easy_ml 0.1.4 → 0.2.0.pre.rc1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/README.md +234 -26
- data/Rakefile +45 -0
- data/app/controllers/easy_ml/application_controller.rb +67 -0
- data/app/controllers/easy_ml/columns_controller.rb +38 -0
- data/app/controllers/easy_ml/datasets_controller.rb +156 -0
- data/app/controllers/easy_ml/datasources_controller.rb +88 -0
- data/app/controllers/easy_ml/deploys_controller.rb +20 -0
- data/app/controllers/easy_ml/models_controller.rb +151 -0
- data/app/controllers/easy_ml/retraining_runs_controller.rb +19 -0
- data/app/controllers/easy_ml/settings_controller.rb +59 -0
- data/app/frontend/components/AlertProvider.tsx +108 -0
- data/app/frontend/components/DatasetPreview.tsx +161 -0
- data/app/frontend/components/EmptyState.tsx +28 -0
- data/app/frontend/components/ModelCard.tsx +255 -0
- data/app/frontend/components/ModelDetails.tsx +334 -0
- data/app/frontend/components/ModelForm.tsx +384 -0
- data/app/frontend/components/Navigation.tsx +300 -0
- data/app/frontend/components/Pagination.tsx +72 -0
- data/app/frontend/components/Popover.tsx +55 -0
- data/app/frontend/components/PredictionStream.tsx +105 -0
- data/app/frontend/components/ScheduleModal.tsx +726 -0
- data/app/frontend/components/SearchInput.tsx +23 -0
- data/app/frontend/components/SearchableSelect.tsx +132 -0
- data/app/frontend/components/dataset/AutosaveIndicator.tsx +39 -0
- data/app/frontend/components/dataset/ColumnConfigModal.tsx +431 -0
- data/app/frontend/components/dataset/ColumnFilters.tsx +256 -0
- data/app/frontend/components/dataset/ColumnList.tsx +101 -0
- data/app/frontend/components/dataset/FeatureConfigPopover.tsx +57 -0
- data/app/frontend/components/dataset/FeaturePicker.tsx +205 -0
- data/app/frontend/components/dataset/PreprocessingConfig.tsx +704 -0
- data/app/frontend/components/dataset/SplitConfigurator.tsx +120 -0
- data/app/frontend/components/dataset/splitters/DateSplitter.tsx +58 -0
- data/app/frontend/components/dataset/splitters/KFoldSplitter.tsx +68 -0
- data/app/frontend/components/dataset/splitters/LeavePOutSplitter.tsx +29 -0
- data/app/frontend/components/dataset/splitters/PredefinedSplitter.tsx +146 -0
- data/app/frontend/components/dataset/splitters/RandomSplitter.tsx +85 -0
- data/app/frontend/components/dataset/splitters/StratifiedSplitter.tsx +79 -0
- data/app/frontend/components/dataset/splitters/constants.ts +77 -0
- data/app/frontend/components/dataset/splitters/types.ts +168 -0
- data/app/frontend/components/dataset/splitters/utils.ts +53 -0
- data/app/frontend/components/features/CodeEditor.tsx +46 -0
- data/app/frontend/components/features/DataPreview.tsx +150 -0
- data/app/frontend/components/features/FeatureCard.tsx +88 -0
- data/app/frontend/components/features/FeatureForm.tsx +235 -0
- data/app/frontend/components/features/FeatureGroupCard.tsx +54 -0
- data/app/frontend/components/settings/PluginSettings.tsx +81 -0
- data/app/frontend/components/ui/badge.tsx +44 -0
- data/app/frontend/components/ui/collapsible.tsx +9 -0
- data/app/frontend/components/ui/scroll-area.tsx +46 -0
- data/app/frontend/components/ui/separator.tsx +29 -0
- data/app/frontend/entrypoints/App.tsx +40 -0
- data/app/frontend/entrypoints/Application.tsx +24 -0
- data/app/frontend/hooks/useAutosave.ts +61 -0
- data/app/frontend/layouts/Layout.tsx +38 -0
- data/app/frontend/lib/utils.ts +6 -0
- data/app/frontend/mockData.ts +272 -0
- data/app/frontend/pages/DatasetDetailsPage.tsx +103 -0
- data/app/frontend/pages/DatasetsPage.tsx +261 -0
- data/app/frontend/pages/DatasourceFormPage.tsx +147 -0
- data/app/frontend/pages/DatasourcesPage.tsx +261 -0
- data/app/frontend/pages/EditModelPage.tsx +45 -0
- data/app/frontend/pages/EditTransformationPage.tsx +56 -0
- data/app/frontend/pages/ModelsPage.tsx +115 -0
- data/app/frontend/pages/NewDatasetPage.tsx +366 -0
- data/app/frontend/pages/NewModelPage.tsx +45 -0
- data/app/frontend/pages/NewTransformationPage.tsx +43 -0
- data/app/frontend/pages/SettingsPage.tsx +272 -0
- data/app/frontend/pages/ShowModelPage.tsx +30 -0
- data/app/frontend/pages/TransformationsPage.tsx +95 -0
- data/app/frontend/styles/application.css +100 -0
- data/app/frontend/types/dataset.ts +146 -0
- data/app/frontend/types/datasource.ts +33 -0
- data/app/frontend/types/preprocessing.ts +1 -0
- data/app/frontend/types.ts +113 -0
- data/app/helpers/easy_ml/application_helper.rb +10 -0
- data/app/jobs/easy_ml/application_job.rb +21 -0
- data/app/jobs/easy_ml/batch_job.rb +46 -0
- data/app/jobs/easy_ml/compute_feature_job.rb +19 -0
- data/app/jobs/easy_ml/deploy_job.rb +13 -0
- data/app/jobs/easy_ml/finalize_feature_job.rb +15 -0
- data/app/jobs/easy_ml/refresh_dataset_job.rb +32 -0
- data/app/jobs/easy_ml/schedule_retraining_job.rb +11 -0
- data/app/jobs/easy_ml/sync_datasource_job.rb +17 -0
- data/app/jobs/easy_ml/training_job.rb +62 -0
- data/app/models/easy_ml/adapters/base_adapter.rb +45 -0
- data/app/models/easy_ml/adapters/polars_adapter.rb +77 -0
- data/app/models/easy_ml/cleaner.rb +82 -0
- data/app/models/easy_ml/column.rb +124 -0
- data/app/models/easy_ml/column_history.rb +30 -0
- data/app/models/easy_ml/column_list.rb +122 -0
- data/app/models/easy_ml/concerns/configurable.rb +61 -0
- data/app/models/easy_ml/concerns/versionable.rb +19 -0
- data/app/models/easy_ml/dataset.rb +767 -0
- data/app/models/easy_ml/dataset_history.rb +56 -0
- data/app/models/easy_ml/datasource.rb +182 -0
- data/app/models/easy_ml/datasource_history.rb +24 -0
- data/app/models/easy_ml/datasources/base_datasource.rb +54 -0
- data/app/models/easy_ml/datasources/file_datasource.rb +58 -0
- data/app/models/easy_ml/datasources/polars_datasource.rb +89 -0
- data/app/models/easy_ml/datasources/s3_datasource.rb +97 -0
- data/app/models/easy_ml/deploy.rb +114 -0
- data/app/models/easy_ml/event.rb +79 -0
- data/app/models/easy_ml/feature.rb +437 -0
- data/app/models/easy_ml/feature_history.rb +38 -0
- data/app/models/easy_ml/model.rb +575 -41
- data/app/models/easy_ml/model_file.rb +133 -0
- data/app/models/easy_ml/model_file_history.rb +24 -0
- data/app/models/easy_ml/model_history.rb +51 -0
- data/app/models/easy_ml/models/base_model.rb +58 -0
- data/app/models/easy_ml/models/hyperparameters/base.rb +99 -0
- data/app/models/easy_ml/models/hyperparameters/xgboost/dart.rb +82 -0
- data/app/models/easy_ml/models/hyperparameters/xgboost/gblinear.rb +82 -0
- data/app/models/easy_ml/models/hyperparameters/xgboost/gbtree.rb +97 -0
- data/app/models/easy_ml/models/hyperparameters/xgboost.rb +71 -0
- data/app/models/easy_ml/models/xgboost/evals_callback.rb +138 -0
- data/app/models/easy_ml/models/xgboost/progress_callback.rb +39 -0
- data/app/models/easy_ml/models/xgboost.rb +544 -5
- data/app/models/easy_ml/prediction.rb +44 -0
- data/app/models/easy_ml/retraining_job.rb +278 -0
- data/app/models/easy_ml/retraining_run.rb +184 -0
- data/app/models/easy_ml/settings.rb +37 -0
- data/app/models/easy_ml/splitter.rb +90 -0
- data/app/models/easy_ml/splitters/base_splitter.rb +28 -0
- data/app/models/easy_ml/splitters/date_splitter.rb +91 -0
- data/app/models/easy_ml/splitters/predefined_splitter.rb +74 -0
- data/app/models/easy_ml/splitters/random_splitter.rb +82 -0
- data/app/models/easy_ml/tuner_job.rb +56 -0
- data/app/models/easy_ml/tuner_run.rb +31 -0
- data/app/models/splitter_history.rb +6 -0
- data/app/serializers/easy_ml/column_serializer.rb +27 -0
- data/app/serializers/easy_ml/dataset_serializer.rb +73 -0
- data/app/serializers/easy_ml/datasource_serializer.rb +64 -0
- data/app/serializers/easy_ml/feature_serializer.rb +27 -0
- data/app/serializers/easy_ml/model_serializer.rb +90 -0
- data/app/serializers/easy_ml/retraining_job_serializer.rb +22 -0
- data/app/serializers/easy_ml/retraining_run_serializer.rb +39 -0
- data/app/serializers/easy_ml/settings_serializer.rb +9 -0
- data/app/views/layouts/easy_ml/application.html.erb +15 -0
- data/config/initializers/resque.rb +3 -0
- data/config/resque-pool.yml +6 -0
- data/config/routes.rb +39 -0
- data/config/spring.rb +1 -0
- data/config/vite.json +15 -0
- data/lib/easy_ml/configuration.rb +64 -0
- data/lib/easy_ml/core/evaluators/base_evaluator.rb +53 -0
- data/lib/easy_ml/core/evaluators/classification_evaluators.rb +126 -0
- data/lib/easy_ml/core/evaluators/regression_evaluators.rb +66 -0
- data/lib/easy_ml/core/model_evaluator.rb +161 -89
- data/lib/easy_ml/core/tuner/adapters/base_adapter.rb +28 -18
- data/lib/easy_ml/core/tuner/adapters/xgboost_adapter.rb +4 -25
- data/lib/easy_ml/core/tuner.rb +123 -62
- data/lib/easy_ml/core.rb +0 -3
- data/lib/easy_ml/core_ext/hash.rb +24 -0
- data/lib/easy_ml/core_ext/pathname.rb +11 -5
- data/lib/easy_ml/data/date_converter.rb +90 -0
- data/lib/easy_ml/data/filter_extensions.rb +31 -0
- data/lib/easy_ml/data/polars_column.rb +126 -0
- data/lib/easy_ml/data/polars_reader.rb +297 -0
- data/lib/easy_ml/data/preprocessor.rb +280 -142
- data/lib/easy_ml/data/simple_imputer.rb +255 -0
- data/lib/easy_ml/data/splits/file_split.rb +252 -0
- data/lib/easy_ml/data/splits/in_memory_split.rb +54 -0
- data/lib/easy_ml/data/splits/split.rb +95 -0
- data/lib/easy_ml/data/splits.rb +9 -0
- data/lib/easy_ml/data/statistics_learner.rb +93 -0
- data/lib/easy_ml/data/synced_directory.rb +341 -0
- data/lib/easy_ml/data.rb +6 -2
- data/lib/easy_ml/engine.rb +105 -6
- data/lib/easy_ml/feature_store.rb +227 -0
- data/lib/easy_ml/features.rb +61 -0
- data/lib/easy_ml/initializers/inflections.rb +17 -3
- data/lib/easy_ml/logging.rb +2 -2
- data/lib/easy_ml/predict.rb +74 -0
- data/lib/easy_ml/railtie/generators/migration/migration_generator.rb +192 -36
- data/lib/easy_ml/railtie/templates/migration/create_easy_ml_column_histories.rb.tt +9 -0
- data/lib/easy_ml/railtie/templates/migration/create_easy_ml_columns.rb.tt +25 -0
- data/lib/easy_ml/railtie/templates/migration/create_easy_ml_dataset_histories.rb.tt +9 -0
- data/lib/easy_ml/railtie/templates/migration/create_easy_ml_datasets.rb.tt +31 -0
- data/lib/easy_ml/railtie/templates/migration/create_easy_ml_datasource_histories.rb.tt +9 -0
- data/lib/easy_ml/railtie/templates/migration/create_easy_ml_datasources.rb.tt +16 -0
- data/lib/easy_ml/railtie/templates/migration/create_easy_ml_deploys.rb.tt +24 -0
- data/lib/easy_ml/railtie/templates/migration/create_easy_ml_events.rb.tt +20 -0
- data/lib/easy_ml/railtie/templates/migration/create_easy_ml_feature_histories.rb.tt +14 -0
- data/lib/easy_ml/railtie/templates/migration/create_easy_ml_features.rb.tt +32 -0
- data/lib/easy_ml/railtie/templates/migration/create_easy_ml_model_file_histories.rb.tt +9 -0
- data/lib/easy_ml/railtie/templates/migration/create_easy_ml_model_files.rb.tt +17 -0
- data/lib/easy_ml/railtie/templates/migration/create_easy_ml_model_histories.rb.tt +9 -0
- data/lib/easy_ml/railtie/templates/migration/create_easy_ml_models.rb.tt +20 -9
- data/lib/easy_ml/railtie/templates/migration/create_easy_ml_predictions.rb.tt +17 -0
- data/lib/easy_ml/railtie/templates/migration/create_easy_ml_retraining_jobs.rb.tt +77 -0
- data/lib/easy_ml/railtie/templates/migration/create_easy_ml_settings.rb.tt +9 -0
- data/lib/easy_ml/railtie/templates/migration/create_easy_ml_splitter_histories.rb.tt +9 -0
- data/lib/easy_ml/railtie/templates/migration/create_easy_ml_splitters.rb.tt +15 -0
- data/lib/easy_ml/railtie/templates/migration/create_easy_ml_tuner_jobs.rb.tt +40 -0
- data/lib/easy_ml/support/est.rb +5 -1
- data/lib/easy_ml/support/file_rotate.rb +79 -15
- data/lib/easy_ml/support/file_support.rb +9 -0
- data/lib/easy_ml/support/local_file.rb +24 -0
- data/lib/easy_ml/support/lockable.rb +62 -0
- data/lib/easy_ml/support/synced_file.rb +103 -0
- data/lib/easy_ml/support/utc.rb +5 -1
- data/lib/easy_ml/support.rb +6 -3
- data/lib/easy_ml/version.rb +4 -1
- data/lib/easy_ml.rb +7 -2
- metadata +355 -72
- data/app/models/easy_ml/models.rb +0 -5
- data/lib/easy_ml/core/model.rb +0 -30
- data/lib/easy_ml/core/model_core.rb +0 -181
- data/lib/easy_ml/core/models/hyperparameters/base.rb +0 -34
- data/lib/easy_ml/core/models/hyperparameters/xgboost.rb +0 -19
- data/lib/easy_ml/core/models/xgboost.rb +0 -10
- data/lib/easy_ml/core/models/xgboost_core.rb +0 -220
- data/lib/easy_ml/core/models.rb +0 -10
- data/lib/easy_ml/core/uploaders/model_uploader.rb +0 -24
- data/lib/easy_ml/core/uploaders.rb +0 -7
- data/lib/easy_ml/data/dataloader.rb +0 -6
- data/lib/easy_ml/data/dataset/data/preprocessor/statistics.json +0 -31
- data/lib/easy_ml/data/dataset/data/sample_info.json +0 -1
- data/lib/easy_ml/data/dataset/dataset/files/sample_info.json +0 -1
- data/lib/easy_ml/data/dataset/splits/file_split.rb +0 -140
- data/lib/easy_ml/data/dataset/splits/in_memory_split.rb +0 -49
- data/lib/easy_ml/data/dataset/splits/split.rb +0 -98
- data/lib/easy_ml/data/dataset/splits.rb +0 -11
- data/lib/easy_ml/data/dataset/splitters/date_splitter.rb +0 -43
- data/lib/easy_ml/data/dataset/splitters.rb +0 -9
- data/lib/easy_ml/data/dataset.rb +0 -430
- data/lib/easy_ml/data/datasource/datasource_factory.rb +0 -60
- data/lib/easy_ml/data/datasource/file_datasource.rb +0 -40
- data/lib/easy_ml/data/datasource/merged_datasource.rb +0 -64
- data/lib/easy_ml/data/datasource/polars_datasource.rb +0 -41
- data/lib/easy_ml/data/datasource/s3_datasource.rb +0 -89
- data/lib/easy_ml/data/datasource.rb +0 -33
- data/lib/easy_ml/data/preprocessor/preprocessor.rb +0 -205
- data/lib/easy_ml/data/preprocessor/simple_imputer.rb +0 -402
- data/lib/easy_ml/deployment.rb +0 -5
- data/lib/easy_ml/support/synced_directory.rb +0 -134
- data/lib/easy_ml/transforms.rb +0 -29
- /data/{lib/easy_ml/core → app/models/easy_ml}/models/hyperparameters.rb +0 -0
@@ -0,0 +1,767 @@
|
|
1
|
+
# == Schetuma Information
|
2
|
+
#
|
3
|
+
# Table name: easy_ml_datasets
|
4
|
+
#
|
5
|
+
# id :bigint not null, primary key
|
6
|
+
# name :string not null
|
7
|
+
# description :string
|
8
|
+
# dataset_type :string
|
9
|
+
# status :string
|
10
|
+
# version :string
|
11
|
+
# datasource_id :bigint
|
12
|
+
# root_dir :string
|
13
|
+
# configuration :json
|
14
|
+
# num_rows :bigint
|
15
|
+
# workflow_status :string
|
16
|
+
# statistics :json
|
17
|
+
# preprocessor_statistics :json
|
18
|
+
# schema :json
|
19
|
+
# refreshed_at :datetime
|
20
|
+
# created_at :datetime not null
|
21
|
+
# updated_at :datetime not null
|
22
|
+
#
|
23
|
+
module EasyML
|
24
|
+
class Dataset < ActiveRecord::Base
|
25
|
+
self.table_name = "easy_ml_datasets"
|
26
|
+
include EasyML::Concerns::Configurable
|
27
|
+
include EasyML::Concerns::Versionable
|
28
|
+
include Historiographer::Silent
|
29
|
+
historiographer_mode :snapshot_only
|
30
|
+
|
31
|
+
enum workflow_status: {
|
32
|
+
analyzing: "analyzing",
|
33
|
+
ready: "ready",
|
34
|
+
failed: "failed",
|
35
|
+
}
|
36
|
+
|
37
|
+
SPLIT_ORDER = %i[train valid test]
|
38
|
+
|
39
|
+
self.filter_attributes += %i[configuration statistics schema]
|
40
|
+
|
41
|
+
validates :name, presence: true
|
42
|
+
belongs_to :datasource, class_name: "EasyML::Datasource"
|
43
|
+
|
44
|
+
has_many :models, class_name: "EasyML::Model"
|
45
|
+
has_many :columns, class_name: "EasyML::Column", dependent: :destroy, extend: EasyML::ColumnList
|
46
|
+
accepts_nested_attributes_for :columns, allow_destroy: true, update_only: true
|
47
|
+
|
48
|
+
has_many :features, dependent: :destroy, class_name: "EasyML::Feature"
|
49
|
+
accepts_nested_attributes_for :features, allow_destroy: true
|
50
|
+
|
51
|
+
has_many :events, as: :eventable, class_name: "EasyML::Event", dependent: :destroy
|
52
|
+
|
53
|
+
before_destroy :destructively_cleanup!
|
54
|
+
|
55
|
+
delegate :new_data_available?, :synced?, :stale?, to: :datasource
|
56
|
+
delegate :train, :test, :valid, to: :split
|
57
|
+
delegate :splits, to: :splitter
|
58
|
+
|
59
|
+
has_one :splitter, class_name: "EasyML::Splitter", dependent: :destroy, inverse_of: :dataset
|
60
|
+
|
61
|
+
accepts_nested_attributes_for :splitter,
|
62
|
+
allow_destroy: true,
|
63
|
+
reject_if: :all_blank
|
64
|
+
|
65
|
+
validates :datasource, presence: true
|
66
|
+
|
67
|
+
add_configuration_attributes :remote_files
|
68
|
+
|
69
|
+
after_find :download_remote_files
|
70
|
+
after_create :refresh_async
|
71
|
+
after_initialize do
|
72
|
+
bump_version unless version.present?
|
73
|
+
write_attribute(:workflow_status, :ready) if workflow_status.nil?
|
74
|
+
end
|
75
|
+
before_save :set_root_dir
|
76
|
+
before_validation :filter_duplicate_features
|
77
|
+
|
78
|
+
def self.constants
|
79
|
+
{
|
80
|
+
column_types: EasyML::Data::PolarsColumn::TYPE_MAP.keys.map do |type|
|
81
|
+
{ value: type.to_s, label: type.to_s.titleize }
|
82
|
+
end,
|
83
|
+
preprocessing_strategies: EasyML::Data::Preprocessor.constants[:preprocessing_strategies],
|
84
|
+
feature_options: EasyML::Features::Registry.list_flat,
|
85
|
+
splitter_constants: EasyML::Splitter.constants,
|
86
|
+
}
|
87
|
+
end
|
88
|
+
|
89
|
+
def root_dir=(value)
|
90
|
+
raise "Cannot override value of root_dir!" unless value.to_s == root_dir.to_s
|
91
|
+
|
92
|
+
write_attribute(:root_dir, value)
|
93
|
+
end
|
94
|
+
|
95
|
+
def set_root_dir
|
96
|
+
write_attribute(:root_dir, root_dir)
|
97
|
+
end
|
98
|
+
|
99
|
+
def root_dir
|
100
|
+
bump_version
|
101
|
+
EasyML::Engine.root_dir.join("datasets").join(underscored_name).join(version).to_s
|
102
|
+
end
|
103
|
+
|
104
|
+
def destructively_cleanup!
|
105
|
+
FileUtils.rm_rf(root_dir) if root_dir.present?
|
106
|
+
end
|
107
|
+
|
108
|
+
def schema
|
109
|
+
read_attribute(:schema) || datasource.schema
|
110
|
+
end
|
111
|
+
|
112
|
+
def processed_schema
|
113
|
+
processed.data(limit: 1)&.schema || raw.data(limit: 1)&.schema
|
114
|
+
end
|
115
|
+
|
116
|
+
def refresh_datatypes
|
117
|
+
return unless columns_need_refresh?
|
118
|
+
|
119
|
+
cleanup
|
120
|
+
datasource.reread(columns)
|
121
|
+
end
|
122
|
+
|
123
|
+
def num_rows
|
124
|
+
if datasource&.num_rows.nil?
|
125
|
+
datasource.after_sync
|
126
|
+
end
|
127
|
+
datasource&.num_rows
|
128
|
+
end
|
129
|
+
|
130
|
+
def refresh_async
|
131
|
+
return if analyzing?
|
132
|
+
|
133
|
+
update(workflow_status: "analyzing")
|
134
|
+
EasyML::RefreshDatasetJob.perform_later(id)
|
135
|
+
end
|
136
|
+
|
137
|
+
def raw
|
138
|
+
return @raw if @raw && @raw.dataset
|
139
|
+
|
140
|
+
@raw = initialize_split("raw")
|
141
|
+
end
|
142
|
+
|
143
|
+
def processed
|
144
|
+
return @processed if @processed && @processed.dataset
|
145
|
+
|
146
|
+
@processed = initialize_split("processed")
|
147
|
+
end
|
148
|
+
|
149
|
+
def bump_versions(version)
|
150
|
+
self.version = version
|
151
|
+
|
152
|
+
@raw = raw.cp(version)
|
153
|
+
@processed = processed.cp(version)
|
154
|
+
features.each(&:bump_version)
|
155
|
+
|
156
|
+
save
|
157
|
+
end
|
158
|
+
|
159
|
+
def prepare!
|
160
|
+
cleanup
|
161
|
+
refresh_datasource!
|
162
|
+
split_data
|
163
|
+
end
|
164
|
+
|
165
|
+
def prepare
|
166
|
+
refresh_datasource
|
167
|
+
split_data
|
168
|
+
end
|
169
|
+
|
170
|
+
def actually_refresh
|
171
|
+
refreshing do
|
172
|
+
split_data
|
173
|
+
process_data
|
174
|
+
fully_reload
|
175
|
+
learn
|
176
|
+
now = UTC.now
|
177
|
+
update(workflow_status: "ready", refreshed_at: now, updated_at: now)
|
178
|
+
fully_reload
|
179
|
+
end
|
180
|
+
end
|
181
|
+
|
182
|
+
def refresh!(async: false)
|
183
|
+
refreshing do
|
184
|
+
prepare!
|
185
|
+
fit_features!(async: async)
|
186
|
+
end
|
187
|
+
after_fit_features unless async
|
188
|
+
end
|
189
|
+
|
190
|
+
def refresh(async: false)
|
191
|
+
return refresh_async if async
|
192
|
+
|
193
|
+
refreshing do
|
194
|
+
prepare
|
195
|
+
fit_features(async: async)
|
196
|
+
end
|
197
|
+
after_fit_features unless async
|
198
|
+
end
|
199
|
+
|
200
|
+
def fit_features!(async: false, features: self.features)
|
201
|
+
fit_features(async: async, features: features, force: true)
|
202
|
+
end
|
203
|
+
|
204
|
+
def fit_features(async: false, features: self.features, force: false)
|
205
|
+
features_to_compute = force ? features : features.needs_fit
|
206
|
+
return if features_to_compute.empty?
|
207
|
+
|
208
|
+
features.first.fit(features: features_to_compute, async: async)
|
209
|
+
end
|
210
|
+
|
211
|
+
def after_fit_features
|
212
|
+
features.update_all(needs_fit: false, fit_at: Time.current)
|
213
|
+
unlock!
|
214
|
+
actually_refresh
|
215
|
+
end
|
216
|
+
|
217
|
+
def columns_need_refresh
|
218
|
+
preloaded_columns.select do |col|
|
219
|
+
col.updated_at.present? &&
|
220
|
+
refreshed_at.present? &&
|
221
|
+
col.updated_at > refreshed_at
|
222
|
+
end
|
223
|
+
end
|
224
|
+
|
225
|
+
def columns_need_refresh?
|
226
|
+
columns_need_refresh.any?
|
227
|
+
end
|
228
|
+
|
229
|
+
def features_need_fit
|
230
|
+
preloaded_features.select do |f|
|
231
|
+
(f.updated_at.present? && refreshed_at.present? && f.updated_at > refreshed_at) ||
|
232
|
+
f.needs_fit?
|
233
|
+
end
|
234
|
+
end
|
235
|
+
|
236
|
+
def features_need_fit?
|
237
|
+
features_need_fit.any?
|
238
|
+
end
|
239
|
+
|
240
|
+
def refresh_reasons
|
241
|
+
{
|
242
|
+
"Not split" => not_split?,
|
243
|
+
"Refreshed at is nil" => refreshed_at.nil?,
|
244
|
+
"Columns need refresh" => columns_need_refresh?,
|
245
|
+
"Features need refresh" => features_need_fit?,
|
246
|
+
"Datasource needs refresh" => datasource_needs_refresh?,
|
247
|
+
"Datasource was refreshed" => datasource_was_refreshed?,
|
248
|
+
}.select { |k, v| v }.map { |k, v| k }
|
249
|
+
end
|
250
|
+
|
251
|
+
def needs_refresh?
|
252
|
+
refresh_reasons.any?
|
253
|
+
end
|
254
|
+
|
255
|
+
def not_split?
|
256
|
+
processed.split_at.nil? || raw.split_at.nil?
|
257
|
+
end
|
258
|
+
|
259
|
+
def datasource_needs_refresh?
|
260
|
+
datasource&.needs_refresh?
|
261
|
+
end
|
262
|
+
|
263
|
+
def datasource_was_refreshed?
|
264
|
+
raw.split_at.present? && raw.split_at < datasource.last_updated_at
|
265
|
+
end
|
266
|
+
|
267
|
+
def learn
|
268
|
+
learn_schema
|
269
|
+
learn_statistics
|
270
|
+
columns.sync
|
271
|
+
end
|
272
|
+
|
273
|
+
def refreshing
|
274
|
+
return false if is_history_class?
|
275
|
+
unlock! unless analyzing?
|
276
|
+
|
277
|
+
lock_dataset do
|
278
|
+
update(workflow_status: "analyzing")
|
279
|
+
fully_reload
|
280
|
+
yield
|
281
|
+
ensure
|
282
|
+
unlock!
|
283
|
+
end
|
284
|
+
rescue => e
|
285
|
+
update(workflow_status: "failed")
|
286
|
+
e.backtrace.grep(/easy_ml/).each do |line|
|
287
|
+
puts line
|
288
|
+
end
|
289
|
+
raise e
|
290
|
+
end
|
291
|
+
|
292
|
+
def unlock!
|
293
|
+
Support::Lockable.unlock!(lock_key)
|
294
|
+
end
|
295
|
+
|
296
|
+
def locked?
|
297
|
+
Support::Lockable.locked?(lock_key)
|
298
|
+
end
|
299
|
+
|
300
|
+
def lock_dataset
|
301
|
+
data = processed.data(limit: 1).to_a.any? ? processed.data : raw.data
|
302
|
+
with_lock do |client|
|
303
|
+
yield
|
304
|
+
end
|
305
|
+
end
|
306
|
+
|
307
|
+
def with_lock
|
308
|
+
EasyML::Support::Lockable.with_lock(lock_key, stale_timeout: 60, resources: 1) do |client|
|
309
|
+
yield client
|
310
|
+
end
|
311
|
+
end
|
312
|
+
|
313
|
+
def lock_key
|
314
|
+
"dataset:#{id}"
|
315
|
+
end
|
316
|
+
|
317
|
+
def learn_schema
|
318
|
+
data = processed.data(limit: 1).to_a.any? ? processed.data : raw.data
|
319
|
+
schema = data.schema.reduce({}) do |h, (k, v)|
|
320
|
+
h.tap do
|
321
|
+
h[k] = EasyML::Data::PolarsColumn.polars_to_sym(v)
|
322
|
+
end
|
323
|
+
end
|
324
|
+
write_attribute(:schema, schema)
|
325
|
+
end
|
326
|
+
|
327
|
+
def learn_statistics
|
328
|
+
update(
|
329
|
+
statistics: EasyML::Data::StatisticsLearner.learn(raw, processed),
|
330
|
+
)
|
331
|
+
end
|
332
|
+
|
333
|
+
def process_data
|
334
|
+
split_data
|
335
|
+
fit
|
336
|
+
normalize_all
|
337
|
+
# alert_nulls
|
338
|
+
end
|
339
|
+
|
340
|
+
def needs_learn?(df)
|
341
|
+
return true if columns_need_refresh?
|
342
|
+
|
343
|
+
never_learned = columns.none?
|
344
|
+
return true if never_learned
|
345
|
+
|
346
|
+
new_features = features.any? { |f| f.updated_at > columns.maximum(:updated_at) }
|
347
|
+
return true if new_features
|
348
|
+
|
349
|
+
new_cols = df.present? ? (df.columns - columns.map(&:name)) : []
|
350
|
+
new_cols = columns.syncable
|
351
|
+
|
352
|
+
return true if new_cols.any?
|
353
|
+
end
|
354
|
+
|
355
|
+
def compare_datasets(df, df_was)
|
356
|
+
# Step 1: Check if the entire dataset is identical
|
357
|
+
if df == df_was
|
358
|
+
return "The datasets are identical."
|
359
|
+
end
|
360
|
+
|
361
|
+
# Step 2: Identify columns with differences
|
362
|
+
differing_columns = df.columns.select do |column|
|
363
|
+
df[column] != df_was[column]
|
364
|
+
end
|
365
|
+
|
366
|
+
# Step 3: Find row-level differences for each differing column
|
367
|
+
differences = {}
|
368
|
+
differing_columns.each do |column|
|
369
|
+
mask = df[column] != df_was[column]
|
370
|
+
differing_rows = df[mask][column].zip(df_was[mask][column]).map.with_index do |(df_value, df_was_value), index|
|
371
|
+
{ row_index: index, df_value: df_value, df_was_value: df_was_value }
|
372
|
+
end
|
373
|
+
|
374
|
+
differences[column] = differing_rows
|
375
|
+
end
|
376
|
+
|
377
|
+
{ differing_columns: differing_columns, differences: differences }
|
378
|
+
end
|
379
|
+
|
380
|
+
def normalize(df = nil, split_ys: false, inference: false, all_columns: false, features: self.features, idx: nil)
|
381
|
+
df = apply_features(df, features)
|
382
|
+
df = drop_nulls(df)
|
383
|
+
df = apply_missing_features(df, inference: inference)
|
384
|
+
df = preprocessor.postprocess(df, inference: inference)
|
385
|
+
|
386
|
+
# Learn will update columns, so if any features have been added
|
387
|
+
# since the last time columns were learned, we should re-learn the schema
|
388
|
+
learn if idx == 0 && needs_learn?(df)
|
389
|
+
df = apply_column_mask(df, inference: inference) unless all_columns
|
390
|
+
raise_on_nulls(df) if inference
|
391
|
+
df, = processed.split_features_targets(df, true, target) if split_ys
|
392
|
+
df
|
393
|
+
end
|
394
|
+
|
395
|
+
def raise_on_nulls(df)
|
396
|
+
desc_df = df.describe
|
397
|
+
|
398
|
+
# Get the 'null_count' row
|
399
|
+
null_count_row = desc_df.filter(desc_df[:describe] == "null_count")
|
400
|
+
|
401
|
+
# Select columns with non-zero null counts
|
402
|
+
columns_with_nulls = null_count_row.columns.select do |col|
|
403
|
+
null_count_row[col][0].to_i > 0
|
404
|
+
end
|
405
|
+
|
406
|
+
if columns_with_nulls.any?
|
407
|
+
raise "Null values found in columns: #{columns_with_nulls.join(", ")}"
|
408
|
+
end
|
409
|
+
end
|
410
|
+
|
411
|
+
# Filter data using Polars predicates:
|
412
|
+
# dataset.data(filter: Polars.col("CREATED_DATE") > EST.now - 2.days)
|
413
|
+
# dataset.data(limit: 10)
|
414
|
+
# dataset.data(select: ["column1", "column2", "column3"], limit: 10)
|
415
|
+
# dataset.data(split_ys: true)
|
416
|
+
# dataset.data(all_columns: true) # Include all columns, even ones we SHOULDN'T train on (e.g. drop_cols). Be very careful! This is for data analysis purposes ONLY!
|
417
|
+
#
|
418
|
+
def train(**kwargs, &block)
|
419
|
+
load_data(:train, **kwargs, &block)
|
420
|
+
end
|
421
|
+
|
422
|
+
def valid(**kwargs, &block)
|
423
|
+
load_data(:valid, **kwargs, &block)
|
424
|
+
end
|
425
|
+
|
426
|
+
def test(**kwargs, &block)
|
427
|
+
load_data(:test, **kwargs, &block)
|
428
|
+
end
|
429
|
+
|
430
|
+
def data(**kwargs, &block)
|
431
|
+
load_data(:all, **kwargs, &block)
|
432
|
+
end
|
433
|
+
|
434
|
+
alias_method :query, :data
|
435
|
+
|
436
|
+
def cleanup
|
437
|
+
raw.cleanup
|
438
|
+
processed.cleanup
|
439
|
+
end
|
440
|
+
|
441
|
+
def check_nulls(data_type = :processed)
|
442
|
+
result = SPLIT_ORDER.each_with_object({}) do |segment, acc|
|
443
|
+
segment_result = { nulls: {}, total: 0 }
|
444
|
+
|
445
|
+
data_source = data_type == :raw ? raw : processed
|
446
|
+
data_source.read(segment) do |df|
|
447
|
+
df_nulls = null_check(df)
|
448
|
+
df.columns.each do |column|
|
449
|
+
segment_result[:nulls][column] ||= { null_count: 0, total_count: 0 }
|
450
|
+
segment_result[:nulls][column][:null_count] += df_nulls[column][:null_count] if df_nulls && df_nulls[column]
|
451
|
+
segment_result[:nulls][column][:total_count] += df.height
|
452
|
+
end
|
453
|
+
end
|
454
|
+
|
455
|
+
segment_result[:nulls].each do |column, counts|
|
456
|
+
percentage = (counts[:null_count].to_f / counts[:total_count] * 100).round(1)
|
457
|
+
acc[column] ||= {}
|
458
|
+
acc[column][segment] = percentage
|
459
|
+
end
|
460
|
+
end
|
461
|
+
|
462
|
+
# Remove columns that have no nulls across all segments
|
463
|
+
result.reject! { |_, v| v.values.all?(&:zero?) }
|
464
|
+
|
465
|
+
result.empty? ? nil : result
|
466
|
+
end
|
467
|
+
|
468
|
+
def processed?
|
469
|
+
!should_split?
|
470
|
+
end
|
471
|
+
|
472
|
+
def decode_labels(ys, col: nil)
|
473
|
+
preprocessor.decode_labels(ys, col: col.nil? ? target : col)
|
474
|
+
end
|
475
|
+
|
476
|
+
def preprocessing_steps
|
477
|
+
return if columns.nil? || (columns.respond_to?(:empty?) && columns.empty?)
|
478
|
+
return @preprocessing_steps if @preprocessing_steps.present?
|
479
|
+
|
480
|
+
training = standardize_preprocessing_steps(:training)
|
481
|
+
inference = standardize_preprocessing_steps(:inference)
|
482
|
+
|
483
|
+
@preprocessing_steps = {
|
484
|
+
training: training,
|
485
|
+
inference: inference,
|
486
|
+
}.compact.deep_symbolize_keys
|
487
|
+
end
|
488
|
+
|
489
|
+
def preprocessor
|
490
|
+
@preprocessor ||= initialize_preprocessor
|
491
|
+
return @preprocessor if @preprocessor.preprocessing_steps == preprocessing_steps
|
492
|
+
|
493
|
+
@preprocessor = initialize_preprocessor
|
494
|
+
end
|
495
|
+
|
496
|
+
def target
|
497
|
+
@target ||= preloaded_columns.find(&:is_target)&.name
|
498
|
+
end
|
499
|
+
|
500
|
+
def drop_cols
|
501
|
+
@drop_cols ||= preloaded_columns.select(&:hidden).map(&:name)
|
502
|
+
end
|
503
|
+
|
504
|
+
def drop_if_null
|
505
|
+
@drop_if_null ||= preloaded_columns.select(&:drop_if_null).map(&:name)
|
506
|
+
end
|
507
|
+
|
508
|
+
def col_order(inference: false)
|
509
|
+
# Filter preloaded columns in memory
|
510
|
+
scope = preloaded_columns.reject(&:hidden)
|
511
|
+
scope = scope.reject(&:is_target) if inference
|
512
|
+
|
513
|
+
# Get one_hot columns for category mapping
|
514
|
+
one_hots = scope.select(&:one_hot?)
|
515
|
+
one_hot_cats = columns.allowed_categories.symbolize_keys
|
516
|
+
|
517
|
+
# Map columns to names, handling one_hot expansion
|
518
|
+
scope.sort_by(&:id).flat_map do |col|
|
519
|
+
if col.one_hot?
|
520
|
+
one_hot_cats[col.name.to_sym].map do |cat|
|
521
|
+
"#{col.name}_#{cat}"
|
522
|
+
end
|
523
|
+
else
|
524
|
+
col.name
|
525
|
+
end
|
526
|
+
end
|
527
|
+
end
|
528
|
+
|
529
|
+
def column_mask(df, inference: false)
|
530
|
+
cols = df.columns & col_order(inference: inference)
|
531
|
+
cols.sort_by { |col| col_order.index(col) }
|
532
|
+
end
|
533
|
+
|
534
|
+
def apply_column_mask(df, inference: false)
|
535
|
+
df[column_mask(df, inference: inference)]
|
536
|
+
end
|
537
|
+
|
538
|
+
def apply_missing_features(df, inference: false)
|
539
|
+
return df unless inference
|
540
|
+
|
541
|
+
missing_features = (col_order(inference: inference) - df.columns).compact
|
542
|
+
df.with_columns(missing_features.map { |f| Polars.lit(nil).alias(f) })
|
543
|
+
end
|
544
|
+
|
545
|
+
def drop_columns(all_columns: false)
|
546
|
+
if all_columns
|
547
|
+
[]
|
548
|
+
else
|
549
|
+
drop_cols
|
550
|
+
end
|
551
|
+
end
|
552
|
+
|
553
|
+
def files
|
554
|
+
[raw, processed].flat_map(&:files)
|
555
|
+
end
|
556
|
+
|
557
|
+
def load_dataset
|
558
|
+
download_remote_files
|
559
|
+
end
|
560
|
+
|
561
|
+
def upload_remote_files
|
562
|
+
return unless processed?
|
563
|
+
|
564
|
+
processed.upload.tap do
|
565
|
+
features.each(&:upload_remote_files)
|
566
|
+
features.each(&:save)
|
567
|
+
save
|
568
|
+
end
|
569
|
+
end
|
570
|
+
|
571
|
+
def reload(*args)
|
572
|
+
# Call the original reload method
|
573
|
+
super(*args)
|
574
|
+
# Reset preloaded instance variables
|
575
|
+
@preloaded_columns = nil
|
576
|
+
@preloaded_features = nil
|
577
|
+
self
|
578
|
+
end
|
579
|
+
|
580
|
+
private
|
581
|
+
|
582
|
+
def preloaded_features
|
583
|
+
@preloaded_features ||= features.includes(:dataset).load
|
584
|
+
end
|
585
|
+
|
586
|
+
def preloaded_columns
|
587
|
+
@preloaded_columns ||= columns.load
|
588
|
+
end
|
589
|
+
|
590
|
+
def download_remote_files
|
591
|
+
return unless is_history_class? # Only historical datasets need this
|
592
|
+
return if processed.present? && processed.data
|
593
|
+
|
594
|
+
processed.download
|
595
|
+
end
|
596
|
+
|
597
|
+
def initialize_splits
|
598
|
+
@raw = nil
|
599
|
+
@processed = nil
|
600
|
+
raw
|
601
|
+
processed
|
602
|
+
end
|
603
|
+
|
604
|
+
def initialize_split(type)
|
605
|
+
return unless datasource.present?
|
606
|
+
|
607
|
+
args = { dataset: self, datasource: datasource }
|
608
|
+
case split_type.to_s
|
609
|
+
when EasyML::Data::Splits::InMemorySplit.to_s
|
610
|
+
split_type.new(**args)
|
611
|
+
when EasyML::Data::Splits::FileSplit.to_s
|
612
|
+
split_type.new(**args.merge(
|
613
|
+
dir: Pathname.new(root_dir).append("files/splits/#{type}").to_s,
|
614
|
+
))
|
615
|
+
end
|
616
|
+
end
|
617
|
+
|
618
|
+
def split_type
|
619
|
+
datasource.in_memory? ? EasyML::Data::Splits::InMemorySplit : EasyML::Data::Splits::FileSplit
|
620
|
+
end
|
621
|
+
|
622
|
+
def refresh_datasource
|
623
|
+
datasource.reload.refresh
|
624
|
+
refresh_datatypes
|
625
|
+
initialize_splits
|
626
|
+
end
|
627
|
+
|
628
|
+
def refresh_datasource!
|
629
|
+
datasource.reload.refresh!
|
630
|
+
refresh_datatypes
|
631
|
+
initialize_splits
|
632
|
+
end
|
633
|
+
|
634
|
+
def normalize_all
|
635
|
+
processed.cleanup
|
636
|
+
|
637
|
+
SPLIT_ORDER.each_with_index do |segment, idx|
|
638
|
+
df = raw.read(segment)
|
639
|
+
processed_df = normalize(df, all_columns: true, idx: idx)
|
640
|
+
processed.save(segment, processed_df)
|
641
|
+
end
|
642
|
+
@normalized = true
|
643
|
+
end
|
644
|
+
|
645
|
+
def drop_nulls(df)
|
646
|
+
return df if drop_if_null.nil? || drop_if_null.empty?
|
647
|
+
|
648
|
+
drop = (df.columns & drop_if_null)
|
649
|
+
return df if drop.empty?
|
650
|
+
|
651
|
+
df.drop_nulls(subset: drop)
|
652
|
+
end
|
653
|
+
|
654
|
+
def load_data(segment, **kwargs, &block)
|
655
|
+
if processed?
|
656
|
+
processed.load_data(segment, **kwargs, &block)
|
657
|
+
else
|
658
|
+
raw.load_data(segment, **kwargs, &block)
|
659
|
+
end
|
660
|
+
end
|
661
|
+
|
662
|
+
def fit(xs = nil)
|
663
|
+
xs = raw.train(all_columns: true) if xs.nil?
|
664
|
+
|
665
|
+
preprocessor.fit(xs)
|
666
|
+
self.preprocessor_statistics = preprocessor.statistics
|
667
|
+
end
|
668
|
+
|
669
|
+
# log_method :fit, "Learning statistics", verbose: true
|
670
|
+
|
671
|
+
def split_data!
|
672
|
+
split_data(force: true)
|
673
|
+
end
|
674
|
+
|
675
|
+
def split_data(force: false)
|
676
|
+
return unless force || should_split?
|
677
|
+
|
678
|
+
cleanup
|
679
|
+
features = self.features.ordered.load
|
680
|
+
splitter.split(datasource) do |train_df, valid_df, test_df|
|
681
|
+
[:train, :valid, :test].zip([train_df, valid_df, test_df]).each do |segment, df|
|
682
|
+
raw.save(segment, df)
|
683
|
+
end
|
684
|
+
end
|
685
|
+
end
|
686
|
+
|
687
|
+
def should_split?
|
688
|
+
needs_refresh?
|
689
|
+
end
|
690
|
+
|
691
|
+
def filter_duplicate_features
|
692
|
+
return unless attributes["features_attributes"].present?
|
693
|
+
|
694
|
+
existing_feature_names = features.pluck(:name)
|
695
|
+
attributes["features_attributes"].each do |_, attrs|
|
696
|
+
# Skip if it's marked for destruction or is an existing record
|
697
|
+
next if attrs["_destroy"] == "1" || attrs["id"].present?
|
698
|
+
|
699
|
+
# Reject the feature if it would be a duplicate
|
700
|
+
attrs["_destroy"] = "1" if existing_feature_names.include?(attrs["name"])
|
701
|
+
end
|
702
|
+
end
|
703
|
+
|
704
|
+
def apply_features(df, features = self.features)
|
705
|
+
if features.nil? || features.empty?
|
706
|
+
df
|
707
|
+
else
|
708
|
+
# Eager load all features with their necessary associations in one query
|
709
|
+
if features.is_a?(Array) # Used for testing (feature.transform_batch)
|
710
|
+
features_to_apply = features
|
711
|
+
else
|
712
|
+
features_to_apply = features.ordered.includes(dataset: :datasource).to_a
|
713
|
+
end
|
714
|
+
|
715
|
+
# Preload all feature SHAs in one batch
|
716
|
+
feature_classes = features_to_apply.map(&:feature_class).uniq
|
717
|
+
shas = feature_classes.map { |klass| [klass, Feature.compute_sha(klass)] }.to_h
|
718
|
+
|
719
|
+
# Apply features in sequence with preloaded data
|
720
|
+
features_to_apply.reduce(df) do |acc_df, feature|
|
721
|
+
# Set SHA without querying
|
722
|
+
feature.instance_variable_set(:@current_sha, shas[feature.feature_class])
|
723
|
+
|
724
|
+
result = feature.transform_batch(acc_df)
|
725
|
+
|
726
|
+
unless result.is_a?(Polars::DataFrame)
|
727
|
+
raise "Feature '#{feature.name}' must return a Polars::DataFrame, got #{result.class}"
|
728
|
+
end
|
729
|
+
|
730
|
+
result
|
731
|
+
end
|
732
|
+
end
|
733
|
+
end
|
734
|
+
|
735
|
+
def standardize_preprocessing_steps(type)
|
736
|
+
columns.map(&:name).zip(columns.map do |col|
|
737
|
+
col.preprocessing_steps&.dig(type)
|
738
|
+
end).to_h.compact.reject { |_k, v| v["method"] == "none" }
|
739
|
+
end
|
740
|
+
|
741
|
+
def initialize_preprocessor
|
742
|
+
EasyML::Data::Preprocessor.new(
|
743
|
+
directory: Pathname.new(root_dir).append("preprocessor"),
|
744
|
+
preprocessing_steps: preprocessing_steps,
|
745
|
+
).tap do |preprocessor|
|
746
|
+
preprocessor.statistics = preprocessor_statistics
|
747
|
+
end
|
748
|
+
end
|
749
|
+
|
750
|
+
def fully_reload
|
751
|
+
return unless persisted?
|
752
|
+
|
753
|
+
base_vars = self.class.new.instance_variables
|
754
|
+
dirty_vars = (instance_variables - base_vars)
|
755
|
+
in_memory_classes = [EasyML::Data::Splits::InMemorySplit]
|
756
|
+
dirty_vars.each do |ivar|
|
757
|
+
value = instance_variable_get(ivar)
|
758
|
+
remove_instance_variable(ivar) unless in_memory_classes.any? { |in_memory_class| value.is_a?(in_memory_class) }
|
759
|
+
end
|
760
|
+
reload
|
761
|
+
end
|
762
|
+
|
763
|
+
def underscored_name
|
764
|
+
name.gsub(/\s{2,}/, " ").gsub(/\s/, "_").downcase
|
765
|
+
end
|
766
|
+
end
|
767
|
+
end
|