extbrotli 0.0.1.PROTOTYPE
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/LICENSE +28 -0
- data/README.md +67 -0
- data/Rakefile +158 -0
- data/contrib/brotli/LICENSE +202 -0
- data/contrib/brotli/README.md +18 -0
- data/contrib/brotli/dec/bit_reader.c +55 -0
- data/contrib/brotli/dec/bit_reader.h +256 -0
- data/contrib/brotli/dec/context.h +260 -0
- data/contrib/brotli/dec/decode.c +1573 -0
- data/contrib/brotli/dec/decode.h +160 -0
- data/contrib/brotli/dec/dictionary.h +9494 -0
- data/contrib/brotli/dec/huffman.c +325 -0
- data/contrib/brotli/dec/huffman.h +77 -0
- data/contrib/brotli/dec/port.h +148 -0
- data/contrib/brotli/dec/prefix.h +756 -0
- data/contrib/brotli/dec/state.c +149 -0
- data/contrib/brotli/dec/state.h +185 -0
- data/contrib/brotli/dec/streams.c +99 -0
- data/contrib/brotli/dec/streams.h +100 -0
- data/contrib/brotli/dec/transform.h +315 -0
- data/contrib/brotli/dec/types.h +36 -0
- data/contrib/brotli/enc/backward_references.cc +769 -0
- data/contrib/brotli/enc/backward_references.h +50 -0
- data/contrib/brotli/enc/bit_cost.h +147 -0
- data/contrib/brotli/enc/block_splitter.cc +418 -0
- data/contrib/brotli/enc/block_splitter.h +78 -0
- data/contrib/brotli/enc/brotli_bit_stream.cc +884 -0
- data/contrib/brotli/enc/brotli_bit_stream.h +149 -0
- data/contrib/brotli/enc/cluster.h +290 -0
- data/contrib/brotli/enc/command.h +140 -0
- data/contrib/brotli/enc/context.h +185 -0
- data/contrib/brotli/enc/dictionary.h +9485 -0
- data/contrib/brotli/enc/dictionary_hash.h +4125 -0
- data/contrib/brotli/enc/encode.cc +715 -0
- data/contrib/brotli/enc/encode.h +196 -0
- data/contrib/brotli/enc/encode_parallel.cc +354 -0
- data/contrib/brotli/enc/encode_parallel.h +37 -0
- data/contrib/brotli/enc/entropy_encode.cc +492 -0
- data/contrib/brotli/enc/entropy_encode.h +88 -0
- data/contrib/brotli/enc/fast_log.h +179 -0
- data/contrib/brotli/enc/find_match_length.h +87 -0
- data/contrib/brotli/enc/hash.h +686 -0
- data/contrib/brotli/enc/histogram.cc +76 -0
- data/contrib/brotli/enc/histogram.h +100 -0
- data/contrib/brotli/enc/literal_cost.cc +172 -0
- data/contrib/brotli/enc/literal_cost.h +38 -0
- data/contrib/brotli/enc/metablock.cc +544 -0
- data/contrib/brotli/enc/metablock.h +88 -0
- data/contrib/brotli/enc/port.h +151 -0
- data/contrib/brotli/enc/prefix.h +85 -0
- data/contrib/brotli/enc/ringbuffer.h +108 -0
- data/contrib/brotli/enc/static_dict.cc +441 -0
- data/contrib/brotli/enc/static_dict.h +40 -0
- data/contrib/brotli/enc/static_dict_lut.h +12063 -0
- data/contrib/brotli/enc/streams.cc +127 -0
- data/contrib/brotli/enc/streams.h +129 -0
- data/contrib/brotli/enc/transform.h +250 -0
- data/contrib/brotli/enc/write_bits.h +91 -0
- data/ext/extbrotli.cc +24 -0
- data/ext/extbrotli.h +73 -0
- data/ext/extconf.rb +35 -0
- data/ext/lldecoder.c +220 -0
- data/ext/llencoder.cc +433 -0
- data/gemstub.rb +21 -0
- data/lib/extbrotli.rb +243 -0
- data/lib/extbrotli/version.rb +3 -0
- metadata +140 -0
@@ -0,0 +1,37 @@
|
|
1
|
+
// Copyright 2013 Google Inc. All Rights Reserved.
|
2
|
+
//
|
3
|
+
// Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
// you may not use this file except in compliance with the License.
|
5
|
+
// You may obtain a copy of the License at
|
6
|
+
//
|
7
|
+
// http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
//
|
9
|
+
// Unless required by applicable law or agreed to in writing, software
|
10
|
+
// distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
// See the License for the specific language governing permissions and
|
13
|
+
// limitations under the License.
|
14
|
+
//
|
15
|
+
// API for parallel Brotli compression
|
16
|
+
// Note that this is only a proof of concept currently and not part of the
|
17
|
+
// final API yet.
|
18
|
+
|
19
|
+
#ifndef BROTLI_ENC_ENCODE_PARALLEL_H_
|
20
|
+
#define BROTLI_ENC_ENCODE_PARALLEL_H_
|
21
|
+
|
22
|
+
#include <stddef.h>
|
23
|
+
#include <stdint.h>
|
24
|
+
|
25
|
+
#include "./encode.h"
|
26
|
+
|
27
|
+
namespace brotli {
|
28
|
+
|
29
|
+
int BrotliCompressBufferParallel(BrotliParams params,
|
30
|
+
size_t input_size,
|
31
|
+
const uint8_t* input_buffer,
|
32
|
+
size_t* encoded_size,
|
33
|
+
uint8_t* encoded_buffer);
|
34
|
+
|
35
|
+
} // namespace brotli
|
36
|
+
|
37
|
+
#endif // BROTLI_ENC_ENCODE_PARALLEL_H_
|
@@ -0,0 +1,492 @@
|
|
1
|
+
// Copyright 2010 Google Inc. All Rights Reserved.
|
2
|
+
//
|
3
|
+
// Licensed under the Apache License, Version 2.0 (the "License");
|
4
|
+
// you may not use this file except in compliance with the License.
|
5
|
+
// You may obtain a copy of the License at
|
6
|
+
//
|
7
|
+
// http://www.apache.org/licenses/LICENSE-2.0
|
8
|
+
//
|
9
|
+
// Unless required by applicable law or agreed to in writing, software
|
10
|
+
// distributed under the License is distributed on an "AS IS" BASIS,
|
11
|
+
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12
|
+
// See the License for the specific language governing permissions and
|
13
|
+
// limitations under the License.
|
14
|
+
//
|
15
|
+
// Entropy encoding (Huffman) utilities.
|
16
|
+
|
17
|
+
#include "./entropy_encode.h"
|
18
|
+
|
19
|
+
#include <stdint.h>
|
20
|
+
#include <algorithm>
|
21
|
+
#include <limits>
|
22
|
+
#include <vector>
|
23
|
+
#include <cstdlib>
|
24
|
+
|
25
|
+
#include "./histogram.h"
|
26
|
+
|
27
|
+
namespace brotli {
|
28
|
+
|
29
|
+
namespace {
|
30
|
+
|
31
|
+
struct HuffmanTree {
|
32
|
+
HuffmanTree();
|
33
|
+
HuffmanTree(int count, int16_t left, int16_t right)
|
34
|
+
: total_count_(count),
|
35
|
+
index_left_(left),
|
36
|
+
index_right_or_value_(right) {
|
37
|
+
}
|
38
|
+
int total_count_;
|
39
|
+
int16_t index_left_;
|
40
|
+
int16_t index_right_or_value_;
|
41
|
+
};
|
42
|
+
|
43
|
+
HuffmanTree::HuffmanTree() {}
|
44
|
+
|
45
|
+
// Sort the root nodes, least popular first.
|
46
|
+
bool SortHuffmanTree(const HuffmanTree &v0, const HuffmanTree &v1) {
|
47
|
+
return v0.total_count_ < v1.total_count_;
|
48
|
+
}
|
49
|
+
|
50
|
+
void SetDepth(const HuffmanTree &p,
|
51
|
+
HuffmanTree *pool,
|
52
|
+
uint8_t *depth,
|
53
|
+
int level) {
|
54
|
+
if (p.index_left_ >= 0) {
|
55
|
+
++level;
|
56
|
+
SetDepth(pool[p.index_left_], pool, depth, level);
|
57
|
+
SetDepth(pool[p.index_right_or_value_], pool, depth, level);
|
58
|
+
} else {
|
59
|
+
depth[p.index_right_or_value_] = level;
|
60
|
+
}
|
61
|
+
}
|
62
|
+
|
63
|
+
} // namespace
|
64
|
+
|
65
|
+
// This function will create a Huffman tree.
|
66
|
+
//
|
67
|
+
// The catch here is that the tree cannot be arbitrarily deep.
|
68
|
+
// Brotli specifies a maximum depth of 15 bits for "code trees"
|
69
|
+
// and 7 bits for "code length code trees."
|
70
|
+
//
|
71
|
+
// count_limit is the value that is to be faked as the minimum value
|
72
|
+
// and this minimum value is raised until the tree matches the
|
73
|
+
// maximum length requirement.
|
74
|
+
//
|
75
|
+
// This algorithm is not of excellent performance for very long data blocks,
|
76
|
+
// especially when population counts are longer than 2**tree_limit, but
|
77
|
+
// we are not planning to use this with extremely long blocks.
|
78
|
+
//
|
79
|
+
// See http://en.wikipedia.org/wiki/Huffman_coding
|
80
|
+
void CreateHuffmanTree(const int *data,
|
81
|
+
const int length,
|
82
|
+
const int tree_limit,
|
83
|
+
uint8_t *depth) {
|
84
|
+
// For block sizes below 64 kB, we never need to do a second iteration
|
85
|
+
// of this loop. Probably all of our block sizes will be smaller than
|
86
|
+
// that, so this loop is mostly of academic interest. If we actually
|
87
|
+
// would need this, we would be better off with the Katajainen algorithm.
|
88
|
+
for (int count_limit = 1; ; count_limit *= 2) {
|
89
|
+
std::vector<HuffmanTree> tree;
|
90
|
+
tree.reserve(2 * length + 1);
|
91
|
+
|
92
|
+
for (int i = length - 1; i >= 0; --i) {
|
93
|
+
if (data[i]) {
|
94
|
+
const int count = std::max(data[i], count_limit);
|
95
|
+
tree.push_back(HuffmanTree(count, -1, i));
|
96
|
+
}
|
97
|
+
}
|
98
|
+
|
99
|
+
const int n = tree.size();
|
100
|
+
if (n == 1) {
|
101
|
+
depth[tree[0].index_right_or_value_] = 1; // Only one element.
|
102
|
+
break;
|
103
|
+
}
|
104
|
+
|
105
|
+
std::stable_sort(tree.begin(), tree.end(), SortHuffmanTree);
|
106
|
+
|
107
|
+
// The nodes are:
|
108
|
+
// [0, n): the sorted leaf nodes that we start with.
|
109
|
+
// [n]: we add a sentinel here.
|
110
|
+
// [n + 1, 2n): new parent nodes are added here, starting from
|
111
|
+
// (n+1). These are naturally in ascending order.
|
112
|
+
// [2n]: we add a sentinel at the end as well.
|
113
|
+
// There will be (2n+1) elements at the end.
|
114
|
+
const HuffmanTree sentinel(std::numeric_limits<int>::max(), -1, -1);
|
115
|
+
tree.push_back(sentinel);
|
116
|
+
tree.push_back(sentinel);
|
117
|
+
|
118
|
+
int i = 0; // Points to the next leaf node.
|
119
|
+
int j = n + 1; // Points to the next non-leaf node.
|
120
|
+
for (int k = n - 1; k > 0; --k) {
|
121
|
+
int left, right;
|
122
|
+
if (tree[i].total_count_ <= tree[j].total_count_) {
|
123
|
+
left = i;
|
124
|
+
++i;
|
125
|
+
} else {
|
126
|
+
left = j;
|
127
|
+
++j;
|
128
|
+
}
|
129
|
+
if (tree[i].total_count_ <= tree[j].total_count_) {
|
130
|
+
right = i;
|
131
|
+
++i;
|
132
|
+
} else {
|
133
|
+
right = j;
|
134
|
+
++j;
|
135
|
+
}
|
136
|
+
|
137
|
+
// The sentinel node becomes the parent node.
|
138
|
+
int j_end = tree.size() - 1;
|
139
|
+
tree[j_end].total_count_ =
|
140
|
+
tree[left].total_count_ + tree[right].total_count_;
|
141
|
+
tree[j_end].index_left_ = left;
|
142
|
+
tree[j_end].index_right_or_value_ = right;
|
143
|
+
|
144
|
+
// Add back the last sentinel node.
|
145
|
+
tree.push_back(sentinel);
|
146
|
+
}
|
147
|
+
SetDepth(tree[2 * n - 1], &tree[0], depth, 0);
|
148
|
+
|
149
|
+
// We need to pack the Huffman tree in tree_limit bits.
|
150
|
+
// If this was not successful, add fake entities to the lowest values
|
151
|
+
// and retry.
|
152
|
+
if (*std::max_element(&depth[0], &depth[length]) <= tree_limit) {
|
153
|
+
break;
|
154
|
+
}
|
155
|
+
}
|
156
|
+
}
|
157
|
+
|
158
|
+
void Reverse(std::vector<uint8_t>* v, int start, int end) {
|
159
|
+
--end;
|
160
|
+
while (start < end) {
|
161
|
+
int tmp = (*v)[start];
|
162
|
+
(*v)[start] = (*v)[end];
|
163
|
+
(*v)[end] = tmp;
|
164
|
+
++start;
|
165
|
+
--end;
|
166
|
+
}
|
167
|
+
}
|
168
|
+
|
169
|
+
void WriteHuffmanTreeRepetitions(
|
170
|
+
const int previous_value,
|
171
|
+
const int value,
|
172
|
+
int repetitions,
|
173
|
+
std::vector<uint8_t> *tree,
|
174
|
+
std::vector<uint8_t> *extra_bits_data) {
|
175
|
+
if (previous_value != value) {
|
176
|
+
tree->push_back(value);
|
177
|
+
extra_bits_data->push_back(0);
|
178
|
+
--repetitions;
|
179
|
+
}
|
180
|
+
if (repetitions == 7) {
|
181
|
+
tree->push_back(value);
|
182
|
+
extra_bits_data->push_back(0);
|
183
|
+
--repetitions;
|
184
|
+
}
|
185
|
+
if (repetitions < 3) {
|
186
|
+
for (int i = 0; i < repetitions; ++i) {
|
187
|
+
tree->push_back(value);
|
188
|
+
extra_bits_data->push_back(0);
|
189
|
+
}
|
190
|
+
} else {
|
191
|
+
repetitions -= 3;
|
192
|
+
int start = tree->size();
|
193
|
+
while (repetitions >= 0) {
|
194
|
+
tree->push_back(16);
|
195
|
+
extra_bits_data->push_back(repetitions & 0x3);
|
196
|
+
repetitions >>= 2;
|
197
|
+
--repetitions;
|
198
|
+
}
|
199
|
+
Reverse(tree, start, tree->size());
|
200
|
+
Reverse(extra_bits_data, start, tree->size());
|
201
|
+
}
|
202
|
+
}
|
203
|
+
|
204
|
+
void WriteHuffmanTreeRepetitionsZeros(
|
205
|
+
int repetitions,
|
206
|
+
std::vector<uint8_t> *tree,
|
207
|
+
std::vector<uint8_t> *extra_bits_data) {
|
208
|
+
if (repetitions == 11) {
|
209
|
+
tree->push_back(0);
|
210
|
+
extra_bits_data->push_back(0);
|
211
|
+
--repetitions;
|
212
|
+
}
|
213
|
+
if (repetitions < 3) {
|
214
|
+
for (int i = 0; i < repetitions; ++i) {
|
215
|
+
tree->push_back(0);
|
216
|
+
extra_bits_data->push_back(0);
|
217
|
+
}
|
218
|
+
} else {
|
219
|
+
repetitions -= 3;
|
220
|
+
int start = tree->size();
|
221
|
+
while (repetitions >= 0) {
|
222
|
+
tree->push_back(17);
|
223
|
+
extra_bits_data->push_back(repetitions & 0x7);
|
224
|
+
repetitions >>= 3;
|
225
|
+
--repetitions;
|
226
|
+
}
|
227
|
+
Reverse(tree, start, tree->size());
|
228
|
+
Reverse(extra_bits_data, start, tree->size());
|
229
|
+
}
|
230
|
+
}
|
231
|
+
|
232
|
+
int OptimizeHuffmanCountsForRle(int length, int* counts) {
|
233
|
+
int nonzero_count = 0;
|
234
|
+
int stride;
|
235
|
+
int limit;
|
236
|
+
int sum;
|
237
|
+
uint8_t* good_for_rle;
|
238
|
+
// Let's make the Huffman code more compatible with rle encoding.
|
239
|
+
int i;
|
240
|
+
for (i = 0; i < length; i++) {
|
241
|
+
if (counts[i]) {
|
242
|
+
++nonzero_count;
|
243
|
+
}
|
244
|
+
}
|
245
|
+
if (nonzero_count < 16) {
|
246
|
+
return 1;
|
247
|
+
}
|
248
|
+
for (; length >= 0; --length) {
|
249
|
+
if (length == 0) {
|
250
|
+
return 1; // All zeros.
|
251
|
+
}
|
252
|
+
if (counts[length - 1] != 0) {
|
253
|
+
// Now counts[0..length - 1] does not have trailing zeros.
|
254
|
+
break;
|
255
|
+
}
|
256
|
+
}
|
257
|
+
{
|
258
|
+
int nonzeros = 0;
|
259
|
+
int smallest_nonzero = 1 << 30;
|
260
|
+
for (i = 0; i < length; ++i) {
|
261
|
+
if (counts[i] != 0) {
|
262
|
+
++nonzeros;
|
263
|
+
if (smallest_nonzero > counts[i]) {
|
264
|
+
smallest_nonzero = counts[i];
|
265
|
+
}
|
266
|
+
}
|
267
|
+
}
|
268
|
+
if (nonzeros < 5) {
|
269
|
+
// Small histogram will model it well.
|
270
|
+
return 1;
|
271
|
+
}
|
272
|
+
int zeros = length - nonzeros;
|
273
|
+
if (smallest_nonzero < 4) {
|
274
|
+
if (zeros < 6) {
|
275
|
+
for (i = 1; i < length - 1; ++i) {
|
276
|
+
if (counts[i - 1] != 0 && counts[i] == 0 && counts[i + 1] != 0) {
|
277
|
+
counts[i] = 1;
|
278
|
+
}
|
279
|
+
}
|
280
|
+
}
|
281
|
+
}
|
282
|
+
if (nonzeros < 28) {
|
283
|
+
return 1;
|
284
|
+
}
|
285
|
+
}
|
286
|
+
// 2) Let's mark all population counts that already can be encoded
|
287
|
+
// with an rle code.
|
288
|
+
good_for_rle = (uint8_t*)calloc(length, 1);
|
289
|
+
if (good_for_rle == NULL) {
|
290
|
+
return 0;
|
291
|
+
}
|
292
|
+
{
|
293
|
+
// Let's not spoil any of the existing good rle codes.
|
294
|
+
// Mark any seq of 0's that is longer as 5 as a good_for_rle.
|
295
|
+
// Mark any seq of non-0's that is longer as 7 as a good_for_rle.
|
296
|
+
int symbol = counts[0];
|
297
|
+
int stride = 0;
|
298
|
+
for (i = 0; i < length + 1; ++i) {
|
299
|
+
if (i == length || counts[i] != symbol) {
|
300
|
+
if ((symbol == 0 && stride >= 5) ||
|
301
|
+
(symbol != 0 && stride >= 7)) {
|
302
|
+
int k;
|
303
|
+
for (k = 0; k < stride; ++k) {
|
304
|
+
good_for_rle[i - k - 1] = 1;
|
305
|
+
}
|
306
|
+
}
|
307
|
+
stride = 1;
|
308
|
+
if (i != length) {
|
309
|
+
symbol = counts[i];
|
310
|
+
}
|
311
|
+
} else {
|
312
|
+
++stride;
|
313
|
+
}
|
314
|
+
}
|
315
|
+
}
|
316
|
+
// 3) Let's replace those population counts that lead to more rle codes.
|
317
|
+
// Math here is in 24.8 fixed point representation.
|
318
|
+
const int streak_limit = 1240;
|
319
|
+
stride = 0;
|
320
|
+
limit = 256 * (counts[0] + counts[1] + counts[2]) / 3 + 420;
|
321
|
+
sum = 0;
|
322
|
+
for (i = 0; i < length + 1; ++i) {
|
323
|
+
if (i == length || good_for_rle[i] ||
|
324
|
+
(i != 0 && good_for_rle[i - 1]) ||
|
325
|
+
abs(256 * counts[i] - limit) >= streak_limit) {
|
326
|
+
if (stride >= 4 || (stride >= 3 && sum == 0)) {
|
327
|
+
int k;
|
328
|
+
// The stride must end, collapse what we have, if we have enough (4).
|
329
|
+
int count = (sum + stride / 2) / stride;
|
330
|
+
if (count < 1) {
|
331
|
+
count = 1;
|
332
|
+
}
|
333
|
+
if (sum == 0) {
|
334
|
+
// Don't make an all zeros stride to be upgraded to ones.
|
335
|
+
count = 0;
|
336
|
+
}
|
337
|
+
for (k = 0; k < stride; ++k) {
|
338
|
+
// We don't want to change value at counts[i],
|
339
|
+
// that is already belonging to the next stride. Thus - 1.
|
340
|
+
counts[i - k - 1] = count;
|
341
|
+
}
|
342
|
+
}
|
343
|
+
stride = 0;
|
344
|
+
sum = 0;
|
345
|
+
if (i < length - 2) {
|
346
|
+
// All interesting strides have a count of at least 4,
|
347
|
+
// at least when non-zeros.
|
348
|
+
limit = 256 * (counts[i] + counts[i + 1] + counts[i + 2]) / 3 + 420;
|
349
|
+
} else if (i < length) {
|
350
|
+
limit = 256 * counts[i];
|
351
|
+
} else {
|
352
|
+
limit = 0;
|
353
|
+
}
|
354
|
+
}
|
355
|
+
++stride;
|
356
|
+
if (i != length) {
|
357
|
+
sum += counts[i];
|
358
|
+
if (stride >= 4) {
|
359
|
+
limit = (256 * sum + stride / 2) / stride;
|
360
|
+
}
|
361
|
+
if (stride == 4) {
|
362
|
+
limit += 120;
|
363
|
+
}
|
364
|
+
}
|
365
|
+
}
|
366
|
+
free(good_for_rle);
|
367
|
+
return 1;
|
368
|
+
}
|
369
|
+
|
370
|
+
static void DecideOverRleUse(const uint8_t* depth, const int length,
|
371
|
+
bool *use_rle_for_non_zero,
|
372
|
+
bool *use_rle_for_zero) {
|
373
|
+
int total_reps_zero = 0;
|
374
|
+
int total_reps_non_zero = 0;
|
375
|
+
int count_reps_zero = 0;
|
376
|
+
int count_reps_non_zero = 0;
|
377
|
+
for (uint32_t i = 0; i < length;) {
|
378
|
+
const int value = depth[i];
|
379
|
+
int reps = 1;
|
380
|
+
for (uint32_t k = i + 1; k < length && depth[k] == value; ++k) {
|
381
|
+
++reps;
|
382
|
+
}
|
383
|
+
if (reps >= 3 && value == 0) {
|
384
|
+
total_reps_zero += reps;
|
385
|
+
++count_reps_zero;
|
386
|
+
}
|
387
|
+
if (reps >= 4 && value != 0) {
|
388
|
+
total_reps_non_zero += reps;
|
389
|
+
++count_reps_non_zero;
|
390
|
+
}
|
391
|
+
i += reps;
|
392
|
+
}
|
393
|
+
total_reps_non_zero -= count_reps_non_zero * 2;
|
394
|
+
total_reps_zero -= count_reps_zero * 2;
|
395
|
+
*use_rle_for_non_zero = total_reps_non_zero > 2;
|
396
|
+
*use_rle_for_zero = total_reps_zero > 2;
|
397
|
+
}
|
398
|
+
|
399
|
+
void WriteHuffmanTree(const uint8_t* depth,
|
400
|
+
uint32_t length,
|
401
|
+
std::vector<uint8_t> *tree,
|
402
|
+
std::vector<uint8_t> *extra_bits_data) {
|
403
|
+
int previous_value = 8;
|
404
|
+
|
405
|
+
// Throw away trailing zeros.
|
406
|
+
int new_length = length;
|
407
|
+
for (int i = 0; i < length; ++i) {
|
408
|
+
if (depth[length - i - 1] == 0) {
|
409
|
+
--new_length;
|
410
|
+
} else {
|
411
|
+
break;
|
412
|
+
}
|
413
|
+
}
|
414
|
+
|
415
|
+
// First gather statistics on if it is a good idea to do rle.
|
416
|
+
bool use_rle_for_non_zero = false;
|
417
|
+
bool use_rle_for_zero = false;
|
418
|
+
if (length > 50) {
|
419
|
+
// Find rle coding for longer codes.
|
420
|
+
// Shorter codes seem not to benefit from rle.
|
421
|
+
DecideOverRleUse(depth, new_length,
|
422
|
+
&use_rle_for_non_zero, &use_rle_for_zero);
|
423
|
+
}
|
424
|
+
|
425
|
+
// Actual rle coding.
|
426
|
+
for (uint32_t i = 0; i < new_length;) {
|
427
|
+
const int value = depth[i];
|
428
|
+
int reps = 1;
|
429
|
+
if ((value != 0 && use_rle_for_non_zero) ||
|
430
|
+
(value == 0 && use_rle_for_zero)) {
|
431
|
+
for (uint32_t k = i + 1; k < new_length && depth[k] == value; ++k) {
|
432
|
+
++reps;
|
433
|
+
}
|
434
|
+
}
|
435
|
+
if (value == 0) {
|
436
|
+
WriteHuffmanTreeRepetitionsZeros(reps, tree, extra_bits_data);
|
437
|
+
} else {
|
438
|
+
WriteHuffmanTreeRepetitions(previous_value,
|
439
|
+
value, reps, tree, extra_bits_data);
|
440
|
+
previous_value = value;
|
441
|
+
}
|
442
|
+
i += reps;
|
443
|
+
}
|
444
|
+
}
|
445
|
+
|
446
|
+
namespace {
|
447
|
+
|
448
|
+
uint16_t ReverseBits(int num_bits, uint16_t bits) {
|
449
|
+
static const size_t kLut[16] = { // Pre-reversed 4-bit values.
|
450
|
+
0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
|
451
|
+
0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
|
452
|
+
};
|
453
|
+
size_t retval = kLut[bits & 0xf];
|
454
|
+
for (int i = 4; i < num_bits; i += 4) {
|
455
|
+
retval <<= 4;
|
456
|
+
bits >>= 4;
|
457
|
+
retval |= kLut[bits & 0xf];
|
458
|
+
}
|
459
|
+
retval >>= (-num_bits & 0x3);
|
460
|
+
return retval;
|
461
|
+
}
|
462
|
+
|
463
|
+
} // namespace
|
464
|
+
|
465
|
+
void ConvertBitDepthsToSymbols(const uint8_t *depth, int len, uint16_t *bits) {
|
466
|
+
// In Brotli, all bit depths are [1..15]
|
467
|
+
// 0 bit depth means that the symbol does not exist.
|
468
|
+
const int kMaxBits = 16; // 0..15 are values for bits
|
469
|
+
uint16_t bl_count[kMaxBits] = { 0 };
|
470
|
+
{
|
471
|
+
for (int i = 0; i < len; ++i) {
|
472
|
+
++bl_count[depth[i]];
|
473
|
+
}
|
474
|
+
bl_count[0] = 0;
|
475
|
+
}
|
476
|
+
uint16_t next_code[kMaxBits];
|
477
|
+
next_code[0] = 0;
|
478
|
+
{
|
479
|
+
int code = 0;
|
480
|
+
for (int bits = 1; bits < kMaxBits; ++bits) {
|
481
|
+
code = (code + bl_count[bits - 1]) << 1;
|
482
|
+
next_code[bits] = code;
|
483
|
+
}
|
484
|
+
}
|
485
|
+
for (int i = 0; i < len; ++i) {
|
486
|
+
if (depth[i]) {
|
487
|
+
bits[i] = ReverseBits(depth[i], next_code[depth[i]]++);
|
488
|
+
}
|
489
|
+
}
|
490
|
+
}
|
491
|
+
|
492
|
+
} // namespace brotli
|