ed-precompiled_ed25519 1.4.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (70) hide show
  1. checksums.yaml +7 -0
  2. data/CHANGES.md +88 -0
  3. data/LICENSE +22 -0
  4. data/README.md +181 -0
  5. data/ed25519.png +0 -0
  6. data/ext/ed25519_jruby/LICENSE.txt +123 -0
  7. data/ext/ed25519_jruby/README.md +77 -0
  8. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/EdDSAEngine.java +491 -0
  9. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/EdDSAKey.java +31 -0
  10. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/EdDSAPrivateKey.java +338 -0
  11. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/EdDSAPublicKey.java +275 -0
  12. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/EdDSASecurityProvider.java +59 -0
  13. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/KeyFactory.java +75 -0
  14. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/KeyPairGenerator.java +97 -0
  15. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/Utils.java +103 -0
  16. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/Constants.java +23 -0
  17. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/Curve.java +100 -0
  18. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/Encoding.java +54 -0
  19. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/Field.java +99 -0
  20. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/FieldElement.java +76 -0
  21. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/GroupElement.java +1034 -0
  22. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/ScalarOps.java +34 -0
  23. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/bigint/BigIntegerFieldElement.java +131 -0
  24. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/bigint/BigIntegerLittleEndianEncoding.java +102 -0
  25. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/bigint/BigIntegerScalarOps.java +37 -0
  26. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/bigint/package.html +6 -0
  27. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/ed25519/Ed25519FieldElement.java +988 -0
  28. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/ed25519/Ed25519LittleEndianEncoding.java +256 -0
  29. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/math/ed25519/Ed25519ScalarOps.java +693 -0
  30. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSAGenParameterSpec.java +32 -0
  31. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSANamedCurveSpec.java +35 -0
  32. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSANamedCurveTable.java +71 -0
  33. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSAParameterSpec.java +97 -0
  34. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSAPrivateKeySpec.java +133 -0
  35. data/ext/ed25519_jruby/net/i2p/crypto/eddsa/spec/EdDSAPublicKeySpec.java +61 -0
  36. data/ext/ed25519_jruby/org/cryptorb/Ed25519Provider.java +95 -0
  37. data/ext/ed25519_ref10/api.h +4 -0
  38. data/ext/ed25519_ref10/base.h +1344 -0
  39. data/ext/ed25519_ref10/base2.h +40 -0
  40. data/ext/ed25519_ref10/d.h +1 -0
  41. data/ext/ed25519_ref10/d2.h +1 -0
  42. data/ext/ed25519_ref10/ed25519_ref10.c +99 -0
  43. data/ext/ed25519_ref10/ed25519_ref10.h +33 -0
  44. data/ext/ed25519_ref10/extconf.rb +7 -0
  45. data/ext/ed25519_ref10/fe.c +1085 -0
  46. data/ext/ed25519_ref10/fe.h +56 -0
  47. data/ext/ed25519_ref10/ge.c +407 -0
  48. data/ext/ed25519_ref10/ge.h +95 -0
  49. data/ext/ed25519_ref10/ge_add.h +97 -0
  50. data/ext/ed25519_ref10/ge_madd.h +88 -0
  51. data/ext/ed25519_ref10/ge_msub.h +88 -0
  52. data/ext/ed25519_ref10/ge_p2_dbl.h +73 -0
  53. data/ext/ed25519_ref10/ge_sub.h +97 -0
  54. data/ext/ed25519_ref10/keypair.c +22 -0
  55. data/ext/ed25519_ref10/open.c +47 -0
  56. data/ext/ed25519_ref10/pow22523.h +160 -0
  57. data/ext/ed25519_ref10/pow225521.h +160 -0
  58. data/ext/ed25519_ref10/sc.h +17 -0
  59. data/ext/ed25519_ref10/sc_muladd.c +366 -0
  60. data/ext/ed25519_ref10/sc_reduce.c +272 -0
  61. data/ext/ed25519_ref10/sha512.c +304 -0
  62. data/ext/ed25519_ref10/sha512.h +8 -0
  63. data/ext/ed25519_ref10/sign.c +41 -0
  64. data/ext/ed25519_ref10/sqrtm1.h +1 -0
  65. data/ext/ed25519_ref10/verify.c +40 -0
  66. data/lib/ed25519/signing_key.rb +60 -0
  67. data/lib/ed25519/verify_key.rb +45 -0
  68. data/lib/ed25519/version.rb +5 -0
  69. data/lib/ed25519.rb +77 -0
  70. metadata +126 -0
@@ -0,0 +1,256 @@
1
+ /**
2
+ * EdDSA-Java by str4d
3
+ *
4
+ * To the extent possible under law, the person who associated CC0 with
5
+ * EdDSA-Java has waived all copyright and related or neighboring rights
6
+ * to EdDSA-Java.
7
+ *
8
+ * You should have received a copy of the CC0 legalcode along with this
9
+ * work. If not, see <https://creativecommons.org/publicdomain/zero/1.0/>.
10
+ *
11
+ */
12
+ package net.i2p.crypto.eddsa.math.ed25519;
13
+
14
+ import net.i2p.crypto.eddsa.math.*;
15
+
16
+ /**
17
+ * Helper class for encoding/decoding from/to the 32 byte representation.
18
+ * <p>
19
+ * Reviewed/commented by Bloody Rookie (nemproject@gmx.de)
20
+ */
21
+ public class Ed25519LittleEndianEncoding extends Encoding {
22
+ /**
23
+ * Encodes a given field element in its 32 byte representation. This is done in two steps:
24
+ * <ol>
25
+ * <li>Reduce the value of the field element modulo $p$.
26
+ * <li>Convert the field element to the 32 byte representation.
27
+ * </ol><p>
28
+ * The idea for the modulo $p$ reduction algorithm is as follows:
29
+ * </p>
30
+ * <h2>Assumption:</h2>
31
+ * <ul>
32
+ * <li>$p = 2^{255} - 19$
33
+ * <li>$h = h_0 + 2^{25} * h_1 + 2^{(26+25)} * h_2 + \dots + 2^{230} * h_9$ where $0 \le |h_i| \lt 2^{27}$ for all $i=0,\dots,9$.
34
+ * <li>$h \cong r \mod p$, i.e. $h = r + q * p$ for some suitable $0 \le r \lt p$ and an integer $q$.
35
+ * </ul><p>
36
+ * Then $q = [2^{-255} * (h + 19 * 2^{-25} * h_9 + 1/2)]$ where $[x] = floor(x)$.
37
+ * </p>
38
+ * <h2>Proof:</h2>
39
+ * <p>
40
+ * We begin with some very raw estimation for the bounds of some expressions:
41
+ * <p>
42
+ * $$
43
+ * \begin{equation}
44
+ * |h| \lt 2^{230} * 2^{30} = 2^{260} \Rightarrow |r + q * p| \lt 2^{260} \Rightarrow |q| \lt 2^{10}. \\
45
+ * \Rightarrow -1/4 \le a := 19^2 * 2^{-255} * q \lt 1/4. \\
46
+ * |h - 2^{230} * h_9| = |h_0 + \dots + 2^{204} * h_8| \lt 2^{204} * 2^{30} = 2^{234}. \\
47
+ * \Rightarrow -1/4 \le b := 19 * 2^{-255} * (h - 2^{230} * h_9) \lt 1/4
48
+ * \end{equation}
49
+ * $$
50
+ * <p>
51
+ * Therefore $0 \lt 1/2 - a - b \lt 1$.
52
+ * <p>
53
+ * Set $x := r + 19 * 2^{-255} * r + 1/2 - a - b$. Then:
54
+ * <p>
55
+ * $$
56
+ * 0 \le x \lt 255 - 20 + 19 + 1 = 2^{255} \\
57
+ * \Rightarrow 0 \le 2^{-255} * x \lt 1.
58
+ * $$
59
+ * <p>
60
+ * Since $q$ is an integer we have
61
+ * <p>
62
+ * $$
63
+ * [q + 2^{-255} * x] = q \quad (1)
64
+ * $$
65
+ * <p>
66
+ * Have a closer look at $x$:
67
+ * <p>
68
+ * $$
69
+ * \begin{align}
70
+ * x &amp;= h - q * (2^{255} - 19) + 19 * 2^{-255} * (h - q * (2^{255} - 19)) + 1/2 - 19^2 * 2^{-255} * q - 19 * 2^{-255} * (h - 2^{230} * h_9) \\
71
+ * &amp;= h - q * 2^{255} + 19 * q + 19 * 2^{-255} * h - 19 * q + 19^2 * 2^{-255} * q + 1/2 - 19^2 * 2^{-255} * q - 19 * 2^{-255} * h + 19 * 2^{-25} * h_9 \\
72
+ * &amp;= h + 19 * 2^{-25} * h_9 + 1/2 - q^{255}.
73
+ * \end{align}
74
+ * $$
75
+ * <p>
76
+ * Inserting the expression for $x$ into $(1)$ we get the desired expression for $q$.
77
+ */
78
+ public byte[] encode(FieldElement x) {
79
+ int[] h = ((Ed25519FieldElement)x).t;
80
+ int h0 = h[0];
81
+ int h1 = h[1];
82
+ int h2 = h[2];
83
+ int h3 = h[3];
84
+ int h4 = h[4];
85
+ int h5 = h[5];
86
+ int h6 = h[6];
87
+ int h7 = h[7];
88
+ int h8 = h[8];
89
+ int h9 = h[9];
90
+ int q;
91
+ int carry0;
92
+ int carry1;
93
+ int carry2;
94
+ int carry3;
95
+ int carry4;
96
+ int carry5;
97
+ int carry6;
98
+ int carry7;
99
+ int carry8;
100
+ int carry9;
101
+
102
+ // Step 1:
103
+ // Calculate q
104
+ q = (19 * h9 + (1 << 24)) >> 25;
105
+ q = (h0 + q) >> 26;
106
+ q = (h1 + q) >> 25;
107
+ q = (h2 + q) >> 26;
108
+ q = (h3 + q) >> 25;
109
+ q = (h4 + q) >> 26;
110
+ q = (h5 + q) >> 25;
111
+ q = (h6 + q) >> 26;
112
+ q = (h7 + q) >> 25;
113
+ q = (h8 + q) >> 26;
114
+ q = (h9 + q) >> 25;
115
+
116
+ // r = h - q * p = h - 2^255 * q + 19 * q
117
+ // First add 19 * q then discard the bit 255
118
+ h0 += 19 * q;
119
+
120
+ carry0 = h0 >> 26; h1 += carry0; h0 -= carry0 << 26;
121
+ carry1 = h1 >> 25; h2 += carry1; h1 -= carry1 << 25;
122
+ carry2 = h2 >> 26; h3 += carry2; h2 -= carry2 << 26;
123
+ carry3 = h3 >> 25; h4 += carry3; h3 -= carry3 << 25;
124
+ carry4 = h4 >> 26; h5 += carry4; h4 -= carry4 << 26;
125
+ carry5 = h5 >> 25; h6 += carry5; h5 -= carry5 << 25;
126
+ carry6 = h6 >> 26; h7 += carry6; h6 -= carry6 << 26;
127
+ carry7 = h7 >> 25; h8 += carry7; h7 -= carry7 << 25;
128
+ carry8 = h8 >> 26; h9 += carry8; h8 -= carry8 << 26;
129
+ carry9 = h9 >> 25; h9 -= carry9 << 25;
130
+
131
+ // Step 2 (straight forward conversion):
132
+ byte[] s = new byte[32];
133
+ s[0] = (byte) h0;
134
+ s[1] = (byte) (h0 >> 8);
135
+ s[2] = (byte) (h0 >> 16);
136
+ s[3] = (byte) ((h0 >> 24) | (h1 << 2));
137
+ s[4] = (byte) (h1 >> 6);
138
+ s[5] = (byte) (h1 >> 14);
139
+ s[6] = (byte) ((h1 >> 22) | (h2 << 3));
140
+ s[7] = (byte) (h2 >> 5);
141
+ s[8] = (byte) (h2 >> 13);
142
+ s[9] = (byte) ((h2 >> 21) | (h3 << 5));
143
+ s[10] = (byte) (h3 >> 3);
144
+ s[11] = (byte) (h3 >> 11);
145
+ s[12] = (byte) ((h3 >> 19) | (h4 << 6));
146
+ s[13] = (byte) (h4 >> 2);
147
+ s[14] = (byte) (h4 >> 10);
148
+ s[15] = (byte) (h4 >> 18);
149
+ s[16] = (byte) h5;
150
+ s[17] = (byte) (h5 >> 8);
151
+ s[18] = (byte) (h5 >> 16);
152
+ s[19] = (byte) ((h5 >> 24) | (h6 << 1));
153
+ s[20] = (byte) (h6 >> 7);
154
+ s[21] = (byte) (h6 >> 15);
155
+ s[22] = (byte) ((h6 >> 23) | (h7 << 3));
156
+ s[23] = (byte) (h7 >> 5);
157
+ s[24] = (byte) (h7 >> 13);
158
+ s[25] = (byte) ((h7 >> 21) | (h8 << 4));
159
+ s[26] = (byte) (h8 >> 4);
160
+ s[27] = (byte) (h8 >> 12);
161
+ s[28] = (byte) ((h8 >> 20) | (h9 << 6));
162
+ s[29] = (byte) (h9 >> 2);
163
+ s[30] = (byte) (h9 >> 10);
164
+ s[31] = (byte) (h9 >> 18);
165
+ return s;
166
+ }
167
+
168
+ static int load_3(byte[] in, int offset) {
169
+ int result = in[offset++] & 0xff;
170
+ result |= (in[offset++] & 0xff) << 8;
171
+ result |= (in[offset] & 0xff) << 16;
172
+ return result;
173
+ }
174
+
175
+ static long load_4(byte[] in, int offset) {
176
+ int result = in[offset++] & 0xff;
177
+ result |= (in[offset++] & 0xff) << 8;
178
+ result |= (in[offset++] & 0xff) << 16;
179
+ result |= in[offset] << 24;
180
+ return ((long)result) & 0xffffffffL;
181
+ }
182
+
183
+ /**
184
+ * Decodes a given field element in its 10 byte $2^{25.5}$ representation.
185
+ *
186
+ * @param in The 32 byte representation.
187
+ * @return The field element in its $2^{25.5}$ bit representation.
188
+ */
189
+ public FieldElement decode(byte[] in) {
190
+ long h0 = load_4(in, 0);
191
+ long h1 = load_3(in, 4) << 6;
192
+ long h2 = load_3(in, 7) << 5;
193
+ long h3 = load_3(in, 10) << 3;
194
+ long h4 = load_3(in, 13) << 2;
195
+ long h5 = load_4(in, 16);
196
+ long h6 = load_3(in, 20) << 7;
197
+ long h7 = load_3(in, 23) << 5;
198
+ long h8 = load_3(in, 26) << 4;
199
+ long h9 = (load_3(in, 29) & 0x7FFFFF) << 2;
200
+ long carry0;
201
+ long carry1;
202
+ long carry2;
203
+ long carry3;
204
+ long carry4;
205
+ long carry5;
206
+ long carry6;
207
+ long carry7;
208
+ long carry8;
209
+ long carry9;
210
+
211
+ // Remember: 2^255 congruent 19 modulo p
212
+ carry9 = (h9 + (long) (1<<24)) >> 25; h0 += carry9 * 19; h9 -= carry9 << 25;
213
+ carry1 = (h1 + (long) (1<<24)) >> 25; h2 += carry1; h1 -= carry1 << 25;
214
+ carry3 = (h3 + (long) (1<<24)) >> 25; h4 += carry3; h3 -= carry3 << 25;
215
+ carry5 = (h5 + (long) (1<<24)) >> 25; h6 += carry5; h5 -= carry5 << 25;
216
+ carry7 = (h7 + (long) (1<<24)) >> 25; h8 += carry7; h7 -= carry7 << 25;
217
+
218
+ carry0 = (h0 + (long) (1<<25)) >> 26; h1 += carry0; h0 -= carry0 << 26;
219
+ carry2 = (h2 + (long) (1<<25)) >> 26; h3 += carry2; h2 -= carry2 << 26;
220
+ carry4 = (h4 + (long) (1<<25)) >> 26; h5 += carry4; h4 -= carry4 << 26;
221
+ carry6 = (h6 + (long) (1<<25)) >> 26; h7 += carry6; h6 -= carry6 << 26;
222
+ carry8 = (h8 + (long) (1<<25)) >> 26; h9 += carry8; h8 -= carry8 << 26;
223
+
224
+ int[] h = new int[10];
225
+ h[0] = (int) h0;
226
+ h[1] = (int) h1;
227
+ h[2] = (int) h2;
228
+ h[3] = (int) h3;
229
+ h[4] = (int) h4;
230
+ h[5] = (int) h5;
231
+ h[6] = (int) h6;
232
+ h[7] = (int) h7;
233
+ h[8] = (int) h8;
234
+ h[9] = (int) h9;
235
+ return new Ed25519FieldElement(f, h);
236
+ }
237
+
238
+ /**
239
+ * Is the FieldElement negative in this encoding?
240
+ * <p>
241
+ * Return true if $x$ is in $\{1,3,5,\dots,q-2\}$<br>
242
+ * Return false if $x$ is in $\{0,2,4,\dots,q-1\}$
243
+ * <p>
244
+ * Preconditions:
245
+ * </p><ul>
246
+ * <li>$|x|$ bounded by $1.1*2^{26},1.1*2^{25},1.1*2^{26},1.1*2^{25}$, etc.
247
+ * </ul>
248
+ *
249
+ * @return true if $x$ is in $\{1,3,5,\dots,q-2\}$, false otherwise.
250
+ */
251
+ public boolean isNegative(FieldElement x) {
252
+ byte[] s = encode(x);
253
+ return (s[0] & 1) != 0;
254
+ }
255
+
256
+ }