eluka 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (73) hide show
  1. data/.document +5 -0
  2. data/DOCUMENTATION_STANDARDS +39 -0
  3. data/Gemfile +13 -0
  4. data/Gemfile.lock +20 -0
  5. data/LICENSE.txt +20 -0
  6. data/README.rdoc +19 -0
  7. data/Rakefile +69 -0
  8. data/VERSION +1 -0
  9. data/examples/example.rb +59 -0
  10. data/ext/libsvm/COPYRIGHT +31 -0
  11. data/ext/libsvm/FAQ.html +1749 -0
  12. data/ext/libsvm/Makefile +25 -0
  13. data/ext/libsvm/Makefile.win +33 -0
  14. data/ext/libsvm/README +733 -0
  15. data/ext/libsvm/extconf.rb +1 -0
  16. data/ext/libsvm/heart_scale +270 -0
  17. data/ext/libsvm/java/Makefile +25 -0
  18. data/ext/libsvm/java/libsvm.jar +0 -0
  19. data/ext/libsvm/java/libsvm/svm.java +2776 -0
  20. data/ext/libsvm/java/libsvm/svm.m4 +2776 -0
  21. data/ext/libsvm/java/libsvm/svm_model.java +21 -0
  22. data/ext/libsvm/java/libsvm/svm_node.java +6 -0
  23. data/ext/libsvm/java/libsvm/svm_parameter.java +47 -0
  24. data/ext/libsvm/java/libsvm/svm_print_interface.java +5 -0
  25. data/ext/libsvm/java/libsvm/svm_problem.java +7 -0
  26. data/ext/libsvm/java/svm_predict.java +163 -0
  27. data/ext/libsvm/java/svm_scale.java +350 -0
  28. data/ext/libsvm/java/svm_toy.java +471 -0
  29. data/ext/libsvm/java/svm_train.java +318 -0
  30. data/ext/libsvm/java/test_applet.html +1 -0
  31. data/ext/libsvm/python/Makefile +4 -0
  32. data/ext/libsvm/python/README +331 -0
  33. data/ext/libsvm/python/svm.py +259 -0
  34. data/ext/libsvm/python/svmutil.py +242 -0
  35. data/ext/libsvm/svm-predict.c +226 -0
  36. data/ext/libsvm/svm-scale.c +353 -0
  37. data/ext/libsvm/svm-toy/gtk/Makefile +22 -0
  38. data/ext/libsvm/svm-toy/gtk/callbacks.cpp +423 -0
  39. data/ext/libsvm/svm-toy/gtk/callbacks.h +54 -0
  40. data/ext/libsvm/svm-toy/gtk/interface.c +164 -0
  41. data/ext/libsvm/svm-toy/gtk/interface.h +14 -0
  42. data/ext/libsvm/svm-toy/gtk/main.c +23 -0
  43. data/ext/libsvm/svm-toy/gtk/svm-toy.glade +238 -0
  44. data/ext/libsvm/svm-toy/qt/Makefile +17 -0
  45. data/ext/libsvm/svm-toy/qt/svm-toy.cpp +413 -0
  46. data/ext/libsvm/svm-toy/windows/svm-toy.cpp +456 -0
  47. data/ext/libsvm/svm-train.c +376 -0
  48. data/ext/libsvm/svm.cpp +3060 -0
  49. data/ext/libsvm/svm.def +19 -0
  50. data/ext/libsvm/svm.h +105 -0
  51. data/ext/libsvm/svm.o +0 -0
  52. data/ext/libsvm/tools/README +149 -0
  53. data/ext/libsvm/tools/checkdata.py +108 -0
  54. data/ext/libsvm/tools/easy.py +79 -0
  55. data/ext/libsvm/tools/grid.py +359 -0
  56. data/ext/libsvm/tools/subset.py +146 -0
  57. data/ext/libsvm/windows/libsvm.dll +0 -0
  58. data/ext/libsvm/windows/svm-predict.exe +0 -0
  59. data/ext/libsvm/windows/svm-scale.exe +0 -0
  60. data/ext/libsvm/windows/svm-toy.exe +0 -0
  61. data/ext/libsvm/windows/svm-train.exe +0 -0
  62. data/lib/eluka.rb +10 -0
  63. data/lib/eluka/bijection.rb +23 -0
  64. data/lib/eluka/data_point.rb +36 -0
  65. data/lib/eluka/document.rb +47 -0
  66. data/lib/eluka/feature_vector.rb +86 -0
  67. data/lib/eluka/features.rb +31 -0
  68. data/lib/eluka/model.rb +129 -0
  69. data/lib/fselect.rb +321 -0
  70. data/lib/grid.rb +25 -0
  71. data/test/helper.rb +18 -0
  72. data/test/test_eluka.rb +7 -0
  73. metadata +214 -0
@@ -0,0 +1,259 @@
1
+ #!/usr/bin/env python
2
+
3
+ from ctypes import *
4
+ from ctypes.util import find_library
5
+ import sys
6
+
7
+ # For unix the prefix 'lib' is not considered.
8
+ if find_library('svm'):
9
+ libsvm = CDLL(find_library('svm'))
10
+ elif find_library('libsvm'):
11
+ libsvm = CDLL(find_library('libsvm'))
12
+ else:
13
+ if sys.platform == 'win32':
14
+ libsvm = CDLL('../windows/libsvm.dll')
15
+ else:
16
+ libsvm = CDLL('../libsvm.so.2')
17
+
18
+ # Construct constants
19
+ SVM_TYPE = ['C_SVC', 'NU_SVC', 'ONE_CLASS', 'EPSILON_SVR', 'NU_SVR' ]
20
+ KERNEL_TYPE = ['LINEAR', 'POLY', 'RBF', 'SIGMOID', 'PRECOMPUTED']
21
+ for i, s in enumerate(SVM_TYPE): exec("%s = %d" % (s , i))
22
+ for i, s in enumerate(KERNEL_TYPE): exec("%s = %d" % (s , i))
23
+
24
+ PRINT_STRING_FUN = CFUNCTYPE(None, c_char_p)
25
+ def print_null(s):
26
+ return
27
+
28
+ def genFields(names, types):
29
+ return list(zip(names, types))
30
+
31
+ def fillprototype(f, restype, argtypes):
32
+ f.restype = restype
33
+ f.argtypes = argtypes
34
+
35
+ class svm_node(Structure):
36
+ _names = ["index", "value"]
37
+ _types = [c_int, c_double]
38
+ _fields_ = genFields(_names, _types)
39
+
40
+ def gen_svm_nodearray(xi, feature_max=None, issparse=None):
41
+ if isinstance(xi, dict):
42
+ index_range = xi.keys()
43
+ elif isinstance(xi, (list, tuple)):
44
+ index_range = range(len(xi))
45
+ else:
46
+ raise TypeError('xi should be a dictionary, list or tuple')
47
+
48
+ if feature_max:
49
+ assert(isinstance(feature_max, int))
50
+ index_range = filter(lambda j: j <= feature_max, index_range)
51
+ if issparse:
52
+ index_range = filter(lambda j:xi[j] != 0, index_range)
53
+
54
+ index_range = sorted(index_range)
55
+ ret = (svm_node * (len(index_range)+1))()
56
+ ret[-1].index = -1
57
+ for idx, j in enumerate(index_range):
58
+ ret[idx].index = j
59
+ ret[idx].value = xi[j]
60
+ max_idx = 0
61
+ if index_range:
62
+ max_idx = index_range[-1]
63
+ return ret, max_idx
64
+
65
+ class svm_problem(Structure):
66
+ _names = ["l", "y", "x"]
67
+ _types = [c_int, POINTER(c_double), POINTER(POINTER(svm_node))]
68
+ _fields_ = genFields(_names, _types)
69
+
70
+ def __init__(self, y, x):
71
+ if len(y) != len(x):
72
+ raise ValueError("len(y) != len(x)")
73
+ self.l = l = len(y)
74
+
75
+ max_idx = 0
76
+ x_space = self.x_space = []
77
+ for i, xi in enumerate(x):
78
+ tmp_xi, tmp_idx = gen_svm_nodearray(xi)
79
+ x_space += [tmp_xi]
80
+ max_idx = max(max_idx, tmp_idx)
81
+ self.n = max_idx
82
+
83
+ self.y = (c_double * l)()
84
+ for i, yi in enumerate(y): self.y[i] = yi
85
+
86
+ self.x = (POINTER(svm_node) * l)()
87
+ for i, xi in enumerate(self.x_space): self.x[i] = xi
88
+
89
+ class svm_parameter(Structure):
90
+ _names = ["svm_type", "kernel_type", "degree", "gamma", "coef0",
91
+ "cache_size", "eps", "C", "nr_weight", "weight_label", "weight",
92
+ "nu", "p", "shrinking", "probability"]
93
+ _types = [c_int, c_int, c_int, c_double, c_double,
94
+ c_double, c_double, c_double, c_int, POINTER(c_int), POINTER(c_double),
95
+ c_double, c_double, c_int, c_int]
96
+ _fields_ = genFields(_names, _types)
97
+
98
+ def __init__(self, options = None):
99
+ if options == None:
100
+ options = ''
101
+ self.parse_options(options)
102
+
103
+ def show(self):
104
+ attrs = svm_parameter._names + self.__dict__.keys()
105
+ values = map(lambda attr: getattr(self, attr), attrs)
106
+ for attr, val in zip(attrs, values):
107
+ print(' %s: %s' % (attr, val))
108
+
109
+ def set_to_default_values(self):
110
+ self.svm_type = C_SVC;
111
+ self.kernel_type = RBF
112
+ self.degree = 3
113
+ self.gamma = 0
114
+ self.coef0 = 0
115
+ self.nu = 0.5
116
+ self.cache_size = 100
117
+ self.C = 1
118
+ self.eps = 0.001
119
+ self.p = 0.1
120
+ self.shrinking = 1
121
+ self.probability = 0
122
+ self.nr_weight = 0
123
+ self.weight_label = (c_int*0)()
124
+ self.weight = (c_double*0)()
125
+ self.cross_validation = False
126
+ self.nr_fold = 0
127
+ self.print_func = None
128
+
129
+ def parse_options(self, options):
130
+ argv = options.split()
131
+ self.set_to_default_values()
132
+ self.print_func = cast(None, PRINT_STRING_FUN)
133
+ weight_label = []
134
+ weight = []
135
+
136
+ i = 0
137
+ while i < len(argv):
138
+ if argv[i] == "-s":
139
+ i = i + 1
140
+ self.svm_type = int(argv[i])
141
+ elif argv[i] == "-t":
142
+ i = i + 1
143
+ self.kernel_type = int(argv[i])
144
+ elif argv[i] == "-d":
145
+ i = i + 1
146
+ self.degree = int(argv[i])
147
+ elif argv[i] == "-g":
148
+ i = i + 1
149
+ self.gamma = float(argv[i])
150
+ elif argv[i] == "-r":
151
+ i = i + 1
152
+ self.coef0 = float(argv[i])
153
+ elif argv[i] == "-n":
154
+ i = i + 1
155
+ self.nu = float(argv[i])
156
+ elif argv[i] == "-m":
157
+ i = i + 1
158
+ self.cache_size = float(argv[i])
159
+ elif argv[i] == "-c":
160
+ i = i + 1
161
+ self.C = float(argv[i])
162
+ elif argv[i] == "-e":
163
+ i = i + 1
164
+ self.eps = float(argv[i])
165
+ elif argv[i] == "-p":
166
+ i = i + 1
167
+ self.p = float(argv[i])
168
+ elif argv[i] == "-h":
169
+ i = i + 1
170
+ self.shrinking = int(argv[i])
171
+ elif argv[i] == "-b":
172
+ i = i + 1
173
+ self.probability = int(argv[i])
174
+ elif argv[i] == "-q":
175
+ self.print_func = PRINT_STRING_FUN(print_null)
176
+ elif argv[i] == "-v":
177
+ i = i + 1
178
+ self.cross_validation = 1
179
+ self.nr_fold = int(argv[i])
180
+ if self.nr_fold < 2:
181
+ raise ValueError("n-fold cross validation: n must >= 2")
182
+ elif argv[i].startswith("-w"):
183
+ i = i + 1
184
+ self.nr_weight += 1
185
+ nr_weight = self.nr_weight
186
+ weight_label += [int(argv[i-1][2:])]
187
+ weight += [float(argv[i])]
188
+ else:
189
+ raise ValueError("Wrong options")
190
+ i += 1
191
+
192
+ libsvm.svm_set_print_string_function(self.print_func)
193
+ self.weight_label = (c_int*self.nr_weight)()
194
+ self.weight = (c_double*self.nr_weight)()
195
+ for i in range(self.nr_weight):
196
+ self.weight[i] = weight[i]
197
+ self.weight_label[i] = weight_label[i]
198
+
199
+ class svm_model(Structure):
200
+ def __init__(self):
201
+ self.__createfrom__ = 'python'
202
+
203
+ def __del__(self):
204
+ # free memory created by C to avoid memory leak
205
+ if hasattr(self, '__createfrom__') and self.__createfrom__ == 'C':
206
+ libsvm.svm_free_and_destroy_model(pointer(self))
207
+
208
+ def get_svm_type(self):
209
+ return libsvm.svm_get_svm_type(self)
210
+
211
+ def get_nr_class(self):
212
+ return libsvm.svm_get_nr_class(self)
213
+
214
+ def get_svr_probability(self):
215
+ return libsvm.svm_get_svr_probability(self)
216
+
217
+ def get_labels(self):
218
+ nr_class = self.get_nr_class()
219
+ labels = (c_int * nr_class)()
220
+ libsvm.svm_get_labels(self, labels)
221
+ return labels[:nr_class]
222
+
223
+ def is_probability_model(self):
224
+ return (libsvm.svm_check_probability_model(self) == 1)
225
+
226
+ def toPyModel(model_ptr):
227
+ """
228
+ toPyModel(model_ptr) -> svm_model
229
+
230
+ Convert a ctypes POINTER(svm_model) to a Python svm_model
231
+ """
232
+ if bool(model_ptr) == False:
233
+ raise ValueError("Null pointer")
234
+ m = model_ptr.contents
235
+ m.__createfrom__ = 'C'
236
+ return m
237
+
238
+ fillprototype(libsvm.svm_train, POINTER(svm_model), [POINTER(svm_problem), POINTER(svm_parameter)])
239
+ fillprototype(libsvm.svm_cross_validation, None, [POINTER(svm_problem), POINTER(svm_parameter), c_int, POINTER(c_double)])
240
+
241
+ fillprototype(libsvm.svm_save_model, c_int, [c_char_p, POINTER(svm_model)])
242
+ fillprototype(libsvm.svm_load_model, POINTER(svm_model), [c_char_p])
243
+
244
+ fillprototype(libsvm.svm_get_svm_type, c_int, [POINTER(svm_model)])
245
+ fillprototype(libsvm.svm_get_nr_class, c_int, [POINTER(svm_model)])
246
+ fillprototype(libsvm.svm_get_labels, None, [POINTER(svm_model), POINTER(c_int)])
247
+ fillprototype(libsvm.svm_get_svr_probability, c_double, [POINTER(svm_model)])
248
+
249
+ fillprototype(libsvm.svm_predict_values, c_double, [POINTER(svm_model), POINTER(svm_node), POINTER(c_double)])
250
+ fillprototype(libsvm.svm_predict, c_double, [POINTER(svm_model), POINTER(svm_node)])
251
+ fillprototype(libsvm.svm_predict_probability, c_double, [POINTER(svm_model), POINTER(svm_node), POINTER(c_double)])
252
+
253
+ fillprototype(libsvm.svm_free_model_content, None, [POINTER(svm_model)])
254
+ fillprototype(libsvm.svm_free_and_destroy_model, None, [POINTER(POINTER(svm_model))])
255
+ fillprototype(libsvm.svm_destroy_param, None, [POINTER(svm_parameter)])
256
+
257
+ fillprototype(libsvm.svm_check_parameter, c_char_p, [POINTER(svm_problem), POINTER(svm_parameter)])
258
+ fillprototype(libsvm.svm_check_probability_model, c_int, [POINTER(svm_model)])
259
+ fillprototype(libsvm.svm_set_print_string_function, None, [PRINT_STRING_FUN])
@@ -0,0 +1,242 @@
1
+ #!/usr/bin/env python
2
+
3
+ from svm import *
4
+
5
+ def svm_read_problem(data_file_name):
6
+ """
7
+ svm_read_problem(data_file_name) -> [y, x]
8
+
9
+ Read LIBSVM-format data from data_file_name and return labels y
10
+ and data instances x.
11
+ """
12
+ prob_y = []
13
+ prob_x = []
14
+ for line in open(data_file_name):
15
+ line = line.split(None, 1)
16
+ # In case an instance with all zero features
17
+ if len(line) == 1: line += ['']
18
+ label, features = line
19
+ xi = {}
20
+ for e in features.split():
21
+ ind, val = e.split(":")
22
+ xi[int(ind)] = float(val)
23
+ prob_y += [float(label)]
24
+ prob_x += [xi]
25
+ return (prob_y, prob_x)
26
+
27
+ def svm_load_model(model_file_name):
28
+ """
29
+ svm_load_model(model_file_name) -> model
30
+
31
+ Load a LIBSVM model from model_file_name and return.
32
+ """
33
+ model = libsvm.svm_load_model(model_file_name)
34
+ if not model:
35
+ print("can't open model file %s" % model_file_name)
36
+ return None
37
+ model = toPyModel(model)
38
+ return model
39
+
40
+ def svm_save_model(model_file_name, model):
41
+ """
42
+ svm_save_model(model_file_name, model) -> None
43
+
44
+ Save a LIBSVM model to the file model_file_name.
45
+ """
46
+ libsvm.svm_save_model(model_file_name, model)
47
+
48
+ def evaluations(ty, pv):
49
+ """
50
+ evaluations(ty, pv) -> (ACC, MSE, SCC)
51
+
52
+ Calculate accuracy, mean squared error and squared correlation coefficient
53
+ using the true values (ty) and predicted values (pv).
54
+ """
55
+ if len(ty) != len(pv):
56
+ raise ValueError("len(ty) must equal to len(pv)")
57
+ total_correct = total_error = 0
58
+ sumv = sumy = sumvv = sumyy = sumvy = 0
59
+ for v, y in zip(pv, ty):
60
+ if y == v:
61
+ total_correct += 1
62
+ total_error += (v-y)*(v-y)
63
+ sumv += v
64
+ sumy += y
65
+ sumvv += v*v
66
+ sumyy += y*y
67
+ sumvy += v*y
68
+ l = len(ty)
69
+ ACC = 100.0*total_correct/l
70
+ MSE = total_error/l
71
+ try:
72
+ SCC = ((l*sumvy-sumv*sumy)*(l*sumvy-sumv*sumy))/((l*sumvv-sumv*sumv)*(l*sumyy-sumy*sumy))
73
+ except:
74
+ SCC = float('nan')
75
+ return (ACC, MSE, SCC)
76
+
77
+ def svm_train(arg1, arg2=None, arg3=None):
78
+ """
79
+ svm_train(y, x [, 'options']) -> model | ACC | MSE
80
+ svm_train(prob, [, 'options']) -> model | ACC | MSE
81
+ svm_train(prob, param) -> model | ACC| MSE
82
+
83
+ Train an SVM model from data (y, x) or an svm_problem prob using
84
+ 'options' or an svm_parameter param.
85
+ If '-v' is specified in 'options' (i.e., cross validation)
86
+ either accuracy (ACC) or mean-squared error (MSE) is returned.
87
+ 'options':
88
+ -s svm_type : set type of SVM (default 0)
89
+ 0 -- C-SVC
90
+ 1 -- nu-SVC
91
+ 2 -- one-class SVM
92
+ 3 -- epsilon-SVR
93
+ 4 -- nu-SVR
94
+ -t kernel_type : set type of kernel function (default 2)
95
+ 0 -- linear: u'*v
96
+ 1 -- polynomial: (gamma*u'*v + coef0)^degree
97
+ 2 -- radial basis function: exp(-gamma*|u-v|^2)
98
+ 3 -- sigmoid: tanh(gamma*u'*v + coef0)
99
+ 4 -- precomputed kernel (kernel values in training_set_file)
100
+ -d degree : set degree in kernel function (default 3)
101
+ -g gamma : set gamma in kernel function (default 1/num_features)
102
+ -r coef0 : set coef0 in kernel function (default 0)
103
+ -c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
104
+ -n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
105
+ -p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)
106
+ -m cachesize : set cache memory size in MB (default 100)
107
+ -e epsilon : set tolerance of termination criterion (default 0.001)
108
+ -h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)
109
+ -b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
110
+ -wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)
111
+ -v n: n-fold cross validation mode
112
+ -q : quiet mode (no outputs)
113
+ """
114
+ prob, param = None, None
115
+ if isinstance(arg1, (list, tuple)):
116
+ assert isinstance(arg2, (list, tuple))
117
+ y, x, options = arg1, arg2, arg3
118
+ prob = svm_problem(y, x)
119
+ param = svm_parameter(options)
120
+ elif isinstance(arg1, svm_problem):
121
+ prob = arg1
122
+ if isinstance(arg2, svm_parameter):
123
+ param = arg2
124
+ else:
125
+ param = svm_parameter(arg2)
126
+ if prob == None or param == None:
127
+ raise TypeError("Wrong types for the arguments")
128
+
129
+ if param.kernel_type == PRECOMPUTED:
130
+ for xi in prob.x_space:
131
+ idx, val = xi[0].index, xi[0].value
132
+ if xi[0].index != 0:
133
+ raise ValueError('Wrong input format: first column must be 0:sample_serial_number')
134
+ if val <= 0 or val > prob.n:
135
+ raise ValueError('Wrong input format: sample_serial_number out of range')
136
+
137
+ if param.gamma == 0 and prob.n > 0:
138
+ param.gamma = 1.0 / prob.n
139
+ libsvm.svm_set_print_string_function(param.print_func)
140
+ err_msg = libsvm.svm_check_parameter(prob, param)
141
+ if err_msg:
142
+ raise ValueError('Error: %s' % err_msg)
143
+
144
+ if param.cross_validation:
145
+ l, nr_fold = prob.l, param.nr_fold
146
+ target = (c_double * l)()
147
+ libsvm.svm_cross_validation(prob, param, nr_fold, target)
148
+ ACC, MSE, SCC = evaluations(prob.y[:l], target[:l])
149
+ if param.svm_type in [EPSILON_SVR, NU_SVR]:
150
+ print("Cross Validation Mean squared error = %g" % MSE)
151
+ print("Cross Validation Squared correlation coefficient = %g" % SCC)
152
+ return MSE
153
+ else:
154
+ print("Cross Validation Accuracy = %g%%" % ACC)
155
+ return ACC
156
+ else:
157
+ m = libsvm.svm_train(prob, param)
158
+ m = toPyModel(m)
159
+
160
+ # If prob is destroyed, data including SVs pointed by m can remain.
161
+ m.x_space = prob.x_space
162
+ return m
163
+
164
+ def svm_predict(y, x, m, options=""):
165
+ """
166
+ svm_predict(y, x, m [, "options"]) -> (p_labels, p_acc, p_vals)
167
+
168
+ Predict data (y, x) with the SVM model m.
169
+ "options":
170
+ -b probability_estimates: whether to predict probability estimates,
171
+ 0 or 1 (default 0); for one-class SVM only 0 is supported.
172
+
173
+ The return tuple contains
174
+ p_labels: a list of predicted labels
175
+ p_acc: a tuple including accuracy (for classification), mean-squared
176
+ error, and squared correlation coefficient (for regression).
177
+ p_vals: a list of decision values or probability estimates (if '-b 1'
178
+ is specified). If k is the number of classes, for decision values,
179
+ each element includes results of predicting k(k-1)/2 binary-class
180
+ SVMs. For probabilities, each element contains k values indicating
181
+ the probability that the testing instance is in each class.
182
+ Note that the order of classes here is the same as 'model.label'
183
+ field in the model structure.
184
+ """
185
+ predict_probability = 0
186
+ argv = options.split()
187
+ i = 0
188
+ while i < len(argv):
189
+ if argv[i] == '-b':
190
+ i += 1
191
+ predict_probability = int(argv[i])
192
+ else:
193
+ raise ValueError("Wrong options")
194
+ i+=1
195
+
196
+ svm_type = m.get_svm_type()
197
+ is_prob_model = m.is_probability_model()
198
+ nr_class = m.get_nr_class()
199
+ pred_labels = []
200
+ pred_values = []
201
+
202
+ if predict_probability:
203
+ if not is_prob_model:
204
+ raise ValueError("Model does not support probabiliy estimates")
205
+
206
+ if svm_type in [NU_SVR, EPSILON_SVR]:
207
+ print("Prob. model for test data: target value = predicted value + z,\n"
208
+ "z: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=%g" % m.get_svr_probability());
209
+ nr_class = 0
210
+
211
+ prob_estimates = (c_double * nr_class)()
212
+ for xi in x:
213
+ xi, idx = gen_svm_nodearray(xi)
214
+ label = libsvm.svm_predict_probability(m, xi, prob_estimates)
215
+ values = prob_estimates[:nr_class]
216
+ pred_labels += [label]
217
+ pred_values += [values]
218
+ else:
219
+ if is_prob_model:
220
+ print("Model supports probability estimates, but disabled in predicton.")
221
+ if svm_type in (ONE_CLASS, EPSILON_SVR, NU_SVC):
222
+ nr_classifier = 1
223
+ else:
224
+ nr_classifier = nr_class*(nr_class-1)//2
225
+ dec_values = (c_double * nr_classifier)()
226
+ for xi in x:
227
+ xi, idx = gen_svm_nodearray(xi)
228
+ label = libsvm.svm_predict_values(m, xi, dec_values)
229
+ values = dec_values[:nr_classifier]
230
+ pred_labels += [label]
231
+ pred_values += [values]
232
+
233
+ ACC, MSE, SCC = evaluations(y, pred_labels)
234
+ l = len(y)
235
+ if svm_type in [EPSILON_SVR, NU_SVR]:
236
+ print("Mean squared error = %g (regression)" % MSE)
237
+ print("Squared correlation coefficient = %g (regression)" % SCC)
238
+ else:
239
+ print("Accuracy = %g%% (%d/%d) (classification)" % (ACC, int(l*ACC/100), l))
240
+
241
+ return pred_labels, (ACC, MSE, SCC), pred_values
242
+