
217
|
+
}
|
218
|
+
}
|
219
|
+
|
220
|
+
if (verbose) {
|
221
|
+
lsq_timer.end("train");
|
222
|
+
float obj = evaluate(codes.data(), x, n);
|
223
|
+
printf("After training: obj = %lf\n", obj);
|
224
|
+
|
225
|
+
printf("Time statistic:\n");
|
226
|
+
for (const auto& it : lsq_timer.duration) {
|
227
|
+
printf("\t%s time: %lf s\n", it.first.data(), it.second);
|
228
|
+
}
|
229
|
+
}
|
230
|
+
|
231
|
+
is_trained = true;
|
232
|
+
}
|
233
|
+
|
234
|
+
void LocalSearchQuantizer::perturb_codebooks(
|
235
|
+
float T,
|
236
|
+
const std::vector<float>& stddev,
|
237
|
+
std::mt19937& gen) {
|
238
|
+
lsq_timer.start("perturb_codebooks");
|
239
|
+
|
240
|
+
std::vector<std::normal_distribution<float>> distribs;
|
241
|
+
for (size_t i = 0; i < d; i++) {
|
242
|
+
distribs.emplace_back(0.0f, stddev[i]);
|
243
|
+
}
|
244
|
+
|
245
|
+
for (size_t m = 0; m < M; m++) {
|
246
|
+
for (size_t k = 0; k < K; k++) {
|
247
|
+
for (size_t i = 0; i < d; i++) {
|
248
|
+
codebooks[m * K * d + k * d + i] += T * distribs[i](gen) / M;
|
249
|
+
}
|
250
|
+
}
|
251
|
+
}
|
252
|
+
|
253
|
+
lsq_timer.end("perturb_codebooks");
|
254
|
+
}
|
255
|
+
|
256
|
+
void LocalSearchQuantizer::compute_codes(
|
257
|
+
const float* x,
|
258
|
+
uint8_t* codes_out,
|
259
|
+
size_t n) const {
|
260
|
+
FAISS_THROW_IF_NOT_MSG(is_trained, "LSQ is not trained yet.");
|
261
|
+
if (verbose) {
|
262
|
+
lsq_timer.reset();
|
263
|
+
printf("Encoding %zd vectors...\n", n);
|
264
|
+
lsq_timer.start("encode");
|
265
|
+
}
|
266
|
+
|
267
|
+
std::vector<int32_t> codes(n * M);
|
268
|
+
std::mt19937 gen(random_seed);
|
269
|
+
random_int32(codes, 0, K - 1, gen);
|
270
|
+
|
271
|
+
icm_encode(x, codes.data(), n, encode_ils_iters, gen);
|
272
|
+
pack_codes(n, codes.data(), codes_out);
|
273
|
+
|
274
|
+
if (verbose) {
|
275
|
+
lsq_timer.end("encode");
|
276
|
+
double t = lsq_timer.get("encode");
|
277
|
+
printf("Time to encode %zd vectors: %lf s\n", n, t);
|
278
|
+
}
|
279
|
+
}
|
280
|
+
|
281
|
+
/** update codebooks given x and codes
|
282
|
+
*
|
283
|
+
* Let B denote the sparse matrix of codes, size [n, M * K].
|
284
|
+
* Let C denote the codebooks, size [M * K, d].
|
285
|
+
* Let X denote the training vectors, size [n, d]
|
286
|
+
*
|
287
|
+
* objective function:
|
288
|
+
* L = (X - BC)^2
|
289
|
+
*
|
290
|
+
* To minimize L, we have:
|
291
|
+
* C = (B'B)^(-1)B'X
|
292
|
+
* where ' denote transposed
|
293
|
+
*
|
294
|
+
* Add a regularization term to make B'B inversible:
|
295
|
+
* C = (B'B + lambd * I)^(-1)B'X
|
296
|
+
*/
|
297
|
+
void LocalSearchQuantizer::update_codebooks(
|
298
|
+
const float* x,
|
299
|
+
const int32_t* codes,
|
300
|
+
size_t n) {
|
301
|
+
lsq_timer.start("update_codebooks");
|
302
|
+
|
303
|
+
// allocate memory
|
304
|
+
// bb = B'B, bx = BX
|
305
|
+
std::vector<float> bb(M * K * M * K, 0.0f); // [M * K, M * K]
|
306
|
+
std::vector<float> bx(M * K * d, 0.0f); // [M * K, d]
|
307
|
+
|
308
|
+
// compute B'B
|
309
|
+
for (size_t i = 0; i < n; i++) {
|
310
|
+
for (size_t m = 0; m < M; m++) {
|
311
|
+
int32_t code1 = codes[i * M + m];
|
312
|
+
int32_t idx1 = m * K + code1;
|
313
|
+
bb[idx1 * M * K + idx1] += 1;
|
314
|
+
|
315
|
+
for (size_t m2 = m + 1; m2 < M; m2++) {
|
316
|
+
int32_t code2 = codes[i * M + m2];
|
317
|
+
int32_t idx2 = m2 * K + code2;
|
318
|
+
bb[idx1 * M * K + idx2] += 1;
|
319
|
+
bb[idx2 * M * K + idx1] += 1;
|
320
|
+
}
|
321
|
+
}
|
322
|
+
}
|
323
|
+
|
324
|
+
// add a regularization term to B'B
|
325
|
+
for (int64_t i = 0; i < M * K; i++) {
|
326
|
+
bb[i * (M * K) + i] += lambd;
|
327
|
+
}
|
328
|
+
|
329
|
+
// compute (B'B)^(-1)
|
330
|
+
fmat_inverse(bb.data(), M * K); // [M*K, M*K]
|
331
|
+
|
332
|
+
// compute BX
|
333
|
+
for (size_t i = 0; i < n; i++) {
|
334
|
+
for (size_t m = 0; m < M; m++) {
|
335
|
+
int32_t code = codes[i * M + m];
|
336
|
+
float* data = bx.data() + (m * K + code) * d;
|
337
|
+
fvec_add(d, data, x + i * d, data);
|
338
|
+
}
|
339
|
+
}
|
340
|
+
|
341
|
+
// compute C = (B'B)^(-1) @ BX
|
342
|
+
//
|
343
|
+
// NOTE: LAPACK use column major order
|
344
|
+
// out = alpha * op(A) * op(B) + beta * C
|
345
|
+
FINTEGER nrows_A = d;
|
346
|
+
FINTEGER ncols_A = M * K;
|
347
|
+
|
348
|
+
FINTEGER nrows_B = M * K;
|
349
|
+
FINTEGER ncols_B = M * K;
|
350
|
+
|
351
|
+
float alpha = 1.0f;
|
352
|
+
float beta = 0.0f;
|
353
|
+
sgemm_("Not Transposed",
|
354
|
+
"Not Transposed",
|
355
|
+
&nrows_A, // nrows of op(A)
|
356
|
+
&ncols_B, // ncols of op(B)
|
357
|
+
&ncols_A, // ncols of op(A)
|
358
|
+
&alpha,
|
359
|
+
bx.data(),
|
360
|
+
&nrows_A, // nrows of A
|
361
|
+
bb.data(),
|
362
|
+
&nrows_B, // nrows of B
|
363
|
+
&beta,
|
364
|
+
codebooks.data(),
|
365
|
+
&nrows_A); // nrows of output
|
366
|
+
|
367
|
+
lsq_timer.end("update_codebooks");
|
368
|
+
}
|
369
|
+
|
370
|
+
/** encode using iterative conditional mode
|
371
|
+
*
|
372
|
+
* iterative conditional mode:
|
373
|
+
* For every subcode ci (i = 1, ..., M) of a vector, we fix the other
|
374
|
+
* subcodes cj (j != i) and then find the optimal value of ci such
|
375
|
+
* that minimizing the objective function.
|
376
|
+
|
377
|
+
* objective function:
|
378
|
+
* L = (X - \sum cj)^2, j = 1, ..., M
|
379
|
+
* L = X^2 - 2X * \sum cj + (\sum cj)^2
|
380
|
+
*
|
381
|
+
* X^2 is negligable since it is the same for all possible value
|
382
|
+
* k of the m-th subcode.
|
383
|
+
*
|
384
|
+
* 2X * \sum cj is the unary term
|
385
|
+
* (\sum cj)^2 is the binary term
|
386
|
+
* These two terms can be precomputed and store in a look up table.
|
387
|
+
*/
|
388
|
+
void LocalSearchQuantizer::icm_encode(
|
389
|
+
const float* x,
|
390
|
+
int32_t* codes,
|
391
|
+
size_t n,
|
392
|
+
size_t ils_iters,
|
393
|
+
std::mt19937& gen) const {
|
394
|
+
lsq_timer.start("icm_encode");
|
395
|
+
|
396
|
+
std::vector<float> binaries(M * M * K * K); // [M, M, K, K]
|
397
|
+
compute_binary_terms(binaries.data());
|
398
|
+
|
399
|
+
const size_t n_chunks = (n + chunk_size - 1) / chunk_size;
|
400
|
+
for (size_t i = 0; i < n_chunks; i++) {
|
401
|
+
size_t ni = std::min(chunk_size, n - i * chunk_size);
|
402
|
+
|
403
|
+
if (verbose) {
|
404
|
+
printf("\r\ticm encoding %zd/%zd ...", i * chunk_size + ni, n);
|
405
|
+
fflush(stdout);
|
406
|
+
if (i == n_chunks - 1 || i == 0) {
|
407
|
+
printf("\n");
|
408
|
+
}
|
409
|
+
}
|
410
|
+
|
411
|
+
const float* xi = x + i * chunk_size * d;
|
412
|
+
int32_t* codesi = codes + i * chunk_size * M;
|
413
|
+
icm_encode_partial(i, xi, codesi, ni, binaries.data(), ils_iters, gen);
|
414
|
+
}
|
415
|
+
|
416
|
+
lsq_timer.end("icm_encode");
|
417
|
+
}
|
418
|
+
|
419
|
+
void LocalSearchQuantizer::icm_encode_partial(
|
420
|
+
size_t index,
|
421
|
+
const float* x,
|
422
|
+
int32_t* codes,
|
423
|
+
size_t n,
|
424
|
+
const float* binaries,
|
425
|
+
size_t ils_iters,
|
426
|
+
std::mt19937& gen) const {
|
427
|
+
std::vector<float> unaries(n * M * K); // [n, M, K]
|
428
|
+
compute_unary_terms(x, unaries.data(), n);
|
429
|
+
|
430
|
+
std::vector<int32_t> best_codes;
|
431
|
+
best_codes.assign(codes, codes + n * M);
|
432
|
+
|
433
|
+
std::vector<float> best_objs(n, 0.0f);
|
434
|
+
evaluate(codes, x, n, best_objs.data());
|
435
|
+
|
436
|
+
FAISS_THROW_IF_NOT(nperts <= M);
|
437
|
+
for (size_t iter1 = 0; iter1 < ils_iters; iter1++) {
|
438
|
+
// add perturbation to codes
|
439
|
+
perturb_codes(codes, n, gen);
|
440
|
+
|
441
|
+
for (size_t iter2 = 0; iter2 < icm_iters; iter2++) {
|
442
|
+
icm_encode_step(unaries.data(), binaries, codes, n);
|
443
|
+
}
|
444
|
+
|
445
|
+
std::vector<float> icm_objs(n, 0.0f);
|
446
|
+
evaluate(codes, x, n, icm_objs.data());
|
447
|
+
size_t n_betters = 0;
|
448
|
+
float mean_obj = 0.0f;
|
449
|
+
|
450
|
+
// select the best code for every vector xi
|
451
|
+
#pragma omp parallel for reduction(+ : n_betters, mean_obj)
|
452
|
+
for (int64_t i = 0; i < n; i++) {
|
453
|
+
if (icm_objs[i] < best_objs[i]) {
|
454
|
+
best_objs[i] = icm_objs[i];
|
455
|
+
memcpy(best_codes.data() + i * M,
|
456
|
+
codes + i * M,
|
457
|
+
sizeof(int32_t) * M);
|
458
|
+
n_betters += 1;
|
459
|
+
}
|
460
|
+
mean_obj += best_objs[i];
|
461
|
+
}
|
462
|
+
mean_obj /= n;
|
463
|
+
|
464
|
+
memcpy(codes, best_codes.data(), sizeof(int32_t) * n * M);
|
465
|
+
|
466
|
+
if (verbose && index == 0) {
|
467
|
+
printf("\tils_iter %zd: obj = %lf, n_betters/n = %zd/%zd\n",
|
468
|
+
iter1,
|
469
|
+
mean_obj,
|
470
|
+
n_betters,
|
471
|
+
n);
|
472
|
+
}
|
473
|
+
} // loop ils_iters
|
474
|
+
}
|
475
|
+
|
476
|
+
void LocalSearchQuantizer::icm_encode_step(
|
477
|
+
const float* unaries,
|
478
|
+
const float* binaries,
|
479
|
+
int32_t* codes,
|
480
|
+
size_t n) const {
|
481
|
+
// condition on the m-th subcode
|
482
|
+
for (size_t m = 0; m < M; m++) {
|
483
|
+
std::vector<float> objs(n * K);
|
484
|
+
#pragma omp parallel for
|
485
|
+
for (int64_t i = 0; i < n; i++) {
|
486
|
+
auto u = unaries + i * (M * K) + m * K;
|
487
|
+
memcpy(objs.data() + i * K, u, sizeof(float) * K);
|
488
|
+
}
|
489
|
+
|
490
|
+
// compute objective function by adding unary
|
491
|
+
// and binary terms together
|
492
|
+
for (size_t other_m = 0; other_m < M; other_m++) {
|
493
|
+
if (other_m == m) {
|
494
|
+
continue;
|
495
|
+
}
|
496
|
+
|
497
|
+
#pragma omp parallel for
|
498
|
+
for (int64_t i = 0; i < n; i++) {
|
499
|
+
for (int32_t code = 0; code < K; code++) {
|
500
|
+
int32_t code2 = codes[i * M + other_m];
|
501
|
+
size_t binary_idx =
|
502
|
+
m * M * K * K + other_m * K * K + code * K + code2;
|
503
|
+
// binaries[m, other_m, code, code2]
|
504
|
+
objs[i * K + code] += binaries[binary_idx];
|
505
|
+
}
|
506
|
+
}
|
507
|
+
}
|
508
|
+
|
509
|
+
// find the optimal value of the m-th subcode
|
510
|
+
#pragma omp parallel for
|
511
|
+
for (int64_t i = 0; i < n; i++) {
|
512
|
+
float best_obj = HUGE_VALF;
|
513
|
+
int32_t best_code = 0;
|
514
|
+
for (size_t code = 0; code < K; code++) {
|
515
|
+
float obj = objs[i * K + code];
|
516
|
+
if (obj < best_obj) {
|
517
|
+
best_obj = obj;
|
518
|
+
best_code = code;
|
519
|
+
}
|
520
|
+
}
|
521
|
+
codes[i * M + m] = best_code;
|
522
|
+
}
|
523
|
+
|
524
|
+
} // loop M
|
525
|
+
}
|
526
|
+
|
527
|
+
void LocalSearchQuantizer::perturb_codes(
|
528
|
+
int32_t* codes,
|
529
|
+
size_t n,
|
530
|
+
std::mt19937& gen) const {
|
531
|
+
lsq_timer.start("perturb_codes");
|
532
|
+
|
533
|
+
std::uniform_int_distribution<size_t> m_distrib(0, M - 1);
|
534
|
+
std::uniform_int_distribution<int32_t> k_distrib(0, K - 1);
|
535
|
+
|
536
|
+
for (size_t i = 0; i < n; i++) {
|
537
|
+
for (size_t j = 0; j < nperts; j++) {
|
538
|
+
size_t m = m_distrib(gen);
|
539
|
+
codes[i * M + m] = k_distrib(gen);
|
540
|
+
}
|
541
|
+
}
|
542
|
+
|
543
|
+
lsq_timer.end("perturb_codes");
|
544
|
+
}
|
545
|
+
|
546
|
+
void LocalSearchQuantizer::compute_binary_terms(float* binaries) const {
|
547
|
+
lsq_timer.start("compute_binary_terms");
|
548
|
+
|
549
|
+
#pragma omp parallel for
|
550
|
+
for (int64_t m12 = 0; m12 < M * M; m12++) {
|
551
|
+
size_t m1 = m12 / M;
|
552
|
+
size_t m2 = m12 % M;
|
553
|
+
|
554
|
+
for (size_t code1 = 0; code1 < K; code1++) {
|
555
|
+
for (size_t code2 = 0; code2 < K; code2++) {
|
556
|
+
const float* c1 = codebooks.data() + m1 * K * d + code1 * d;
|
557
|
+
const float* c2 = codebooks.data() + m2 * K * d + code2 * d;
|
558
|
+
float ip = fvec_inner_product(c1, c2, d);
|
559
|
+
// binaries[m1, m2, code1, code2] = ip * 2
|
560
|
+
binaries[m1 * M * K * K + m2 * K * K + code1 * K + code2] =
|
561
|
+
ip * 2;
|
562
|
+
}
|
563
|
+
}
|
564
|
+
}
|
565
|
+
|
566
|
+
lsq_timer.end("compute_binary_terms");
|
567
|
+
}
|
568
|
+
|
569
|
+
void LocalSearchQuantizer::compute_unary_terms(
|
570
|
+
const float* x,
|
571
|
+
float* unaries,
|
572
|
+
size_t n) const {
|
573
|
+
lsq_timer.start("compute_unary_terms");
|
574
|
+
|
575
|
+
// compute x * codebooks^T
|
576
|
+
//
|
577
|
+
// NOTE: LAPACK use column major order
|
578
|
+
// out = alpha * op(A) * op(B) + beta * C
|
579
|
+
FINTEGER nrows_A = M * K;
|
580
|
+
FINTEGER ncols_A = d;
|
581
|
+
|
582
|
+
FINTEGER nrows_B = d;
|
583
|
+
FINTEGER ncols_B = n;
|
584
|
+
|
585
|
+
float alpha = -2.0f;
|
586
|
+
float beta = 0.0f;
|
587
|
+
sgemm_("Transposed",
|
588
|
+
"Not Transposed",
|
589
|
+
&nrows_A, // nrows of op(A)
|
590
|
+
&ncols_B, // ncols of op(B)
|
591
|
+
&ncols_A, // ncols of op(A)
|
592
|
+
&alpha,
|
593
|
+
codebooks.data(),
|
594
|
+
&ncols_A, // nrows of A
|
595
|
+
x,
|
596
|
+
&nrows_B, // nrows of B
|
597
|
+
&beta,
|
598
|
+
unaries,
|
599
|
+
&nrows_A); // nrows of output
|
600
|
+
|
601
|
+
std::vector<float> norms(M * K);
|
602
|
+
fvec_norms_L2sqr(norms.data(), codebooks.data(), d, M * K);
|
603
|
+
|
604
|
+
#pragma omp parallel for
|
605
|
+
for (int64_t i = 0; i < n; i++) {
|
606
|
+
float* u = unaries + i * (M * K);
|
607
|
+
fvec_add(M * K, u, norms.data(), u);
|
608
|
+
}
|
609
|
+
|
610
|
+
lsq_timer.end("compute_unary_terms");
|
611
|
+
}
|
612
|
+
|
613
|
+
float LocalSearchQuantizer::evaluate(
|
614
|
+
const int32_t* codes,
|
615
|
+
const float* x,
|
616
|
+
size_t n,
|
617
|
+
float* objs) const {
|
618
|
+
lsq_timer.start("evaluate");
|
619
|
+
|
620
|
+
// decode
|
621
|
+
std::vector<float> decoded_x(n * d, 0.0f);
|
622
|
+
float obj = 0.0f;
|
623
|
+
|
624
|
+
#pragma omp parallel for reduction(+ : obj)
|
625
|
+
for (int64_t i = 0; i < n; i++) {
|
626
|
+
const auto code = codes + i * M;
|
627
|
+
const auto decoded_i = decoded_x.data() + i * d;
|
628
|
+
for (size_t m = 0; m < M; m++) {
|
629
|
+
// c = codebooks[m, code[m]]
|
630
|
+
const auto c = codebooks.data() + m * K * d + code[m] * d;
|
631
|
+
fvec_add(d, decoded_i, c, decoded_i);
|
632
|
+
}
|
633
|
+
|
634
|
+
float err = fvec_L2sqr(x + i * d, decoded_i, d);
|
635
|
+
obj += err;
|
636
|
+
|
637
|
+
if (objs) {
|
638
|
+
objs[i] = err;
|
639
|
+
}
|
640
|
+
}
|
641
|
+
|
642
|
+
lsq_timer.end("evaluate");
|
643
|
+
|
644
|
+
obj = obj / n;
|
645
|
+
return obj;
|
646
|
+
}
|
647
|
+
|
648
|
+
double LSQTimer::get(const std::string& name) {
|
649
|
+
return duration[name];
|
650
|
+
}
|
651
|
+
|
652
|
+
void LSQTimer::start(const std::string& name) {
|
653
|
+
FAISS_THROW_IF_NOT_MSG(!started[name], " timer is already running");
|
654
|
+
started[name] = true;
|
655
|
+
t0[name] = getmillisecs();
|
656
|
+
}
|
657
|
+
|
658
|
+
void LSQTimer::end(const std::string& name) {
|
659
|
+
FAISS_THROW_IF_NOT_MSG(started[name], " timer is not running");
|
660
|
+
double t1 = getmillisecs();
|
661
|
+
double sec = (t1 - t0[name]) / 1000;
|
662
|
+
duration[name] += sec;
|
663
|
+
started[name] = false;
|
664
|
+
}
|
665
|
+
|
666
|
+
void LSQTimer::reset() {
|
667
|
+
duration.clear();
|
668
|
+
t0.clear();
|
669
|
+
started.clear();
|
670
|
+
}
|
671
|
+
|
672
|
+
} // namespace faiss
|