ecdsa_ext 0.4.2 → 0.5.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/lib/ecdsa/ext/abstract_point.rb +4 -0
- data/lib/ecdsa/ext/jacobian_point.rb +21 -65
- data/lib/ecdsa/ext/projective_point.rb +26 -31
- data/lib/ecdsa/ext/version.rb +1 -1
- data/lib/ecdsa/ext.rb +0 -2
- metadata +2 -4
- data/lib/ecdsa/ext/jacobian_arithmetic.rb +0 -86
- data/lib/ecdsa/ext/projective_arithmetic.rb +0 -143
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: f71a8a1ec3a2e0fef42f9820fd59ba1f7d440ec86e0c85922da554f4d1f9d8f2
|
4
|
+
data.tar.gz: 7c1db1f1c79d783f307f2fac3185ed837882bd68b516770da063a5d08dd04755
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: f2472cd8dbf5f124619222e00b55c661dcd74962a92a4decb5a4acaa31d281ed052177949875ae68d9b0ec581df2c602c1bc8e9dd72fa2409efebbdc5f51ae17
|
7
|
+
data.tar.gz: 8c4678914dae19af4f13408547ef95ee86041131541b37b68275a13c3da6f8d02641c134d4984e649d665f7c7eeb8d317e1a06a6a950128661c306bb29f98bb7
|
@@ -3,9 +3,8 @@
|
|
3
3
|
module ECDSA
|
4
4
|
module Ext
|
5
5
|
# Point of Jacobian coordinates
|
6
|
+
# http://point-at-infinity.org/ecc/Prime_Curve_Jacobian_Coordinates.html
|
6
7
|
class JacobianPoint < AbstractPoint
|
7
|
-
include JacobianArithmetic
|
8
|
-
|
9
8
|
# Add this point to another point on the same curve.
|
10
9
|
# @param [ECDSA::Ext::JacobianPoint] other
|
11
10
|
# @return [ECDSA::Ext::JacobianPoint]
|
@@ -20,37 +19,21 @@ module ECDSA
|
|
20
19
|
return other if infinity?
|
21
20
|
return self if other.infinity?
|
22
21
|
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
return other if y.zero? || z.zero?
|
28
|
-
return self if other.y.zero? || other.z.zero?
|
22
|
+
u1 = field.mod(x * field.power(other.z, 2))
|
23
|
+
u2 = field.mod(other.x * field.power(z, 2))
|
24
|
+
s1 = field.mod(y * field.power(other.z, 3))
|
25
|
+
s2 = field.mod(other.y * field.power(z, 3))
|
29
26
|
|
30
|
-
|
31
|
-
new_point =
|
32
|
-
if z == other.z
|
33
|
-
z == 1 ? add_with_z_one(self, other) : add_with_z_eq(self, other)
|
34
|
-
elsif z == 1
|
35
|
-
add_with_z2_one(other, self)
|
36
|
-
elsif other.z == 1
|
37
|
-
add_with_z2_one(self, other)
|
38
|
-
else
|
39
|
-
add_with_z_ne(self, other)
|
40
|
-
end
|
41
|
-
return(
|
42
|
-
(
|
43
|
-
if new_point.y.zero? || new_point.z.zero?
|
44
|
-
JacobianPoint.infinity_point(group)
|
45
|
-
else
|
46
|
-
new_point
|
47
|
-
end
|
48
|
-
)
|
49
|
-
)
|
50
|
-
end
|
27
|
+
return s1 == s2 ? double : infinity_point if u1 == u2
|
51
28
|
|
52
|
-
|
53
|
-
|
29
|
+
h = field.mod(u2 - u1)
|
30
|
+
h2 = field.power(h, 2)
|
31
|
+
h3 = field.power(h, 3)
|
32
|
+
r = field.mod(s2 - s1)
|
33
|
+
x3 = field.mod(field.power(r, 2) - h3 - 2 * u1 * h2)
|
34
|
+
y3 = field.mod(r * (u1 * h2 - x3) - s1 * h3)
|
35
|
+
z3 = field.mod(h * z * other.z)
|
36
|
+
JacobianPoint.new(group, x3, y3, z3)
|
54
37
|
end
|
55
38
|
alias + add_to_point
|
56
39
|
|
@@ -58,19 +41,14 @@ module ECDSA
|
|
58
41
|
# @return [ECDSA::Ext::JacobianPoint]
|
59
42
|
def double
|
60
43
|
return self if infinity?
|
44
|
+
return infinity_point if y.zero?
|
61
45
|
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
s = field.mod(2 * (field.square(x + yy) - xx - yyyy))
|
69
|
-
m = field.mod(3 * xx + group.param_a * zz * zz)
|
70
|
-
t = field.mod(m * m - 2 * s)
|
71
|
-
y3 = field.mod(m * (s - t) - 8 * yyyy)
|
72
|
-
z3 = field.mod(field.square(y + z) - yy - zz)
|
73
|
-
JacobianPoint.new(group, t, y3, z3)
|
46
|
+
s = field.mod(4 * x * field.power(y, 2))
|
47
|
+
m = field.mod(3 * field.power(x, 2) + group.param_a * field.power(z, 4))
|
48
|
+
x3 = field.mod(field.power(m, 2) - 2 * s)
|
49
|
+
y3 = field.mod(m * (s - x3) - 8 * field.power(y, 4))
|
50
|
+
z3 = field.mod(2 * y * z)
|
51
|
+
JacobianPoint.new(group, x3, y3, z3)
|
74
52
|
end
|
75
53
|
|
76
54
|
# Convert this coordinates to affine coordinates.
|
@@ -103,28 +81,6 @@ module ECDSA
|
|
103
81
|
|
104
82
|
lhs_x == rhs_x && lhs_y == rhs_y
|
105
83
|
end
|
106
|
-
|
107
|
-
private
|
108
|
-
|
109
|
-
def double_non_const
|
110
|
-
return self if infinity?
|
111
|
-
z == 1 ? double_z1 : double
|
112
|
-
end
|
113
|
-
|
114
|
-
def double_z1
|
115
|
-
z3 = field.mod(2 * y)
|
116
|
-
a = field.square(x)
|
117
|
-
b = field.square(y)
|
118
|
-
c = field.square(b)
|
119
|
-
b = field.square(x + b)
|
120
|
-
d = field.mod(2 * (b - (a + c)))
|
121
|
-
e = field.mod(a * 3)
|
122
|
-
f = field.square(e)
|
123
|
-
x3 = field.mod(f - (2 * d))
|
124
|
-
f = field.mod(d - x3)
|
125
|
-
y3 = field.mod(e * f - 8 * c)
|
126
|
-
JacobianPoint.new(group, x3, y3, z3)
|
127
|
-
end
|
128
84
|
end
|
129
85
|
end
|
130
86
|
end
|
@@ -3,9 +3,8 @@
|
|
3
3
|
module ECDSA
|
4
4
|
module Ext
|
5
5
|
# Representing a point on elliptic curves using projective coordinates.
|
6
|
+
# http://point-at-infinity.org/ecc/Prime_Curve_Standard_Projective_Coordinates.html
|
6
7
|
class ProjectivePoint < AbstractPoint
|
7
|
-
include ProjectiveArithmetic
|
8
|
-
|
9
8
|
# Add this point to another point on the same curve.
|
10
9
|
# @param [ECDSA::Ext::ProjectivePoint] other
|
11
10
|
# @return [ECDSA::Ext::ProjectivePoint]
|
@@ -20,30 +19,21 @@ module ECDSA
|
|
20
19
|
return other if infinity?
|
21
20
|
return self if other.infinity?
|
22
21
|
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
37
|
-
|
38
|
-
else
|
39
|
-
new_point
|
40
|
-
end
|
41
|
-
)
|
42
|
-
)
|
43
|
-
end
|
44
|
-
|
45
|
-
return double if self == other
|
46
|
-
raise "Failed to add #{inspect} to #{other.inspect}: No addition rules matched."
|
22
|
+
u1 = field.mod(other.y * z)
|
23
|
+
u2 = field.mod(y * other.z)
|
24
|
+
v1 = field.mod(other.x * z)
|
25
|
+
v2 = field.mod(x * other.z)
|
26
|
+
return u1 == u2 ? double : infinity_point if v1 == v2
|
27
|
+
u = field.mod(u1 - u2)
|
28
|
+
v = field.mod(v1 - v2)
|
29
|
+
vv = field.power(v, 2)
|
30
|
+
vvv = field.power(v, 3)
|
31
|
+
w = field.mod(z * other.z)
|
32
|
+
a = field.mod(field.power(u, 2) * w - vvv - 2 * vv * v2)
|
33
|
+
x3 = field.mod(v * a)
|
34
|
+
y3 = field.mod(u * (vv * v2 - a) - vvv * u2)
|
35
|
+
z3 = field.mod(vvv * w)
|
36
|
+
ProjectivePoint.new(group, x3, y3, z3)
|
47
37
|
end
|
48
38
|
alias + add_to_point
|
49
39
|
|
@@ -51,12 +41,17 @@ module ECDSA
|
|
51
41
|
# @return [ECDSA::Ext::ProjectivePoint]
|
52
42
|
def double
|
53
43
|
return self if infinity?
|
44
|
+
return infinity_point if y.zero?
|
54
45
|
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
46
|
+
w = field.mod(group.param_a * field.power(z, 2) + 3 * field.power(x, 2))
|
47
|
+
s = field.mod(y * z)
|
48
|
+
b = field.mod(x * y * s)
|
49
|
+
h = field.mod(field.power(w, 2) - 8 * b)
|
50
|
+
x3 = field.mod(2 * h * s)
|
51
|
+
y3 =
|
52
|
+
field.mod(w * (4 * b - h) - 8 * field.power(y, 2) * field.power(s, 2))
|
53
|
+
z3 = field.mod(8 * field.power(s, 3))
|
54
|
+
ProjectivePoint.new(group, x3, y3, z3)
|
60
55
|
end
|
61
56
|
|
62
57
|
# Convert this coordinates to affine coordinates.
|
data/lib/ecdsa/ext/version.rb
CHANGED
data/lib/ecdsa/ext.rb
CHANGED
@@ -5,9 +5,7 @@ module ECDSA
|
|
5
5
|
# Extension for ecdsa gem.
|
6
6
|
module Ext
|
7
7
|
autoload :AbstractPoint, "ecdsa/ext/abstract_point"
|
8
|
-
autoload :ProjectiveArithmetic, "ecdsa/ext/projective_arithmetic"
|
9
8
|
autoload :ProjectivePoint, "ecdsa/ext/projective_point"
|
10
|
-
autoload :JacobianArithmetic, "ecdsa/ext/jacobian_arithmetic"
|
11
9
|
autoload :JacobianPoint, "ecdsa/ext/jacobian_point"
|
12
10
|
end
|
13
11
|
end
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: ecdsa_ext
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.5.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- azuchi
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-03-
|
11
|
+
date: 2023-03-30 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: ecdsa
|
@@ -47,10 +47,8 @@ files:
|
|
47
47
|
- ecdsa_ext.gemspec
|
48
48
|
- lib/ecdsa/ext.rb
|
49
49
|
- lib/ecdsa/ext/abstract_point.rb
|
50
|
-
- lib/ecdsa/ext/jacobian_arithmetic.rb
|
51
50
|
- lib/ecdsa/ext/jacobian_point.rb
|
52
51
|
- lib/ecdsa/ext/point.rb
|
53
|
-
- lib/ecdsa/ext/projective_arithmetic.rb
|
54
52
|
- lib/ecdsa/ext/projective_point.rb
|
55
53
|
- lib/ecdsa/ext/sign_verify.rb
|
56
54
|
- lib/ecdsa/ext/version.rb
|
@@ -1,86 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
module ECDSA
|
3
|
-
module Ext
|
4
|
-
# Point arithmetic implementation
|
5
|
-
module JacobianArithmetic
|
6
|
-
def add_with_z_one(a, b)
|
7
|
-
field = a.field
|
8
|
-
h = field.mod(b.x - a.x)
|
9
|
-
hh = field.square(h)
|
10
|
-
i = field.mod(4 * hh)
|
11
|
-
j = field.mod(h * i)
|
12
|
-
r = field.mod(2 * (b.y - a.y))
|
13
|
-
return double_with_z_one(a) if h.zero? && r.zero?
|
14
|
-
v = field.mod(a.x * i)
|
15
|
-
x3 = field.mod(field.square(r) - j - 2 * v)
|
16
|
-
y3 = field.mod(r * (v - x3) - 2 * a.y * j)
|
17
|
-
z3 = field.mod(2 * h)
|
18
|
-
JacobianPoint.new(a.group, x3, y3, z3)
|
19
|
-
end
|
20
|
-
|
21
|
-
def add_with_z_eq(a, b)
|
22
|
-
field = a.field
|
23
|
-
a = field.square(field.mod(b.x - a.x))
|
24
|
-
b = field.mod(a.x * a)
|
25
|
-
c = field.mod(b.x * a)
|
26
|
-
d = field.square(field.mod(b.y - a.y))
|
27
|
-
return double(a) if a.zero? && d.zero?
|
28
|
-
x3 = field.mod(d - b - c)
|
29
|
-
y3 = field.mod((b.y - a.y) * (b - x3) - a.y * (c - b))
|
30
|
-
z3 = field.mod(a.z * (b.x - a.x))
|
31
|
-
JacobianPoint.new(a.group, x3, y3, z3)
|
32
|
-
end
|
33
|
-
|
34
|
-
def add_with_z2_one(a, b)
|
35
|
-
field = a.field
|
36
|
-
z1z1 = field.square(a.z)
|
37
|
-
u2 = field.mod(b.x * z1z1)
|
38
|
-
s2 = field.mod(b.y * a.z * z1z1)
|
39
|
-
h = field.mod(u2 - a.x)
|
40
|
-
hh = field.square(h)
|
41
|
-
i = field.mod(4 * hh)
|
42
|
-
j = field.mod(h * i)
|
43
|
-
r = field.mod(2 * (s2 - a.y))
|
44
|
-
return double_with_z_one(b) if r.zero? && h.zero?
|
45
|
-
v = field.mod(a.x * i)
|
46
|
-
x3 = field.mod(r * r - j - 2 * v)
|
47
|
-
y3 = field.mod(r * (v - x3) - 2 * a.y * j)
|
48
|
-
z3 = field.mod(field.square(a.z + h) - z1z1 - hh)
|
49
|
-
JacobianPoint.new(a.group, x3, y3, z3)
|
50
|
-
end
|
51
|
-
|
52
|
-
def add_with_z_ne(a, b)
|
53
|
-
field = a.field
|
54
|
-
z1z1 = field.square(a.z)
|
55
|
-
z2z2 = field.square(b.z)
|
56
|
-
u1 = field.mod(a.x * z2z2)
|
57
|
-
u2 = field.mod(b.x * z1z1)
|
58
|
-
s1 = field.mod(a.y * b.z * z2z2)
|
59
|
-
s2 = field.mod(b.y * a.z * z1z1)
|
60
|
-
h = field.mod(u2 - u1)
|
61
|
-
i = field.mod(4 * h * h)
|
62
|
-
j = field.mod(h * i)
|
63
|
-
r = field.mod(2 * (s2 - s1))
|
64
|
-
return double(a) if h.zero? && r.zero?
|
65
|
-
v = field.mod(u1 * i)
|
66
|
-
x3 = field.mod(r * r - j - 2 * v)
|
67
|
-
y3 = field.mod(r * (v - x3) - 2 * s1 * j)
|
68
|
-
z3 = field.mod((field.square(a.z + b.z) - z1z1 - z2z2) * h)
|
69
|
-
JacobianPoint.new(a.group, x3, y3, z3)
|
70
|
-
end
|
71
|
-
|
72
|
-
def double_with_z_one(point)
|
73
|
-
field = point.field
|
74
|
-
xx = field.square(point.x)
|
75
|
-
yy = field.square(point.y)
|
76
|
-
yyyy = field.square(yy)
|
77
|
-
s = field.mod(2 * (field.square(point.x + yy) - xx - yyyy))
|
78
|
-
m = field.mod(3 * xx + point.group.param_a)
|
79
|
-
t = field.mod(m * m - 2 * s)
|
80
|
-
y3 = field.mod(m * (s - t) - 8 * yyyy)
|
81
|
-
z3 = field.mod(2 * point.y)
|
82
|
-
JacobianPoint.new(point.group, t, y3, z3)
|
83
|
-
end
|
84
|
-
end
|
85
|
-
end
|
86
|
-
end
|
@@ -1,143 +0,0 @@
|
|
1
|
-
# frozen_string_literal: true
|
2
|
-
module ECDSA
|
3
|
-
module Ext
|
4
|
-
# Point arithmetic implementation
|
5
|
-
module ProjectiveArithmetic
|
6
|
-
def addition_negative3(a, b)
|
7
|
-
field = a.field
|
8
|
-
xx = field.mod(a.x * b.x)
|
9
|
-
yy = field.mod(a.y * b.y)
|
10
|
-
zz = field.mod(a.z * b.z)
|
11
|
-
xy_pairs = field.mod((a.x + a.y) * (b.x + b.y) - (xx + yy))
|
12
|
-
yz_pairs = field.mod((a.y + a.z) * (b.y + b.z) - (yy + zz))
|
13
|
-
xz_pairs = field.mod((a.x + a.z) * (b.x + b.z) - (xx + zz))
|
14
|
-
|
15
|
-
bzz_part = field.mod(xz_pairs - a.group.param_b * zz)
|
16
|
-
bzz3_part = field.mod(bzz_part * 2 + bzz_part)
|
17
|
-
yy_m_bzz3 = field.mod(yy - bzz3_part)
|
18
|
-
yy_p_bzz3 = field.mod(yy + bzz3_part)
|
19
|
-
|
20
|
-
zz3 = field.mod(zz * 3)
|
21
|
-
bxz_part = field.mod(a.group.param_b * xz_pairs - (zz3 + xx))
|
22
|
-
bxz3_part = field.mod(bxz_part * 3)
|
23
|
-
xx3_m_zz3 = field.mod(xx * 3 - zz3)
|
24
|
-
|
25
|
-
x = field.mod(yy_p_bzz3 * xy_pairs - yz_pairs * bxz3_part)
|
26
|
-
y = field.mod(yy_p_bzz3 * yy_m_bzz3 + xx3_m_zz3 * bxz3_part)
|
27
|
-
z = field.mod(yy_m_bzz3 * yz_pairs + xy_pairs * xx3_m_zz3)
|
28
|
-
ProjectivePoint.new(a.group, x, y, z)
|
29
|
-
end
|
30
|
-
|
31
|
-
def addition_any(a, b)
|
32
|
-
field = a.field
|
33
|
-
b3 = field.mod(3 * group.param_b)
|
34
|
-
t0 = field.mod(a.x * b.x)
|
35
|
-
t1 = field.mod(a.y * b.y)
|
36
|
-
t2 = field.mod(a.z * b.z)
|
37
|
-
t3 = field.mod(a.x + a.y)
|
38
|
-
t4 = field.mod(b.x + b.y)
|
39
|
-
t3 = field.mod(t3 * t4)
|
40
|
-
t4 = field.mod(t0 + t1)
|
41
|
-
t3 = field.mod(t3 - t4)
|
42
|
-
t4 = field.mod(a.x + a.z)
|
43
|
-
t5 = field.mod(b.x + b.z)
|
44
|
-
t4 = field.mod(t4 * t5)
|
45
|
-
t5 = field.mod(t0 + t2)
|
46
|
-
t4 = field.mod(t4 - t5)
|
47
|
-
t5 = field.mod(a.y + a.z)
|
48
|
-
x3 = field.mod(b.y + b.z)
|
49
|
-
t5 = field.mod(t5 * x3)
|
50
|
-
x3 = field.mod(t1 + t2)
|
51
|
-
t5 = field.mod(t5 - x3)
|
52
|
-
z3 = field.mod(a.group.param_a * t4)
|
53
|
-
x3 = field.mod(b3 * t2)
|
54
|
-
z3 = field.mod(x3 + z3)
|
55
|
-
x3 = field.mod(t1 - z3)
|
56
|
-
z3 = field.mod(t1 + z3)
|
57
|
-
y3 = field.mod(x3 * z3)
|
58
|
-
t1 = field.mod(t0 + t0)
|
59
|
-
t1 = field.mod(t1 + t0)
|
60
|
-
t2 = field.mod(a.group.param_a * t2)
|
61
|
-
t4 = field.mod(b3 * t4)
|
62
|
-
t1 = field.mod(t1 + t2)
|
63
|
-
t2 = field.mod(t0 - t2)
|
64
|
-
t2 = field.mod(a.group.param_a * t2)
|
65
|
-
t4 = field.mod(t4 + t2)
|
66
|
-
t0 = field.mod(t1 * t4)
|
67
|
-
y3 = field.mod(y3 + t0)
|
68
|
-
t0 = field.mod(t5 * t4)
|
69
|
-
x3 = field.mod(t3 * x3)
|
70
|
-
x3 = field.mod(x3 - t0)
|
71
|
-
t0 = field.mod(t3 * t1)
|
72
|
-
z3 = field.mod(t5 * z3)
|
73
|
-
z3 = field.mod(z3 + t0)
|
74
|
-
ProjectivePoint.new(a.group, x3, y3, z3)
|
75
|
-
end
|
76
|
-
|
77
|
-
def double_negative3(point)
|
78
|
-
field = point.field
|
79
|
-
xx = field.square(point.x)
|
80
|
-
yy = field.square(point.y)
|
81
|
-
zz = field.square(point.z)
|
82
|
-
xy2 = field.mod(point.x * point.y * 2)
|
83
|
-
xz2 = field.mod(point.x * point.z * 2)
|
84
|
-
|
85
|
-
bzz_part = field.mod(point.group.param_b * zz - xz2)
|
86
|
-
bzz3_part = field.mod(bzz_part + bzz_part + bzz_part)
|
87
|
-
yy_m_bzz3 = field.mod(yy - bzz3_part)
|
88
|
-
yy_p_bzz3 = field.mod(yy + bzz3_part)
|
89
|
-
y_frag = field.mod(yy_p_bzz3 * yy_m_bzz3)
|
90
|
-
x_frag = field.mod(yy_m_bzz3 * xy2)
|
91
|
-
|
92
|
-
zz3 = field.mod(zz * 3)
|
93
|
-
bxz2_part = field.mod(point.group.param_b * xz2 - (zz3 + xx))
|
94
|
-
bxz6_part = field.mod(bxz2_part * 3)
|
95
|
-
xx3_m_zz3 = field.mod(xx * 3 - zz3)
|
96
|
-
|
97
|
-
y = field.mod(y_frag + xx3_m_zz3 * bxz6_part)
|
98
|
-
yz2 = field.mod(point.y * point.z * 2)
|
99
|
-
x = field.mod(x_frag - bxz6_part * yz2)
|
100
|
-
z = field.mod(yz2 * yy * 4)
|
101
|
-
ProjectivePoint.new(point.group, x, y, z)
|
102
|
-
end
|
103
|
-
|
104
|
-
def double_any(point)
|
105
|
-
field = point.field
|
106
|
-
b3 = field.mod(point.group.param_b * 3)
|
107
|
-
|
108
|
-
t0 = field.mod(point.x * point.x)
|
109
|
-
t1 = field.mod(point.y * point.y)
|
110
|
-
t2 = field.mod(point.z * point.z)
|
111
|
-
t3 = field.mod(point.x * point.y)
|
112
|
-
t3 = field.mod(t3 + t3)
|
113
|
-
z3 = field.mod(point.x * point.z)
|
114
|
-
z3 = field.mod(z3 + z3)
|
115
|
-
x3 = field.mod(point.group.param_a * z3)
|
116
|
-
y3 = field.mod(b3 * t2)
|
117
|
-
y3 = field.mod(x3 + y3)
|
118
|
-
x3 = field.mod(t1 - y3)
|
119
|
-
y3 = field.mod(t1 + y3)
|
120
|
-
y3 = field.mod(x3 * y3)
|
121
|
-
x3 = field.mod(t3 * x3)
|
122
|
-
z3 = field.mod(b3 * z3)
|
123
|
-
t2 = field.mod(point.group.param_a * t2)
|
124
|
-
t3 = field.mod(t0 - t2)
|
125
|
-
t3 = field.mod(point.group.param_a * t3)
|
126
|
-
t3 = field.mod(t3 + z3)
|
127
|
-
z3 = field.mod(t0 + t0)
|
128
|
-
t0 = field.mod(z3 + t0)
|
129
|
-
t0 = field.mod(t0 + t2)
|
130
|
-
t0 = field.mod(t0 * t3)
|
131
|
-
y3 = field.mod(y3 + t0)
|
132
|
-
t2 = field.mod(point.y * point.z)
|
133
|
-
t2 = field.mod(t2 + t2)
|
134
|
-
t0 = field.mod(t2 * t3)
|
135
|
-
x3 = field.mod(x3 - t0)
|
136
|
-
z3 = field.mod(t2 * t1)
|
137
|
-
z3 = field.mod(z3 + z3)
|
138
|
-
z3 = field.mod(z3 + z3)
|
139
|
-
ProjectivePoint.new(point.group, x3, y3, z3)
|
140
|
-
end
|
141
|
-
end
|
142
|
-
end
|
143
|
-
end
|