faiss 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml ADDED
@@ -0,0 +1,7 @@
1
+ ---
2
+ SHA256:
3
+ metadata.gz: 47b973803ea179379ab292d5d7b8350c12a383387e90b96f38eae4e90e20dad3
4
+ data.tar.gz: 5697b1ec26dbbb0794e6c11563b0cf76d564391882e7c0c0148f3893e1bf6b59
5
+ SHA512:
6
+ metadata.gz: dccf5a8ddfd4030e70308c3e71b16bb6742839b8b1a263d3a010a381729af869c1755164e25a3941a3f475376e783ec42b43409fede77010e97949092a424e18
7
+ data.tar.gz: 57c933bc9d3ffbec37be0edbf641bd004e8dbfa13c04d52ca970e8ff03f719f65f27016892b06cd66755f36afc8d3ff505e6062656f2c48fa20d58cf64c2b6fd
data/CHANGELOG.md ADDED
@@ -0,0 +1,3 @@
1
+ ## 0.1.0 (2020-03-08)
2
+
3
+ - First release
data/LICENSE.txt ADDED
@@ -0,0 +1,22 @@
1
+ Copyright (c) 2020 Andrew Kane
2
+
3
+ MIT License
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining
6
+ a copy of this software and associated documentation files (the
7
+ "Software"), to deal in the Software without restriction, including
8
+ without limitation the rights to use, copy, modify, merge, publish,
9
+ distribute, sublicense, and/or sell copies of the Software, and to
10
+ permit persons to whom the Software is furnished to do so, subject to
11
+ the following conditions:
12
+
13
+ The above copyright notice and this permission notice shall be
14
+ included in all copies or substantial portions of the Software.
15
+
16
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
17
+ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
18
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
19
+ NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
20
+ LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
21
+ OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
22
+ WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
data/README.md ADDED
@@ -0,0 +1,130 @@
1
+ # Faiss
2
+
3
+ [Faiss](https://github.com/facebookresearch/faiss) - efficient similarity search and clustering - for Ruby
4
+
5
+ ## Installation
6
+
7
+ First, install the [Faiss C++ library](https://github.com/facebookresearch/faiss/blob/master/INSTALL.md). For Homebrew, use:
8
+
9
+ ```sh
10
+ brew install faiss
11
+ ```
12
+
13
+ Add this line to your application’s Gemfile:
14
+
15
+ ```ruby
16
+ gem 'faiss'
17
+ ```
18
+
19
+ ## Getting Started
20
+
21
+ Prep your data
22
+
23
+ ```ruby
24
+ objects = [
25
+ [1, 1, 2, 1],
26
+ [5, 4, 6, 5],
27
+ [1, 2, 1, 2]
28
+ ]
29
+ ```
30
+
31
+ Build an index
32
+
33
+ ```ruby
34
+ index = Faiss::IndexFlatL2.new(4)
35
+ index.add(objects)
36
+ ```
37
+
38
+ Search
39
+
40
+ ```ruby
41
+ distances, ids = index.search(objects, 3)
42
+ ```
43
+
44
+ ## K-means Clustering
45
+
46
+ Train
47
+
48
+ ```ruby
49
+ kmeans = Faiss::Kmeans.new(4, 2)
50
+ kmeans.train(objects)
51
+ ```
52
+
53
+ Get the centroids
54
+
55
+ ```ruby
56
+ kmeans.centroids
57
+ ```
58
+
59
+ ## PCA
60
+
61
+ Train
62
+
63
+ ```ruby
64
+ mat = Faiss::PCAMatrix.new(40, 10)
65
+ mat.train(objects)
66
+ ```
67
+
68
+ Apply
69
+
70
+ ```ruby
71
+ mat.apply(mt)
72
+ ```
73
+
74
+ ## Product Quantizer
75
+
76
+ Train
77
+
78
+ ```ruby
79
+ pq = Faiss::ProductQuantizer.new(32, 4, 8)
80
+ pq.train(objects)
81
+ ```
82
+
83
+ Encode
84
+
85
+ ```ruby
86
+ pq.compute_codes(objects)
87
+ ```
88
+
89
+ Decode
90
+
91
+ ```ruby
92
+ pq.decode(codes)
93
+ ```
94
+
95
+ ## Data
96
+
97
+ Data can be an array of arrays
98
+
99
+ ```ruby
100
+ [[1, 2, 3], [4, 5, 6]]
101
+ ```
102
+
103
+ Or a Numo NArray
104
+
105
+ ```ruby
106
+ Numo::SFloat.new(3, 2).seq
107
+ ```
108
+
109
+ ## History
110
+
111
+ View the [changelog](https://github.com/ankane/faiss/blob/master/CHANGELOG.md)
112
+
113
+ ## Contributing
114
+
115
+ Everyone is encouraged to help improve this project. Here are a few ways you can help:
116
+
117
+ - [Report bugs](https://github.com/ankane/faiss/issues)
118
+ - Fix bugs and [submit pull requests](https://github.com/ankane/faiss/pulls)
119
+ - Write, clarify, or fix documentation
120
+ - Suggest or add new features
121
+
122
+ To get started with development:
123
+
124
+ ```sh
125
+ git clone https://github.com/ankane/faiss.git
126
+ cd faiss
127
+ bundle install
128
+ bundle exec rake compile
129
+ bundle exec rake test
130
+ ```
data/ext/faiss/ext.cpp ADDED
@@ -0,0 +1,248 @@
1
+ #include <faiss/IndexFlat.h>
2
+ #include <faiss/IndexHNSW.h>
3
+ #include <faiss/IndexIVFFlat.h>
4
+ #include <faiss/IndexLSH.h>
5
+ #include <faiss/IndexScalarQuantizer.h>
6
+ #include <faiss/IndexPQ.h>
7
+ #include <faiss/IndexIVFPQ.h>
8
+ #include <faiss/IndexIVFPQR.h>
9
+
10
+ #include <faiss/IndexBinaryFlat.h>
11
+ #include <faiss/IndexBinaryIVF.h>
12
+ #include <faiss/index_factory.h>
13
+
14
+ #include <faiss/Clustering.h>
15
+ #include <faiss/VectorTransform.h>
16
+
17
+ #include <rice/Array.hpp>
18
+ #include <rice/Class.hpp>
19
+ #include <rice/Constructor.hpp>
20
+ #include <rice/Module.hpp>
21
+
22
+ extern "C"
23
+ void Init_ext()
24
+ {
25
+ Rice::Module rb_mFaiss = Rice::define_module("Faiss")
26
+ .define_singleton_method(
27
+ "index_binary_factory",
28
+ *[](int d, const char *description) {
29
+ return faiss::index_binary_factory(d, description);
30
+ });
31
+
32
+ Rice::define_class_under<faiss::Index>(rb_mFaiss, "Index")
33
+ .define_method(
34
+ "d",
35
+ *[](faiss::Index &self) {
36
+ return self.d;
37
+ })
38
+ .define_method(
39
+ "trained?",
40
+ *[](faiss::Index &self) {
41
+ return self.is_trained;
42
+ })
43
+ .define_method(
44
+ "ntotal",
45
+ *[](faiss::Index &self) {
46
+ return self.ntotal;
47
+ })
48
+ .define_method(
49
+ "_train",
50
+ *[](faiss::Index &self, int64_t n, Rice::String s) {
51
+ const float *x = (float*) s.c_str();
52
+ self.train(n, x);
53
+ })
54
+ .define_method(
55
+ "_add",
56
+ *[](faiss::Index &self, int64_t n, Rice::String s) {
57
+ const float *x = (float*) s.c_str();
58
+ self.add(n, x);
59
+ })
60
+ .define_method(
61
+ "_search",
62
+ *[](faiss::Index &self, int64_t n, Rice::String s, int64_t k) {
63
+ const float *x = (float*) s.c_str();
64
+ float *distances = new float[k * n];
65
+ int64_t *labels = new int64_t[k * n];
66
+
67
+ self.search(n, x, k, distances, labels);
68
+
69
+ auto dstr = std::string((char*) distances, k * n * sizeof(float));
70
+ auto lstr = std::string((char*) labels, k * n * sizeof(int64_t));
71
+
72
+ Rice::Array ret;
73
+ ret.push(dstr);
74
+ ret.push(lstr);
75
+ return ret;
76
+ });
77
+
78
+ Rice::define_class_under<faiss::IndexBinary>(rb_mFaiss, "IndexBinary")
79
+ .define_method(
80
+ "d",
81
+ *[](faiss::Index &self) {
82
+ return self.d;
83
+ })
84
+ .define_method(
85
+ "trained?",
86
+ *[](faiss::IndexBinary &self) {
87
+ return self.is_trained;
88
+ })
89
+ .define_method(
90
+ "ntotal",
91
+ *[](faiss::IndexBinary &self) {
92
+ return self.ntotal;
93
+ })
94
+ .define_method(
95
+ "_train",
96
+ *[](faiss::IndexBinary &self, int64_t n, Rice::String s) {
97
+ const uint8_t *x = (uint8_t*) s.c_str();
98
+ self.train(n, x);
99
+ })
100
+ .define_method(
101
+ "_add",
102
+ *[](faiss::IndexBinary &self, int64_t n, Rice::String s) {
103
+ const uint8_t *x = (uint8_t*) s.c_str();
104
+ self.add(n, x);
105
+ })
106
+ .define_method(
107
+ "_search",
108
+ *[](faiss::IndexBinary &self, int64_t n, Rice::String s, int64_t k) {
109
+ const uint8_t *x = (uint8_t*) s.c_str();
110
+ int32_t *distances = new int32_t[k * n];
111
+ int64_t *labels = new int64_t[k * n];
112
+
113
+ self.search(n, x, k, distances, labels);
114
+
115
+ auto dstr = std::string((char*) distances, k * n * sizeof(int32_t));
116
+ auto lstr = std::string((char*) labels, k * n * sizeof(int64_t));
117
+
118
+ Rice::Array ret;
119
+ ret.push(dstr);
120
+ ret.push(lstr);
121
+ return ret;
122
+ });
123
+
124
+ Rice::define_class_under<faiss::IndexFlatL2, faiss::Index>(rb_mFaiss, "IndexFlatL2")
125
+ .define_constructor(Rice::Constructor<faiss::IndexFlatL2, int64_t>());
126
+
127
+ Rice::define_class_under<faiss::IndexFlatIP, faiss::Index>(rb_mFaiss, "IndexFlatIP")
128
+ .define_constructor(Rice::Constructor<faiss::IndexFlatIP, int64_t>());
129
+
130
+ Rice::define_class_under<faiss::IndexHNSWFlat, faiss::Index>(rb_mFaiss, "IndexHNSWFlat")
131
+ .define_constructor(Rice::Constructor<faiss::IndexHNSWFlat, int, int>());
132
+
133
+ Rice::define_class_under<faiss::IndexIVFFlat, faiss::Index>(rb_mFaiss, "IndexIVFFlat")
134
+ .define_constructor(Rice::Constructor<faiss::IndexIVFFlat, faiss::Index*, size_t, size_t>());
135
+
136
+ Rice::define_class_under<faiss::IndexLSH, faiss::Index>(rb_mFaiss, "IndexLSH")
137
+ .define_constructor(Rice::Constructor<faiss::IndexLSH, int64_t, int>());
138
+
139
+ Rice::define_class_under<faiss::IndexScalarQuantizer, faiss::Index>(rb_mFaiss, "IndexScalarQuantizer")
140
+ .define_constructor(Rice::Constructor<faiss::IndexScalarQuantizer, int, faiss::ScalarQuantizer::QuantizerType>());
141
+
142
+ Rice::define_class_under<faiss::IndexPQ, faiss::Index>(rb_mFaiss, "IndexPQ")
143
+ .define_constructor(Rice::Constructor<faiss::IndexPQ, int, size_t, size_t>());
144
+
145
+ Rice::define_class_under<faiss::IndexIVFScalarQuantizer, faiss::Index>(rb_mFaiss, "IndexIVFScalarQuantizer")
146
+ .define_constructor(Rice::Constructor<faiss::IndexIVFScalarQuantizer, faiss::Index*, size_t, size_t, faiss::ScalarQuantizer::QuantizerType>());
147
+
148
+ Rice::define_class_under<faiss::IndexIVFPQ, faiss::Index>(rb_mFaiss, "IndexIVFPQ")
149
+ .define_constructor(Rice::Constructor<faiss::IndexIVFPQ, faiss::Index*, size_t, size_t, size_t, size_t>());
150
+
151
+ Rice::define_class_under<faiss::IndexIVFPQR, faiss::Index>(rb_mFaiss, "IndexIVFPQR")
152
+ .define_constructor(Rice::Constructor<faiss::IndexIVFPQR, faiss::Index*, size_t, size_t, size_t, size_t, size_t, size_t>());
153
+
154
+ Rice::define_class_under<faiss::IndexBinaryFlat, faiss::IndexBinary>(rb_mFaiss, "IndexBinaryFlat")
155
+ .define_constructor(Rice::Constructor<faiss::IndexBinaryFlat, int64_t>());
156
+
157
+ Rice::define_class_under<faiss::IndexBinaryIVF, faiss::IndexBinary>(rb_mFaiss, "IndexBinaryIVF")
158
+ .define_constructor(Rice::Constructor<faiss::IndexBinaryIVF, faiss::IndexBinary*, size_t, size_t>());
159
+
160
+ Rice::define_class_under<faiss::Clustering>(rb_mFaiss, "Kmeans")
161
+ .define_constructor(Rice::Constructor<faiss::Clustering, int, int>())
162
+ .define_method(
163
+ "d",
164
+ *[](faiss::Clustering &self) {
165
+ return self.d;
166
+ })
167
+ .define_method(
168
+ "k",
169
+ *[](faiss::Clustering &self) {
170
+ return self.k;
171
+ })
172
+ .define_method(
173
+ "_centroids",
174
+ *[](faiss::Clustering &self) {
175
+ float *centroids = new float[self.k * self.d];
176
+ for (size_t i = 0; i < self.centroids.size(); i++) {
177
+ centroids[i] = self.centroids[i];
178
+ }
179
+ return std::string((char*) centroids, self.k * self.d * sizeof(float));
180
+ })
181
+ .define_method(
182
+ "_train",
183
+ *[](faiss::Clustering &self, int64_t n, Rice::String s, faiss::Index & index) {
184
+ const float *x = (float*) s.c_str();
185
+ self.train(n, x, index);
186
+ });
187
+
188
+ Rice::define_class_under<faiss::PCAMatrix>(rb_mFaiss, "PCAMatrix")
189
+ .define_constructor(Rice::Constructor<faiss::PCAMatrix, int, int>())
190
+ .define_method(
191
+ "d_in",
192
+ *[](faiss::PCAMatrix &self) {
193
+ return self.d_in;
194
+ })
195
+ .define_method(
196
+ "d_out",
197
+ *[](faiss::PCAMatrix &self) {
198
+ return self.d_out;
199
+ })
200
+ .define_method(
201
+ "_train",
202
+ *[](faiss::PCAMatrix &self, int64_t n, Rice::String s) {
203
+ const float *x = (float*) s.c_str();
204
+ self.train(n, x);
205
+ })
206
+ .define_method(
207
+ "_apply",
208
+ *[](faiss::PCAMatrix &self, int64_t n, Rice::String s) {
209
+ const float *x = (float*) s.c_str();
210
+ float* res = self.apply(n, x);
211
+ return std::string((char*) res, n * self.d_out * sizeof(float));
212
+ });
213
+
214
+ Rice::define_class_under<faiss::ProductQuantizer>(rb_mFaiss, "ProductQuantizer")
215
+ .define_constructor(Rice::Constructor<faiss::ProductQuantizer, size_t, size_t, size_t>())
216
+ .define_method(
217
+ "d",
218
+ *[](faiss::ProductQuantizer &self) {
219
+ return self.d;
220
+ })
221
+ .define_method(
222
+ "m",
223
+ *[](faiss::ProductQuantizer &self) {
224
+ return self.M;
225
+ })
226
+ .define_method(
227
+ "_train",
228
+ *[](faiss::ProductQuantizer &self, int n, Rice::String s) {
229
+ const float *x = (float*) s.c_str();
230
+ self.train(n, x);
231
+ })
232
+ .define_method(
233
+ "_compute_codes",
234
+ *[](faiss::ProductQuantizer &self, int n, Rice::String s) {
235
+ const float *x = (float*) s.c_str();
236
+ uint8_t *codes = new uint8_t[n * self.M];
237
+ self.compute_codes(x, codes, n);
238
+ return std::string((char*) codes, n * self.M * sizeof(uint8_t));
239
+ })
240
+ .define_method(
241
+ "_decode",
242
+ *[](faiss::ProductQuantizer &self, int n, Rice::String s) {
243
+ const uint8_t *codes = (uint8_t*) s.c_str();
244
+ float *x = new float[n * self.d];
245
+ self.decode(codes, x, n);
246
+ return std::string((char*) x, n * self.d * sizeof(float));
247
+ });
248
+ }
@@ -0,0 +1,7 @@
1
+ require "mkmf-rice"
2
+
3
+ abort "Missing faiss" unless have_library("faiss")
4
+
5
+ $CXXFLAGS << " -std=c++11"
6
+
7
+ create_makefile("faiss/ext")
@@ -0,0 +1,20 @@
1
+ module Faiss
2
+ class Index
3
+ def train(objects)
4
+ objects = Numo::SFloat.cast(objects) unless objects.is_a?(Numo::SFloat)
5
+ _train(objects.shape[0], objects.to_binary)
6
+ end
7
+
8
+ def add(objects)
9
+ objects = Numo::SFloat.cast(objects) unless objects.is_a?(Numo::SFloat)
10
+ _add(objects.shape[0], objects.to_binary)
11
+ end
12
+
13
+ def search(objects, k)
14
+ objects = Numo::SFloat.cast(objects) unless objects.is_a?(Numo::SFloat)
15
+ n = objects.shape[0]
16
+ distances, labels = _search(n, objects.to_binary, k)
17
+ [Numo::SFloat.from_binary(distances).reshape(n, k), Numo::Int64.from_binary(labels).reshape(n, k)]
18
+ end
19
+ end
20
+ end
@@ -0,0 +1,20 @@
1
+ module Faiss
2
+ class IndexBinary
3
+ def train(objects)
4
+ objects = Numo::UInt8.cast(objects) unless objects.is_a?(Numo::UInt8)
5
+ _train(objects.shape[0], objects.to_binary)
6
+ end
7
+
8
+ def add(objects)
9
+ objects = Numo::UInt8.cast(objects) unless objects.is_a?(Numo::UInt8)
10
+ _add(objects.shape[0], objects.to_binary)
11
+ end
12
+
13
+ def search(objects, k)
14
+ objects = Numo::UInt8.cast(objects) unless objects.is_a?(Numo::UInt8)
15
+ n = objects.shape[0]
16
+ distances, labels = _search(n, objects.to_binary, k)
17
+ [Numo::UInt32.from_binary(distances).reshape(n, k), Numo::Int64.from_binary(labels).reshape(n, k)]
18
+ end
19
+ end
20
+ end
@@ -0,0 +1,15 @@
1
+ module Faiss
2
+ class Kmeans
3
+ attr_reader :index
4
+
5
+ def train(objects)
6
+ objects = Numo::SFloat.cast(objects) unless objects.is_a?(Numo::SFloat)
7
+ @index = IndexFlatL2.new(d)
8
+ _train(objects.shape[0], objects.to_binary, @index)
9
+ end
10
+
11
+ def centroids
12
+ Numo::SFloat.from_binary(_centroids).reshape(k, d)
13
+ end
14
+ end
15
+ end
@@ -0,0 +1,15 @@
1
+ module Faiss
2
+ class PCAMatrix
3
+ def train(objects)
4
+ objects = Numo::SFloat.cast(objects) unless objects.is_a?(Numo::SFloat)
5
+ _train(objects.shape[0], objects.to_binary)
6
+ end
7
+
8
+ def apply(objects)
9
+ objects = Numo::SFloat.cast(objects) unless objects.is_a?(Numo::SFloat)
10
+ n = objects.shape[0]
11
+ res = _apply(n, objects.to_binary)
12
+ Numo::SFloat.from_binary(res).reshape(n, d_out)
13
+ end
14
+ end
15
+ end
@@ -0,0 +1,22 @@
1
+ module Faiss
2
+ class ProductQuantizer
3
+ def train(objects)
4
+ objects = Numo::SFloat.cast(objects) unless objects.is_a?(Numo::SFloat)
5
+ _train(objects.shape[0], objects.to_binary)
6
+ end
7
+
8
+ def compute_codes(objects)
9
+ objects = Numo::SFloat.cast(objects) unless objects.is_a?(Numo::SFloat)
10
+ n = objects.shape[0]
11
+ res = _compute_codes(n, objects.to_binary)
12
+ Numo::UInt8.from_binary(res).reshape(n, m)
13
+ end
14
+
15
+ def decode(objects)
16
+ objects = Numo::UInt8.cast(objects) unless objects.is_a?(Numo::UInt8)
17
+ n = objects.shape[0]
18
+ res = _decode(n, objects.to_binary)
19
+ Numo::SFloat.from_binary(res).reshape(n, d)
20
+ end
21
+ end
22
+ end
@@ -0,0 +1,3 @@
1
+ module Faiss
2
+ VERSION = "0.1.0"
3
+ end
data/lib/faiss.rb ADDED
@@ -0,0 +1,13 @@
1
+ # dependencies
2
+ require "numo/narray"
3
+
4
+ # ext
5
+ require "faiss/ext"
6
+
7
+ # modules
8
+ require "faiss/index"
9
+ require "faiss/index_binary"
10
+ require "faiss/kmeans"
11
+ require "faiss/pca_matrix"
12
+ require "faiss/product_quantizer"
13
+ require "faiss/version"
metadata ADDED
@@ -0,0 +1,139 @@
1
+ --- !ruby/object:Gem::Specification
2
+ name: faiss
3
+ version: !ruby/object:Gem::Version
4
+ version: 0.1.0
5
+ platform: ruby
6
+ authors:
7
+ - Andrew Kane
8
+ autorequire:
9
+ bindir: bin
10
+ cert_chain: []
11
+ date: 2020-03-08 00:00:00.000000000 Z
12
+ dependencies:
13
+ - !ruby/object:Gem::Dependency
14
+ name: rice
15
+ requirement: !ruby/object:Gem::Requirement
16
+ requirements:
17
+ - - ">="
18
+ - !ruby/object:Gem::Version
19
+ version: '2.2'
20
+ type: :runtime
21
+ prerelease: false
22
+ version_requirements: !ruby/object:Gem::Requirement
23
+ requirements:
24
+ - - ">="
25
+ - !ruby/object:Gem::Version
26
+ version: '2.2'
27
+ - !ruby/object:Gem::Dependency
28
+ name: numo-narray
29
+ requirement: !ruby/object:Gem::Requirement
30
+ requirements:
31
+ - - ">="
32
+ - !ruby/object:Gem::Version
33
+ version: '0'
34
+ type: :runtime
35
+ prerelease: false
36
+ version_requirements: !ruby/object:Gem::Requirement
37
+ requirements:
38
+ - - ">="
39
+ - !ruby/object:Gem::Version
40
+ version: '0'
41
+ - !ruby/object:Gem::Dependency
42
+ name: bundler
43
+ requirement: !ruby/object:Gem::Requirement
44
+ requirements:
45
+ - - ">="
46
+ - !ruby/object:Gem::Version
47
+ version: '0'
48
+ type: :development
49
+ prerelease: false
50
+ version_requirements: !ruby/object:Gem::Requirement
51
+ requirements:
52
+ - - ">="
53
+ - !ruby/object:Gem::Version
54
+ version: '0'
55
+ - !ruby/object:Gem::Dependency
56
+ name: rake
57
+ requirement: !ruby/object:Gem::Requirement
58
+ requirements:
59
+ - - ">="
60
+ - !ruby/object:Gem::Version
61
+ version: '0'
62
+ type: :development
63
+ prerelease: false
64
+ version_requirements: !ruby/object:Gem::Requirement
65
+ requirements:
66
+ - - ">="
67
+ - !ruby/object:Gem::Version
68
+ version: '0'
69
+ - !ruby/object:Gem::Dependency
70
+ name: rake-compiler
71
+ requirement: !ruby/object:Gem::Requirement
72
+ requirements:
73
+ - - ">="
74
+ - !ruby/object:Gem::Version
75
+ version: '0'
76
+ type: :development
77
+ prerelease: false
78
+ version_requirements: !ruby/object:Gem::Requirement
79
+ requirements:
80
+ - - ">="
81
+ - !ruby/object:Gem::Version
82
+ version: '0'
83
+ - !ruby/object:Gem::Dependency
84
+ name: minitest
85
+ requirement: !ruby/object:Gem::Requirement
86
+ requirements:
87
+ - - ">="
88
+ - !ruby/object:Gem::Version
89
+ version: '5'
90
+ type: :development
91
+ prerelease: false
92
+ version_requirements: !ruby/object:Gem::Requirement
93
+ requirements:
94
+ - - ">="
95
+ - !ruby/object:Gem::Version
96
+ version: '5'
97
+ description:
98
+ email: andrew@chartkick.com
99
+ executables: []
100
+ extensions:
101
+ - ext/faiss/extconf.rb
102
+ extra_rdoc_files: []
103
+ files:
104
+ - CHANGELOG.md
105
+ - LICENSE.txt
106
+ - README.md
107
+ - ext/faiss/ext.cpp
108
+ - ext/faiss/extconf.rb
109
+ - lib/faiss.rb
110
+ - lib/faiss/index.rb
111
+ - lib/faiss/index_binary.rb
112
+ - lib/faiss/kmeans.rb
113
+ - lib/faiss/pca_matrix.rb
114
+ - lib/faiss/product_quantizer.rb
115
+ - lib/faiss/version.rb
116
+ homepage: https://github.com/ankane/faiss
117
+ licenses:
118
+ - MIT
119
+ metadata: {}
120
+ post_install_message:
121
+ rdoc_options: []
122
+ require_paths:
123
+ - lib
124
+ required_ruby_version: !ruby/object:Gem::Requirement
125
+ requirements:
126
+ - - ">="
127
+ - !ruby/object:Gem::Version
128
+ version: '2.4'
129
+ required_rubygems_version: !ruby/object:Gem::Requirement
130
+ requirements:
131
+ - - ">="
132
+ - !ruby/object:Gem::Version
133
+ version: '0'
134
+ requirements: []
135
+ rubygems_version: 3.1.2
136
+ signing_key:
137
+ specification_version: 4
138
+ summary: Efficient similarity search and clustering for Ruby
139
+ test_files: []