faiss 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +130 -0
- data/ext/faiss/ext.cpp +248 -0
- data/ext/faiss/extconf.rb +7 -0
- data/lib/faiss/index.rb +20 -0
- data/lib/faiss/index_binary.rb +20 -0
- data/lib/faiss/kmeans.rb +15 -0
- data/lib/faiss/pca_matrix.rb +15 -0
- data/lib/faiss/product_quantizer.rb +22 -0
- data/lib/faiss/version.rb +3 -0
- data/lib/faiss.rb +13 -0
- metadata +139 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: 47b973803ea179379ab292d5d7b8350c12a383387e90b96f38eae4e90e20dad3
|
4
|
+
data.tar.gz: 5697b1ec26dbbb0794e6c11563b0cf76d564391882e7c0c0148f3893e1bf6b59
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: dccf5a8ddfd4030e70308c3e71b16bb6742839b8b1a263d3a010a381729af869c1755164e25a3941a3f475376e783ec42b43409fede77010e97949092a424e18
|
7
|
+
data.tar.gz: 57c933bc9d3ffbec37be0edbf641bd004e8dbfa13c04d52ca970e8ff03f719f65f27016892b06cd66755f36afc8d3ff505e6062656f2c48fa20d58cf64c2b6fd
|
data/CHANGELOG.md
ADDED
data/LICENSE.txt
ADDED
@@ -0,0 +1,22 @@
|
|
1
|
+
Copyright (c) 2020 Andrew Kane
|
2
|
+
|
3
|
+
MIT License
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining
|
6
|
+
a copy of this software and associated documentation files (the
|
7
|
+
"Software"), to deal in the Software without restriction, including
|
8
|
+
without limitation the rights to use, copy, modify, merge, publish,
|
9
|
+
distribute, sublicense, and/or sell copies of the Software, and to
|
10
|
+
permit persons to whom the Software is furnished to do so, subject to
|
11
|
+
the following conditions:
|
12
|
+
|
13
|
+
The above copyright notice and this permission notice shall be
|
14
|
+
included in all copies or substantial portions of the Software.
|
15
|
+
|
16
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
17
|
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
18
|
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
19
|
+
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
20
|
+
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
21
|
+
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
22
|
+
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
data/README.md
ADDED
@@ -0,0 +1,130 @@
|
|
1
|
+
# Faiss
|
2
|
+
|
3
|
+
[Faiss](https://github.com/facebookresearch/faiss) - efficient similarity search and clustering - for Ruby
|
4
|
+
|
5
|
+
## Installation
|
6
|
+
|
7
|
+
First, install the [Faiss C++ library](https://github.com/facebookresearch/faiss/blob/master/INSTALL.md). For Homebrew, use:
|
8
|
+
|
9
|
+
```sh
|
10
|
+
brew install faiss
|
11
|
+
```
|
12
|
+
|
13
|
+
Add this line to your application’s Gemfile:
|
14
|
+
|
15
|
+
```ruby
|
16
|
+
gem 'faiss'
|
17
|
+
```
|
18
|
+
|
19
|
+
## Getting Started
|
20
|
+
|
21
|
+
Prep your data
|
22
|
+
|
23
|
+
```ruby
|
24
|
+
objects = [
|
25
|
+
[1, 1, 2, 1],
|
26
|
+
[5, 4, 6, 5],
|
27
|
+
[1, 2, 1, 2]
|
28
|
+
]
|
29
|
+
```
|
30
|
+
|
31
|
+
Build an index
|
32
|
+
|
33
|
+
```ruby
|
34
|
+
index = Faiss::IndexFlatL2.new(4)
|
35
|
+
index.add(objects)
|
36
|
+
```
|
37
|
+
|
38
|
+
Search
|
39
|
+
|
40
|
+
```ruby
|
41
|
+
distances, ids = index.search(objects, 3)
|
42
|
+
```
|
43
|
+
|
44
|
+
## K-means Clustering
|
45
|
+
|
46
|
+
Train
|
47
|
+
|
48
|
+
```ruby
|
49
|
+
kmeans = Faiss::Kmeans.new(4, 2)
|
50
|
+
kmeans.train(objects)
|
51
|
+
```
|
52
|
+
|
53
|
+
Get the centroids
|
54
|
+
|
55
|
+
```ruby
|
56
|
+
kmeans.centroids
|
57
|
+
```
|
58
|
+
|
59
|
+
## PCA
|
60
|
+
|
61
|
+
Train
|
62
|
+
|
63
|
+
```ruby
|
64
|
+
mat = Faiss::PCAMatrix.new(40, 10)
|
65
|
+
mat.train(objects)
|
66
|
+
```
|
67
|
+
|
68
|
+
Apply
|
69
|
+
|
70
|
+
```ruby
|
71
|
+
mat.apply(mt)
|
72
|
+
```
|
73
|
+
|
74
|
+
## Product Quantizer
|
75
|
+
|
76
|
+
Train
|
77
|
+
|
78
|
+
```ruby
|
79
|
+
pq = Faiss::ProductQuantizer.new(32, 4, 8)
|
80
|
+
pq.train(objects)
|
81
|
+
```
|
82
|
+
|
83
|
+
Encode
|
84
|
+
|
85
|
+
```ruby
|
86
|
+
pq.compute_codes(objects)
|
87
|
+
```
|
88
|
+
|
89
|
+
Decode
|
90
|
+
|
91
|
+
```ruby
|
92
|
+
pq.decode(codes)
|
93
|
+
```
|
94
|
+
|
95
|
+
## Data
|
96
|
+
|
97
|
+
Data can be an array of arrays
|
98
|
+
|
99
|
+
```ruby
|
100
|
+
[[1, 2, 3], [4, 5, 6]]
|
101
|
+
```
|
102
|
+
|
103
|
+
Or a Numo NArray
|
104
|
+
|
105
|
+
```ruby
|
106
|
+
Numo::SFloat.new(3, 2).seq
|
107
|
+
```
|
108
|
+
|
109
|
+
## History
|
110
|
+
|
111
|
+
View the [changelog](https://github.com/ankane/faiss/blob/master/CHANGELOG.md)
|
112
|
+
|
113
|
+
## Contributing
|
114
|
+
|
115
|
+
Everyone is encouraged to help improve this project. Here are a few ways you can help:
|
116
|
+
|
117
|
+
- [Report bugs](https://github.com/ankane/faiss/issues)
|
118
|
+
- Fix bugs and [submit pull requests](https://github.com/ankane/faiss/pulls)
|
119
|
+
- Write, clarify, or fix documentation
|
120
|
+
- Suggest or add new features
|
121
|
+
|
122
|
+
To get started with development:
|
123
|
+
|
124
|
+
```sh
|
125
|
+
git clone https://github.com/ankane/faiss.git
|
126
|
+
cd faiss
|
127
|
+
bundle install
|
128
|
+
bundle exec rake compile
|
129
|
+
bundle exec rake test
|
130
|
+
```
|
data/ext/faiss/ext.cpp
ADDED
@@ -0,0 +1,248 @@
|
|
1
|
+
#include <faiss/IndexFlat.h>
|
2
|
+
#include <faiss/IndexHNSW.h>
|
3
|
+
#include <faiss/IndexIVFFlat.h>
|
4
|
+
#include <faiss/IndexLSH.h>
|
5
|
+
#include <faiss/IndexScalarQuantizer.h>
|
6
|
+
#include <faiss/IndexPQ.h>
|
7
|
+
#include <faiss/IndexIVFPQ.h>
|
8
|
+
#include <faiss/IndexIVFPQR.h>
|
9
|
+
|
10
|
+
#include <faiss/IndexBinaryFlat.h>
|
11
|
+
#include <faiss/IndexBinaryIVF.h>
|
12
|
+
#include <faiss/index_factory.h>
|
13
|
+
|
14
|
+
#include <faiss/Clustering.h>
|
15
|
+
#include <faiss/VectorTransform.h>
|
16
|
+
|
17
|
+
#include <rice/Array.hpp>
|
18
|
+
#include <rice/Class.hpp>
|
19
|
+
#include <rice/Constructor.hpp>
|
20
|
+
#include <rice/Module.hpp>
|
21
|
+
|
22
|
+
extern "C"
|
23
|
+
void Init_ext()
|
24
|
+
{
|
25
|
+
Rice::Module rb_mFaiss = Rice::define_module("Faiss")
|
26
|
+
.define_singleton_method(
|
27
|
+
"index_binary_factory",
|
28
|
+
*[](int d, const char *description) {
|
29
|
+
return faiss::index_binary_factory(d, description);
|
30
|
+
});
|
31
|
+
|
32
|
+
Rice::define_class_under<faiss::Index>(rb_mFaiss, "Index")
|
33
|
+
.define_method(
|
34
|
+
"d",
|
35
|
+
*[](faiss::Index &self) {
|
36
|
+
return self.d;
|
37
|
+
})
|
38
|
+
.define_method(
|
39
|
+
"trained?",
|
40
|
+
*[](faiss::Index &self) {
|
41
|
+
return self.is_trained;
|
42
|
+
})
|
43
|
+
.define_method(
|
44
|
+
"ntotal",
|
45
|
+
*[](faiss::Index &self) {
|
46
|
+
return self.ntotal;
|
47
|
+
})
|
48
|
+
.define_method(
|
49
|
+
"_train",
|
50
|
+
*[](faiss::Index &self, int64_t n, Rice::String s) {
|
51
|
+
const float *x = (float*) s.c_str();
|
52
|
+
self.train(n, x);
|
53
|
+
})
|
54
|
+
.define_method(
|
55
|
+
"_add",
|
56
|
+
*[](faiss::Index &self, int64_t n, Rice::String s) {
|
57
|
+
const float *x = (float*) s.c_str();
|
58
|
+
self.add(n, x);
|
59
|
+
})
|
60
|
+
.define_method(
|
61
|
+
"_search",
|
62
|
+
*[](faiss::Index &self, int64_t n, Rice::String s, int64_t k) {
|
63
|
+
const float *x = (float*) s.c_str();
|
64
|
+
float *distances = new float[k * n];
|
65
|
+
int64_t *labels = new int64_t[k * n];
|
66
|
+
|
67
|
+
self.search(n, x, k, distances, labels);
|
68
|
+
|
69
|
+
auto dstr = std::string((char*) distances, k * n * sizeof(float));
|
70
|
+
auto lstr = std::string((char*) labels, k * n * sizeof(int64_t));
|
71
|
+
|
72
|
+
Rice::Array ret;
|
73
|
+
ret.push(dstr);
|
74
|
+
ret.push(lstr);
|
75
|
+
return ret;
|
76
|
+
});
|
77
|
+
|
78
|
+
Rice::define_class_under<faiss::IndexBinary>(rb_mFaiss, "IndexBinary")
|
79
|
+
.define_method(
|
80
|
+
"d",
|
81
|
+
*[](faiss::Index &self) {
|
82
|
+
return self.d;
|
83
|
+
})
|
84
|
+
.define_method(
|
85
|
+
"trained?",
|
86
|
+
*[](faiss::IndexBinary &self) {
|
87
|
+
return self.is_trained;
|
88
|
+
})
|
89
|
+
.define_method(
|
90
|
+
"ntotal",
|
91
|
+
*[](faiss::IndexBinary &self) {
|
92
|
+
return self.ntotal;
|
93
|
+
})
|
94
|
+
.define_method(
|
95
|
+
"_train",
|
96
|
+
*[](faiss::IndexBinary &self, int64_t n, Rice::String s) {
|
97
|
+
const uint8_t *x = (uint8_t*) s.c_str();
|
98
|
+
self.train(n, x);
|
99
|
+
})
|
100
|
+
.define_method(
|
101
|
+
"_add",
|
102
|
+
*[](faiss::IndexBinary &self, int64_t n, Rice::String s) {
|
103
|
+
const uint8_t *x = (uint8_t*) s.c_str();
|
104
|
+
self.add(n, x);
|
105
|
+
})
|
106
|
+
.define_method(
|
107
|
+
"_search",
|
108
|
+
*[](faiss::IndexBinary &self, int64_t n, Rice::String s, int64_t k) {
|
109
|
+
const uint8_t *x = (uint8_t*) s.c_str();
|
110
|
+
int32_t *distances = new int32_t[k * n];
|
111
|
+
int64_t *labels = new int64_t[k * n];
|
112
|
+
|
113
|
+
self.search(n, x, k, distances, labels);
|
114
|
+
|
115
|
+
auto dstr = std::string((char*) distances, k * n * sizeof(int32_t));
|
116
|
+
auto lstr = std::string((char*) labels, k * n * sizeof(int64_t));
|
117
|
+
|
118
|
+
Rice::Array ret;
|
119
|
+
ret.push(dstr);
|
120
|
+
ret.push(lstr);
|
121
|
+
return ret;
|
122
|
+
});
|
123
|
+
|
124
|
+
Rice::define_class_under<faiss::IndexFlatL2, faiss::Index>(rb_mFaiss, "IndexFlatL2")
|
125
|
+
.define_constructor(Rice::Constructor<faiss::IndexFlatL2, int64_t>());
|
126
|
+
|
127
|
+
Rice::define_class_under<faiss::IndexFlatIP, faiss::Index>(rb_mFaiss, "IndexFlatIP")
|
128
|
+
.define_constructor(Rice::Constructor<faiss::IndexFlatIP, int64_t>());
|
129
|
+
|
130
|
+
Rice::define_class_under<faiss::IndexHNSWFlat, faiss::Index>(rb_mFaiss, "IndexHNSWFlat")
|
131
|
+
.define_constructor(Rice::Constructor<faiss::IndexHNSWFlat, int, int>());
|
132
|
+
|
133
|
+
Rice::define_class_under<faiss::IndexIVFFlat, faiss::Index>(rb_mFaiss, "IndexIVFFlat")
|
134
|
+
.define_constructor(Rice::Constructor<faiss::IndexIVFFlat, faiss::Index*, size_t, size_t>());
|
135
|
+
|
136
|
+
Rice::define_class_under<faiss::IndexLSH, faiss::Index>(rb_mFaiss, "IndexLSH")
|
137
|
+
.define_constructor(Rice::Constructor<faiss::IndexLSH, int64_t, int>());
|
138
|
+
|
139
|
+
Rice::define_class_under<faiss::IndexScalarQuantizer, faiss::Index>(rb_mFaiss, "IndexScalarQuantizer")
|
140
|
+
.define_constructor(Rice::Constructor<faiss::IndexScalarQuantizer, int, faiss::ScalarQuantizer::QuantizerType>());
|
141
|
+
|
142
|
+
Rice::define_class_under<faiss::IndexPQ, faiss::Index>(rb_mFaiss, "IndexPQ")
|
143
|
+
.define_constructor(Rice::Constructor<faiss::IndexPQ, int, size_t, size_t>());
|
144
|
+
|
145
|
+
Rice::define_class_under<faiss::IndexIVFScalarQuantizer, faiss::Index>(rb_mFaiss, "IndexIVFScalarQuantizer")
|
146
|
+
.define_constructor(Rice::Constructor<faiss::IndexIVFScalarQuantizer, faiss::Index*, size_t, size_t, faiss::ScalarQuantizer::QuantizerType>());
|
147
|
+
|
148
|
+
Rice::define_class_under<faiss::IndexIVFPQ, faiss::Index>(rb_mFaiss, "IndexIVFPQ")
|
149
|
+
.define_constructor(Rice::Constructor<faiss::IndexIVFPQ, faiss::Index*, size_t, size_t, size_t, size_t>());
|
150
|
+
|
151
|
+
Rice::define_class_under<faiss::IndexIVFPQR, faiss::Index>(rb_mFaiss, "IndexIVFPQR")
|
152
|
+
.define_constructor(Rice::Constructor<faiss::IndexIVFPQR, faiss::Index*, size_t, size_t, size_t, size_t, size_t, size_t>());
|
153
|
+
|
154
|
+
Rice::define_class_under<faiss::IndexBinaryFlat, faiss::IndexBinary>(rb_mFaiss, "IndexBinaryFlat")
|
155
|
+
.define_constructor(Rice::Constructor<faiss::IndexBinaryFlat, int64_t>());
|
156
|
+
|
157
|
+
Rice::define_class_under<faiss::IndexBinaryIVF, faiss::IndexBinary>(rb_mFaiss, "IndexBinaryIVF")
|
158
|
+
.define_constructor(Rice::Constructor<faiss::IndexBinaryIVF, faiss::IndexBinary*, size_t, size_t>());
|
159
|
+
|
160
|
+
Rice::define_class_under<faiss::Clustering>(rb_mFaiss, "Kmeans")
|
161
|
+
.define_constructor(Rice::Constructor<faiss::Clustering, int, int>())
|
162
|
+
.define_method(
|
163
|
+
"d",
|
164
|
+
*[](faiss::Clustering &self) {
|
165
|
+
return self.d;
|
166
|
+
})
|
167
|
+
.define_method(
|
168
|
+
"k",
|
169
|
+
*[](faiss::Clustering &self) {
|
170
|
+
return self.k;
|
171
|
+
})
|
172
|
+
.define_method(
|
173
|
+
"_centroids",
|
174
|
+
*[](faiss::Clustering &self) {
|
175
|
+
float *centroids = new float[self.k * self.d];
|
176
|
+
for (size_t i = 0; i < self.centroids.size(); i++) {
|
177
|
+
centroids[i] = self.centroids[i];
|
178
|
+
}
|
179
|
+
return std::string((char*) centroids, self.k * self.d * sizeof(float));
|
180
|
+
})
|
181
|
+
.define_method(
|
182
|
+
"_train",
|
183
|
+
*[](faiss::Clustering &self, int64_t n, Rice::String s, faiss::Index & index) {
|
184
|
+
const float *x = (float*) s.c_str();
|
185
|
+
self.train(n, x, index);
|
186
|
+
});
|
187
|
+
|
188
|
+
Rice::define_class_under<faiss::PCAMatrix>(rb_mFaiss, "PCAMatrix")
|
189
|
+
.define_constructor(Rice::Constructor<faiss::PCAMatrix, int, int>())
|
190
|
+
.define_method(
|
191
|
+
"d_in",
|
192
|
+
*[](faiss::PCAMatrix &self) {
|
193
|
+
return self.d_in;
|
194
|
+
})
|
195
|
+
.define_method(
|
196
|
+
"d_out",
|
197
|
+
*[](faiss::PCAMatrix &self) {
|
198
|
+
return self.d_out;
|
199
|
+
})
|
200
|
+
.define_method(
|
201
|
+
"_train",
|
202
|
+
*[](faiss::PCAMatrix &self, int64_t n, Rice::String s) {
|
203
|
+
const float *x = (float*) s.c_str();
|
204
|
+
self.train(n, x);
|
205
|
+
})
|
206
|
+
.define_method(
|
207
|
+
"_apply",
|
208
|
+
*[](faiss::PCAMatrix &self, int64_t n, Rice::String s) {
|
209
|
+
const float *x = (float*) s.c_str();
|
210
|
+
float* res = self.apply(n, x);
|
211
|
+
return std::string((char*) res, n * self.d_out * sizeof(float));
|
212
|
+
});
|
213
|
+
|
214
|
+
Rice::define_class_under<faiss::ProductQuantizer>(rb_mFaiss, "ProductQuantizer")
|
215
|
+
.define_constructor(Rice::Constructor<faiss::ProductQuantizer, size_t, size_t, size_t>())
|
216
|
+
.define_method(
|
217
|
+
"d",
|
218
|
+
*[](faiss::ProductQuantizer &self) {
|
219
|
+
return self.d;
|
220
|
+
})
|
221
|
+
.define_method(
|
222
|
+
"m",
|
223
|
+
*[](faiss::ProductQuantizer &self) {
|
224
|
+
return self.M;
|
225
|
+
})
|
226
|
+
.define_method(
|
227
|
+
"_train",
|
228
|
+
*[](faiss::ProductQuantizer &self, int n, Rice::String s) {
|
229
|
+
const float *x = (float*) s.c_str();
|
230
|
+
self.train(n, x);
|
231
|
+
})
|
232
|
+
.define_method(
|
233
|
+
"_compute_codes",
|
234
|
+
*[](faiss::ProductQuantizer &self, int n, Rice::String s) {
|
235
|
+
const float *x = (float*) s.c_str();
|
236
|
+
uint8_t *codes = new uint8_t[n * self.M];
|
237
|
+
self.compute_codes(x, codes, n);
|
238
|
+
return std::string((char*) codes, n * self.M * sizeof(uint8_t));
|
239
|
+
})
|
240
|
+
.define_method(
|
241
|
+
"_decode",
|
242
|
+
*[](faiss::ProductQuantizer &self, int n, Rice::String s) {
|
243
|
+
const uint8_t *codes = (uint8_t*) s.c_str();
|
244
|
+
float *x = new float[n * self.d];
|
245
|
+
self.decode(codes, x, n);
|
246
|
+
return std::string((char*) x, n * self.d * sizeof(float));
|
247
|
+
});
|
248
|
+
}
|
data/lib/faiss/index.rb
ADDED
@@ -0,0 +1,20 @@
|
|
1
|
+
module Faiss
|
2
|
+
class Index
|
3
|
+
def train(objects)
|
4
|
+
objects = Numo::SFloat.cast(objects) unless objects.is_a?(Numo::SFloat)
|
5
|
+
_train(objects.shape[0], objects.to_binary)
|
6
|
+
end
|
7
|
+
|
8
|
+
def add(objects)
|
9
|
+
objects = Numo::SFloat.cast(objects) unless objects.is_a?(Numo::SFloat)
|
10
|
+
_add(objects.shape[0], objects.to_binary)
|
11
|
+
end
|
12
|
+
|
13
|
+
def search(objects, k)
|
14
|
+
objects = Numo::SFloat.cast(objects) unless objects.is_a?(Numo::SFloat)
|
15
|
+
n = objects.shape[0]
|
16
|
+
distances, labels = _search(n, objects.to_binary, k)
|
17
|
+
[Numo::SFloat.from_binary(distances).reshape(n, k), Numo::Int64.from_binary(labels).reshape(n, k)]
|
18
|
+
end
|
19
|
+
end
|
20
|
+
end
|
@@ -0,0 +1,20 @@
|
|
1
|
+
module Faiss
|
2
|
+
class IndexBinary
|
3
|
+
def train(objects)
|
4
|
+
objects = Numo::UInt8.cast(objects) unless objects.is_a?(Numo::UInt8)
|
5
|
+
_train(objects.shape[0], objects.to_binary)
|
6
|
+
end
|
7
|
+
|
8
|
+
def add(objects)
|
9
|
+
objects = Numo::UInt8.cast(objects) unless objects.is_a?(Numo::UInt8)
|
10
|
+
_add(objects.shape[0], objects.to_binary)
|
11
|
+
end
|
12
|
+
|
13
|
+
def search(objects, k)
|
14
|
+
objects = Numo::UInt8.cast(objects) unless objects.is_a?(Numo::UInt8)
|
15
|
+
n = objects.shape[0]
|
16
|
+
distances, labels = _search(n, objects.to_binary, k)
|
17
|
+
[Numo::UInt32.from_binary(distances).reshape(n, k), Numo::Int64.from_binary(labels).reshape(n, k)]
|
18
|
+
end
|
19
|
+
end
|
20
|
+
end
|
data/lib/faiss/kmeans.rb
ADDED
@@ -0,0 +1,15 @@
|
|
1
|
+
module Faiss
|
2
|
+
class Kmeans
|
3
|
+
attr_reader :index
|
4
|
+
|
5
|
+
def train(objects)
|
6
|
+
objects = Numo::SFloat.cast(objects) unless objects.is_a?(Numo::SFloat)
|
7
|
+
@index = IndexFlatL2.new(d)
|
8
|
+
_train(objects.shape[0], objects.to_binary, @index)
|
9
|
+
end
|
10
|
+
|
11
|
+
def centroids
|
12
|
+
Numo::SFloat.from_binary(_centroids).reshape(k, d)
|
13
|
+
end
|
14
|
+
end
|
15
|
+
end
|
@@ -0,0 +1,15 @@
|
|
1
|
+
module Faiss
|
2
|
+
class PCAMatrix
|
3
|
+
def train(objects)
|
4
|
+
objects = Numo::SFloat.cast(objects) unless objects.is_a?(Numo::SFloat)
|
5
|
+
_train(objects.shape[0], objects.to_binary)
|
6
|
+
end
|
7
|
+
|
8
|
+
def apply(objects)
|
9
|
+
objects = Numo::SFloat.cast(objects) unless objects.is_a?(Numo::SFloat)
|
10
|
+
n = objects.shape[0]
|
11
|
+
res = _apply(n, objects.to_binary)
|
12
|
+
Numo::SFloat.from_binary(res).reshape(n, d_out)
|
13
|
+
end
|
14
|
+
end
|
15
|
+
end
|
@@ -0,0 +1,22 @@
|
|
1
|
+
module Faiss
|
2
|
+
class ProductQuantizer
|
3
|
+
def train(objects)
|
4
|
+
objects = Numo::SFloat.cast(objects) unless objects.is_a?(Numo::SFloat)
|
5
|
+
_train(objects.shape[0], objects.to_binary)
|
6
|
+
end
|
7
|
+
|
8
|
+
def compute_codes(objects)
|
9
|
+
objects = Numo::SFloat.cast(objects) unless objects.is_a?(Numo::SFloat)
|
10
|
+
n = objects.shape[0]
|
11
|
+
res = _compute_codes(n, objects.to_binary)
|
12
|
+
Numo::UInt8.from_binary(res).reshape(n, m)
|
13
|
+
end
|
14
|
+
|
15
|
+
def decode(objects)
|
16
|
+
objects = Numo::UInt8.cast(objects) unless objects.is_a?(Numo::UInt8)
|
17
|
+
n = objects.shape[0]
|
18
|
+
res = _decode(n, objects.to_binary)
|
19
|
+
Numo::SFloat.from_binary(res).reshape(n, d)
|
20
|
+
end
|
21
|
+
end
|
22
|
+
end
|
data/lib/faiss.rb
ADDED
@@ -0,0 +1,13 @@
|
|
1
|
+
# dependencies
|
2
|
+
require "numo/narray"
|
3
|
+
|
4
|
+
# ext
|
5
|
+
require "faiss/ext"
|
6
|
+
|
7
|
+
# modules
|
8
|
+
require "faiss/index"
|
9
|
+
require "faiss/index_binary"
|
10
|
+
require "faiss/kmeans"
|
11
|
+
require "faiss/pca_matrix"
|
12
|
+
require "faiss/product_quantizer"
|
13
|
+
require "faiss/version"
|
metadata
ADDED
@@ -0,0 +1,139 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: faiss
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.1.0
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- Andrew Kane
|
8
|
+
autorequire:
|
9
|
+
bindir: bin
|
10
|
+
cert_chain: []
|
11
|
+
date: 2020-03-08 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: rice
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - ">="
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: '2.2'
|
20
|
+
type: :runtime
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - ">="
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: '2.2'
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: numo-narray
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
30
|
+
requirements:
|
31
|
+
- - ">="
|
32
|
+
- !ruby/object:Gem::Version
|
33
|
+
version: '0'
|
34
|
+
type: :runtime
|
35
|
+
prerelease: false
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - ">="
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: '0'
|
41
|
+
- !ruby/object:Gem::Dependency
|
42
|
+
name: bundler
|
43
|
+
requirement: !ruby/object:Gem::Requirement
|
44
|
+
requirements:
|
45
|
+
- - ">="
|
46
|
+
- !ruby/object:Gem::Version
|
47
|
+
version: '0'
|
48
|
+
type: :development
|
49
|
+
prerelease: false
|
50
|
+
version_requirements: !ruby/object:Gem::Requirement
|
51
|
+
requirements:
|
52
|
+
- - ">="
|
53
|
+
- !ruby/object:Gem::Version
|
54
|
+
version: '0'
|
55
|
+
- !ruby/object:Gem::Dependency
|
56
|
+
name: rake
|
57
|
+
requirement: !ruby/object:Gem::Requirement
|
58
|
+
requirements:
|
59
|
+
- - ">="
|
60
|
+
- !ruby/object:Gem::Version
|
61
|
+
version: '0'
|
62
|
+
type: :development
|
63
|
+
prerelease: false
|
64
|
+
version_requirements: !ruby/object:Gem::Requirement
|
65
|
+
requirements:
|
66
|
+
- - ">="
|
67
|
+
- !ruby/object:Gem::Version
|
68
|
+
version: '0'
|
69
|
+
- !ruby/object:Gem::Dependency
|
70
|
+
name: rake-compiler
|
71
|
+
requirement: !ruby/object:Gem::Requirement
|
72
|
+
requirements:
|
73
|
+
- - ">="
|
74
|
+
- !ruby/object:Gem::Version
|
75
|
+
version: '0'
|
76
|
+
type: :development
|
77
|
+
prerelease: false
|
78
|
+
version_requirements: !ruby/object:Gem::Requirement
|
79
|
+
requirements:
|
80
|
+
- - ">="
|
81
|
+
- !ruby/object:Gem::Version
|
82
|
+
version: '0'
|
83
|
+
- !ruby/object:Gem::Dependency
|
84
|
+
name: minitest
|
85
|
+
requirement: !ruby/object:Gem::Requirement
|
86
|
+
requirements:
|
87
|
+
- - ">="
|
88
|
+
- !ruby/object:Gem::Version
|
89
|
+
version: '5'
|
90
|
+
type: :development
|
91
|
+
prerelease: false
|
92
|
+
version_requirements: !ruby/object:Gem::Requirement
|
93
|
+
requirements:
|
94
|
+
- - ">="
|
95
|
+
- !ruby/object:Gem::Version
|
96
|
+
version: '5'
|
97
|
+
description:
|
98
|
+
email: andrew@chartkick.com
|
99
|
+
executables: []
|
100
|
+
extensions:
|
101
|
+
- ext/faiss/extconf.rb
|
102
|
+
extra_rdoc_files: []
|
103
|
+
files:
|
104
|
+
- CHANGELOG.md
|
105
|
+
- LICENSE.txt
|
106
|
+
- README.md
|
107
|
+
- ext/faiss/ext.cpp
|
108
|
+
- ext/faiss/extconf.rb
|
109
|
+
- lib/faiss.rb
|
110
|
+
- lib/faiss/index.rb
|
111
|
+
- lib/faiss/index_binary.rb
|
112
|
+
- lib/faiss/kmeans.rb
|
113
|
+
- lib/faiss/pca_matrix.rb
|
114
|
+
- lib/faiss/product_quantizer.rb
|
115
|
+
- lib/faiss/version.rb
|
116
|
+
homepage: https://github.com/ankane/faiss
|
117
|
+
licenses:
|
118
|
+
- MIT
|
119
|
+
metadata: {}
|
120
|
+
post_install_message:
|
121
|
+
rdoc_options: []
|
122
|
+
require_paths:
|
123
|
+
- lib
|
124
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
125
|
+
requirements:
|
126
|
+
- - ">="
|
127
|
+
- !ruby/object:Gem::Version
|
128
|
+
version: '2.4'
|
129
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
130
|
+
requirements:
|
131
|
+
- - ">="
|
132
|
+
- !ruby/object:Gem::Version
|
133
|
+
version: '0'
|
134
|
+
requirements: []
|
135
|
+
rubygems_version: 3.1.2
|
136
|
+
signing_key:
|
137
|
+
specification_version: 4
|
138
|
+
summary: Efficient similarity search and clustering for Ruby
|
139
|
+
test_files: []
|