ed-precompiled_bigdecimal 3.3.1-x86_64-linux
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/LICENSE +56 -0
- data/bigdecimal.gemspec +57 -0
- data/ext/bigdecimal/bigdecimal.c +6238 -0
- data/ext/bigdecimal/bigdecimal.h +292 -0
- data/ext/bigdecimal/bits.h +144 -0
- data/ext/bigdecimal/extconf.rb +60 -0
- data/ext/bigdecimal/feature.h +68 -0
- data/ext/bigdecimal/missing/dtoa.c +3462 -0
- data/ext/bigdecimal/missing.c +28 -0
- data/ext/bigdecimal/missing.h +104 -0
- data/ext/bigdecimal/static_assert.h +54 -0
- data/lib/3.0/bigdecimal.so +0 -0
- data/lib/3.1/bigdecimal.so +0 -0
- data/lib/3.2/bigdecimal.so +0 -0
- data/lib/3.3/bigdecimal.so +0 -0
- data/lib/3.4/bigdecimal.so +0 -0
- data/lib/bigdecimal/jacobian.rb +90 -0
- data/lib/bigdecimal/ludcmp.rb +89 -0
- data/lib/bigdecimal/math.rb +249 -0
- data/lib/bigdecimal/newton.rb +80 -0
- data/lib/bigdecimal/util.rb +186 -0
- data/lib/bigdecimal.rb +361 -0
- data/lib/bigdecimal.so +0 -0
- data/sample/linear.rb +74 -0
- data/sample/nlsolve.rb +40 -0
- data/sample/pi.rb +21 -0
- metadata +74 -0
@@ -0,0 +1,186 @@
|
|
1
|
+
# frozen_string_literal: false
|
2
|
+
#
|
3
|
+
#--
|
4
|
+
# bigdecimal/util extends various native classes to provide the #to_d method,
|
5
|
+
# and provides BigDecimal#to_d and BigDecimal#to_digits.
|
6
|
+
#++
|
7
|
+
|
8
|
+
require 'bigdecimal'
|
9
|
+
|
10
|
+
class Integer < Numeric
|
11
|
+
# call-seq:
|
12
|
+
# int.to_d -> bigdecimal
|
13
|
+
#
|
14
|
+
# Returns the value of +int+ as a BigDecimal.
|
15
|
+
#
|
16
|
+
# require 'bigdecimal'
|
17
|
+
# require 'bigdecimal/util'
|
18
|
+
#
|
19
|
+
# 42.to_d # => 0.42e2
|
20
|
+
#
|
21
|
+
# See also Kernel.BigDecimal.
|
22
|
+
#
|
23
|
+
def to_d
|
24
|
+
BigDecimal(self)
|
25
|
+
end
|
26
|
+
end
|
27
|
+
|
28
|
+
|
29
|
+
class Float < Numeric
|
30
|
+
# call-seq:
|
31
|
+
# float.to_d -> bigdecimal
|
32
|
+
# float.to_d(precision) -> bigdecimal
|
33
|
+
#
|
34
|
+
# Returns the value of +float+ as a BigDecimal.
|
35
|
+
# The +precision+ parameter is used to determine the number of
|
36
|
+
# significant digits for the result. When +precision+ is set to +0+,
|
37
|
+
# the number of digits to represent the float being converted is determined
|
38
|
+
# automatically.
|
39
|
+
# The default +precision+ is +0+.
|
40
|
+
#
|
41
|
+
# require 'bigdecimal'
|
42
|
+
# require 'bigdecimal/util'
|
43
|
+
#
|
44
|
+
# 0.5.to_d # => 0.5e0
|
45
|
+
# 1.234.to_d # => 0.1234e1
|
46
|
+
# 1.234.to_d(2) # => 0.12e1
|
47
|
+
#
|
48
|
+
# See also Kernel.BigDecimal.
|
49
|
+
#
|
50
|
+
def to_d(precision=0)
|
51
|
+
BigDecimal(self, precision)
|
52
|
+
end
|
53
|
+
end
|
54
|
+
|
55
|
+
|
56
|
+
class String
|
57
|
+
# call-seq:
|
58
|
+
# str.to_d -> bigdecimal
|
59
|
+
#
|
60
|
+
# Returns the result of interpreting leading characters in +str+
|
61
|
+
# as a BigDecimal.
|
62
|
+
#
|
63
|
+
# require 'bigdecimal'
|
64
|
+
# require 'bigdecimal/util'
|
65
|
+
#
|
66
|
+
# "0.5".to_d # => 0.5e0
|
67
|
+
# "123.45e1".to_d # => 0.12345e4
|
68
|
+
# "45.67 degrees".to_d # => 0.4567e2
|
69
|
+
#
|
70
|
+
# See also Kernel.BigDecimal.
|
71
|
+
#
|
72
|
+
def to_d
|
73
|
+
BigDecimal.interpret_loosely(self)
|
74
|
+
end
|
75
|
+
end
|
76
|
+
|
77
|
+
|
78
|
+
class BigDecimal < Numeric
|
79
|
+
# call-seq:
|
80
|
+
# a.to_digits -> string
|
81
|
+
#
|
82
|
+
# Converts a BigDecimal to a String of the form "nnnnnn.mmm".
|
83
|
+
# This method is deprecated; use BigDecimal#to_s("F") instead.
|
84
|
+
#
|
85
|
+
# require 'bigdecimal/util'
|
86
|
+
#
|
87
|
+
# d = BigDecimal("3.14")
|
88
|
+
# d.to_digits # => "3.14"
|
89
|
+
#
|
90
|
+
def to_digits
|
91
|
+
if self.nan? || self.infinite? || self.zero?
|
92
|
+
self.to_s
|
93
|
+
else
|
94
|
+
i = self.to_i.to_s
|
95
|
+
_,f,_,z = self.frac.split
|
96
|
+
i + "." + ("0"*(-z)) + f
|
97
|
+
end
|
98
|
+
end
|
99
|
+
|
100
|
+
# call-seq:
|
101
|
+
# a.to_d -> bigdecimal
|
102
|
+
#
|
103
|
+
# Returns self.
|
104
|
+
#
|
105
|
+
# require 'bigdecimal/util'
|
106
|
+
#
|
107
|
+
# d = BigDecimal("3.14")
|
108
|
+
# d.to_d # => 0.314e1
|
109
|
+
#
|
110
|
+
def to_d
|
111
|
+
self
|
112
|
+
end
|
113
|
+
end
|
114
|
+
|
115
|
+
|
116
|
+
class Rational < Numeric
|
117
|
+
# call-seq:
|
118
|
+
# rat.to_d(precision) -> bigdecimal
|
119
|
+
#
|
120
|
+
# Returns the value as a BigDecimal.
|
121
|
+
#
|
122
|
+
# The +precision+ parameter is used to determine the number of
|
123
|
+
# significant digits for the result. When +precision+ is set to +0+,
|
124
|
+
# the number of digits to represent the float being converted is determined
|
125
|
+
# automatically.
|
126
|
+
# The default +precision+ is +0+.
|
127
|
+
#
|
128
|
+
# require 'bigdecimal'
|
129
|
+
# require 'bigdecimal/util'
|
130
|
+
#
|
131
|
+
# Rational(22, 7).to_d(3) # => 0.314e1
|
132
|
+
#
|
133
|
+
# See also Kernel.BigDecimal.
|
134
|
+
#
|
135
|
+
def to_d(precision=0)
|
136
|
+
BigDecimal(self, precision)
|
137
|
+
end
|
138
|
+
end
|
139
|
+
|
140
|
+
|
141
|
+
class Complex < Numeric
|
142
|
+
# call-seq:
|
143
|
+
# cmp.to_d -> bigdecimal
|
144
|
+
# cmp.to_d(precision) -> bigdecimal
|
145
|
+
#
|
146
|
+
# Returns the value as a BigDecimal.
|
147
|
+
# If the imaginary part is not +0+, an error is raised
|
148
|
+
#
|
149
|
+
# The +precision+ parameter is used to determine the number of
|
150
|
+
# significant digits for the result. When +precision+ is set to +0+,
|
151
|
+
# the number of digits to represent the float being converted is determined
|
152
|
+
# automatically.
|
153
|
+
# The default +precision+ is +0+.
|
154
|
+
#
|
155
|
+
# require 'bigdecimal'
|
156
|
+
# require 'bigdecimal/util'
|
157
|
+
#
|
158
|
+
# Complex(0.1234567, 0).to_d(4) # => 0.1235e0
|
159
|
+
# Complex(Rational(22, 7), 0).to_d(3) # => 0.314e1
|
160
|
+
# Complex(1, 1).to_d # raises ArgumentError
|
161
|
+
#
|
162
|
+
# See also Kernel.BigDecimal.
|
163
|
+
#
|
164
|
+
def to_d(precision=0)
|
165
|
+
BigDecimal(self) unless self.imag.zero? # to raise error
|
166
|
+
|
167
|
+
BigDecimal(self.real, precision)
|
168
|
+
end
|
169
|
+
end
|
170
|
+
|
171
|
+
|
172
|
+
class NilClass
|
173
|
+
# call-seq:
|
174
|
+
# nil.to_d -> bigdecimal
|
175
|
+
#
|
176
|
+
# Returns nil represented as a BigDecimal.
|
177
|
+
#
|
178
|
+
# require 'bigdecimal'
|
179
|
+
# require 'bigdecimal/util'
|
180
|
+
#
|
181
|
+
# nil.to_d # => 0.0
|
182
|
+
#
|
183
|
+
def to_d
|
184
|
+
BigDecimal(0)
|
185
|
+
end
|
186
|
+
end
|
data/lib/bigdecimal.rb
ADDED
@@ -0,0 +1,361 @@
|
|
1
|
+
if RUBY_ENGINE == 'jruby'
|
2
|
+
JRuby::Util.load_ext("org.jruby.ext.bigdecimal.BigDecimalLibrary")
|
3
|
+
|
4
|
+
class BigDecimal
|
5
|
+
def _decimal_shift(i) # :nodoc:
|
6
|
+
to_java.move_point_right(i).to_d
|
7
|
+
end
|
8
|
+
end
|
9
|
+
else
|
10
|
+
begin
|
11
|
+
ruby_version = /(\d+\.\d+)/.match(::RUBY_VERSION)
|
12
|
+
require "#{ruby_version}/bigdecimal.so"
|
13
|
+
rescue LoadError
|
14
|
+
require 'bigdecimal.so'
|
15
|
+
end
|
16
|
+
end
|
17
|
+
|
18
|
+
class BigDecimal
|
19
|
+
module Internal # :nodoc:
|
20
|
+
|
21
|
+
# Coerce x to BigDecimal with the specified precision.
|
22
|
+
# TODO: some methods (example: BigMath.exp) require more precision than specified to coerce.
|
23
|
+
def self.coerce_to_bigdecimal(x, prec, method_name) # :nodoc:
|
24
|
+
case x
|
25
|
+
when BigDecimal
|
26
|
+
return x
|
27
|
+
when Integer, Float
|
28
|
+
return BigDecimal(x, 0)
|
29
|
+
when Rational
|
30
|
+
return BigDecimal(x, [prec, 2 * BigDecimal.double_fig].max)
|
31
|
+
end
|
32
|
+
raise ArgumentError, "#{x.inspect} can't be coerced into BigDecimal"
|
33
|
+
end
|
34
|
+
|
35
|
+
def self.coerce_validate_prec(prec, method_name, accept_zero: false) # :nodoc:
|
36
|
+
unless Integer === prec
|
37
|
+
original = prec
|
38
|
+
# Emulate Integer.try_convert for ruby < 3.1
|
39
|
+
if prec.respond_to?(:to_int)
|
40
|
+
prec = prec.to_int
|
41
|
+
else
|
42
|
+
raise TypeError, "no implicit conversion of #{original.class} into Integer"
|
43
|
+
end
|
44
|
+
raise TypeError, "can't convert #{original.class} to Integer" unless Integer === prec
|
45
|
+
end
|
46
|
+
|
47
|
+
if accept_zero
|
48
|
+
raise ArgumentError, "Negative precision for #{method_name}" if prec < 0
|
49
|
+
else
|
50
|
+
raise ArgumentError, "Zero or negative precision for #{method_name}" if prec <= 0
|
51
|
+
end
|
52
|
+
prec
|
53
|
+
end
|
54
|
+
|
55
|
+
def self.infinity_computation_result # :nodoc:
|
56
|
+
if BigDecimal.mode(BigDecimal::EXCEPTION_ALL).anybits?(BigDecimal::EXCEPTION_INFINITY)
|
57
|
+
raise FloatDomainError, "Computation results in 'Infinity'"
|
58
|
+
end
|
59
|
+
BigDecimal::INFINITY
|
60
|
+
end
|
61
|
+
|
62
|
+
def self.nan_computation_result # :nodoc:
|
63
|
+
if BigDecimal.mode(BigDecimal::EXCEPTION_ALL).anybits?(BigDecimal::EXCEPTION_NaN)
|
64
|
+
raise FloatDomainError, "Computation results to 'NaN'"
|
65
|
+
end
|
66
|
+
BigDecimal::NAN
|
67
|
+
end
|
68
|
+
end
|
69
|
+
|
70
|
+
# call-seq:
|
71
|
+
# self ** other -> bigdecimal
|
72
|
+
#
|
73
|
+
# Returns the \BigDecimal value of +self+ raised to power +other+:
|
74
|
+
#
|
75
|
+
# b = BigDecimal('3.14')
|
76
|
+
# b ** 2 # => 0.98596e1
|
77
|
+
# b ** 2.0 # => 0.98596e1
|
78
|
+
# b ** Rational(2, 1) # => 0.98596e1
|
79
|
+
#
|
80
|
+
# Related: BigDecimal#power.
|
81
|
+
#
|
82
|
+
def **(y)
|
83
|
+
case y
|
84
|
+
when BigDecimal, Integer, Float, Rational
|
85
|
+
power(y)
|
86
|
+
when nil
|
87
|
+
raise TypeError, 'wrong argument type NilClass'
|
88
|
+
else
|
89
|
+
x, y = y.coerce(self)
|
90
|
+
x**y
|
91
|
+
end
|
92
|
+
end
|
93
|
+
|
94
|
+
# call-seq:
|
95
|
+
# power(n)
|
96
|
+
# power(n, prec)
|
97
|
+
#
|
98
|
+
# Returns the value raised to the power of n.
|
99
|
+
#
|
100
|
+
# Also available as the operator **.
|
101
|
+
#
|
102
|
+
def power(y, prec = 0)
|
103
|
+
prec = Internal.coerce_validate_prec(prec, :power, accept_zero: true)
|
104
|
+
x = self
|
105
|
+
y = Internal.coerce_to_bigdecimal(y, prec.nonzero? || n_significant_digits, :power)
|
106
|
+
|
107
|
+
return Internal.nan_computation_result if x.nan? || y.nan?
|
108
|
+
return BigDecimal(1) if y.zero?
|
109
|
+
|
110
|
+
if y.infinite?
|
111
|
+
if x < 0
|
112
|
+
return BigDecimal(0) if x < -1 && y.negative?
|
113
|
+
return BigDecimal(0) if x > -1 && y.positive?
|
114
|
+
raise Math::DomainError, 'Result undefined for negative base raised to infinite power'
|
115
|
+
elsif x < 1
|
116
|
+
return y.positive? ? BigDecimal(0) : BigDecimal::Internal.infinity_computation_result
|
117
|
+
elsif x == 1
|
118
|
+
return BigDecimal(1)
|
119
|
+
else
|
120
|
+
return y.positive? ? BigDecimal::Internal.infinity_computation_result : BigDecimal(0)
|
121
|
+
end
|
122
|
+
end
|
123
|
+
|
124
|
+
if x.infinite? && y < 0
|
125
|
+
# Computation result will be +0 or -0. Avoid overflow.
|
126
|
+
neg = x < 0 && y.frac.zero? && y % 2 == 1
|
127
|
+
return neg ? -BigDecimal(0) : BigDecimal(0)
|
128
|
+
end
|
129
|
+
|
130
|
+
if x.zero?
|
131
|
+
return BigDecimal(1) if y.zero?
|
132
|
+
return BigDecimal(0) if y > 0
|
133
|
+
if y.frac.zero? && y % 2 == 1 && x.sign == -1
|
134
|
+
return -BigDecimal::Internal.infinity_computation_result
|
135
|
+
else
|
136
|
+
return BigDecimal::Internal.infinity_computation_result
|
137
|
+
end
|
138
|
+
elsif x < 0
|
139
|
+
if y.frac.zero?
|
140
|
+
if y % 2 == 0
|
141
|
+
return (-x).power(y, prec)
|
142
|
+
else
|
143
|
+
return -(-x).power(y, prec)
|
144
|
+
end
|
145
|
+
else
|
146
|
+
raise Math::DomainError, 'Computation results in complex number'
|
147
|
+
end
|
148
|
+
elsif x == 1
|
149
|
+
return BigDecimal(1)
|
150
|
+
end
|
151
|
+
|
152
|
+
prec = BigDecimal.limit if prec.zero?
|
153
|
+
frac_part = y.frac
|
154
|
+
|
155
|
+
if frac_part.zero? && prec.zero?
|
156
|
+
# Infinite precision calculation for `x ** int` and `x.power(int)`
|
157
|
+
int_part = y.fix.to_i
|
158
|
+
int_part = -int_part if (neg = int_part < 0)
|
159
|
+
ans = BigDecimal(1)
|
160
|
+
n = 1
|
161
|
+
xn = x
|
162
|
+
while true
|
163
|
+
ans *= xn if int_part.allbits?(n)
|
164
|
+
n <<= 1
|
165
|
+
break if n > int_part
|
166
|
+
xn *= xn
|
167
|
+
# Detect overflow/underflow before consuming infinite memory
|
168
|
+
if (xn.exponent.abs - 1) * int_part / n >= 0x7FFFFFFFFFFFFFFF
|
169
|
+
return ((xn.exponent > 0) ^ neg ? BigDecimal::Internal.infinity_computation_result : BigDecimal(0)) * (int_part.even? || x > 0 ? 1 : -1)
|
170
|
+
end
|
171
|
+
end
|
172
|
+
return neg ? BigDecimal(1) / ans : ans
|
173
|
+
end
|
174
|
+
|
175
|
+
prec = [x.n_significant_digits, y.n_significant_digits, BigDecimal.double_fig].max + BigDecimal.double_fig if prec.zero?
|
176
|
+
|
177
|
+
if y < 0
|
178
|
+
inv = x.power(-y, prec)
|
179
|
+
return BigDecimal(0) if inv.infinite?
|
180
|
+
return BigDecimal::Internal.infinity_computation_result if inv.zero?
|
181
|
+
return BigDecimal(1).div(inv, prec)
|
182
|
+
end
|
183
|
+
|
184
|
+
prec2 = prec + BigDecimal.double_fig
|
185
|
+
|
186
|
+
if frac_part.zero? && y.exponent < Math.log(prec) * 5 + 20
|
187
|
+
# Use exponentiation by squaring if y is an integer and not too large
|
188
|
+
pow_prec = prec2 + y.exponent
|
189
|
+
n = 1
|
190
|
+
xn = x
|
191
|
+
ans = BigDecimal(1)
|
192
|
+
int_part = y.fix.to_i
|
193
|
+
while true
|
194
|
+
ans = ans.mult(xn, pow_prec) if int_part.allbits?(n)
|
195
|
+
n <<= 1
|
196
|
+
break if n > int_part
|
197
|
+
xn = xn.mult(xn, pow_prec)
|
198
|
+
end
|
199
|
+
ans.mult(1, prec)
|
200
|
+
else
|
201
|
+
if x > 1
|
202
|
+
# To calculate exp(z, prec), z needs prec+max(z.exponent, 0) precision if z > 0.
|
203
|
+
# Estimate (y*log(x)).exponent
|
204
|
+
logx_exponent = x < 2 ? (x - 1).exponent : Math.log10(x.exponent).round
|
205
|
+
ylogx_exponent = y.exponent + logx_exponent
|
206
|
+
prec2 += [ylogx_exponent, 0].max
|
207
|
+
end
|
208
|
+
BigMath.exp(BigMath.log(x, prec2).mult(y, prec2), prec)
|
209
|
+
end
|
210
|
+
end
|
211
|
+
|
212
|
+
# Returns the square root of the value.
|
213
|
+
#
|
214
|
+
# Result has at least prec significant digits.
|
215
|
+
#
|
216
|
+
def sqrt(prec)
|
217
|
+
prec = Internal.coerce_validate_prec(prec, :sqrt, accept_zero: true)
|
218
|
+
return Internal.infinity_computation_result if infinite? == 1
|
219
|
+
|
220
|
+
raise FloatDomainError, 'sqrt of negative value' if self < 0
|
221
|
+
raise FloatDomainError, "sqrt of 'NaN'(Not a Number)" if nan?
|
222
|
+
return self if zero?
|
223
|
+
|
224
|
+
if prec == 0
|
225
|
+
prec = BigDecimal.limit.nonzero? || n_significant_digits + BigDecimal.double_fig
|
226
|
+
end
|
227
|
+
|
228
|
+
ex = exponent / 2
|
229
|
+
x = _decimal_shift(-2 * ex)
|
230
|
+
y = BigDecimal(Math.sqrt(x.to_f), 0)
|
231
|
+
precs = [prec + BigDecimal.double_fig]
|
232
|
+
precs << 2 + precs.last / 2 while precs.last > BigDecimal.double_fig
|
233
|
+
precs.reverse_each do |p|
|
234
|
+
y = y.add(x.div(y, p), p).div(2, p)
|
235
|
+
end
|
236
|
+
y._decimal_shift(ex).mult(1, prec)
|
237
|
+
end
|
238
|
+
end
|
239
|
+
|
240
|
+
# Core BigMath methods for BigDecimal (log, exp) are defined here.
|
241
|
+
# Other methods (sin, cos, atan) are defined in 'bigdecimal/math.rb'.
|
242
|
+
module BigMath
|
243
|
+
|
244
|
+
# call-seq:
|
245
|
+
# BigMath.log(decimal, numeric) -> BigDecimal
|
246
|
+
#
|
247
|
+
# Computes the natural logarithm of +decimal+ to the specified number of
|
248
|
+
# digits of precision, +numeric+.
|
249
|
+
#
|
250
|
+
# If +decimal+ is zero or negative, raises Math::DomainError.
|
251
|
+
#
|
252
|
+
# If +decimal+ is positive infinity, returns Infinity.
|
253
|
+
#
|
254
|
+
# If +decimal+ is NaN, returns NaN.
|
255
|
+
#
|
256
|
+
def self.log(x, prec)
|
257
|
+
prec = BigDecimal::Internal.coerce_validate_prec(prec, :log)
|
258
|
+
raise Math::DomainError, 'Complex argument for BigMath.log' if Complex === x
|
259
|
+
|
260
|
+
x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :log)
|
261
|
+
return BigDecimal::Internal.nan_computation_result if x.nan?
|
262
|
+
raise Math::DomainError, 'Negative argument for log' if x < 0
|
263
|
+
return -BigDecimal::Internal.infinity_computation_result if x.zero?
|
264
|
+
return BigDecimal::Internal.infinity_computation_result if x.infinite?
|
265
|
+
return BigDecimal(0) if x == 1
|
266
|
+
|
267
|
+
prec2 = prec + BigDecimal.double_fig
|
268
|
+
BigDecimal.save_limit do
|
269
|
+
BigDecimal.limit(0)
|
270
|
+
if x > 10 || x < 0.1
|
271
|
+
log10 = log(BigDecimal(10), prec2)
|
272
|
+
exponent = x.exponent
|
273
|
+
x = x._decimal_shift(-exponent)
|
274
|
+
if x < 0.3
|
275
|
+
x *= 10
|
276
|
+
exponent -= 1
|
277
|
+
end
|
278
|
+
return (log10 * exponent).add(log(x, prec2), prec)
|
279
|
+
end
|
280
|
+
|
281
|
+
x_minus_one_exponent = (x - 1).exponent
|
282
|
+
|
283
|
+
# log(x) = log(sqrt(sqrt(sqrt(sqrt(x))))) * 2**sqrt_steps
|
284
|
+
sqrt_steps = [Integer.sqrt(prec2) + 3 * x_minus_one_exponent, 0].max
|
285
|
+
|
286
|
+
lg2 = 0.3010299956639812
|
287
|
+
sqrt_prec = prec2 + [-x_minus_one_exponent, 0].max + (sqrt_steps * lg2).ceil
|
288
|
+
|
289
|
+
sqrt_steps.times do
|
290
|
+
x = x.sqrt(sqrt_prec)
|
291
|
+
end
|
292
|
+
|
293
|
+
# Taylor series for log(x) around 1
|
294
|
+
# log(x) = -log((1 + X) / (1 - X)) where X = (x - 1) / (x + 1)
|
295
|
+
# log(x) = 2 * (X + X**3 / 3 + X**5 / 5 + X**7 / 7 + ...)
|
296
|
+
x = (x - 1).div(x + 1, sqrt_prec)
|
297
|
+
y = x
|
298
|
+
x2 = x.mult(x, prec2)
|
299
|
+
1.step do |i|
|
300
|
+
n = prec2 + x.exponent - y.exponent + x2.exponent
|
301
|
+
break if n <= 0 || x.zero?
|
302
|
+
x = x.mult(x2.round(n - x2.exponent), n)
|
303
|
+
y = y.add(x.div(2 * i + 1, n), prec2)
|
304
|
+
end
|
305
|
+
|
306
|
+
y.mult(2 ** (sqrt_steps + 1), prec)
|
307
|
+
end
|
308
|
+
end
|
309
|
+
|
310
|
+
# Taylor series for exp(x) around 0
|
311
|
+
private_class_method def self._exp_taylor(x, prec) # :nodoc:
|
312
|
+
xn = BigDecimal(1)
|
313
|
+
y = BigDecimal(1)
|
314
|
+
1.step do |i|
|
315
|
+
n = prec + xn.exponent
|
316
|
+
break if n <= 0 || xn.zero?
|
317
|
+
xn = xn.mult(x, n).div(i, n)
|
318
|
+
y = y.add(xn, prec)
|
319
|
+
end
|
320
|
+
y
|
321
|
+
end
|
322
|
+
|
323
|
+
# call-seq:
|
324
|
+
# BigMath.exp(decimal, numeric) -> BigDecimal
|
325
|
+
#
|
326
|
+
# Computes the value of e (the base of natural logarithms) raised to the
|
327
|
+
# power of +decimal+, to the specified number of digits of precision.
|
328
|
+
#
|
329
|
+
# If +decimal+ is infinity, returns Infinity.
|
330
|
+
#
|
331
|
+
# If +decimal+ is NaN, returns NaN.
|
332
|
+
#
|
333
|
+
def self.exp(x, prec)
|
334
|
+
prec = BigDecimal::Internal.coerce_validate_prec(prec, :exp)
|
335
|
+
x = BigDecimal::Internal.coerce_to_bigdecimal(x, prec, :exp)
|
336
|
+
return BigDecimal::Internal.nan_computation_result if x.nan?
|
337
|
+
return x.positive? ? BigDecimal::Internal.infinity_computation_result : BigDecimal(0) if x.infinite?
|
338
|
+
return BigDecimal(1) if x.zero?
|
339
|
+
|
340
|
+
# exp(x * 10**cnt) = exp(x)**(10**cnt)
|
341
|
+
cnt = x < -1 || x > 1 ? x.exponent : 0
|
342
|
+
prec2 = prec + BigDecimal.double_fig + cnt
|
343
|
+
x = x._decimal_shift(-cnt)
|
344
|
+
|
345
|
+
# Calculation of exp(small_prec) is fast because calculation of x**n is fast
|
346
|
+
# Calculation of exp(small_abs) converges fast.
|
347
|
+
# exp(x) = exp(small_prec_part + small_abs_part) = exp(small_prec_part) * exp(small_abs_part)
|
348
|
+
x_small_prec = x.round(Integer.sqrt(prec2))
|
349
|
+
y = _exp_taylor(x_small_prec, prec2).mult(_exp_taylor(x.sub(x_small_prec, prec2), prec2), prec2)
|
350
|
+
|
351
|
+
# calculate exp(x * 10**cnt) from exp(x)
|
352
|
+
# exp(x * 10**k) = exp(x * 10**(k - 1)) ** 10
|
353
|
+
cnt.times do
|
354
|
+
y2 = y.mult(y, prec2)
|
355
|
+
y5 = y2.mult(y2, prec2).mult(y, prec2)
|
356
|
+
y = y5.mult(y5, prec2)
|
357
|
+
end
|
358
|
+
|
359
|
+
y.mult(1, prec)
|
360
|
+
end
|
361
|
+
end
|
data/lib/bigdecimal.so
ADDED
Binary file
|
data/sample/linear.rb
ADDED
@@ -0,0 +1,74 @@
|
|
1
|
+
#!/usr/local/bin/ruby
|
2
|
+
# frozen_string_literal: false
|
3
|
+
|
4
|
+
#
|
5
|
+
# linear.rb
|
6
|
+
#
|
7
|
+
# Solves linear equation system(A*x = b) by LU decomposition method.
|
8
|
+
# where A is a coefficient matrix,x is an answer vector,b is a constant vector.
|
9
|
+
#
|
10
|
+
# USAGE:
|
11
|
+
# ruby linear.rb [input file solved]
|
12
|
+
#
|
13
|
+
|
14
|
+
# :stopdoc:
|
15
|
+
require "bigdecimal"
|
16
|
+
require "bigdecimal/ludcmp"
|
17
|
+
|
18
|
+
#
|
19
|
+
# NOTE:
|
20
|
+
# Change following BigDecimal.limit() if needed.
|
21
|
+
BigDecimal.limit(100)
|
22
|
+
#
|
23
|
+
|
24
|
+
include LUSolve
|
25
|
+
def rd_order(na)
|
26
|
+
printf("Number of equations ?") if(na <= 0)
|
27
|
+
n = ARGF.gets().to_i
|
28
|
+
end
|
29
|
+
|
30
|
+
na = ARGV.size
|
31
|
+
zero = BigDecimal("0.0")
|
32
|
+
one = BigDecimal("1.0")
|
33
|
+
|
34
|
+
while (n=rd_order(na))>0
|
35
|
+
a = []
|
36
|
+
as= []
|
37
|
+
b = []
|
38
|
+
if na <= 0
|
39
|
+
# Read data from console.
|
40
|
+
printf("\nEnter coefficient matrix element A[i,j]\n")
|
41
|
+
for i in 0...n do
|
42
|
+
for j in 0...n do
|
43
|
+
printf("A[%d,%d]? ",i,j); s = ARGF.gets
|
44
|
+
a << BigDecimal(s)
|
45
|
+
as << BigDecimal(s)
|
46
|
+
end
|
47
|
+
printf("Contatant vector element b[%d] ? ",i)
|
48
|
+
b << BigDecimal(ARGF.gets)
|
49
|
+
end
|
50
|
+
else
|
51
|
+
# Read data from specified file.
|
52
|
+
printf("Coefficient matrix and constant vector.\n")
|
53
|
+
for i in 0...n do
|
54
|
+
s = ARGF.gets
|
55
|
+
printf("%d) %s",i,s)
|
56
|
+
s = s.split
|
57
|
+
for j in 0...n do
|
58
|
+
a << BigDecimal(s[j])
|
59
|
+
as << BigDecimal(s[j])
|
60
|
+
end
|
61
|
+
b << BigDecimal(s[n])
|
62
|
+
end
|
63
|
+
end
|
64
|
+
x = lusolve(a,b,ludecomp(a,n,zero,one),zero)
|
65
|
+
printf("Answer(x[i] & (A*x-b)[i]) follows\n")
|
66
|
+
for i in 0...n do
|
67
|
+
printf("x[%d]=%s ",i,x[i].to_s)
|
68
|
+
s = zero
|
69
|
+
for j in 0...n do
|
70
|
+
s = s + as[i*n+j]*x[j]
|
71
|
+
end
|
72
|
+
printf(" & %s\n",(s-b[i]).to_s)
|
73
|
+
end
|
74
|
+
end
|
data/sample/nlsolve.rb
ADDED
@@ -0,0 +1,40 @@
|
|
1
|
+
#!/usr/local/bin/ruby
|
2
|
+
# frozen_string_literal: false
|
3
|
+
|
4
|
+
#
|
5
|
+
# nlsolve.rb
|
6
|
+
# An example for solving nonlinear algebraic equation system.
|
7
|
+
#
|
8
|
+
|
9
|
+
require "bigdecimal"
|
10
|
+
require "bigdecimal/newton"
|
11
|
+
include Newton
|
12
|
+
|
13
|
+
class Function # :nodoc: all
|
14
|
+
def initialize()
|
15
|
+
@zero = BigDecimal("0.0")
|
16
|
+
@one = BigDecimal("1.0")
|
17
|
+
@two = BigDecimal("2.0")
|
18
|
+
@ten = BigDecimal("10.0")
|
19
|
+
@eps = BigDecimal("1.0e-16")
|
20
|
+
end
|
21
|
+
def zero;@zero;end
|
22
|
+
def one ;@one ;end
|
23
|
+
def two ;@two ;end
|
24
|
+
def ten ;@ten ;end
|
25
|
+
def eps ;@eps ;end
|
26
|
+
def values(x) # <= defines functions solved
|
27
|
+
f = []
|
28
|
+
f1 = x[0]*x[0] + x[1]*x[1] - @two # f1 = x**2 + y**2 - 2 => 0
|
29
|
+
f2 = x[0] - x[1] # f2 = x - y => 0
|
30
|
+
f <<= f1
|
31
|
+
f <<= f2
|
32
|
+
f
|
33
|
+
end
|
34
|
+
end
|
35
|
+
|
36
|
+
f = BigDecimal.limit(100)
|
37
|
+
f = Function.new
|
38
|
+
x = [f.zero,f.zero] # Initial values
|
39
|
+
n = nlsolve(f,x)
|
40
|
+
p x
|
data/sample/pi.rb
ADDED
@@ -0,0 +1,21 @@
|
|
1
|
+
#!/usr/local/bin/ruby
|
2
|
+
# frozen_string_literal: false
|
3
|
+
|
4
|
+
#
|
5
|
+
# pi.rb
|
6
|
+
#
|
7
|
+
# Calculates 3.1415.... (the number of times that a circle's diameter
|
8
|
+
# will fit around the circle) using J. Machin's formula.
|
9
|
+
#
|
10
|
+
|
11
|
+
require "bigdecimal"
|
12
|
+
require "bigdecimal/math.rb"
|
13
|
+
|
14
|
+
include BigMath
|
15
|
+
|
16
|
+
if ARGV.size == 1
|
17
|
+
print "PI("+ARGV[0]+"):\n"
|
18
|
+
p PI(ARGV[0].to_i)
|
19
|
+
else
|
20
|
+
print "TRY: ruby pi.rb 1000 \n"
|
21
|
+
end
|