eps 0.2.1 → 0.3.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +14 -0
- data/LICENSE.txt +1 -1
- data/README.md +183 -243
- data/lib/eps.rb +27 -3
- data/lib/eps/base_estimator.rb +316 -47
- data/lib/eps/data_frame.rb +141 -0
- data/lib/eps/evaluators/lightgbm.rb +116 -0
- data/lib/eps/evaluators/linear_regression.rb +54 -0
- data/lib/eps/evaluators/naive_bayes.rb +95 -0
- data/lib/eps/evaluators/node.rb +26 -0
- data/lib/eps/label_encoder.rb +41 -0
- data/lib/eps/lightgbm.rb +237 -0
- data/lib/eps/linear_regression.rb +132 -386
- data/lib/eps/metrics.rb +46 -0
- data/lib/eps/model.rb +16 -58
- data/lib/eps/naive_bayes.rb +175 -164
- data/lib/eps/pmml_generators/lightgbm.rb +187 -0
- data/lib/eps/statistics.rb +79 -0
- data/lib/eps/text_encoder.rb +81 -0
- data/lib/eps/utils.rb +22 -0
- data/lib/eps/version.rb +1 -1
- metadata +33 -7
@@ -0,0 +1,187 @@
|
|
1
|
+
module Eps
|
2
|
+
module PmmlGenerators
|
3
|
+
module LightGBM
|
4
|
+
private
|
5
|
+
|
6
|
+
def generate_pmml
|
7
|
+
feature_importance = @feature_importance
|
8
|
+
|
9
|
+
data_fields = {}
|
10
|
+
data_fields[@target] = @labels if @labels
|
11
|
+
@features.each_with_index do |(k, type), i|
|
12
|
+
# TODO remove zero importance features
|
13
|
+
if type == "categorical"
|
14
|
+
data_fields[k] = @label_encoders[k].labels.keys
|
15
|
+
else
|
16
|
+
data_fields[k] = nil
|
17
|
+
end
|
18
|
+
end
|
19
|
+
|
20
|
+
build_pmml(data_fields) do |xml|
|
21
|
+
function_name = @objective == "regression" ? "regression" : "classification"
|
22
|
+
xml.MiningModel(functionName: function_name, algorithmName: "LightGBM") do
|
23
|
+
xml.MiningSchema do
|
24
|
+
xml.MiningField(name: @target, usageType: "target")
|
25
|
+
@features.keys.each_with_index do |k, i|
|
26
|
+
# next if feature_importance[i] == 0
|
27
|
+
# TODO add importance, but need to handle text features
|
28
|
+
xml.MiningField(name: k) #, importance: feature_importance[i].to_f, missingValueTreatment: "asIs")
|
29
|
+
end
|
30
|
+
end
|
31
|
+
pmml_local_transformations(xml)
|
32
|
+
|
33
|
+
case @objective
|
34
|
+
when "regression"
|
35
|
+
xml_segmentation(xml, @trees)
|
36
|
+
when "binary"
|
37
|
+
xml.Segmentation(multipleModelMethod: "modelChain") do
|
38
|
+
xml.Segment(id: 1) do
|
39
|
+
xml.True
|
40
|
+
xml.MiningModel(functionName: "regression") do
|
41
|
+
xml.MiningSchema do
|
42
|
+
@features.each do |k, _|
|
43
|
+
xml.MiningField(name: k)
|
44
|
+
end
|
45
|
+
end
|
46
|
+
xml.Output do
|
47
|
+
xml.OutputField(name: "lgbmValue", optype: "continuous", dataType: "double", feature: "predictedValue", isFinalResult: false) do
|
48
|
+
xml.Apply(function: "/") do
|
49
|
+
xml.Constant(dataType: "double") do
|
50
|
+
1.0
|
51
|
+
end
|
52
|
+
xml.Apply(function: "+") do
|
53
|
+
xml.Constant(dataType: "double") do
|
54
|
+
1.0
|
55
|
+
end
|
56
|
+
xml.Apply(function: "exp") do
|
57
|
+
xml.Apply(function: "*") do
|
58
|
+
xml.Constant(dataType: "double") do
|
59
|
+
-1.0
|
60
|
+
end
|
61
|
+
xml.FieldRef(field: "lgbmValue")
|
62
|
+
end
|
63
|
+
end
|
64
|
+
end
|
65
|
+
end
|
66
|
+
end
|
67
|
+
end
|
68
|
+
xml_segmentation(xml, @trees)
|
69
|
+
end
|
70
|
+
end
|
71
|
+
xml.Segment(id: 2) do
|
72
|
+
xml.True
|
73
|
+
xml.RegressionModel(functionName: "classification", normalizationMethod: "none") do
|
74
|
+
xml.MiningSchema do
|
75
|
+
xml.MiningField(name: @target, usageType: "target")
|
76
|
+
xml.MiningField(name: "transformedLgbmValue")
|
77
|
+
end
|
78
|
+
xml.Output do
|
79
|
+
@labels.each do |label|
|
80
|
+
xml.OutputField(name: "probability(#{label})", optype: "continuous", dataType: "double", feature: "probability", value: label)
|
81
|
+
end
|
82
|
+
end
|
83
|
+
xml.RegressionTable(intercept: 0.0, targetCategory: @labels.last) do
|
84
|
+
xml.NumericPredictor(name: "transformedLgbmValue", coefficient: "1.0")
|
85
|
+
end
|
86
|
+
xml.RegressionTable(intercept: 0.0, targetCategory: @labels.first)
|
87
|
+
end
|
88
|
+
end
|
89
|
+
end
|
90
|
+
else # multiclass
|
91
|
+
xml.Segmentation(multipleModelMethod: "modelChain") do
|
92
|
+
n = @trees.size / @labels.size
|
93
|
+
@trees.each_slice(n).each_with_index do |trees, idx|
|
94
|
+
xml.Segment(id: idx + 1) do
|
95
|
+
xml.True
|
96
|
+
xml.MiningModel(functionName: "regression") do
|
97
|
+
xml.MiningSchema do
|
98
|
+
@features.each do |k, _|
|
99
|
+
xml.MiningField(name: k)
|
100
|
+
end
|
101
|
+
end
|
102
|
+
xml.Output do
|
103
|
+
xml.OutputField(name: "lgbmValue(#{@labels[idx]})", optype: "continuous", dataType: "double", feature: "predictedValue", isFinalResult: false)
|
104
|
+
end
|
105
|
+
xml_segmentation(xml, trees)
|
106
|
+
end
|
107
|
+
end
|
108
|
+
end
|
109
|
+
xml.Segment(id: @labels.size + 1) do
|
110
|
+
xml.True
|
111
|
+
xml.RegressionModel(functionName: "classification", normalizationMethod: "softmax") do
|
112
|
+
xml.MiningSchema do
|
113
|
+
xml.MiningField(name: @target, usageType: "target")
|
114
|
+
@labels.each do |label|
|
115
|
+
xml.MiningField(name: "lgbmValue(#{label})")
|
116
|
+
end
|
117
|
+
end
|
118
|
+
xml.Output do
|
119
|
+
@labels.each do |label|
|
120
|
+
xml.OutputField(name: "probability(#{label})", optype: "continuous", dataType: "double", feature: "probability", value: label)
|
121
|
+
end
|
122
|
+
end
|
123
|
+
@labels.each do |label|
|
124
|
+
xml.RegressionTable(intercept: 0.0, targetCategory: label) do
|
125
|
+
xml.NumericPredictor(name: "lgbmValue(#{label})", coefficient: "1.0")
|
126
|
+
end
|
127
|
+
end
|
128
|
+
end
|
129
|
+
end
|
130
|
+
end
|
131
|
+
end
|
132
|
+
end
|
133
|
+
end
|
134
|
+
end
|
135
|
+
|
136
|
+
def xml_segmentation(xml, trees)
|
137
|
+
xml.Segmentation(multipleModelMethod: "sum") do
|
138
|
+
trees.each_with_index do |node, i|
|
139
|
+
xml.Segment(id: i + 1) do
|
140
|
+
xml.True
|
141
|
+
xml.TreeModel(functionName: "regression", missingValueStrategy: "none", noTrueChildStrategy: "returnLastPrediction", splitCharacteristic: "multiSplit") do
|
142
|
+
xml.MiningSchema do
|
143
|
+
node_fields(node).uniq.each do |k|
|
144
|
+
xml.MiningField(name: display_field(k))
|
145
|
+
end
|
146
|
+
end
|
147
|
+
node_pmml(node, xml)
|
148
|
+
end
|
149
|
+
end
|
150
|
+
end
|
151
|
+
end
|
152
|
+
end
|
153
|
+
|
154
|
+
def node_fields(node)
|
155
|
+
fields = []
|
156
|
+
fields << node.field if node.predicate
|
157
|
+
node.children.each do |n|
|
158
|
+
fields.concat(node_fields(n))
|
159
|
+
end
|
160
|
+
fields
|
161
|
+
end
|
162
|
+
|
163
|
+
def node_pmml(node, xml)
|
164
|
+
xml.Node(score: node.score) do
|
165
|
+
if node.predicate.nil?
|
166
|
+
xml.True
|
167
|
+
elsif node.operator == "in"
|
168
|
+
xml.SimpleSetPredicate(field: display_field(node.field), booleanOperator: "isIn") do
|
169
|
+
xml.Array(type: "string") do
|
170
|
+
xml.text node.value.map { |v| escape_element(v) }.join(" ")
|
171
|
+
end
|
172
|
+
end
|
173
|
+
else
|
174
|
+
xml.SimplePredicate(field: display_field(node.field), operator: node.operator, value: node.value)
|
175
|
+
end
|
176
|
+
node.children.each do |n|
|
177
|
+
node_pmml(n, xml)
|
178
|
+
end
|
179
|
+
end
|
180
|
+
end
|
181
|
+
|
182
|
+
def escape_element(v)
|
183
|
+
"\"#{v.gsub("\"", "\\\"")}\""
|
184
|
+
end
|
185
|
+
end
|
186
|
+
end
|
187
|
+
end
|
@@ -0,0 +1,79 @@
|
|
1
|
+
### Extracted from https://github.com/estebanz01/ruby-statistics
|
2
|
+
### The Ruby author is Esteban Zapata Rojas
|
3
|
+
###
|
4
|
+
### Originally extracted from https://codeplea.com/incomplete-beta-function-c
|
5
|
+
### These functions shared under zlib license and the author is Lewis Van Winkle
|
6
|
+
|
7
|
+
module Eps
|
8
|
+
module Statistics
|
9
|
+
def self.tdist_p(value, degrees_of_freedom)
|
10
|
+
upper = (value + Math.sqrt(value * value + degrees_of_freedom))
|
11
|
+
lower = (2.0 * Math.sqrt(value * value + degrees_of_freedom))
|
12
|
+
|
13
|
+
x = upper/lower
|
14
|
+
|
15
|
+
alpha = degrees_of_freedom/2.0
|
16
|
+
beta = degrees_of_freedom/2.0
|
17
|
+
|
18
|
+
incomplete_beta_function(x, alpha, beta)
|
19
|
+
end
|
20
|
+
|
21
|
+
def self.incomplete_beta_function(x, alp, bet)
|
22
|
+
return if x < 0.0
|
23
|
+
return 1.0 if x > 1.0
|
24
|
+
|
25
|
+
tiny = 1.0E-50
|
26
|
+
|
27
|
+
if x > ((alp + 1.0)/(alp + bet + 2.0))
|
28
|
+
return 1.0 - incomplete_beta_function(1.0 - x, bet, alp)
|
29
|
+
end
|
30
|
+
|
31
|
+
# To avoid overflow problems, the implementation applies the logarithm properties
|
32
|
+
# to calculate in a faster and safer way the values.
|
33
|
+
lbet_ab = (Math.lgamma(alp)[0] + Math.lgamma(bet)[0] - Math.lgamma(alp + bet)[0]).freeze
|
34
|
+
front = (Math.exp(Math.log(x) * alp + Math.log(1.0 - x) * bet - lbet_ab) / alp.to_f).freeze
|
35
|
+
|
36
|
+
# This is the non-log version of the left part of the formula (before the continuous fraction)
|
37
|
+
# down_left = alp * self.beta_function(alp, bet)
|
38
|
+
# upper_left = (x ** alp) * ((1.0 - x) ** bet)
|
39
|
+
# front = upper_left/down_left
|
40
|
+
|
41
|
+
f, c, d = 1.0, 1.0, 0.0
|
42
|
+
|
43
|
+
returned_value = nil
|
44
|
+
|
45
|
+
# Let's do more iterations than the proposed implementation (200 iters)
|
46
|
+
(0..500).each do |number|
|
47
|
+
m = number/2
|
48
|
+
|
49
|
+
numerator = if number == 0
|
50
|
+
1.0
|
51
|
+
elsif number % 2 == 0
|
52
|
+
(m * (bet - m) * x)/((alp + 2.0 * m - 1.0)* (alp + 2.0 * m))
|
53
|
+
else
|
54
|
+
top = -((alp + m) * (alp + bet + m) * x)
|
55
|
+
down = ((alp + 2.0 * m) * (alp + 2.0 * m + 1.0))
|
56
|
+
|
57
|
+
top/down
|
58
|
+
end
|
59
|
+
|
60
|
+
d = 1.0 + numerator * d
|
61
|
+
d = tiny if d.abs < tiny
|
62
|
+
d = 1.0 / d
|
63
|
+
|
64
|
+
c = 1.0 + numerator / c
|
65
|
+
c = tiny if c.abs < tiny
|
66
|
+
|
67
|
+
cd = (c*d).freeze
|
68
|
+
f = f * cd
|
69
|
+
|
70
|
+
if (1.0 - cd).abs < 1.0E-10
|
71
|
+
returned_value = front * (f - 1.0)
|
72
|
+
break
|
73
|
+
end
|
74
|
+
end
|
75
|
+
|
76
|
+
returned_value
|
77
|
+
end
|
78
|
+
end
|
79
|
+
end
|
@@ -0,0 +1,81 @@
|
|
1
|
+
module Eps
|
2
|
+
class TextEncoder
|
3
|
+
attr_reader :options, :vocabulary
|
4
|
+
|
5
|
+
def initialize(**options)
|
6
|
+
@options = options
|
7
|
+
@vocabulary = options[:vocabulary] || []
|
8
|
+
end
|
9
|
+
|
10
|
+
def fit(arr)
|
11
|
+
counts, fit = count_and_fit(arr)
|
12
|
+
|
13
|
+
min_length = options[:min_length]
|
14
|
+
if min_length
|
15
|
+
counts.select! { |k, _| k.length >= min_length }
|
16
|
+
end
|
17
|
+
|
18
|
+
min_occurrences = options[:min_occurrences]
|
19
|
+
if min_occurrences
|
20
|
+
counts.select! { |_, v| v >= min_occurrences }
|
21
|
+
end
|
22
|
+
|
23
|
+
max_occurrences = options[:max_occurrences]
|
24
|
+
if max_occurrences
|
25
|
+
counts.reject! { |_, v| v > max_occurrences }
|
26
|
+
end
|
27
|
+
|
28
|
+
max_features = options[:max_features]
|
29
|
+
if max_features
|
30
|
+
counts = Hash[counts.sort_by { |_, v| -v }[0...max_features]]
|
31
|
+
end
|
32
|
+
|
33
|
+
@vocabulary = counts.keys
|
34
|
+
|
35
|
+
fit
|
36
|
+
end
|
37
|
+
|
38
|
+
def transform(arr)
|
39
|
+
counts, fit = count_and_fit(arr)
|
40
|
+
fit
|
41
|
+
end
|
42
|
+
|
43
|
+
private
|
44
|
+
|
45
|
+
def count_and_fit(arr)
|
46
|
+
tokenizer = options[:tokenizer]
|
47
|
+
stop_words = Array(options[:stop_words])
|
48
|
+
|
49
|
+
fit =
|
50
|
+
arr.map do |xi|
|
51
|
+
# tokenize
|
52
|
+
tokens = xi.to_s
|
53
|
+
tokens = tokens.downcase unless options[:case_sensitive]
|
54
|
+
tokens = tokens.split(tokenizer)
|
55
|
+
|
56
|
+
# remove stop words
|
57
|
+
tokens -= stop_words
|
58
|
+
|
59
|
+
# count
|
60
|
+
xc = Hash.new(0)
|
61
|
+
tokens.each do |token|
|
62
|
+
xc[token] += 1
|
63
|
+
end
|
64
|
+
xc
|
65
|
+
end
|
66
|
+
|
67
|
+
counts = Hash.new(0)
|
68
|
+
|
69
|
+
fit.each do |xc|
|
70
|
+
xc.each do |k2, v2|
|
71
|
+
counts[k2] += v2
|
72
|
+
end
|
73
|
+
end
|
74
|
+
|
75
|
+
# remove empty strings
|
76
|
+
counts.delete("")
|
77
|
+
|
78
|
+
[counts, fit]
|
79
|
+
end
|
80
|
+
end
|
81
|
+
end
|
data/lib/eps/utils.rb
ADDED
@@ -0,0 +1,22 @@
|
|
1
|
+
module Eps
|
2
|
+
module Utils
|
3
|
+
def self.column_type(c, k)
|
4
|
+
if !c
|
5
|
+
raise ArgumentError, "Missing column: #{k}"
|
6
|
+
elsif c.all? { |v| v.nil? }
|
7
|
+
# goes here for empty as well
|
8
|
+
nil
|
9
|
+
elsif c.any? { |v| v.nil? }
|
10
|
+
raise ArgumentError, "Missing values in column #{k}"
|
11
|
+
elsif c.all? { |v| v.is_a?(Numeric) }
|
12
|
+
"numeric"
|
13
|
+
elsif c.all? { |v| v.is_a?(String) }
|
14
|
+
"categorical"
|
15
|
+
elsif c.all? { |v| v == true || v == false }
|
16
|
+
"categorical" # boolean
|
17
|
+
else
|
18
|
+
raise ArgumentError, "Column values must be all numeric, all string, or all boolean: #{k}"
|
19
|
+
end
|
20
|
+
end
|
21
|
+
end
|
22
|
+
end
|
data/lib/eps/version.rb
CHANGED
metadata
CHANGED
@@ -1,23 +1,37 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: eps
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.3.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Andrew Kane
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2019-05
|
11
|
+
date: 2019-09-05 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
|
-
name:
|
14
|
+
name: lightgbm
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - ">="
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: 0.1.5
|
20
|
+
type: :runtime
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - ">="
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: 0.1.5
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: nokogiri
|
15
29
|
requirement: !ruby/object:Gem::Requirement
|
16
30
|
requirements:
|
17
31
|
- - ">="
|
18
32
|
- !ruby/object:Gem::Version
|
19
33
|
version: '0'
|
20
|
-
type: :
|
34
|
+
type: :runtime
|
21
35
|
prerelease: false
|
22
36
|
version_requirements: !ruby/object:Gem::Requirement
|
23
37
|
requirements:
|
@@ -25,7 +39,7 @@ dependencies:
|
|
25
39
|
- !ruby/object:Gem::Version
|
26
40
|
version: '0'
|
27
41
|
- !ruby/object:Gem::Dependency
|
28
|
-
name:
|
42
|
+
name: bundler
|
29
43
|
requirement: !ruby/object:Gem::Requirement
|
30
44
|
requirements:
|
31
45
|
- - ">="
|
@@ -39,7 +53,7 @@ dependencies:
|
|
39
53
|
- !ruby/object:Gem::Version
|
40
54
|
version: '0'
|
41
55
|
- !ruby/object:Gem::Dependency
|
42
|
-
name:
|
56
|
+
name: daru
|
43
57
|
requirement: !ruby/object:Gem::Requirement
|
44
58
|
requirements:
|
45
59
|
- - ">="
|
@@ -53,7 +67,7 @@ dependencies:
|
|
53
67
|
- !ruby/object:Gem::Version
|
54
68
|
version: '0'
|
55
69
|
- !ruby/object:Gem::Dependency
|
56
|
-
name:
|
70
|
+
name: minitest
|
57
71
|
requirement: !ruby/object:Gem::Requirement
|
58
72
|
requirements:
|
59
73
|
- - ">="
|
@@ -92,9 +106,21 @@ files:
|
|
92
106
|
- lib/eps.rb
|
93
107
|
- lib/eps/base.rb
|
94
108
|
- lib/eps/base_estimator.rb
|
109
|
+
- lib/eps/data_frame.rb
|
110
|
+
- lib/eps/evaluators/lightgbm.rb
|
111
|
+
- lib/eps/evaluators/linear_regression.rb
|
112
|
+
- lib/eps/evaluators/naive_bayes.rb
|
113
|
+
- lib/eps/evaluators/node.rb
|
114
|
+
- lib/eps/label_encoder.rb
|
115
|
+
- lib/eps/lightgbm.rb
|
95
116
|
- lib/eps/linear_regression.rb
|
117
|
+
- lib/eps/metrics.rb
|
96
118
|
- lib/eps/model.rb
|
97
119
|
- lib/eps/naive_bayes.rb
|
120
|
+
- lib/eps/pmml_generators/lightgbm.rb
|
121
|
+
- lib/eps/statistics.rb
|
122
|
+
- lib/eps/text_encoder.rb
|
123
|
+
- lib/eps/utils.rb
|
98
124
|
- lib/eps/version.rb
|
99
125
|
homepage: https://github.com/ankane/eps
|
100
126
|
licenses:
|