extendmatrix 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- data.tar.gz.sig +2 -0
- data/History.txt +3 -0
- data/Manifest.txt +7 -0
- data/ORIGINAL_README.txt +22 -0
- data/README.txt +32 -0
- data/Rakefile +13 -0
- data/lib/extendmatrix.rb +1048 -0
- data/spec/extendmatrix_spec.rb +357 -0
- metadata +127 -0
- metadata.gz.sig +2 -0
data.tar.gz.sig
ADDED
data/History.txt
ADDED
data/Manifest.txt
ADDED
data/ORIGINAL_README.txt
ADDED
@@ -0,0 +1,22 @@
|
|
1
|
+
Extensions to the Ruby Matrix module
|
2
|
+
====================================
|
3
|
+
|
4
|
+
This README is a small description of the work done by Cosmin Bonchis as a
|
5
|
+
Google Summer of Code 2007 project for Ruby Central Inc.
|
6
|
+
|
7
|
+
The project consists of some enhancements to the Ruby "Matrix" module and includes: LU and QR (Householder, Givens, Gram Schmidt, Hessenberg) decompositions, bidiagonalization, eigenvalue and eigenvector calculations.
|
8
|
+
|
9
|
+
This archive contains in extendmatrix.rb file the source code of the project, an implementation of mapcar used in extending matrix, and all the tests files in the "tests" directory.
|
10
|
+
|
11
|
+
The code can also be found on the RubyForge repository at http://matrix.rubyforge.org/svn/trunk/ or the project's SVN repository can be checked out through anonymous access with the following command(s).
|
12
|
+
|
13
|
+
svn checkout svn://rubyforge.org/var/svn/matrix
|
14
|
+
svn checkout http://matrix.rubyforge.org/svn/trunk/
|
15
|
+
|
16
|
+
|
17
|
+
Relevant URLs:
|
18
|
+
==============
|
19
|
+
|
20
|
+
Project sources:
|
21
|
+
http://matrix.rubyforge.org/svn/trunk/
|
22
|
+
|
data/README.txt
ADDED
@@ -0,0 +1,32 @@
|
|
1
|
+
= extendmatrix
|
2
|
+
|
3
|
+
* http://github.com/clbustos/extendmatrix
|
4
|
+
|
5
|
+
== DESCRIPTION:
|
6
|
+
|
7
|
+
The project consists of some enhancements to the Ruby "Matrix" module and includes: LU and QR (Householder, Givens, Gram Schmidt, Hessenberg) decompositions, bidiagonalization, eigenvalue and eigenvector calculations.
|
8
|
+
Include some aditional code to obtains marginal for rows and columns.
|
9
|
+
|
10
|
+
The original code can be found on the RubyForge repository at http://matrix.rubyforge.org/svn/trunk/ or the project's SVN repository can be checked out through anonymous access with the following command(s).
|
11
|
+
|
12
|
+
Work done by Cosmin Bonchis as a Google Summer of Code 2007 project for Ruby Central Inc.
|
13
|
+
|
14
|
+
== SYNOPSIS:
|
15
|
+
|
16
|
+
require 'matrix_extensions'
|
17
|
+
m = Matrix.new(4, 3){|i, j| i * 3 + j}
|
18
|
+
m[1, 2].should == 5
|
19
|
+
m[3, 1..2].should == Vector[10, 11]
|
20
|
+
m[0..1, 0..2].should == Matrix[[0, 1, 2], [3, 4, 5]]
|
21
|
+
|
22
|
+
== REQUIREMENTS:
|
23
|
+
|
24
|
+
* Only Ruby
|
25
|
+
|
26
|
+
== INSTALL:
|
27
|
+
|
28
|
+
* sudo gem install matrix-extensions
|
29
|
+
|
30
|
+
== LICENSE:
|
31
|
+
|
32
|
+
One of http://www.opensource.org/licenses/
|
data/Rakefile
ADDED
@@ -0,0 +1,13 @@
|
|
1
|
+
# -*- ruby -*-
|
2
|
+
$:.unshift(File.dirname(__FILE__)+"/lib")
|
3
|
+
require 'rubygems'
|
4
|
+
require 'hoe'
|
5
|
+
require 'extendmatrix.rb'
|
6
|
+
Hoe.plugin :git
|
7
|
+
Hoe.spec 'extendmatrix' do
|
8
|
+
self.rubyforge_name = 'ruby-statsample'
|
9
|
+
self.version = Matrix::EXTENSION_VERSION
|
10
|
+
self.developer('Cosmin Bonchis', 'cbonchis_info.uvt.ro')
|
11
|
+
end
|
12
|
+
|
13
|
+
# vim: syntax=ruby
|
data/lib/extendmatrix.rb
ADDED
@@ -0,0 +1,1048 @@
|
|
1
|
+
require 'rational'
|
2
|
+
require 'matrix'
|
3
|
+
|
4
|
+
class Vector
|
5
|
+
include Enumerable
|
6
|
+
# fix for Vector#coerce on Ruby 1.8.x
|
7
|
+
if RUBY_VERSION<="1.9.0"
|
8
|
+
alias_method :old_coerce, :coerce
|
9
|
+
def coerce(other)
|
10
|
+
case other
|
11
|
+
when Numeric
|
12
|
+
return Matrix::Scalar.new(other), self
|
13
|
+
else
|
14
|
+
raise TypeError, "#{self.class} can't be coerced into #{other.class}"
|
15
|
+
end
|
16
|
+
end
|
17
|
+
|
18
|
+
end
|
19
|
+
|
20
|
+
module Norm
|
21
|
+
def Norm.sqnorm(obj, p)
|
22
|
+
sum = 0
|
23
|
+
obj.each{|x| sum += x ** p}
|
24
|
+
sum
|
25
|
+
end
|
26
|
+
end
|
27
|
+
|
28
|
+
alias :length :size
|
29
|
+
alias :index :[]
|
30
|
+
#
|
31
|
+
# Returns the value of an index vector or
|
32
|
+
# a Vector with the values of a range
|
33
|
+
# v = Vector[1, 2, 3, 4]
|
34
|
+
# v[0] => 1
|
35
|
+
# v[0..2] => Vector[1, 2, 3]
|
36
|
+
#
|
37
|
+
def [](i)
|
38
|
+
case i
|
39
|
+
when Range
|
40
|
+
Vector[*to_a.slice(i)]
|
41
|
+
else
|
42
|
+
index(i)
|
43
|
+
end
|
44
|
+
end
|
45
|
+
|
46
|
+
#
|
47
|
+
# Sets a vector value/(range of values) with a new value/(values from a vector)
|
48
|
+
# v = Vector[1, 2, 3]
|
49
|
+
# v[2] = 9 => Vector[1, 2, 9]
|
50
|
+
# v[1..2] = Vector[9, 9, 9, 9, 9] => v: Vector[1, 9, 9]
|
51
|
+
#
|
52
|
+
def []=(i, v)
|
53
|
+
case i
|
54
|
+
when Range
|
55
|
+
(self.size..i.begin - 1).each{|e| self[e] = 0} # self.size must be in the first place because the size of self can be modified
|
56
|
+
[v.size, i.entries.size].min.times {|e| self[e + i.begin] = v[e]}
|
57
|
+
(v.size + i.begin .. i.end).each {|e| self[e] = 0}
|
58
|
+
else
|
59
|
+
@elements[i]=v
|
60
|
+
end
|
61
|
+
end
|
62
|
+
|
63
|
+
class << self
|
64
|
+
#
|
65
|
+
# Returns a concatenated Vector
|
66
|
+
#
|
67
|
+
def concat(*args)
|
68
|
+
v = []
|
69
|
+
args.each{|x| v += x.to_a}
|
70
|
+
Vector[*v]
|
71
|
+
end
|
72
|
+
end
|
73
|
+
|
74
|
+
#
|
75
|
+
# Changes the elements of vector and returns a Vector
|
76
|
+
#
|
77
|
+
def collect!
|
78
|
+
els = @elements.collect! {|v| yield(v)}
|
79
|
+
Vector.elements(els, false)
|
80
|
+
end
|
81
|
+
|
82
|
+
#
|
83
|
+
# Iterates the elements of a vector
|
84
|
+
#
|
85
|
+
def each
|
86
|
+
(0...size).each {|i| yield(self[i])}
|
87
|
+
nil
|
88
|
+
end
|
89
|
+
|
90
|
+
#
|
91
|
+
# Returns the maximum element of a vector
|
92
|
+
#
|
93
|
+
def max
|
94
|
+
to_a.max
|
95
|
+
end
|
96
|
+
|
97
|
+
#
|
98
|
+
# Returns the minimum element of a vector
|
99
|
+
#
|
100
|
+
def min
|
101
|
+
to_a.min
|
102
|
+
end
|
103
|
+
|
104
|
+
#
|
105
|
+
# Returns the p-norm of a vector
|
106
|
+
#
|
107
|
+
def norm(p = 2)
|
108
|
+
Norm.sqnorm(self, p) ** (Float(1)/p)
|
109
|
+
end
|
110
|
+
|
111
|
+
#
|
112
|
+
# Returns the infinite-norm
|
113
|
+
#
|
114
|
+
def norm_inf
|
115
|
+
[min.abs, max.abs].max
|
116
|
+
end
|
117
|
+
|
118
|
+
#
|
119
|
+
# Returns a slice of vector
|
120
|
+
#
|
121
|
+
def slice(*args)
|
122
|
+
Vector[*to_a.slice(*args)]
|
123
|
+
end
|
124
|
+
|
125
|
+
def slice_set(v, b, e)
|
126
|
+
for i in b..e
|
127
|
+
self[i] = v[i-b]
|
128
|
+
end
|
129
|
+
end
|
130
|
+
|
131
|
+
#
|
132
|
+
# Sets a slice of vector
|
133
|
+
#
|
134
|
+
def slice=(args)
|
135
|
+
case args[1]
|
136
|
+
when Range
|
137
|
+
slice_set(args[0], args[1].begin, args[1].last)
|
138
|
+
else
|
139
|
+
slice_set(args[0], args[1], args[2])
|
140
|
+
end
|
141
|
+
end
|
142
|
+
|
143
|
+
#
|
144
|
+
# Return the vector divided by a scalar
|
145
|
+
#
|
146
|
+
def /(c)
|
147
|
+
map {|e| e.quo(c)}
|
148
|
+
end
|
149
|
+
|
150
|
+
#
|
151
|
+
# Return the matrix column coresponding to the vector transpose
|
152
|
+
#
|
153
|
+
def transpose
|
154
|
+
Matrix[self.to_a]
|
155
|
+
end
|
156
|
+
|
157
|
+
alias :t :transpose
|
158
|
+
|
159
|
+
#
|
160
|
+
# Computes the Householder vector (MC, Golub, p. 210, algorithm 5.1.1)
|
161
|
+
#
|
162
|
+
def house
|
163
|
+
s = self[1..length-1]
|
164
|
+
sigma = s.inner_product(s)
|
165
|
+
v = clone; v[0] = 1
|
166
|
+
if sigma == 0
|
167
|
+
beta = 0
|
168
|
+
else
|
169
|
+
mu = Math.sqrt(self[0] ** 2 + sigma)
|
170
|
+
if self[0] <= 0
|
171
|
+
v[0] = self[0] - mu
|
172
|
+
else
|
173
|
+
v[0] = - sigma.quo(self[0] + mu)
|
174
|
+
end
|
175
|
+
v2 = v[0] ** 2
|
176
|
+
beta = 2 * v2.quo(sigma + v2)
|
177
|
+
v /= v[0]
|
178
|
+
end
|
179
|
+
return v, beta
|
180
|
+
end
|
181
|
+
|
182
|
+
#
|
183
|
+
#Projection operator
|
184
|
+
#(http://en.wikipedia.org/wiki/Gram-Schmidt_process#The_Gram.E2.80.93Schmidt_process)
|
185
|
+
#
|
186
|
+
def proj(v)
|
187
|
+
vp = v.inner_product(self)
|
188
|
+
vp = Float vp if vp.is_a?(Integer)
|
189
|
+
self * (vp / inner_product(self))
|
190
|
+
end
|
191
|
+
|
192
|
+
#
|
193
|
+
# Return the vector normalized
|
194
|
+
#
|
195
|
+
def normalize
|
196
|
+
self / self.norm
|
197
|
+
end
|
198
|
+
|
199
|
+
#
|
200
|
+
# Stabilized Gram-Schmidt process
|
201
|
+
# (http://en.wikipedia.org/wiki/Gram-Schmidt_process#Algorithm)
|
202
|
+
#
|
203
|
+
def self.gram_schmidt(*vectors)
|
204
|
+
v = vectors.clone
|
205
|
+
for j in 0...v.size
|
206
|
+
for i in 0..j-1
|
207
|
+
v[j] -= v[i] * v[j].inner_product(v[i])
|
208
|
+
end
|
209
|
+
v[j] /= v[j].norm
|
210
|
+
end
|
211
|
+
v
|
212
|
+
end
|
213
|
+
end
|
214
|
+
|
215
|
+
class Matrix
|
216
|
+
|
217
|
+
EXTENSION_VERSION="0.1.0"
|
218
|
+
include Enumerable
|
219
|
+
public_class_method :new
|
220
|
+
|
221
|
+
attr_reader :rows, :wrap
|
222
|
+
@wrap = nil
|
223
|
+
|
224
|
+
def initialize(*argv)
|
225
|
+
return initialize_old(*argv) if argv[0].is_a?(Symbol)
|
226
|
+
n, m, val = argv; val = 0 if not val
|
227
|
+
f = (block_given?)? lambda {|i,j| yield(i, j)} : lambda {|i,j| val}
|
228
|
+
init_rows((0...n).collect {|i| (0...m).collect {|j| f.call(i,j)}}, true)
|
229
|
+
end
|
230
|
+
|
231
|
+
#
|
232
|
+
# For invoking a method
|
233
|
+
#
|
234
|
+
def initialize_old(init_method, *argv)
|
235
|
+
self.send(init_method, *argv)
|
236
|
+
end
|
237
|
+
|
238
|
+
alias :ids :[]
|
239
|
+
#
|
240
|
+
# Return a value or a vector/matrix of values depending
|
241
|
+
# if the indexes are ranges or not
|
242
|
+
# m = Matrix.new(4, 3){|i, j| i * 3 + j}
|
243
|
+
# m: 0 1 2
|
244
|
+
# 3 4 5
|
245
|
+
# 6 7 8
|
246
|
+
# 9 10 11
|
247
|
+
# m[1, 2] => 5
|
248
|
+
# m[3,1..2] => Vector[10, 11]
|
249
|
+
# m[0..1, 0..2] => Matrix[[0, 1, 2], [3, 4, 5]]
|
250
|
+
#
|
251
|
+
def [](i, j)
|
252
|
+
case i
|
253
|
+
when Range
|
254
|
+
case j
|
255
|
+
when Range
|
256
|
+
Matrix[*i.collect{|l| self.row(l)[j].to_a}]
|
257
|
+
else
|
258
|
+
column(j)[i]
|
259
|
+
end
|
260
|
+
else
|
261
|
+
case j
|
262
|
+
when Range
|
263
|
+
row(i)[j]
|
264
|
+
else
|
265
|
+
ids(i, j)
|
266
|
+
end
|
267
|
+
end
|
268
|
+
end
|
269
|
+
|
270
|
+
|
271
|
+
|
272
|
+
|
273
|
+
#
|
274
|
+
# Set the values of a matrix
|
275
|
+
# m = Matrix.new(3, 3){|i, j| i * 3 + j}
|
276
|
+
# m: 0 1 2
|
277
|
+
# 3 4 5
|
278
|
+
# 6 7 8
|
279
|
+
# m[1, 2] = 9 => Matrix[[0, 1, 2], [3, 4, 9], [6, 7, 8]]
|
280
|
+
# m[2,1..2] = Vector[8, 8] => Matrix[[0, 1, 2], [3, 8, 8], [6, 7, 8]]
|
281
|
+
# m[0..1, 0..1] = Matrix[[0, 0, 0],[0, 0, 0]]
|
282
|
+
# => Matrix[[0, 0, 2], [0, 0, 8], [6, 7, 8]]
|
283
|
+
#
|
284
|
+
def []=(i, j, v)
|
285
|
+
case i
|
286
|
+
when Range
|
287
|
+
if i.entries.size == 1
|
288
|
+
self[i.begin, j] = (v.is_a?(Matrix) ? v.row(0) : v)
|
289
|
+
else
|
290
|
+
case j
|
291
|
+
when Range
|
292
|
+
if j.entries.size == 1
|
293
|
+
self[i, j.begin] = (v.is_a?(Matrix) ? v.column(0) : v)
|
294
|
+
else
|
295
|
+
i.each{|l| self.row= l, v.row(l - i.begin), j}
|
296
|
+
end
|
297
|
+
else
|
298
|
+
self.column= j, v, i
|
299
|
+
end
|
300
|
+
end
|
301
|
+
else
|
302
|
+
case j
|
303
|
+
when Range
|
304
|
+
if j.entries.size == 1
|
305
|
+
self[i, j.begin] = (v.is_a?(Vector) ? v[0] : v)
|
306
|
+
else
|
307
|
+
self.row= i, v, j
|
308
|
+
end
|
309
|
+
else
|
310
|
+
@rows[i][j] = (v.is_a?(Vector) ? v[0] : v)
|
311
|
+
|
312
|
+
end
|
313
|
+
end
|
314
|
+
end
|
315
|
+
|
316
|
+
#
|
317
|
+
# Return a clone matrix
|
318
|
+
#
|
319
|
+
def clone
|
320
|
+
super
|
321
|
+
end
|
322
|
+
|
323
|
+
def initialize_copy(orig)
|
324
|
+
init_rows(orig.rows, true)
|
325
|
+
self.wrap=(orig.wrap)
|
326
|
+
end
|
327
|
+
|
328
|
+
|
329
|
+
class << self
|
330
|
+
#
|
331
|
+
# Creates a matrix with the given matrices as diagonal blocks
|
332
|
+
#
|
333
|
+
def diag(*args)
|
334
|
+
dsize = 0
|
335
|
+
sizes = args.collect{|e| x = (e.is_a?(Matrix)) ? e.row_size : 1; dsize += x; x}
|
336
|
+
m = Matrix.zero(dsize)
|
337
|
+
count = 0
|
338
|
+
|
339
|
+
sizes.size.times{|i|
|
340
|
+
range = count..(count+sizes[i]-1)
|
341
|
+
m[range, range] = args[i]
|
342
|
+
count += sizes[i]
|
343
|
+
}
|
344
|
+
m
|
345
|
+
end
|
346
|
+
|
347
|
+
#
|
348
|
+
# Tests if all the elements of two matrix are equal in delta
|
349
|
+
#
|
350
|
+
def equal_in_delta?(m0, m1, delta = 1.0e-10)
|
351
|
+
delta = delta.abs
|
352
|
+
m0.row_size.times {|i|
|
353
|
+
m0.column_size.times {|j|
|
354
|
+
x=m0[i,j]; y=m1[i,j]
|
355
|
+
return false if (x < y - delta or x > y + delta)
|
356
|
+
}
|
357
|
+
}
|
358
|
+
true
|
359
|
+
end
|
360
|
+
|
361
|
+
#
|
362
|
+
# Tests if all the diagonal elements of two matrix are equal in delta
|
363
|
+
#
|
364
|
+
def diag_in_delta?(m1, m0, eps = 1.0e-10)
|
365
|
+
n = m1.row_size
|
366
|
+
return false if n != m0.row_size or m1.column_size != m0.column_size
|
367
|
+
n.times{|i|
|
368
|
+
return false if (m1[i,i]-m0[i,i]).abs > eps
|
369
|
+
}
|
370
|
+
true
|
371
|
+
end
|
372
|
+
end
|
373
|
+
|
374
|
+
#
|
375
|
+
# Returns the matrix divided by a scalar
|
376
|
+
#
|
377
|
+
def quo(v)
|
378
|
+
map {|e| e.quo(v)}
|
379
|
+
end
|
380
|
+
|
381
|
+
#
|
382
|
+
# quo seems always desirable
|
383
|
+
#
|
384
|
+
alias :/ :quo
|
385
|
+
|
386
|
+
#
|
387
|
+
# Set de values of a matrix and the value of wrap property
|
388
|
+
#
|
389
|
+
def set(m)
|
390
|
+
0.upto(m.row_size - 1) do |i|
|
391
|
+
0.upto(m.column_size - 1) do |j|
|
392
|
+
self[i, j] = m[i, j]
|
393
|
+
end
|
394
|
+
end
|
395
|
+
self.wrap = m.wrap
|
396
|
+
end
|
397
|
+
|
398
|
+
def wraplate(ijwrap = "")
|
399
|
+
"class << self
|
400
|
+
def [](i, j)
|
401
|
+
#{ijwrap}; @rows[i][j]
|
402
|
+
end
|
403
|
+
|
404
|
+
def []=(i, j, v)
|
405
|
+
#{ijwrap}; @rows[i][j] = v
|
406
|
+
end
|
407
|
+
end"
|
408
|
+
end
|
409
|
+
|
410
|
+
#
|
411
|
+
# Set wrap feature of a matrix
|
412
|
+
#
|
413
|
+
def wrap=(mode = :torus)
|
414
|
+
case mode
|
415
|
+
when :torus then eval(wraplate("i %= row_size; j %= column_size"))
|
416
|
+
when :h_cylinder then eval(wraplate("i %= row_size"))
|
417
|
+
when :v_cylinder then eval(wraplate("j %= column_size"))
|
418
|
+
when :nil then eval(wraplate)
|
419
|
+
end
|
420
|
+
@wrap = mode
|
421
|
+
end
|
422
|
+
|
423
|
+
#
|
424
|
+
# Returns the maximum length of column elements
|
425
|
+
#
|
426
|
+
def max_len_column(j)
|
427
|
+
column_collect(j) {|x| x.to_s.length}.max
|
428
|
+
end
|
429
|
+
|
430
|
+
#
|
431
|
+
# Returns a list with the maximum lengths
|
432
|
+
#
|
433
|
+
def cols_len
|
434
|
+
(0...column_size).collect {|j| max_len_column(j)}
|
435
|
+
end
|
436
|
+
|
437
|
+
#
|
438
|
+
# Returns a string for nice printing matrix
|
439
|
+
#
|
440
|
+
def to_s(mode = :pretty, len_col = 3)
|
441
|
+
return super if empty?
|
442
|
+
if mode == :pretty
|
443
|
+
clen = cols_len
|
444
|
+
to_a.collect {|r|
|
445
|
+
i=0
|
446
|
+
r.map {|x|
|
447
|
+
l=clen[i]
|
448
|
+
i+=1
|
449
|
+
format("%#{l}s ", x.to_s)
|
450
|
+
} << "\n"
|
451
|
+
}.join("")
|
452
|
+
else
|
453
|
+
i = 0; s = ""; cs = column_size
|
454
|
+
each do |e|
|
455
|
+
i = (i + 1) % cs
|
456
|
+
s += format("%#{len_col}s ", e.to_s)
|
457
|
+
s += "\n" if i == 0
|
458
|
+
end
|
459
|
+
s
|
460
|
+
end
|
461
|
+
end
|
462
|
+
|
463
|
+
#
|
464
|
+
# Iterate the elements of a matrix
|
465
|
+
#
|
466
|
+
def each
|
467
|
+
@rows.each {|x| x.each {|e| yield(e)}}
|
468
|
+
nil
|
469
|
+
end
|
470
|
+
|
471
|
+
#
|
472
|
+
# a hided module of Matrix
|
473
|
+
module MMatrix
|
474
|
+
def self.default_block(block)
|
475
|
+
block ? lambda { |i| block.call(i) } : lambda {|i| i }
|
476
|
+
end
|
477
|
+
|
478
|
+
#
|
479
|
+
# Returns:
|
480
|
+
# 1) the index of row/column and
|
481
|
+
# 2) the values Vector for changing the row/column and
|
482
|
+
# 3) the range of changes
|
483
|
+
#
|
484
|
+
def self.id_vect_range(args, l)
|
485
|
+
i = args[0] # the column(/the row) to be change
|
486
|
+
vect = args[1] # the values vector
|
487
|
+
|
488
|
+
case args.size
|
489
|
+
when 3 then range = args[2] # the range of the elements to be change
|
490
|
+
when 4 then range = args[2]..args[3] #the range by borders
|
491
|
+
else range = 0...l
|
492
|
+
end
|
493
|
+
return i, vect, range
|
494
|
+
end
|
495
|
+
|
496
|
+
end
|
497
|
+
|
498
|
+
#
|
499
|
+
# Returns an array with the elements collected from the row "i".
|
500
|
+
# When a block is given, the elements of that vector are iterated.
|
501
|
+
#
|
502
|
+
def row_collect(i, &block)
|
503
|
+
f = MMatrix.default_block(block)
|
504
|
+
@rows[i].collect {|e| f.call(e)}
|
505
|
+
end
|
506
|
+
|
507
|
+
#
|
508
|
+
# Returns row vector number "i" like Matrix.row as a Vector.
|
509
|
+
# When the block is given, the elements of row "i" are modified
|
510
|
+
#
|
511
|
+
def row!(i)
|
512
|
+
if block_given?
|
513
|
+
@rows[i].collect! {|e| yield e }
|
514
|
+
else
|
515
|
+
Vector.elements(@rows[i], false)
|
516
|
+
end
|
517
|
+
end
|
518
|
+
alias :row_collect! :row!
|
519
|
+
|
520
|
+
#
|
521
|
+
# Returns an array with the elements collected from the column "j".
|
522
|
+
# When a block is given, the elements of that vector are iterated.
|
523
|
+
#
|
524
|
+
def column_collect(j, &block)
|
525
|
+
f = MMatrix.default_block(block)
|
526
|
+
(0...row_size).collect {|r| f.call(self[r, j])}
|
527
|
+
end
|
528
|
+
|
529
|
+
#
|
530
|
+
# Returns column vector number "j" as a Vector.
|
531
|
+
# When the block is given, the elements of column "j" are mmodified
|
532
|
+
#
|
533
|
+
def column!(j)
|
534
|
+
if block_given?
|
535
|
+
(0...row_size).collect { |i| @rows[i][j] = yield @rows[i][j] }
|
536
|
+
else
|
537
|
+
column(j)
|
538
|
+
end
|
539
|
+
end
|
540
|
+
alias :column_collect! :column!
|
541
|
+
|
542
|
+
#
|
543
|
+
# Set a certain column with the values of a Vector
|
544
|
+
# m = Matrix.new(3, 3){|i, j| i * 3 + j + 1}
|
545
|
+
# m.column= 1, Vector[1, 1, 1], 1..2
|
546
|
+
# m => 1 2 3
|
547
|
+
# 4 1 6
|
548
|
+
# 7 1 9
|
549
|
+
#
|
550
|
+
def column=(args)
|
551
|
+
m = row_size
|
552
|
+
c, v, r = MMatrix.id_vect_range(args, m)
|
553
|
+
(m..r.begin - 1).each{|i| self[i, c] = 0}
|
554
|
+
[v.size, r.entries.size].min.times{|i| self[i + r.begin, c] = v[i]}
|
555
|
+
((v.size + r.begin)..r.entries.last).each {|i| self[i, c] = 0}
|
556
|
+
end
|
557
|
+
|
558
|
+
#
|
559
|
+
# Set a certain row with the values of a Vector
|
560
|
+
# m = Matrix.new(3, 3){|i, j| i * 3 + j + 1}
|
561
|
+
# m.row= 0, Vector[0, 0], 1..2
|
562
|
+
# m => 1 0 0
|
563
|
+
# 4 5 6
|
564
|
+
# 7 8 9
|
565
|
+
#
|
566
|
+
def row=(args)
|
567
|
+
i, val, range = MMatrix.id_vect_range(args, column_size)
|
568
|
+
row!(i)[range] = val
|
569
|
+
end
|
570
|
+
|
571
|
+
def norm(p = 2)
|
572
|
+
Vector::Norm.sqnorm(self, p) ** (Float(1)/p)
|
573
|
+
end
|
574
|
+
|
575
|
+
def norm_frobenius
|
576
|
+
norm
|
577
|
+
end
|
578
|
+
alias :normF :norm_frobenius
|
579
|
+
|
580
|
+
#
|
581
|
+
# Tests if the matrix is empty or not
|
582
|
+
#
|
583
|
+
def empty?
|
584
|
+
@rows.empty? if @rows
|
585
|
+
end
|
586
|
+
|
587
|
+
#
|
588
|
+
# Returns the row/s of matrix as a Matrix
|
589
|
+
#
|
590
|
+
def row2matrix(r)
|
591
|
+
a = self.send(:row, r).to_a
|
592
|
+
if r.is_a?(Range) and r.entries.size > 1
|
593
|
+
return Matrix[*a]
|
594
|
+
else
|
595
|
+
return Matrix[a]
|
596
|
+
end
|
597
|
+
end
|
598
|
+
|
599
|
+
#
|
600
|
+
# Returns the colomn/s of matrix as a Matrix
|
601
|
+
#
|
602
|
+
def column2matrix(c)
|
603
|
+
a = self.send(:column, c).to_a
|
604
|
+
if c.is_a?(Range) and c.entries.size > 1
|
605
|
+
return Matrix[*a]
|
606
|
+
else
|
607
|
+
return Matrix[*a.collect{|x| [x]}]
|
608
|
+
end
|
609
|
+
end
|
610
|
+
|
611
|
+
# Calculate marginal of rows
|
612
|
+
def row_sum
|
613
|
+
(0...row_size).collect {|i|
|
614
|
+
row(i).to_a.inject(0) {|a,v| a+v}
|
615
|
+
}
|
616
|
+
end
|
617
|
+
# Calculate marginal of columns
|
618
|
+
def column_sum
|
619
|
+
(0...column_size).collect {|i|
|
620
|
+
column(i).to_a.inject(0) {|a,v| a+v}
|
621
|
+
}
|
622
|
+
end
|
623
|
+
# Calculate sum of cells
|
624
|
+
def total_sum
|
625
|
+
row_sum.inject(0){|a,v| a+v}
|
626
|
+
end
|
627
|
+
|
628
|
+
module LU
|
629
|
+
#
|
630
|
+
# Return the Gauss vector, MC, Golub, 3.2.1 Gauss Transformation, p94
|
631
|
+
#
|
632
|
+
def self.gauss_vector(mat, k)
|
633
|
+
t = mat.column2matrix(k)
|
634
|
+
tk = t[k, 0]
|
635
|
+
(0..k).each{|i| t[i, 0] = 0}
|
636
|
+
return t if tk == 0
|
637
|
+
(k+1...mat.row_size).each{|i| t[i, 0] = t[i, 0].to_f / tk}
|
638
|
+
t
|
639
|
+
end
|
640
|
+
|
641
|
+
#
|
642
|
+
# Return the Gauss transformation matrix: M_k = I - tau * e_k^T
|
643
|
+
#
|
644
|
+
def self.gauss(mat, k)
|
645
|
+
i = Matrix.I(mat.column_size)
|
646
|
+
tau = gauss_vector(mat, k)
|
647
|
+
e = i.row2matrix(k)
|
648
|
+
i - tau * e
|
649
|
+
end
|
650
|
+
|
651
|
+
#
|
652
|
+
# LU factorization: A = LU
|
653
|
+
# where L is lower triangular and U is upper triangular
|
654
|
+
#
|
655
|
+
def self.factorization(mat)
|
656
|
+
u = mat.clone
|
657
|
+
n = u.column_size
|
658
|
+
i = Matrix.I(n)
|
659
|
+
l = i.clone
|
660
|
+
(n-1).times {|k|
|
661
|
+
mk = gauss(u, k)
|
662
|
+
u = mk * u # M_{n-1} * ... * M_1 * A = U
|
663
|
+
l += i - mk # L = M_1^{-1} * ... * M_{n-1}^{-1} = I + sum_{k=1}^{n-1} tau * e
|
664
|
+
}
|
665
|
+
return l, u
|
666
|
+
end
|
667
|
+
end
|
668
|
+
|
669
|
+
#
|
670
|
+
# Return the upper triangular matrix of LU factorization
|
671
|
+
# M_{n-1} * ... * M_1 * A = U
|
672
|
+
#
|
673
|
+
def U
|
674
|
+
LU.factorization(self)[1]
|
675
|
+
end
|
676
|
+
|
677
|
+
#
|
678
|
+
# Return the lower triangular matrix of LU factorization
|
679
|
+
# L = M_1^{-1} * ... * M_{n-1}^{-1} = I + sum_{k=1}^{n-1} tau * e
|
680
|
+
#
|
681
|
+
def L
|
682
|
+
LU.factorization(self)[0]
|
683
|
+
end
|
684
|
+
|
685
|
+
module Householder
|
686
|
+
#
|
687
|
+
# a QR factorization that uses Householder transformation
|
688
|
+
# Q^T * A = R
|
689
|
+
# MC, Golub & van Loan, pg 224, 5.2.1 Householder QR
|
690
|
+
#
|
691
|
+
def self.QR(mat)
|
692
|
+
h = []
|
693
|
+
a = mat.clone
|
694
|
+
m = a.row_size
|
695
|
+
n = a.column_size
|
696
|
+
n.times{|j|
|
697
|
+
v, beta = a[j..m - 1, j].house
|
698
|
+
|
699
|
+
h[j] = Matrix.diag(Matrix.I(j), Matrix.I(m-j)- beta * (v * v.t))
|
700
|
+
|
701
|
+
a[j..m-1, j..n-1] = (Matrix.I(m-j) - beta * (v * v.t)) * a[j..m-1, j..n-1]
|
702
|
+
a[(j+1)..m-1,j] = v[2..(m-j)] if j < m - 1 }
|
703
|
+
h
|
704
|
+
end
|
705
|
+
|
706
|
+
#
|
707
|
+
# From the essential part of Householder vector
|
708
|
+
# it returns the coresponding upper(U_j)/lower(V_j) matrix
|
709
|
+
#
|
710
|
+
def self.bidiagUV(essential, dim, beta)
|
711
|
+
v = Vector.concat(Vector[1], essential)
|
712
|
+
dimv = v.size
|
713
|
+
Matrix.diag(Matrix.I(dim - dimv), Matrix.I(dimv) - beta * (v * v.t) )
|
714
|
+
end
|
715
|
+
|
716
|
+
#
|
717
|
+
# Householder Bidiagonalization algorithm. MC, Golub, pg 252, Algorithm 5.4.2
|
718
|
+
# Returns the matrices U_B and V_B such that: U_B^T * A * V_B = B,
|
719
|
+
# where B is upper bidiagonal.
|
720
|
+
#
|
721
|
+
def self.bidiag(mat)
|
722
|
+
a = mat.clone
|
723
|
+
m = a.row_size
|
724
|
+
n = a.column_size
|
725
|
+
ub = Matrix.I(m)
|
726
|
+
vb = Matrix.I(n)
|
727
|
+
n.times{|j|
|
728
|
+
v, beta = a[j..m-1,j].house
|
729
|
+
a[j..m-1, j..n-1] = (Matrix.I(m-j) - beta * (v * v.t)) * a[j..m-1, j..n-1]
|
730
|
+
a[j+1..m-1, j] = v[1..(m-j-1)]
|
731
|
+
ub *= bidiagUV(a[j+1..m-1,j], m, beta) #Ub = U_1 * U_2 * ... * U_n
|
732
|
+
if j < n - 2
|
733
|
+
v, beta = (a[j, j+1..n-1]).house
|
734
|
+
a[j..m-1, j+1..n-1] = a[j..m-1, j+1..n-1] * (Matrix.I(n-j-1) - beta * (v * v.t))
|
735
|
+
a[j, j+2..n-1] = v[1..n-j-2]
|
736
|
+
vb *= bidiagUV(a[j, j+2..n-1], n, beta) #Vb = V_1 * U_2 * ... * V_n-2
|
737
|
+
end }
|
738
|
+
return ub, vb
|
739
|
+
end
|
740
|
+
|
741
|
+
#
|
742
|
+
#Householder Reduction to Hessenberg Form
|
743
|
+
#
|
744
|
+
def self.toHessenberg(mat)
|
745
|
+
h = mat.clone
|
746
|
+
n = h.row_size
|
747
|
+
u0 = Matrix.I(n)
|
748
|
+
for k in (0...n - 2)
|
749
|
+
v, beta = h[k+1..n-1, k].house #the householder matrice part
|
750
|
+
houseV = Matrix.I(n-k-1) - beta * (v * v.t)
|
751
|
+
u0 *= Matrix.diag(Matrix.I(k+1), houseV)
|
752
|
+
h[k+1..n-1, k..n-1] = houseV * h[k+1..n-1, k..n-1]
|
753
|
+
h[0..n-1, k+1..n-1] = h[0..n-1, k+1..n-1] * houseV
|
754
|
+
end
|
755
|
+
return h, u0
|
756
|
+
end
|
757
|
+
|
758
|
+
|
759
|
+
end #end of Householder module
|
760
|
+
|
761
|
+
#
|
762
|
+
# Returns the upper bidiagonal matrix obtained with Householder Bidiagonalization algorithm
|
763
|
+
#
|
764
|
+
def bidiagonal
|
765
|
+
ub, vb = Householder.bidiag(self)
|
766
|
+
ub.t * self * vb
|
767
|
+
end
|
768
|
+
|
769
|
+
#
|
770
|
+
# Returns the orthogonal matrix Q of Householder QR factorization
|
771
|
+
# where Q = H_1 * H_2 * H_3 * ... * H_n,
|
772
|
+
#
|
773
|
+
def houseQ
|
774
|
+
h = Householder.QR(self)
|
775
|
+
q = h[0]
|
776
|
+
(1...h.size).each{|i| q *= h[i]}
|
777
|
+
q
|
778
|
+
end
|
779
|
+
|
780
|
+
#
|
781
|
+
# Returns the matrix R of Householder QR factorization
|
782
|
+
# R = H_n * H_n-1 * ... * H_1 * A is an upper triangular matrix
|
783
|
+
#
|
784
|
+
def houseR
|
785
|
+
h = Householder.QR(self)
|
786
|
+
r = self.clone
|
787
|
+
h.size.times{|i| r = h[i] * r}
|
788
|
+
r
|
789
|
+
end
|
790
|
+
|
791
|
+
#
|
792
|
+
# Modified Gram Schmidt QR factorization (MC, Golub, p. 232)
|
793
|
+
# A = Q_1 * R_1
|
794
|
+
#
|
795
|
+
def gram_schmidt
|
796
|
+
a = clone
|
797
|
+
n = column_size
|
798
|
+
m = row_size
|
799
|
+
q = Matrix.new(m, n){0}
|
800
|
+
r = Matrix.zero(n)
|
801
|
+
for k in 0...n
|
802
|
+
r[k,k] = a[0...m, k].norm
|
803
|
+
q[0...m, k] = a[0...m, k] / r[k, k]
|
804
|
+
for j in (k+1)...n
|
805
|
+
r[k, j] = q[0...m, k].t * a[0...m, j]
|
806
|
+
a[0...m, j] -= q[0...m, k] * r[k, j]
|
807
|
+
end
|
808
|
+
end
|
809
|
+
return q, r
|
810
|
+
end
|
811
|
+
|
812
|
+
#
|
813
|
+
# Returns the Q_1 matrix of Modified Gram Schmidt algorithm
|
814
|
+
# Q_1 has orthonormal columns
|
815
|
+
#
|
816
|
+
def gram_schmidtQ
|
817
|
+
gram_schmidt[0]
|
818
|
+
end
|
819
|
+
|
820
|
+
#
|
821
|
+
# Returns the R_1 upper triangular matrix of Modified Gram Schmidt algorithm
|
822
|
+
#
|
823
|
+
def gram_schmidtR
|
824
|
+
gram_schmidt[1]
|
825
|
+
end
|
826
|
+
|
827
|
+
|
828
|
+
module Givens
|
829
|
+
#
|
830
|
+
# Returns the values "c and s" of a Given rotation
|
831
|
+
# MC, Golub, pg 216, Alghorithm 5.1.3
|
832
|
+
#
|
833
|
+
def self.givens(a, b)
|
834
|
+
if b == 0
|
835
|
+
c = 0; s = 0
|
836
|
+
else
|
837
|
+
if b.abs > a.abs
|
838
|
+
tau = Float(-a)/b; s = 1/Math.sqrt(1+tau**2); c = s * tau
|
839
|
+
else
|
840
|
+
tau = Float(-b)/a; c = 1/Math.sqrt(1+tau**2); s = c * tau
|
841
|
+
end
|
842
|
+
end
|
843
|
+
return c, s
|
844
|
+
end
|
845
|
+
|
846
|
+
#
|
847
|
+
# a QR factorization using Givens rotation
|
848
|
+
# Computes the upper triangular matrix R and the orthogonal matrix Q
|
849
|
+
# where Q^t A = R (MC, Golub, p227 algorithm 5.2.2)
|
850
|
+
#
|
851
|
+
def self.QR(mat)
|
852
|
+
r = mat.clone
|
853
|
+
m = r.row_size
|
854
|
+
n = r.column_size
|
855
|
+
q = Matrix.I(m)
|
856
|
+
n.times{|j|
|
857
|
+
m-1.downto(j+1){|i|
|
858
|
+
c, s = givens(r[i - 1, j], r[i, j])
|
859
|
+
qt = Matrix.I(m); qt[i-1..i, i-1..i] = Matrix[[c, s],[-s, c]]
|
860
|
+
q *= qt
|
861
|
+
r[i-1..i, j..n-1] = Matrix[[c, -s],[s, c]] * r[i-1..i, j..n-1]}}
|
862
|
+
return r, q
|
863
|
+
end
|
864
|
+
|
865
|
+
end
|
866
|
+
|
867
|
+
#
|
868
|
+
# Returns the upper triunghiular matrix R of a Givens QR factorization
|
869
|
+
#
|
870
|
+
def givensR
|
871
|
+
Givens.QR(self)[0]
|
872
|
+
end
|
873
|
+
|
874
|
+
#
|
875
|
+
# Returns the orthogonal matrix Q of Givens QR factorization.
|
876
|
+
# Q = G_1 * ... * G_t where G_j is the j'th Givens rotation
|
877
|
+
# and 't' is the total number of rotations
|
878
|
+
#
|
879
|
+
def givensQ
|
880
|
+
Givens.QR(self)[1]
|
881
|
+
end
|
882
|
+
|
883
|
+
module Hessenberg
|
884
|
+
#
|
885
|
+
# the matrix must be an upper R^(n x n) Hessenberg matrix
|
886
|
+
#
|
887
|
+
def self.QR(mat)
|
888
|
+
r = mat.clone
|
889
|
+
n = r.row_size
|
890
|
+
q = Matrix.I(n)
|
891
|
+
for j in (0...n-1)
|
892
|
+
c, s = Givens.givens(r[j,j], r[j+1, j])
|
893
|
+
cs = Matrix[[c, s], [-s, c]]
|
894
|
+
q *= Matrix.diag(Matrix.I(j), cs, Matrix.I(n - j - 2))
|
895
|
+
r[j..j+1, j..n-1] = cs.t * r[j..j+1, j..n-1]
|
896
|
+
end
|
897
|
+
return q, r
|
898
|
+
end
|
899
|
+
end
|
900
|
+
|
901
|
+
#
|
902
|
+
# Returns the orthogonal matrix Q of Hessenberg QR factorization
|
903
|
+
# Q = G_1 *...* G_(n-1) where G_j is the Givens rotation G_j = G(j, j+1, omega_j)
|
904
|
+
#
|
905
|
+
def hessenbergQ
|
906
|
+
Hessenberg.QR(self)[0]
|
907
|
+
end
|
908
|
+
|
909
|
+
#
|
910
|
+
# Returns the upper triunghiular matrix R of a Hessenberg QR factorization
|
911
|
+
#
|
912
|
+
def hessenbergR
|
913
|
+
Hessenberg.QR(self)[1]
|
914
|
+
end
|
915
|
+
|
916
|
+
#
|
917
|
+
# Return an upper Hessenberg matrix obtained with Householder reduction to Hessenberg Form algorithm
|
918
|
+
#
|
919
|
+
def hessenberg_form_H
|
920
|
+
Householder.toHessenberg(self)[0]
|
921
|
+
end
|
922
|
+
|
923
|
+
#
|
924
|
+
# The real Schur decomposition.
|
925
|
+
# The eigenvalues are aproximated in diagonal elements of the real Schur decomposition matrix
|
926
|
+
#
|
927
|
+
def realSchur(eps = 1.0e-10, steps = 100)
|
928
|
+
h = self.hessenberg_form_H
|
929
|
+
h1 = Matrix[]
|
930
|
+
i = 0
|
931
|
+
loop do
|
932
|
+
h1 = h.hessenbergR * h.hessenbergQ
|
933
|
+
break if Matrix.diag_in_delta?(h1, h, eps) or steps <= 0
|
934
|
+
h = h1.clone
|
935
|
+
steps -= 1
|
936
|
+
i += 1
|
937
|
+
end
|
938
|
+
h1
|
939
|
+
end
|
940
|
+
|
941
|
+
|
942
|
+
module Jacobi
|
943
|
+
#
|
944
|
+
# Returns the nurm of the off-diagonal element
|
945
|
+
#
|
946
|
+
def self.off(a)
|
947
|
+
n = a.row_size
|
948
|
+
sum = 0
|
949
|
+
n.times{|i| n.times{|j| sum += a[i, j]**2 if j != i}}
|
950
|
+
Math.sqrt(sum)
|
951
|
+
end
|
952
|
+
|
953
|
+
#
|
954
|
+
# Returns the index pair (p, q) with 1<= p < q <= n and A[p, q] is the maximum in absolute value
|
955
|
+
#
|
956
|
+
def self.max(a)
|
957
|
+
n = a.row_size
|
958
|
+
max = 0
|
959
|
+
p = 0
|
960
|
+
q = 0
|
961
|
+
n.times{|i|
|
962
|
+
((i+1)...n).each{|j|
|
963
|
+
val = a[i, j].abs
|
964
|
+
if val > max
|
965
|
+
max = val
|
966
|
+
p = i
|
967
|
+
q = j
|
968
|
+
end }}
|
969
|
+
return p, q
|
970
|
+
end
|
971
|
+
|
972
|
+
#
|
973
|
+
# Compute the cosine-sine pair (c, s) for the element A[p, q]
|
974
|
+
#
|
975
|
+
def self.sym_schur2(a, p, q)
|
976
|
+
if a[p, q] != 0
|
977
|
+
tau = Float(a[q, q] - a[p, p])/(2 * a[p, q])
|
978
|
+
if tau >= 0
|
979
|
+
t = 1./(tau + Math.sqrt(1 + tau ** 2))
|
980
|
+
else
|
981
|
+
t = -1./(-tau + Math.sqrt(1 + tau ** 2))
|
982
|
+
end
|
983
|
+
c = 1./Math.sqrt(1 + t ** 2)
|
984
|
+
s = t * c
|
985
|
+
else
|
986
|
+
c = 1
|
987
|
+
s = 0
|
988
|
+
end
|
989
|
+
return c, s
|
990
|
+
end
|
991
|
+
|
992
|
+
#
|
993
|
+
# Returns the Jacobi rotation matrix
|
994
|
+
#
|
995
|
+
def self.J(p, q, c, s, n)
|
996
|
+
j = Matrix.I(n)
|
997
|
+
j[p,p] = c; j[p, q] = s
|
998
|
+
j[q,p] = -s; j[q, q] = c
|
999
|
+
j
|
1000
|
+
end
|
1001
|
+
end
|
1002
|
+
|
1003
|
+
#
|
1004
|
+
# Classical Jacobi 8.4.3 Golub & van Loan
|
1005
|
+
#
|
1006
|
+
def cJacobi(tol = 1.0e-10)
|
1007
|
+
a = self.clone
|
1008
|
+
n = row_size
|
1009
|
+
v = Matrix.I(n)
|
1010
|
+
eps = tol * a.normF
|
1011
|
+
while Jacobi.off(a) > eps
|
1012
|
+
p, q = Jacobi.max(a)
|
1013
|
+
c, s = Jacobi.sym_schur2(a, p, q)
|
1014
|
+
#print "\np:#{p} q:#{q} c:#{c} s:#{s}\n"
|
1015
|
+
j = Jacobi.J(p, q, c, s, n)
|
1016
|
+
a = j.t * a * j
|
1017
|
+
v = v * j
|
1018
|
+
end
|
1019
|
+
return a, v
|
1020
|
+
end
|
1021
|
+
|
1022
|
+
#
|
1023
|
+
# Returns the aproximation matrix computed with Classical Jacobi algorithm.
|
1024
|
+
# The aproximate eigenvalues values are in the diagonal of the matrix A.
|
1025
|
+
#
|
1026
|
+
def cJacobiA(tol = 1.0e-10)
|
1027
|
+
cJacobi(tol)[0]
|
1028
|
+
end
|
1029
|
+
|
1030
|
+
#
|
1031
|
+
# Returns a Vector with the eigenvalues aproximated values.
|
1032
|
+
# The eigenvalues are computed with the Classic Jacobi Algorithm.
|
1033
|
+
#
|
1034
|
+
def eigenvaluesJacobi
|
1035
|
+
a = cJacobiA
|
1036
|
+
Vector[*(0...row_size).collect{|i| a[i, i]}]
|
1037
|
+
end
|
1038
|
+
|
1039
|
+
#
|
1040
|
+
# Returns the orthogonal matrix obtained with the Jacobi eigenvalue algorithm.
|
1041
|
+
# The columns of V are the eigenvector.
|
1042
|
+
#
|
1043
|
+
def cJacobiV(tol = 1.0e-10)
|
1044
|
+
cJacobi(tol)[1]
|
1045
|
+
end
|
1046
|
+
end
|
1047
|
+
|
1048
|
+
|