edits 0.1.0 → 0.2.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.travis.yml +9 -0
- data/README.md +18 -6
- data/lib/edits.rb +1 -0
- data/lib/edits/compare.rb +36 -0
- data/lib/edits/damerau_levenshtein.rb +13 -17
- data/lib/edits/hamming.rb +2 -0
- data/lib/edits/jaro.rb +8 -8
- data/lib/edits/jaro_winkler.rb +6 -4
- data/lib/edits/levenshtein.rb +49 -79
- data/lib/edits/restricted_edit.rb +104 -23
- data/lib/edits/version.rb +2 -1
- data/tasks/benchmark/levenshtein.rake +60 -1
- metadata +4 -3
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: a6cd424759a87d827084b94756bebd46a2cce133
|
4
|
+
data.tar.gz: 703ee761905db5db81c9462727c7812b4519ff8b
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: ccee510e44ace7a1c88362dcd8a15fda256d652d9e65e78def3a28b95c3c30fded7ff2e1205b302f56d38f4365fe3f4a678dfec9b5bca2d441b08b00401bd390
|
7
|
+
data.tar.gz: 4b56c06fba560443d7aa2c057d959d271a013216d4e45867c688dda07bad18acce8e8730e6513384c3f03aa0b0985b9333c49e942d4e2bb0ee35b2239ea3abc1
|
data/.travis.yml
CHANGED
@@ -1,5 +1,14 @@
|
|
1
1
|
sudo: false
|
2
2
|
language: ruby
|
3
|
+
cache: bundler
|
3
4
|
rvm:
|
4
5
|
- 2.4.0
|
5
6
|
before_install: gem install bundler -v 1.15.4
|
7
|
+
deploy:
|
8
|
+
provider: rubygems
|
9
|
+
api_key:
|
10
|
+
secure: NKUWS12yMpsMtPeKL+4X56xZ02p5y4R+HYQmgvxFNajOS42aTMXncx4eTnuHoNdKbh+x5yci+lbPr+j5t9qWo5GzJsxjqnFW4lO2V5O1ONBzcAB/g6BPDMQsWbX34eBVafCEidNoOY1HhLlKerWzlsGRq+P4q+3WKLJihrl99pyv+EQykqS11/YVCsmFjrPVa/aGk84njbnI/kIDOY5HV2gVBazARixRO5y2AUg3hRUf2+Tu/X1ke80YBD9LazW2kRUzz0Rs+1vc653JtYn6MeK/bEkGWvN2Qs/k6Q2nNr6ni4v39Y07yylu1EnYh1H/0OT/H2hehxsjMQCQhDlVKbN7NTmOV026aWXA2HdSxmVhxQCIKRGW3Nm81kBj1/edXLpJActnLeex2iCMcXJk8yAAzF0q+vSHLld0w9Jx95kIJB4tnaonWJxcaWaX58HWFbdOuYKvQhXqcflI4KmNH8xXm/O0FIM8VEJRg9dojZ5S8Us3fZpBFZxVJ3H3Fcb406AmoIqcHOsqJ1GvBM8EdWkwuaH9GsUWf8pydgKFgStYUaKk8DDmJonT748emG4yw+78uMGWPoFxf+Mc8jazRxIaRiQbjVFUcLjaRkRFlL8UT9BB9k7c1egjvKhUo/pqV7KIEsAJrrh6zZIkz4h9AwxWpZjVj9+z63Kh6NC1lUI=
|
11
|
+
gem: edits
|
12
|
+
on:
|
13
|
+
tags: true
|
14
|
+
repo: tcrouch/edits
|
data/README.md
CHANGED
@@ -1,8 +1,13 @@
|
|
1
1
|
# Edits
|
2
2
|
|
3
|
+
[![Build Status](https://travis-ci.org/tcrouch/edits.svg?branch=master)](https://travis-ci.org/tcrouch/edits)
|
4
|
+
[![Code Climate](https://codeclimate.com/github/tcrouch/edits/badges/gpa.svg)](https://codeclimate.com/github/tcrouch/edits)
|
5
|
+
[![Inline docs](http://inch-ci.org/github/tcrouch/edits.svg?branch=master)](http://inch-ci.org/github/tcrouch/edits)
|
6
|
+
[![Yard Docs](http://img.shields.io/badge/yard-docs-blue.svg)](http://rubydoc.info/github/tcrouch/edits)
|
7
|
+
|
3
8
|
A collection of edit distance algorithms in Ruby.
|
4
9
|
|
5
|
-
Includes Levenshtein, Restricted Edit (Optimal Alignment) and Damerau-Levenshtein distances, and Jaro
|
10
|
+
Includes Levenshtein, Restricted Edit (Optimal Alignment) and Damerau-Levenshtein distances, and Jaro & Jaro-Winkler similarity.
|
6
11
|
|
7
12
|
## Installation
|
8
13
|
|
@@ -37,14 +42,15 @@ Edits::Levenshtein.distance "acer", "earn"
|
|
37
42
|
# Max distance
|
38
43
|
Edits::Levenshtein.distance_with_max "iota", "atom", 2
|
39
44
|
# => 2
|
40
|
-
Edits::Levenshtein.most_similar "atom", %w[
|
41
|
-
# => "
|
45
|
+
Edits::Levenshtein.most_similar "atom", %w[tree rota toes racer]
|
46
|
+
# => "toes"
|
42
47
|
```
|
43
48
|
|
44
49
|
### Restricted Edit (Optimal Alignment)
|
45
50
|
|
46
|
-
Edit distance, accounting for deletion, addition, substitution and
|
47
|
-
characters.
|
51
|
+
Edit distance, accounting for deletion, addition, substitution and
|
52
|
+
transposition (two adjacent characters are swapped). This variant is
|
53
|
+
restricted by the condition that no sub-string is edited more than once.
|
48
54
|
|
49
55
|
```ruby
|
50
56
|
Edits::RestrictedEdit.distance "raked", "bakers"
|
@@ -53,12 +59,18 @@ Edits::RestrictedEdit.distance "iota", "atom"
|
|
53
59
|
# => 3
|
54
60
|
Edits::RestrictedEdit.distance "acer", "earn"
|
55
61
|
# => 4
|
62
|
+
|
63
|
+
# Max distance
|
64
|
+
Edits::RestrictedEdit.distance_with_max "iota", "atom", 2
|
65
|
+
# => 2
|
66
|
+
Edits::RestrictedEdit.most_similar "atom", %w[tree rota toes racer]
|
67
|
+
# => "rota"
|
56
68
|
```
|
57
69
|
|
58
70
|
### Damerau-Levenshtein
|
59
71
|
|
60
72
|
Edit distance, accounting for deletions, additions, substitution and
|
61
|
-
transposition.
|
73
|
+
transposition (two adjacent characters are swapped).
|
62
74
|
|
63
75
|
```ruby
|
64
76
|
Edits::DamerauLevenshtein.distance "raked", "bakers"
|
data/lib/edits.rb
CHANGED
@@ -0,0 +1,36 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module Edits
|
4
|
+
# Comparison helpers
|
5
|
+
module Compare
|
6
|
+
# Given a prototype string and an array of strings, determines which
|
7
|
+
# string is most similar to the prototype.
|
8
|
+
#
|
9
|
+
# `most_similar("foo", strings)` is functionally equivalent to
|
10
|
+
# `strings.min_by { |s| distance("foo", s) }`, leveraging
|
11
|
+
# {.distance_with_max}.
|
12
|
+
#
|
13
|
+
# @example
|
14
|
+
# most_similar("atom", %w[tram atlas rota racer])
|
15
|
+
# # => "atlas"
|
16
|
+
# @param prototype [String]
|
17
|
+
# @param strings [<String>]
|
18
|
+
# @return [String, nil] most similar string, or nil for empty array
|
19
|
+
def most_similar(prototype, strings)
|
20
|
+
return nil if strings.empty?
|
21
|
+
min_s = strings[0]
|
22
|
+
min_d = distance(prototype, min_s)
|
23
|
+
|
24
|
+
strings[1..-1].each do |s|
|
25
|
+
return min_s if min_d.zero?
|
26
|
+
d = distance_with_max(prototype, s, min_d)
|
27
|
+
if d < min_d
|
28
|
+
min_d = d
|
29
|
+
min_s = s
|
30
|
+
end
|
31
|
+
end
|
32
|
+
|
33
|
+
min_s
|
34
|
+
end
|
35
|
+
end
|
36
|
+
end
|
@@ -1,13 +1,13 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
3
|
module Edits
|
4
|
-
#
|
4
|
+
# Implements the Damerau/Levenshtein distance algorithm.
|
5
5
|
#
|
6
6
|
# Determines distance between two strings by counting edits, identifying:
|
7
7
|
# * Insertion
|
8
8
|
# * Deletion
|
9
9
|
# * Substitution
|
10
|
-
# *
|
10
|
+
# * Adjacent transposition
|
11
11
|
module DamerauLevenshtein
|
12
12
|
# Calculate the Damerau/Levenshtein distance of two sequences.
|
13
13
|
#
|
@@ -18,13 +18,9 @@ module Edits
|
|
18
18
|
# @param seq2 [String, Array]
|
19
19
|
# @return [Integer]
|
20
20
|
def self.distance(seq1, seq2)
|
21
|
-
if seq1.length > seq2.length
|
22
|
-
temp = seq1
|
23
|
-
seq1 = seq2
|
24
|
-
seq2 = temp
|
25
|
-
end
|
21
|
+
seq1, seq2 = seq2, seq1 if seq1.length > seq2.length
|
26
22
|
|
27
|
-
# array of
|
23
|
+
# array of codepoints outperforms String
|
28
24
|
seq1 = seq1.codepoints if seq1.is_a? String
|
29
25
|
seq2 = seq2.codepoints if seq2.is_a? String
|
30
26
|
|
@@ -34,7 +30,7 @@ module Edits
|
|
34
30
|
return rows if cols.zero?
|
35
31
|
|
36
32
|
# 'infinite' edit distance for padding cost matrix.
|
37
|
-
# Can be any value
|
33
|
+
# Can be any value > max[rows, cols]
|
38
34
|
inf = rows + cols
|
39
35
|
|
40
36
|
# Initialize first two rows of cost matrix.
|
@@ -71,14 +67,14 @@ module Edits
|
|
71
67
|
|
72
68
|
# TODO: do insertion/deletion need to be considered when
|
73
69
|
# seq1_item == seq2_item ?
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
70
|
+
#
|
71
|
+
# substitution, deletion, insertion, transposition
|
72
|
+
cost = [
|
73
|
+
matrix[row][col] + sub_cost,
|
74
|
+
matrix[row][col + 1] + 1,
|
75
|
+
matrix[row + 1][col] + 1,
|
76
|
+
transposition
|
77
|
+
].min
|
82
78
|
|
83
79
|
matrix[row + 1][col + 1] = cost
|
84
80
|
|
data/lib/edits/hamming.rb
CHANGED
data/lib/edits/jaro.rb
CHANGED
@@ -1,6 +1,8 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
3
|
module Edits
|
4
|
+
# Implements Jaro similarity algorithm.
|
5
|
+
#
|
4
6
|
# @see https://en.wikipedia.org/wiki/Jaro-Winkler_distance
|
5
7
|
module Jaro
|
6
8
|
# Calculate Jaro similarity
|
@@ -14,7 +16,7 @@ module Edits
|
|
14
16
|
# # => 0.9023569023569024
|
15
17
|
# @param seq1 [String, Array]
|
16
18
|
# @param seq2 [String, Array]
|
17
|
-
# @return [Float]
|
19
|
+
# @return [Float] similarity, between 0.0 (none) and 1.0 (identical)
|
18
20
|
def self.similarity(seq1, seq2)
|
19
21
|
return 1.0 if seq1 == seq2
|
20
22
|
return 0.0 if seq1.empty? || seq2.empty?
|
@@ -26,16 +28,18 @@ module Edits
|
|
26
28
|
return 0.0 if m.zero?
|
27
29
|
|
28
30
|
m = m.to_f
|
29
|
-
(
|
31
|
+
((m / seq1.length) + (m / seq2.length) + ((m - t) / m)) / 3
|
30
32
|
end
|
31
33
|
|
32
34
|
# Calculate Jaro distance
|
33
35
|
#
|
36
|
+
# `Dj = 1 - Sj`
|
37
|
+
#
|
34
38
|
# @example
|
35
39
|
# Edits::Jaro.distance("information", "informant")
|
36
40
|
# # => 0.09764309764309764
|
37
41
|
# @param (see #distance)
|
38
|
-
# @return [Float]
|
42
|
+
# @return [Float] distance, between 0.0 (identical) and 1.0 (distant)
|
39
43
|
def self.distance(str1, str2)
|
40
44
|
1.0 - similarity(str1, str2)
|
41
45
|
end
|
@@ -45,11 +49,7 @@ module Edits
|
|
45
49
|
# @param (see #distance)
|
46
50
|
# @return [(Integer, Integer)] matches and transpositions
|
47
51
|
def self.jaro_matches(seq1, seq2)
|
48
|
-
if seq1.length > seq2.length
|
49
|
-
temp = seq1
|
50
|
-
seq1 = seq2
|
51
|
-
seq2 = temp
|
52
|
-
end
|
52
|
+
seq1, seq2 = seq2, seq1 if seq1.length > seq2.length
|
53
53
|
|
54
54
|
# search range: (max(|A|, |B|) / 2) - 1
|
55
55
|
range = (seq2.length / 2) - 1
|
data/lib/edits/jaro_winkler.rb
CHANGED
@@ -1,6 +1,8 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
3
|
module Edits
|
4
|
+
# Implements Jaro-Winkler similarity algorithm.
|
5
|
+
#
|
4
6
|
# @see https://en.wikipedia.org/wiki/Jaro-Winkler_distance
|
5
7
|
module JaroWinkler
|
6
8
|
# Prefix scaling factor for jaro-winkler metric. Default is 0.1
|
@@ -13,9 +15,9 @@ module Edits
|
|
13
15
|
|
14
16
|
# Calculate Jaro-Winkler similarity of given strings
|
15
17
|
#
|
16
|
-
# Adds weight to Jaro
|
18
|
+
# Adds weight to Jaro similarity according to the length of a common prefix
|
17
19
|
# of up to 4 letters, where exists. The additional weighting is only
|
18
|
-
# applied when the original
|
20
|
+
# applied when the original similarity passes a threshold.
|
19
21
|
#
|
20
22
|
# `Sw = Sj + (l * p * (1 - Dj))`
|
21
23
|
#
|
@@ -29,7 +31,7 @@ module Edits
|
|
29
31
|
# @param seq2 [String, Array]
|
30
32
|
# @param threshold [Float] threshold for applying Winkler prefix weighting
|
31
33
|
# @param weight [Float] weighting for common prefix, should not exceed 0.25
|
32
|
-
# @return [Float]
|
34
|
+
# @return [Float] similarity, between 0.0 (none) and 1.0 (identical)
|
33
35
|
def self.similarity(
|
34
36
|
seq1, seq2,
|
35
37
|
threshold: WINKLER_THRESHOLD,
|
@@ -60,7 +62,7 @@ module Edits
|
|
60
62
|
# Edits::JaroWinkler.distance("information", "informant")
|
61
63
|
# # => 0.05858585858585863
|
62
64
|
# @param (see #distance)
|
63
|
-
# @return [Float]
|
65
|
+
# @return [Float] distance, between 0.0 (identical) and 1.0 (distant)
|
64
66
|
def self.distance(
|
65
67
|
seq1, seq2,
|
66
68
|
threshold: WINKLER_THRESHOLD,
|
data/lib/edits/levenshtein.rb
CHANGED
@@ -1,13 +1,15 @@
|
|
1
1
|
# frozen_string_literal: true
|
2
2
|
|
3
3
|
module Edits
|
4
|
-
#
|
4
|
+
# Implements Levenshtein distance algorithm.
|
5
5
|
#
|
6
6
|
# Determines distance between two string by counting edits, identifying:
|
7
|
-
#
|
8
|
-
#
|
9
|
-
#
|
7
|
+
# * Insertion
|
8
|
+
# * Deletion
|
9
|
+
# * Substitution
|
10
10
|
module Levenshtein
|
11
|
+
extend Compare
|
12
|
+
|
11
13
|
# Calculate the Levenshtein (edit) distance of two sequences.
|
12
14
|
#
|
13
15
|
# @note A true distance metric, satisfies triangle inequality.
|
@@ -18,13 +20,9 @@ module Edits
|
|
18
20
|
# @param seq2 [String, Array]
|
19
21
|
# @return [Integer]
|
20
22
|
def self.distance(seq1, seq2)
|
21
|
-
if seq1.length > seq2.length
|
22
|
-
temp = seq1
|
23
|
-
seq1 = seq2
|
24
|
-
seq2 = temp
|
25
|
-
end
|
23
|
+
seq1, seq2 = seq2, seq1 if seq1.length > seq2.length
|
26
24
|
|
27
|
-
# array of
|
25
|
+
# array of codepoints outperforms String
|
28
26
|
seq1 = seq1.codepoints if seq1.is_a? String
|
29
27
|
seq2 = seq2.codepoints if seq2.is_a? String
|
30
28
|
|
@@ -41,24 +39,25 @@ module Edits
|
|
41
39
|
last_row = 0.upto(cols).to_a
|
42
40
|
|
43
41
|
rows.times do |row|
|
44
|
-
|
45
|
-
|
42
|
+
prev_col_cost = row + 1
|
46
43
|
seq1_item = seq1[row]
|
47
44
|
|
48
45
|
cols.times do |col|
|
49
|
-
|
50
|
-
|
51
|
-
substitution = last_row[col] + (seq1_item == seq2[col] ? 0 : 1)
|
52
|
-
|
46
|
+
# | Xs | Xd |
|
47
|
+
# | Xi | ? |
|
53
48
|
# step cost is min of operation costs
|
54
|
-
|
55
|
-
cost =
|
49
|
+
# substitution, deletion, insertion
|
50
|
+
cost = [
|
51
|
+
last_row[col] + (seq1_item == seq2[col] ? 0 : 1),
|
52
|
+
last_row[col + 1] + 1,
|
53
|
+
prev_col_cost + 1
|
54
|
+
].min
|
56
55
|
|
57
56
|
# overwrite previous row as we progress
|
58
|
-
last_row[col] =
|
59
|
-
|
57
|
+
last_row[col] = prev_col_cost
|
58
|
+
prev_col_cost = cost
|
60
59
|
end
|
61
|
-
last_row[cols] =
|
60
|
+
last_row[cols] = prev_col_cost
|
62
61
|
end
|
63
62
|
|
64
63
|
last_row[cols]
|
@@ -77,85 +76,56 @@ module Edits
|
|
77
76
|
# @param max [Integer] maximum distance
|
78
77
|
# @return [Integer]
|
79
78
|
def self.distance_with_max(seq1, seq2, max)
|
80
|
-
if seq1.length > seq2.length
|
81
|
-
temp = seq1
|
82
|
-
seq1 = seq2
|
83
|
-
seq2 = temp
|
84
|
-
end
|
79
|
+
seq1, seq2 = seq2, seq1 if seq1.length > seq2.length
|
85
80
|
|
86
81
|
rows = seq1.length
|
87
82
|
cols = seq2.length
|
88
|
-
return cols if rows.zero?
|
89
|
-
return rows if cols.zero?
|
90
|
-
return max if (
|
83
|
+
return cols > max ? max : cols if rows.zero?
|
84
|
+
return rows > max ? max : rows if cols.zero?
|
85
|
+
return max if (cols - rows) >= max
|
91
86
|
|
87
|
+
# array of codepoints outperforms String
|
92
88
|
seq1 = seq1.codepoints if seq1.is_a? String
|
93
89
|
seq2 = seq2.codepoints if seq2.is_a? String
|
94
90
|
|
91
|
+
# 'infinite' edit distance for padding cost matrix.
|
92
|
+
# Can be any value > max[rows, cols]
|
93
|
+
inf = cols + 1
|
94
|
+
|
95
|
+
# retain previous row of cost matrix
|
95
96
|
last_row = 0.upto(cols).to_a
|
96
97
|
|
97
98
|
rows.times do |row|
|
98
|
-
|
99
|
-
seq1_item = seq1[row]
|
100
|
-
|
99
|
+
# Ukkonen cut-off
|
101
100
|
min_col = row > max ? row - max : 0
|
102
101
|
max_col = row + max
|
103
102
|
max_col = cols - 1 if max_col > cols - 1
|
103
|
+
|
104
|
+
prev_col_cost = min_col.zero? ? row + 1 : inf
|
105
|
+
seq1_item = seq1[row]
|
104
106
|
diagonal = cols - rows + row
|
105
107
|
|
106
|
-
|
108
|
+
min_col.upto(max_col) do |col|
|
107
109
|
return max if diagonal == col && last_row[col] >= max
|
108
|
-
col_cost =
|
109
|
-
if col < min_col || col > max_col
|
110
|
-
max + 1
|
111
|
-
else
|
112
|
-
# step cost is min of operation costs
|
113
|
-
deletion = last_row[col + 1] + 1
|
114
|
-
insertion = last_col_cost + 1
|
115
|
-
substitution = last_row[col] + (seq1_item == seq2[col] ? 0 : 1)
|
116
|
-
|
117
|
-
cost = deletion < insertion ? deletion : insertion
|
118
|
-
substitution < cost ? substitution : cost
|
119
|
-
end
|
120
|
-
|
121
|
-
last_row[col] = last_col_cost
|
122
|
-
last_col_cost = col_cost
|
123
|
-
end
|
124
|
-
|
125
|
-
last_row[cols] = last_col_cost
|
126
|
-
end
|
127
110
|
|
128
|
-
|
129
|
-
|
111
|
+
# | Xs | Xd |
|
112
|
+
# | Xi | ? |
|
113
|
+
# substitution, deletion, insertion
|
114
|
+
cost = [
|
115
|
+
last_row[col] + (seq1_item == seq2[col] ? 0 : 1),
|
116
|
+
last_row[col + 1] + 1,
|
117
|
+
prev_col_cost + 1
|
118
|
+
].min
|
130
119
|
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
# `Levenshtein.most_similar("foo", strings)` is functionally equivalent to
|
135
|
-
# `strings.min_by { |s| Levenshtein.distance("foo", s) }`, leveraging
|
136
|
-
# {.distance_with_max}.
|
137
|
-
#
|
138
|
-
# @example
|
139
|
-
# Edits::Levenshtein.most_similar("atom", %w[tram atlas rota racer])
|
140
|
-
# # => "atlas"
|
141
|
-
# @param prototype [String]
|
142
|
-
# @param strings [<String>]
|
143
|
-
# @return [String, nil] most similar string, or nil for empty array
|
144
|
-
def self.most_similar(prototype, strings)
|
145
|
-
return nil if strings.empty?
|
146
|
-
min_s = strings[0]
|
147
|
-
min_d = distance(prototype, min_s)
|
148
|
-
|
149
|
-
strings[1..-1].each do |s|
|
150
|
-
return min_s if min_d.zero?
|
151
|
-
d = distance_with_max(prototype, s, min_d)
|
152
|
-
if d < min_d
|
153
|
-
min_d = d
|
154
|
-
min_s = s
|
120
|
+
# overwrite previous row as we progress
|
121
|
+
last_row[col] = prev_col_cost
|
122
|
+
prev_col_cost = cost
|
155
123
|
end
|
124
|
+
|
125
|
+
last_row[cols] = prev_col_cost
|
156
126
|
end
|
157
127
|
|
158
|
-
|
128
|
+
last_row[cols] > max ? max : last_row[cols]
|
159
129
|
end
|
160
130
|
end
|
161
131
|
end
|
@@ -8,8 +8,13 @@ module Edits
|
|
8
8
|
# * Insertion
|
9
9
|
# * Deletion
|
10
10
|
# * Substitution
|
11
|
-
# *
|
11
|
+
# * Adjacent transposition
|
12
|
+
#
|
13
|
+
# This variant is restricted by the condition that no sub-string is edited
|
14
|
+
# more than once.
|
12
15
|
module RestrictedEdit
|
16
|
+
extend Compare
|
17
|
+
|
13
18
|
# Calculate the Restricted Damerau-Levenshtein distance (Optimal Alignment)
|
14
19
|
# of two sequences.
|
15
20
|
#
|
@@ -21,13 +26,9 @@ module Edits
|
|
21
26
|
# @param seq2 [String, Array]
|
22
27
|
# @return [Integer]
|
23
28
|
def self.distance(seq1, seq2)
|
24
|
-
if seq1.length > seq2.length
|
25
|
-
temp = seq1
|
26
|
-
seq1 = seq2
|
27
|
-
seq2 = temp
|
28
|
-
end
|
29
|
+
seq1, seq2 = seq2, seq1 if seq1.length > seq2.length
|
29
30
|
|
30
|
-
# array of
|
31
|
+
# array of codepoints outperforms String
|
31
32
|
seq1 = seq1.codepoints if seq1.is_a? String
|
32
33
|
seq2 = seq2.codepoints if seq2.is_a? String
|
33
34
|
|
@@ -36,9 +37,10 @@ module Edits
|
|
36
37
|
return cols if rows.zero?
|
37
38
|
return rows if cols.zero?
|
38
39
|
|
39
|
-
# previous two rows of cost matrix
|
40
|
+
# retain previous two rows of cost matrix
|
40
41
|
lastlast_row = []
|
41
42
|
last_row = []
|
43
|
+
|
42
44
|
# Initialize first row of cost matrix.
|
43
45
|
# The full initial state where cols=3, rows=2 would be:
|
44
46
|
# [[0, 1, 2, 3],
|
@@ -47,29 +49,29 @@ module Edits
|
|
47
49
|
curr_row = 0.upto(cols).to_a
|
48
50
|
|
49
51
|
rows.times do |row|
|
50
|
-
|
51
|
-
last_row = curr_row
|
52
|
+
# rotate row arrays
|
53
|
+
curr_row, last_row, lastlast_row = lastlast_row, curr_row, last_row
|
52
54
|
|
53
|
-
# generate next row of cost matrix
|
54
|
-
curr_row = Array.new(cols + 1, 0)
|
55
55
|
curr_row[0] = row + 1
|
56
|
-
|
57
|
-
curr_item = seq1[row]
|
56
|
+
seq1_item = seq1[row]
|
58
57
|
|
59
58
|
cols.times do |col|
|
60
|
-
sub_cost =
|
61
|
-
is_swap = sub_cost
|
59
|
+
sub_cost = seq1_item == seq2[col] ? 0 : 1
|
60
|
+
is_swap = sub_cost.positive? &&
|
62
61
|
row.positive? && col.positive? &&
|
63
|
-
|
62
|
+
seq1_item == seq2[col - 1] &&
|
64
63
|
seq1[row - 1] == seq2[col]
|
65
64
|
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
65
|
+
# | Xt | | |
|
66
|
+
# | | Xs | Xd |
|
67
|
+
# | | Xi | ? |
|
70
68
|
# step cost is min of operation costs
|
71
|
-
|
72
|
-
cost =
|
69
|
+
# substitution, deletion, insertion, transposition
|
70
|
+
cost = [
|
71
|
+
last_row[col] + sub_cost,
|
72
|
+
last_row[col + 1] + 1,
|
73
|
+
curr_row[col] + 1
|
74
|
+
].min
|
73
75
|
|
74
76
|
if is_swap
|
75
77
|
swap = lastlast_row[col - 1] + 1
|
@@ -82,5 +84,84 @@ module Edits
|
|
82
84
|
|
83
85
|
curr_row[cols]
|
84
86
|
end
|
87
|
+
|
88
|
+
# Calculate the Restricted Damerau-Levenshtein distance (Optimal Alignment)
|
89
|
+
# of two sequences, bounded by a maximum value.
|
90
|
+
#
|
91
|
+
# @example
|
92
|
+
# Edits::RestrictedEdit.distance("cloud", "crayon")
|
93
|
+
# # => 5
|
94
|
+
# Edits::RestrictedEdit.distance_with_max("cloud", "crayon", 2)
|
95
|
+
# # => 2
|
96
|
+
# @param seq1 [String, Array]
|
97
|
+
# @param seq2 [String, Array]
|
98
|
+
# @param max [Integer] maximum distance
|
99
|
+
# @return [Integer]
|
100
|
+
def self.distance_with_max(seq1, seq2, max)
|
101
|
+
seq1, seq2 = seq2, seq1 if seq1.length > seq2.length
|
102
|
+
|
103
|
+
rows = seq1.length
|
104
|
+
cols = seq2.length
|
105
|
+
return cols > max ? max : cols if rows.zero?
|
106
|
+
return rows > max ? max : rows if cols.zero?
|
107
|
+
return max if (cols - rows) >= max
|
108
|
+
|
109
|
+
# array of codepoints outperforms String
|
110
|
+
seq1 = seq1.codepoints if seq1.is_a? String
|
111
|
+
seq2 = seq2.codepoints if seq2.is_a? String
|
112
|
+
|
113
|
+
# 'infinite' edit distance for padding cost matrix.
|
114
|
+
# Can be any value > max[rows, cols]
|
115
|
+
inf = cols + 1
|
116
|
+
|
117
|
+
# retain previous two rows of cost matrix,
|
118
|
+
# padded with "inf" as matrix is not fully evaluated
|
119
|
+
lastlast_row = Array.new(inf, inf)
|
120
|
+
last_row = Array.new(inf, inf)
|
121
|
+
curr_row = 0.upto(cols).to_a
|
122
|
+
|
123
|
+
rows.times do |row|
|
124
|
+
# rotate row arrays
|
125
|
+
curr_row, last_row, lastlast_row = lastlast_row, curr_row, last_row
|
126
|
+
|
127
|
+
# Ukkonen cut-off
|
128
|
+
min_col = row > max ? row - max : 0
|
129
|
+
max_col = row + max
|
130
|
+
max_col = cols - 1 if max_col > cols - 1
|
131
|
+
|
132
|
+
curr_row[min_col] = min_col.zero? ? row + 1 : inf
|
133
|
+
seq1_item = seq1[row]
|
134
|
+
diagonal = cols - rows + row
|
135
|
+
|
136
|
+
min_col.upto(max_col) do |col|
|
137
|
+
return max if diagonal == col && last_row[col] >= max
|
138
|
+
|
139
|
+
sub_cost = seq1_item == seq2[col] ? 0 : 1
|
140
|
+
is_swap = sub_cost.positive? &&
|
141
|
+
row.positive? && col.positive? &&
|
142
|
+
seq1_item == seq2[col - 1] &&
|
143
|
+
seq1[row - 1] == seq2[col]
|
144
|
+
|
145
|
+
# | Xt | | |
|
146
|
+
# | | Xs | Xd |
|
147
|
+
# | | Xi | ? |
|
148
|
+
# substitution, deletion, insertion, transposition
|
149
|
+
cost = [
|
150
|
+
last_row[col] + sub_cost,
|
151
|
+
last_row[col + 1] + 1,
|
152
|
+
curr_row[col] + 1
|
153
|
+
].min
|
154
|
+
|
155
|
+
if is_swap
|
156
|
+
swap = lastlast_row[col - 1] + 1
|
157
|
+
cost = swap if swap < cost
|
158
|
+
end
|
159
|
+
|
160
|
+
curr_row[col + 1] = cost
|
161
|
+
end
|
162
|
+
end
|
163
|
+
|
164
|
+
curr_row[cols] > max ? max : curr_row[cols]
|
165
|
+
end
|
85
166
|
end
|
86
167
|
end
|
data/lib/edits/version.rb
CHANGED
@@ -5,7 +5,7 @@ require "benchmark/ips"
|
|
5
5
|
require "edits"
|
6
6
|
|
7
7
|
namespace :benchmark do
|
8
|
-
desc "distance vs. distance_with_max (x100)"
|
8
|
+
desc "levenshtein distance vs. distance_with_max (x100)"
|
9
9
|
task :lev_max do
|
10
10
|
words = File.read("/usr/share/dict/words")
|
11
11
|
.split(/\n/).compact.shuffle(random: Random.new(1))
|
@@ -64,6 +64,65 @@ namespace :benchmark do
|
|
64
64
|
end
|
65
65
|
end
|
66
66
|
|
67
|
+
desc "restricted distance vs. distance_with_max (x100)"
|
68
|
+
task :restricted_max do
|
69
|
+
words = File.read("/usr/share/dict/words")
|
70
|
+
.split(/\n/).compact.shuffle(random: Random.new(1))
|
71
|
+
.take(101)
|
72
|
+
|
73
|
+
Benchmark.ips do |x|
|
74
|
+
x.report("distance") do
|
75
|
+
words.each_cons(2) do |a, b|
|
76
|
+
Edits::RestrictedEdit.distance a, b
|
77
|
+
end
|
78
|
+
end
|
79
|
+
|
80
|
+
x.report("with max 1") do
|
81
|
+
words.each_cons(2) do |a, b|
|
82
|
+
Edits::RestrictedEdit.distance_with_max a, b, 1
|
83
|
+
end
|
84
|
+
end
|
85
|
+
|
86
|
+
x.report("with max 2") do
|
87
|
+
words.each_cons(2) do |a, b|
|
88
|
+
Edits::RestrictedEdit.distance_with_max a, b, 2
|
89
|
+
end
|
90
|
+
end
|
91
|
+
|
92
|
+
x.report("with max 3") do
|
93
|
+
words.each_cons(2) do |a, b|
|
94
|
+
Edits::RestrictedEdit.distance_with_max a, b, 3
|
95
|
+
end
|
96
|
+
end
|
97
|
+
|
98
|
+
x.report("with max 4") do
|
99
|
+
words.each_cons(2) do |a, b|
|
100
|
+
Edits::RestrictedEdit.distance_with_max a, b, 4
|
101
|
+
end
|
102
|
+
end
|
103
|
+
|
104
|
+
x.report("with max 6") do
|
105
|
+
words.each_cons(2) do |a, b|
|
106
|
+
Edits::RestrictedEdit.distance_with_max a, b, 6
|
107
|
+
end
|
108
|
+
end
|
109
|
+
|
110
|
+
x.report("with max 8") do
|
111
|
+
words.each_cons(2) do |a, b|
|
112
|
+
Edits::RestrictedEdit.distance_with_max a, b, 8
|
113
|
+
end
|
114
|
+
end
|
115
|
+
|
116
|
+
x.report("with max 50") do
|
117
|
+
words.each_cons(2) do |a, b|
|
118
|
+
Edits::RestrictedEdit.distance_with_max a, b, 100
|
119
|
+
end
|
120
|
+
end
|
121
|
+
|
122
|
+
x.compare!
|
123
|
+
end
|
124
|
+
end
|
125
|
+
|
67
126
|
desc "most_similar vs. min_by (100 words)"
|
68
127
|
task :lev_similar do
|
69
128
|
words = File.read("/usr/share/dict/words")
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: edits
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.2.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Tom Crouch
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2017-
|
11
|
+
date: 2017-10-08 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: bundler
|
@@ -114,6 +114,7 @@ files:
|
|
114
114
|
- bin/setup
|
115
115
|
- edits.gemspec
|
116
116
|
- lib/edits.rb
|
117
|
+
- lib/edits/compare.rb
|
117
118
|
- lib/edits/damerau_levenshtein.rb
|
118
119
|
- lib/edits/hamming.rb
|
119
120
|
- lib/edits/jaro.rb
|
@@ -143,7 +144,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
143
144
|
version: '0'
|
144
145
|
requirements: []
|
145
146
|
rubyforge_project:
|
146
|
-
rubygems_version: 2.6.
|
147
|
+
rubygems_version: 2.6.13
|
147
148
|
signing_key:
|
148
149
|
specification_version: 4
|
149
150
|
summary: A collection of edit distance algorithms.
|