experian-data-dictionary 1.4.4 → 1.4.5

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (201) hide show
  1. checksums.yaml +4 -4
  2. data/.rubocop.yml +28 -0
  3. data/Gemfile +3 -3
  4. data/Rakefile +7 -13
  5. data/experian_data_dictionary.gemspec +4 -4
  6. data/lib/element_numbers/0000/en_0000.rb +3 -3
  7. data/lib/element_numbers/0100/en_0100.rb +12 -12
  8. data/lib/element_numbers/0100/en_0103.rb +3 -2
  9. data/lib/element_numbers/0100/en_0107.rb +4 -3
  10. data/lib/element_numbers/0100/en_0108.rb +22 -11
  11. data/lib/element_numbers/0100/en_0110.rb +3 -2
  12. data/lib/element_numbers/0100/en_0112.rb +3 -2
  13. data/lib/element_numbers/0100/en_0113.rb +3 -2
  14. data/lib/element_numbers/0100/en_0118.rb +3 -2
  15. data/lib/element_numbers/0100/en_0119.rb +4 -4
  16. data/lib/element_numbers/0100/en_0130.rb +3 -2
  17. data/lib/element_numbers/0100/en_0131.rb +3 -2
  18. data/lib/element_numbers/0100/en_0132.rb +9 -7
  19. data/lib/element_numbers/0100/en_0133.rb +3 -2
  20. data/lib/element_numbers/0100/en_0134.rb +5 -5
  21. data/lib/element_numbers/0100/en_0135.rb +5 -5
  22. data/lib/element_numbers/0100/en_0136.rb +5 -5
  23. data/lib/element_numbers/0100/en_0137.rb +5 -5
  24. data/lib/element_numbers/0100/en_0138.rb +5 -5
  25. data/lib/element_numbers/0100/en_0139.rb +5 -5
  26. data/lib/element_numbers/0100/en_0140.rb +5 -5
  27. data/lib/element_numbers/0100/en_0141.rb +5 -5
  28. data/lib/element_numbers/0100/en_0155.rb +3 -3
  29. data/lib/element_numbers/0100/en_0156.rb +3 -3
  30. data/lib/element_numbers/0100/en_0160.rb +4 -5
  31. data/lib/element_numbers/0100/en_0161.rb +4 -5
  32. data/lib/element_numbers/0100/en_0162.rb +4 -4
  33. data/lib/element_numbers/0100/en_0164.rb +3 -3
  34. data/lib/element_numbers/0100/en_0174.rb +3 -3
  35. data/lib/element_numbers/0100/en_0177.rb +3 -3
  36. data/lib/element_numbers/0600/en_0601.rb +4 -3
  37. data/lib/element_numbers/0700/en_0711.rb +4 -4
  38. data/lib/element_numbers/0700/en_0715.rb +4 -5
  39. data/lib/element_numbers/0700/en_0716.rb +4 -4
  40. data/lib/element_numbers/0700/en_0717.rb +4 -4
  41. data/lib/element_numbers/300/en_310M.rb +3 -3
  42. data/lib/element_numbers/300/en_313HH.rb +0 -2
  43. data/lib/element_numbers/8000/en_8102.rb +3 -2
  44. data/lib/element_numbers/8000/en_8103.rb +3 -2
  45. data/lib/element_numbers/8000/en_8109.rb +3 -2
  46. data/lib/element_numbers/8000/en_8123.rb +3 -2
  47. data/lib/element_numbers/8000/en_8128.rb +3 -2
  48. data/lib/element_numbers/8000/en_8133.rb +3 -2
  49. data/lib/element_numbers/8000/en_8136.rb +3 -2
  50. data/lib/element_numbers/8000/en_8137.rb +3 -2
  51. data/lib/element_numbers/8000/en_8180.rb +3 -2
  52. data/lib/element_numbers/8000/en_8181.rb +3 -2
  53. data/lib/element_numbers/8000/en_8502.rb +8 -6
  54. data/lib/element_numbers/8000/en_8503.rb +8 -6
  55. data/lib/element_numbers/8000/en_8504.rb +8 -6
  56. data/lib/element_numbers/8000/en_8505.rb +8 -6
  57. data/lib/element_numbers/8000/en_8509.rb +8 -6
  58. data/lib/element_numbers/8000/en_8519.rb +8 -6
  59. data/lib/element_numbers/8000/en_8523.rb +8 -6
  60. data/lib/element_numbers/8000/en_8525.rb +8 -6
  61. data/lib/element_numbers/8000/en_8526.rb +9 -7
  62. data/lib/element_numbers/8000/en_8528.rb +8 -6
  63. data/lib/element_numbers/8000/en_8531.rb +8 -6
  64. data/lib/element_numbers/8000/en_8532.rb +8 -6
  65. data/lib/element_numbers/8000/en_8533.rb +10 -9
  66. data/lib/element_numbers/8000/en_8536.rb +8 -6
  67. data/lib/element_numbers/8000/en_8537.rb +8 -6
  68. data/lib/element_numbers/8000/en_8538.rb +8 -6
  69. data/lib/element_numbers/8000/en_8574.rb +8 -6
  70. data/lib/element_numbers/8000/en_8580.rb +8 -6
  71. data/lib/element_numbers/8000/en_8581.rb +8 -6
  72. data/lib/element_numbers/A/en_A107.rb +3 -2
  73. data/lib/element_numbers/B/en_B000.rb +5 -5
  74. data/lib/element_numbers/B/en_B2185.rb +3 -2
  75. data/lib/element_numbers/B/en_B3010.rb +3 -2
  76. data/lib/element_numbers/B/en_B3076.rb +3 -2
  77. data/lib/element_numbers/B/en_B3080.rb +3 -2
  78. data/lib/element_numbers/B/en_B3081.rb +3 -2
  79. data/lib/element_numbers/B/en_B3200.rb +3 -2
  80. data/lib/element_numbers/B/en_B3225.rb +3 -2
  81. data/lib/element_numbers/B/en_B3226.rb +3 -2
  82. data/lib/element_numbers/B/en_B3227.rb +3 -2
  83. data/lib/element_numbers/B/en_B3251.rb +3 -2
  84. data/lib/element_numbers/B/en_B5011.rb +3 -2
  85. data/lib/element_numbers/B/en_B5013.rb +3 -2
  86. data/lib/element_numbers/B/en_B5014.rb +3 -2
  87. data/lib/element_numbers/B/en_B5016.rb +3 -2
  88. data/lib/element_numbers/D/en_D105N.rb +3 -3
  89. data/lib/element_numbers/D/en_D105S.rb +3 -2
  90. data/lib/element_numbers/D/en_D200.rb +3 -3
  91. data/lib/element_numbers/F/en_F031.rb +3 -3
  92. data/lib/element_numbers/G/en_G2001.rb +5 -5
  93. data/lib/element_numbers/G/en_G2514.rb +3 -3
  94. data/lib/element_numbers/G/en_G2516.rb +3 -3
  95. data/lib/element_numbers/G/en_G2601.rb +3 -3
  96. data/lib/element_numbers/G/en_G2602.rb +3 -3
  97. data/lib/element_numbers/G/en_G2603.rb +3 -3
  98. data/lib/element_numbers/G/en_GEO6.rb +3 -3
  99. data/lib/element_numbers/L/en_L000.rb +4 -4
  100. data/lib/element_numbers/P/en_P213E.rb +4 -4
  101. data/lib/element_numbers/P/en_P213H.rb +21 -21
  102. data/lib/element_numbers/P/en_P213W.rb +4 -4
  103. data/lib/element_numbers/P/en_P400.rb +6 -4
  104. data/lib/element_numbers/T/en_T2000.rb +4 -4
  105. data/lib/element_numbers/V/en_V000.rb +3 -3
  106. data/lib/element_numbers/Y/en_Y000.rb +3 -3
  107. data/lib/experian.rb +10 -10
  108. data/spec/functional/0000/en_0000_spec.rb +13 -16
  109. data/spec/functional/0100/en_0100_spec.rb +13 -20
  110. data/spec/functional/0100/en_0103_spec.rb +9 -12
  111. data/spec/functional/0100/en_0107_spec.rb +10 -13
  112. data/spec/functional/0100/en_0108_spec.rb +411 -445
  113. data/spec/functional/0100/en_0110_spec.rb +11 -14
  114. data/spec/functional/0100/en_0112_spec.rb +7 -10
  115. data/spec/functional/0100/en_0113_spec.rb +12 -16
  116. data/spec/functional/0100/en_0118_spec.rb +11 -15
  117. data/spec/functional/0100/en_0119_spec.rb +7 -10
  118. data/spec/functional/0100/en_0130_spec.rb +8 -12
  119. data/spec/functional/0100/en_0131_spec.rb +9 -13
  120. data/spec/functional/0100/en_0132_spec.rb +4 -8
  121. data/spec/functional/0100/en_0133_spec.rb +4 -8
  122. data/spec/functional/0100/en_0134_spec.rb +15 -19
  123. data/spec/functional/0100/en_0135_spec.rb +15 -19
  124. data/spec/functional/0100/en_0136_spec.rb +15 -19
  125. data/spec/functional/0100/en_0137_spec.rb +14 -18
  126. data/spec/functional/0100/en_0138_spec.rb +14 -18
  127. data/spec/functional/0100/en_0139_spec.rb +14 -18
  128. data/spec/functional/0100/en_0140_spec.rb +14 -18
  129. data/spec/functional/0100/en_0141_spec.rb +14 -18
  130. data/spec/functional/0100/en_0155_spec.rb +7 -11
  131. data/spec/functional/0100/en_0156_spec.rb +7 -11
  132. data/spec/functional/0100/en_0160_spec.rb +8 -13
  133. data/spec/functional/0100/en_0161_spec.rb +8 -12
  134. data/spec/functional/0100/en_0162_spec.rb +7 -11
  135. data/spec/functional/0100/en_0164_spec.rb +9 -14
  136. data/spec/functional/0100/en_0174_spec.rb +8 -13
  137. data/spec/functional/0100/en_0177_spec.rb +7 -12
  138. data/spec/functional/0600/en_0601_spec.rb +7 -12
  139. data/spec/functional/0700/en_0711_spec.rb +10 -13
  140. data/spec/functional/0700/en_0715_spec.rb +11 -15
  141. data/spec/functional/0700/en_0716_spec.rb +11 -15
  142. data/spec/functional/0700/en_0717_spec.rb +11 -12
  143. data/spec/functional/300/en_310M_spec.rb +66 -70
  144. data/spec/functional/300/en_313HH_spec.rb +7 -12
  145. data/spec/functional/8000/en_8102_spec.rb +7 -10
  146. data/spec/functional/8000/en_8103_spec.rb +7 -10
  147. data/spec/functional/8000/en_8109_spec.rb +7 -10
  148. data/spec/functional/8000/en_8123_spec.rb +7 -10
  149. data/spec/functional/8000/en_8128_spec.rb +7 -10
  150. data/spec/functional/8000/en_8133_spec.rb +7 -10
  151. data/spec/functional/8000/en_8136_spec.rb +7 -10
  152. data/spec/functional/8000/en_8137_spec.rb +7 -10
  153. data/spec/functional/8000/en_8180_spec.rb +7 -10
  154. data/spec/functional/8000/en_8181_spec.rb +7 -10
  155. data/spec/functional/8000/en_8502_spec.rb +10 -13
  156. data/spec/functional/8000/en_8503_spec.rb +10 -13
  157. data/spec/functional/8000/en_8504_spec.rb +10 -13
  158. data/spec/functional/8000/en_8505_spec.rb +10 -13
  159. data/spec/functional/8000/en_8509_spec.rb +7 -10
  160. data/spec/functional/8000/en_8519_spec.rb +10 -13
  161. data/spec/functional/8000/en_8523_spec.rb +7 -10
  162. data/spec/functional/8000/en_8525_spec.rb +10 -13
  163. data/spec/functional/8000/en_8526_spec.rb +10 -13
  164. data/spec/functional/8000/en_8536_spec.rb +7 -10
  165. data/spec/functional/8000/en_8537_spec.rb +7 -10
  166. data/spec/functional/8000/en_8580_spec.rb +7 -10
  167. data/spec/functional/8000/en_8581_spec.rb +7 -10
  168. data/spec/functional/A/en_A107_spec.rb +9 -14
  169. data/spec/functional/B/en_B2185_spec.rb +7 -9
  170. data/spec/functional/B/en_B3010_spec.rb +7 -9
  171. data/spec/functional/B/en_B3076_spec.rb +7 -10
  172. data/spec/functional/B/en_B3080_spec.rb +7 -10
  173. data/spec/functional/B/en_B3081_spec.rb +7 -10
  174. data/spec/functional/B/en_B3200_spec.rb +7 -10
  175. data/spec/functional/B/en_B3225_spec.rb +7 -10
  176. data/spec/functional/B/en_B3226_spec.rb +7 -10
  177. data/spec/functional/B/en_B3227_spec.rb +7 -10
  178. data/spec/functional/B/en_B3251_spec.rb +7 -10
  179. data/spec/functional/B/en_B5011_spec.rb +7 -9
  180. data/spec/functional/B/en_B5013_spec.rb +7 -9
  181. data/spec/functional/B/en_B5014_spec.rb +7 -9
  182. data/spec/functional/B/en_B5016_spec.rb +7 -9
  183. data/spec/functional/D/en_D105N_spec.rb +16 -19
  184. data/spec/functional/D/en_D200_spec.rb +7 -10
  185. data/spec/functional/F/en_F031_spec.rb +11 -15
  186. data/spec/functional/G/en_G2001_spec.rb +8 -9
  187. data/spec/functional/G/en_G2514_spec.rb +9 -11
  188. data/spec/functional/G/en_G2516_spec.rb +9 -11
  189. data/spec/functional/G/en_G2602_spec.rb +8 -9
  190. data/spec/functional/G/en_G2603_spec.rb +10 -11
  191. data/spec/functional/L/en_L000_spec.rb +1 -1
  192. data/spec/functional/P/en_P213E_spec.rb +8 -11
  193. data/spec/functional/P/en_P213H_spec.rb +8 -11
  194. data/spec/functional/P/en_P213W_spec.rb +8 -11
  195. data/spec/functional/P/en_P400_spec.rb +5 -8
  196. data/spec/functional/T/en_T2000_spec.rb +9 -14
  197. data/spec/functional/V/en_V000_spec.rb +8 -10
  198. data/spec/functional/Y/en_Y000_spec.rb +10 -12
  199. data/spec/functional/experian_spec.rb +11 -14
  200. data/spec/spec_helper.rb +2 -2
  201. metadata +5 -3
@@ -1,11 +1,12 @@
1
1
  module Experian
2
2
  class DataDictionary
3
-
4
3
  def self.en_8503_column_name
5
4
  'Pets & Pets Propensity, Self reported data'
6
5
  end
7
6
 
8
- def self.en_8503_value_description(key); ''; end
7
+ def self.en_8503_value_description(_key)
8
+ ''
9
+ end
9
10
 
10
11
  def self.en_8503_description
11
12
  'Z pets & pets propensities indicates a household\'s self reported pet enthusiast. BehaviorBank Household Indicators groups similar self-reported elements inslightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
@@ -15,7 +16,9 @@ module Experian
15
16
  'Pets & Pets Propensity, Quick Predict Code'
16
17
  end
17
18
 
18
- def self.en_8503p_value_description(key); ''; end
19
+ def self.en_8503p_value_description(_key)
20
+ ''
21
+ end
19
22
 
20
23
  def self.en_8503p_description
21
24
  'Z pets & pets propensities indicates a household\'s self reported pet enthusiast. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
@@ -36,15 +39,14 @@ module Experian
36
39
  '7' => 'Very Unlikely pet enthusiast',
37
40
  '8' => 'Highly Unlikely pet enthusiast',
38
41
  '9' => 'Extremely Unlikely pet enthusiast',
39
- '0' => 'Unknown / Not Attempted',
42
+ '0' => 'Unknown / Not Attempted'
40
43
  }
41
- return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
44
+ return 'Unknown' if key.size != 2 || code[key[1]].nil? || charity[key[0]].nil?
42
45
  [charity[key[0]], code[key[1]]].join(' - ')
43
46
  end
44
47
 
45
48
  def self.en_8503p(key)
46
49
  Experian::DataDictionary.en_8503(key)
47
50
  end
48
-
49
51
  end
50
52
  end
@@ -1,11 +1,12 @@
1
1
  module Experian
2
2
  class DataDictionary
3
-
4
3
  def self.en_8504_column_name
5
4
  'Arts & Arts Propensity, Self reported data'
6
5
  end
7
6
 
8
- def self.en_8504_value_description(key); ''; end
7
+ def self.en_8504_value_description(_key)
8
+ ''
9
+ end
9
10
 
10
11
  def self.en_8504_description
11
12
  'Z arts & arts propensities indicates a household\'s self reported interest in cultural arts. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response.The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
@@ -15,7 +16,9 @@ module Experian
15
16
  'Arts & Arts Propensity, Quick Predict code'
16
17
  end
17
18
 
18
- def self.en_8504p_value_description(key); ''; end
19
+ def self.en_8504p_value_description(_key)
20
+ ''
21
+ end
19
22
 
20
23
  def self.en_8504p_description
21
24
  'Z arts & arts propensities indicates a household\'s self reported interest in cultural arts. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
@@ -36,15 +39,14 @@ module Experian
36
39
  '7' => 'Very Unlikely interest in cultural arts',
37
40
  '8' => 'Highly Unlikely interest in cultural arts',
38
41
  '9' => 'Extremely Unlikely interest in cultural arts',
39
- '0' => 'Unknown / Not Attempted',
42
+ '0' => 'Unknown / Not Attempted'
40
43
  }
41
- return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
44
+ return 'Unknown' if key.size != 2 || code[key[1]].nil? || charity[key[0]].nil?
42
45
  [charity[key[0]], code[key[1]]].join(' - ')
43
46
  end
44
47
 
45
48
  def self.en_8504p(key)
46
49
  Experian::DataDictionary.en_8504(key)
47
50
  end
48
-
49
51
  end
50
52
  end
@@ -1,12 +1,13 @@
1
1
  module Experian
2
2
  class DataDictionary
3
-
4
3
  # Mailorder Buyer & Mailorder Buyer Prop, Self Reported data
5
4
  def self.en_8505_column_name
6
5
  'Mailorder Buyer & Mailorder Buyer Prop, Self Reported data'
7
6
  end
8
7
 
9
- def self.en_8505_value_description(key); ''; end
8
+ def self.en_8505_value_description(_key)
9
+ ''
10
+ end
10
11
 
11
12
  def self.en_8505_description
12
13
  'Z mailorder buyer & mailorder buyer propensities indicates a household\'s self reported purchased through the mail. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
@@ -17,7 +18,9 @@ module Experian
17
18
  'Mailorder Buyer & Mailorder Buyer Prop, Quick Predict Code'
18
19
  end
19
20
 
20
- def self.en_8505p_value_description(key); ''; end
21
+ def self.en_8505p_value_description(_key)
22
+ ''
23
+ end
21
24
 
22
25
  def self.en_8505p_description
23
26
  'Z mailorder buyer & mailorder buyer propensities indicates a household\'s self reported purchased through the mail. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
@@ -38,15 +41,14 @@ module Experian
38
41
  '7' => 'Very Unlikely purchased through the mail',
39
42
  '8' => 'Highly Unlikely purchased through the mail',
40
43
  '9' => 'Extremely Unlikely purchased through the mail',
41
- '0' => 'Unknown / Not Attempted',
44
+ '0' => 'Unknown / Not Attempted'
42
45
  }
43
- return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
46
+ return 'Unknown' if key.size != 2 || code[key[1]].nil? || charity[key[0]].nil?
44
47
  [charity[key[0]], code[key[1]]].join(' - ')
45
48
  end
46
49
 
47
50
  def self.en_8505p(key)
48
51
  Experian::DataDictionary.en_8505(key)
49
52
  end
50
-
51
53
  end
52
54
  end
@@ -1,12 +1,13 @@
1
1
  module Experian
2
2
  class DataDictionary
3
-
4
3
  # Investor & Investor Propensity, Self reported data
5
4
  def self.en_8509_column_name
6
5
  'Investor & Investor Propensity, Self reported data'
7
6
  end
8
7
 
9
- def self.en_8509_value_description(key); ''; end
8
+ def self.en_8509_value_description(_key)
9
+ ''
10
+ end
10
11
 
11
12
  def self.en_8509_description
12
13
  'Z investor & investor propensities indicates a household\'s self reported as an investor. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self- reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
@@ -17,7 +18,9 @@ module Experian
17
18
  'Investor & Investor Propensity, Quick Predict Code'
18
19
  end
19
20
 
20
- def self.en_8509p_value_description(key); ''; end
21
+ def self.en_8509p_value_description(_key)
22
+ ''
23
+ end
21
24
 
22
25
  def self.en_8509p_description
23
26
  'Z investor & investor propensities indicates a household\'s self reported as an investor. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self- reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
@@ -38,15 +41,14 @@ module Experian
38
41
  '7' => 'Very Unlikely investor',
39
42
  '8' => 'Highly Unlikely investor',
40
43
  '9' => 'Extremely Unlikely investor',
41
- '0' => 'Unknown / Not Attempted',
44
+ '0' => 'Unknown / Not Attempted'
42
45
  }
43
- return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
46
+ return 'Unknown' if key.size != 2 || code[key[1]].nil? || charity[key[0]].nil?
44
47
  [charity[key[0]], code[key[1]]].join(' - ')
45
48
  end
46
49
 
47
50
  def self.en_8509p(key)
48
51
  Experian::DataDictionary.en_8509(key)
49
52
  end
50
-
51
53
  end
52
54
  end
@@ -1,12 +1,13 @@
1
1
  module Experian
2
2
  class DataDictionary
3
-
4
3
  # Politics & Politics Propensity, Self reported data
5
4
  def self.en_8519_column_name
6
5
  'Politics & Politics Propensity, Self reported data'
7
6
  end
8
7
 
9
- def self.en_8519_value_description(key); ''; end
8
+ def self.en_8519_value_description(_key)
9
+ ''
10
+ end
10
11
 
11
12
  def self.en_8519_description
12
13
  'Z politics & politics propensities indicates a household\'s self reported interest in politics. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
@@ -17,7 +18,9 @@ module Experian
17
18
  'Politics & Politics Propensity, Quick Predict Code'
18
19
  end
19
20
 
20
- def self.en_8519p_value_description(key); ''; end
21
+ def self.en_8519p_value_description(_key)
22
+ ''
23
+ end
21
24
 
22
25
  def self.en_8519p_description
23
26
  'Z politics & politics propensities indicates a household\'s self reported interest in politics. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
@@ -38,15 +41,14 @@ module Experian
38
41
  '7' => 'Very Unlikely interest in politics',
39
42
  '8' => 'Highly Unlikely interest in politics',
40
43
  '9' => 'Extremely Unlikely interest in politics',
41
- '0' => 'Unknown / Not Attempted',
44
+ '0' => 'Unknown / Not Attempted'
42
45
  }
43
- return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
46
+ return 'Unknown' if key.size != 2 || code[key[1]].nil? || charity[key[0]].nil?
44
47
  [charity[key[0]], code[key[1]]].join(' - ')
45
48
  end
46
49
 
47
50
  def self.en_8519p(key)
48
51
  Experian::DataDictionary.en_8519(key)
49
52
  end
50
-
51
53
  end
52
54
  end
@@ -1,12 +1,13 @@
1
1
  module Experian
2
2
  class DataDictionary
3
-
4
3
  # 'Doityourselfer & Doityourselfer Prop, Self reported data'
5
4
  def self.en_8523_column_name
6
5
  'Doityourselfer & Doityourselfer Prop, Self reported data'
7
6
  end
8
7
 
9
- def self.en_8523_value_description(key); ''; end
8
+ def self.en_8523_value_description(_key)
9
+ ''
10
+ end
10
11
 
11
12
  def self.en_8523_description
12
13
  'Z doityourselfer & doityourselfer propensities indicates a household\'s self reported do-it-yourselfer. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
@@ -17,7 +18,9 @@ module Experian
17
18
  'Doityourselfer & Doityourselfer Prop, Quick Predict Code'
18
19
  end
19
20
 
20
- def self.en_8523p_value_description(key); ''; end
21
+ def self.en_8523p_value_description(_key)
22
+ ''
23
+ end
21
24
 
22
25
  def self.en_8523p_description
23
26
  'Z doityourselfer & doityourselfer propensities indicates a household\'s self reported do-it-yourselfer. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
@@ -38,15 +41,14 @@ module Experian
38
41
  '7' => 'Very Unlikely do-it-yourselfer',
39
42
  '8' => 'Highly Unlikely do-it-yourselfer',
40
43
  '9' => 'Extremely Unlikely do-it-yourselfer',
41
- '0' => 'Unknown / Not Attempted',
44
+ '0' => 'Unknown / Not Attempted'
42
45
  }
43
- return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
46
+ return 'Unknown' if key.size != 2 || code[key[1]].nil? || charity[key[0]].nil?
44
47
  [charity[key[0]], code[key[1]]].join(' - ')
45
48
  end
46
49
 
47
50
  def self.en_8523p(key)
48
51
  Experian::DataDictionary.en_8523(key)
49
52
  end
50
-
51
53
  end
52
54
  end
@@ -1,12 +1,13 @@
1
1
  module Experian
2
2
  class DataDictionary
3
-
4
3
  # Religion & Religion Propensity, Self reported data
5
4
  def self.en_8525_column_name
6
5
  'Religion & Religion Propensity, Self reported data'
7
6
  end
8
7
 
9
- def self.en_8525_value_description(key); ''; end
8
+ def self.en_8525_value_description(_key)
9
+ ''
10
+ end
10
11
 
11
12
  def self.en_8525_description
12
13
  'Z religion & religion propensities indicates a household\'s self reported interest in religion. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
@@ -17,7 +18,9 @@ module Experian
17
18
  'Religion & Religion Propensity, Quick Predict Code'
18
19
  end
19
20
 
20
- def self.en_8525p_value_description(key); ''; end
21
+ def self.en_8525p_value_description(_key)
22
+ ''
23
+ end
21
24
 
22
25
  def self.en_8525p_description
23
26
  'Z religion & religion propensities indicates a household\'s self reported interest in religion. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
@@ -38,15 +41,14 @@ module Experian
38
41
  '7' => 'Very Unlikely interest in religion',
39
42
  '8' => 'Highly Unlikely interest in religion',
40
43
  '9' => 'Extremely Unlikely interest in religion',
41
- '0' => 'Unknown / Not Attempted',
44
+ '0' => 'Unknown / Not Attempted'
42
45
  }
43
- return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
46
+ return 'Unknown' if key.size != 2 || code[key[1]].nil? || charity[key[0]].nil?
44
47
  [charity[key[0]], code[key[1]]].join(' - ')
45
48
  end
46
49
 
47
50
  def self.en_8525p(key)
48
51
  Experian::DataDictionary.en_8525(key)
49
52
  end
50
-
51
53
  end
52
54
  end
@@ -1,12 +1,13 @@
1
1
  module Experian
2
2
  class DataDictionary
3
-
4
3
  # Grandparent & Grandparent Propensity, Self reported data
5
4
  def self.en_8526_column_name
6
5
  'Grandparent & Grandparent Propensity, Self reported data'
7
6
  end
8
7
 
9
- def self.en_8526_value_description(key); ''; end
8
+ def self.en_8526_value_description(_key)
9
+ ''
10
+ end
10
11
 
11
12
  def self.en_8526_description
12
13
  'Z grandparent & grandparent propensities indicates a household\'s self reported grandparent. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
@@ -17,8 +18,10 @@ module Experian
17
18
  'Grandparent & Grandparent Propensity, Quick Predict Code'
18
19
  end
19
20
 
20
- def self.en_8526p_value_description(key); ''; end
21
-
21
+ def self.en_8526p_value_description(_key)
22
+ ''
23
+ end
24
+
22
25
  def self.en_8526p_description
23
26
  'Z grandparent & grandparent propensities indicates a household\'s self reported grandparent. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response.The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
24
27
  end
@@ -38,15 +41,14 @@ module Experian
38
41
  '7' => 'Very Unlikely grandparent',
39
42
  '8' => 'Highly Unlikely grandparent',
40
43
  '9' => 'Extremely Unlikely grandparent',
41
- '0' => 'Unknown / Not Attempted',
44
+ '0' => 'Unknown / Not Attempted'
42
45
  }
43
- return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
46
+ return 'Unknown' if key.size != 2 || code[key[1]].nil? || charity[key[0]].nil?
44
47
  [charity[key[0]], code[key[1]]].join(' - ')
45
48
  end
46
49
 
47
50
  def self.en_8526p(key)
48
51
  Experian::DataDictionary.en_8526(key)
49
52
  end
50
-
51
53
  end
52
54
  end
@@ -1,12 +1,13 @@
1
1
  module Experian
2
2
  class DataDictionary
3
-
4
3
  # Environmental Donor & Envir Donor Prop, Self reported data
5
4
  def self.en_8528_column_name
6
5
  'Environmental Donor & Envir Donor Prop, Self reported data'
7
6
  end
8
7
 
9
- def self.en_8528_value_description(key); ''; end
8
+ def self.en_8528_value_description(_key)
9
+ ''
10
+ end
10
11
 
11
12
  def self.en_8528_description
12
13
  'Z environmental donor & environmental donor propensities indicates a household\'s self reported as donating to environmental causes. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
@@ -17,7 +18,9 @@ module Experian
17
18
  'Environmental Donor & Envir Donor Prop, Quick Predict Code'
18
19
  end
19
20
 
20
- def self.en_8528p_value_description(key); ''; end
21
+ def self.en_8528p_value_description(_key)
22
+ ''
23
+ end
21
24
 
22
25
  def self.en_8528p_description
23
26
  'Z environmental donor & environmental donor propensities indicates a household\'s self reported as donating to environmental causes. Valid Values :BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
@@ -38,15 +41,14 @@ module Experian
38
41
  '7' => 'Very Unlikely donates to environmental causes',
39
42
  '8' => 'Highly Unlikely donates to environmental causes',
40
43
  '9' => 'Extremely Unlikely donates to environmental causes',
41
- '0' => 'Unknown / Not Attempted',
44
+ '0' => 'Unknown / Not Attempted'
42
45
  }
43
- return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
46
+ return 'Unknown' if key.size != 2 || code[key[1]].nil? || charity[key[0]].nil?
44
47
  [code[key[1]], charity[key[0]]].join(' - ')
45
48
  end
46
49
 
47
50
  def self.en_8528p(key)
48
51
  Experian::DataDictionary.en_8528(key)
49
52
  end
50
-
51
53
  end
52
54
  end
@@ -1,12 +1,13 @@
1
1
  module Experian
2
2
  class DataDictionary
3
-
4
3
  # Buys By Phone & Buys By Phone Propensity, Self reported data
5
4
  def self.en_8531_column_name
6
5
  'Buys By Phone & Buys By Phone Propensity, Self reported data'
7
6
  end
8
7
 
9
- def self.en_8531_value_description(key); ''; end
8
+ def self.en_8531_value_description(_key)
9
+ ''
10
+ end
10
11
 
11
12
  def self.en_8531_description
12
13
  'Z buys by phone & buys by phone propensities indicates a household has self reported to purchase via phone. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
@@ -17,7 +18,9 @@ module Experian
17
18
  'Buys By Phone & Buys By Phone Propensity, Quick Predict Code'
18
19
  end
19
20
 
20
- def self.en_8531p_value_description(key); ''; end
21
+ def self.en_8531p_value_description(_key)
22
+ ''
23
+ end
21
24
 
22
25
  def self.en_8531p_description
23
26
  'Z buys by phone & buys by phone propensities indicates a household has self reported to purchase via phone. BehaviorBank Household Indicators groups similar self-reported elements into slightly broader categories. Propensities are created with sophisticated analytical models based solely on self-reported data to predict households that are likely to exhibit the same behaviors. We supplement Behavior Bank Indicators with propensities for those records where self-reported data is not available to maximize coverage and response. The propensity codes rank living units from 1 to 9 using individual, living unit and area level demographics. Field values beginning with 1 indicate the strongest probability.'
@@ -38,15 +41,14 @@ module Experian
38
41
  '7' => 'Very Unlikely to purchase via phone',
39
42
  '8' => 'Highly Unlikely to purchase via phone',
40
43
  '9' => 'Extremely Unlikely to purchase via phone',
41
- '0' => 'Unknown / Not Attempted',
44
+ '0' => 'Unknown / Not Attempted'
42
45
  }
43
- return 'Unknown' if key.size != 2 or code[key[1]].nil? or charity[key[0]].nil?
46
+ return 'Unknown' if key.size != 2 || code[key[1]].nil? || charity[key[0]].nil?
44
47
  [code[key[1]], charity[key[0]]].join(' - ')
45
48
  end
46
49
 
47
50
  def self.en_8531p(key)
48
51
  Experian::DataDictionary.en_8531(key)
49
52
  end
50
-
51
53
  end
52
54
  end