disco 0.2.3 → 0.2.7
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +25 -0
- data/LICENSE.txt +1 -1
- data/README.md +70 -19
- data/lib/disco.rb +1 -0
- data/lib/disco/metrics.rb +10 -0
- data/lib/disco/recommender.rb +251 -103
- data/lib/disco/version.rb +1 -1
- metadata +5 -4
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 5f400f07839587b574ddcfa4c88335bfe20fcd876164b943e8094a35c3c1cfef
|
4
|
+
data.tar.gz: e2426b283146837d14be154ff0e67eb2505fd6587958b39212bf2dfe3bfccd80
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 2be9f24184036ec5b093de55640aebb60887ac59c566f37698fcba7a18daa15cf586566708def0060f80fc0747a50447538cf42fdf36024ae19ddac0de8b415c
|
7
|
+
data.tar.gz: 4682a5524a8cad4a247ec53f99c78e317d56ee55433bb2ad7806af4f2a9854bc016fd23564003f009dc69d0fdcf81949dc88c64d3cbe824a8e76fc5cae8abc7d
|
data/CHANGELOG.md
CHANGED
@@ -1,3 +1,28 @@
|
|
1
|
+
## 0.2.7 (2021-08-06)
|
2
|
+
|
3
|
+
- Added warning for `value`
|
4
|
+
|
5
|
+
## 0.2.6 (2021-02-24)
|
6
|
+
|
7
|
+
- Improved performance
|
8
|
+
- Improved `inspect` method
|
9
|
+
- Fixed issue with `similar_users` and `item_recs` returning the original user/item
|
10
|
+
- Fixed error with `fit` after loading
|
11
|
+
|
12
|
+
## 0.2.5 (2021-02-20)
|
13
|
+
|
14
|
+
- Added `top_items` method
|
15
|
+
- Added `optimize_similar_users` method
|
16
|
+
- Added support for Faiss for `optimize_item_recs` and `optimize_similar_users` methods
|
17
|
+
- Added `rmse` method
|
18
|
+
- Improved performance
|
19
|
+
|
20
|
+
## 0.2.4 (2021-02-15)
|
21
|
+
|
22
|
+
- Added `user_ids` and `item_ids` methods
|
23
|
+
- Added `user_id` argument to `user_factors`
|
24
|
+
- Added `item_id` argument to `item_factors`
|
25
|
+
|
1
26
|
## 0.2.3 (2020-11-28)
|
2
27
|
|
3
28
|
- Added `predict` method
|
data/LICENSE.txt
CHANGED
data/README.md
CHANGED
@@ -35,24 +35,22 @@ recommender.fit([
|
|
35
35
|
|
36
36
|
> IDs can be integers, strings, or any other data type
|
37
37
|
|
38
|
-
If users don’t rate items directly (for instance, they’re purchasing items or reading posts), this is known as implicit feedback. Leave out the rating
|
38
|
+
If users don’t rate items directly (for instance, they’re purchasing items or reading posts), this is known as implicit feedback. Leave out the rating.
|
39
39
|
|
40
40
|
```ruby
|
41
41
|
recommender.fit([
|
42
|
-
{user_id: 1, item_id: 1
|
43
|
-
{user_id: 2, item_id: 1
|
42
|
+
{user_id: 1, item_id: 1},
|
43
|
+
{user_id: 2, item_id: 1}
|
44
44
|
])
|
45
45
|
```
|
46
46
|
|
47
|
-
|
48
|
-
|
49
|
-
Get user-based (user-item) recommendations - “users like you also liked”
|
47
|
+
Get user-based recommendations - “users like you also liked”
|
50
48
|
|
51
49
|
```ruby
|
52
50
|
recommender.user_recs(user_id)
|
53
51
|
```
|
54
52
|
|
55
|
-
Get item-based
|
53
|
+
Get item-based recommendations - “users who liked this item also liked”
|
56
54
|
|
57
55
|
```ruby
|
58
56
|
recommender.item_recs(item_id)
|
@@ -106,11 +104,10 @@ views = Ahoy::Event.
|
|
106
104
|
count
|
107
105
|
|
108
106
|
data =
|
109
|
-
views.map do |(user_id, post_id),
|
107
|
+
views.map do |(user_id, post_id), _|
|
110
108
|
{
|
111
109
|
user_id: user_id,
|
112
|
-
item_id: post_id
|
113
|
-
value: count
|
110
|
+
item_id: post_id
|
114
111
|
}
|
115
112
|
end
|
116
113
|
```
|
@@ -201,6 +198,8 @@ bin = File.binread("recommender.bin")
|
|
201
198
|
recommender = Marshal.load(bin)
|
202
199
|
```
|
203
200
|
|
201
|
+
Alternatively, you can store only the factors and use a library like [Neighbor](https://github.com/ankane/neighbor). See the [examples](https://github.com/ankane/neighbor/tree/master/examples).
|
202
|
+
|
204
203
|
## Algorithms
|
205
204
|
|
206
205
|
Disco uses high-performance matrix factorization.
|
@@ -237,6 +236,16 @@ There are a number of ways to deal with this, but here are some common ones:
|
|
237
236
|
- For user-based recommendations, show new users the most popular items.
|
238
237
|
- For item-based recommendations, make content-based recommendations with a gem like [tf-idf-similarity](https://github.com/jpmckinney/tf-idf-similarity).
|
239
238
|
|
239
|
+
Get top items with:
|
240
|
+
|
241
|
+
```ruby
|
242
|
+
recommender = Disco::Recommender.new(top_items: true)
|
243
|
+
recommender.fit(data)
|
244
|
+
recommender.top_items
|
245
|
+
```
|
246
|
+
|
247
|
+
This uses [Wilson score](https://www.evanmiller.org/how-not-to-sort-by-average-rating.html) for explicit feedback (add [wilson_score](https://github.com/instacart/wilson_score) to your application’s Gemfile) and item frequency for implicit feedback.
|
248
|
+
|
240
249
|
## Data
|
241
250
|
|
242
251
|
Data can be an array of hashes
|
@@ -257,45 +266,65 @@ Or a Daru data frame
|
|
257
266
|
Daru::DataFrame.from_csv("ratings.csv")
|
258
267
|
```
|
259
268
|
|
260
|
-
##
|
269
|
+
## Performance
|
261
270
|
|
262
|
-
If you have a large number of users
|
271
|
+
If you have a large number of users or items, you can use an approximate nearest neighbors library like [Faiss](https://github.com/ankane/faiss) to improve the performance of certain methods.
|
263
272
|
|
264
273
|
Add this line to your application’s Gemfile:
|
265
274
|
|
266
275
|
```ruby
|
267
|
-
gem '
|
276
|
+
gem 'faiss'
|
268
277
|
```
|
269
278
|
|
270
|
-
Speed up
|
279
|
+
Speed up the `user_recs` method with:
|
271
280
|
|
272
281
|
```ruby
|
273
|
-
|
282
|
+
recommender.optimize_user_recs
|
274
283
|
```
|
275
284
|
|
276
|
-
Speed up
|
285
|
+
Speed up the `item_recs` method with:
|
277
286
|
|
278
287
|
```ruby
|
279
|
-
|
288
|
+
recommender.optimize_item_recs
|
280
289
|
```
|
281
290
|
|
282
|
-
|
291
|
+
Speed up the `similar_users` method with:
|
292
|
+
|
293
|
+
```ruby
|
294
|
+
recommender.optimize_similar_users
|
295
|
+
```
|
296
|
+
|
297
|
+
This should be called after fitting or loading the recommender.
|
283
298
|
|
284
299
|
## Reference
|
285
300
|
|
301
|
+
Get ids
|
302
|
+
|
303
|
+
```ruby
|
304
|
+
recommender.user_ids
|
305
|
+
recommender.item_ids
|
306
|
+
```
|
307
|
+
|
286
308
|
Get the global mean
|
287
309
|
|
288
310
|
```ruby
|
289
311
|
recommender.global_mean
|
290
312
|
```
|
291
313
|
|
292
|
-
Get
|
314
|
+
Get factors
|
293
315
|
|
294
316
|
```ruby
|
295
317
|
recommender.user_factors
|
296
318
|
recommender.item_factors
|
297
319
|
```
|
298
320
|
|
321
|
+
Get factors for specific users and items
|
322
|
+
|
323
|
+
```ruby
|
324
|
+
recommender.user_factors(user_id)
|
325
|
+
recommender.item_factors(item_id)
|
326
|
+
```
|
327
|
+
|
299
328
|
## Credits
|
300
329
|
|
301
330
|
Thanks to:
|
@@ -304,6 +333,28 @@ Thanks to:
|
|
304
333
|
- [Implicit](https://github.com/benfred/implicit/) for serving as an initial reference for user and item similarity
|
305
334
|
- [@dasch](https://github.com/dasch) for the gem name
|
306
335
|
|
336
|
+
## Upgrading
|
337
|
+
|
338
|
+
### 0.2.7
|
339
|
+
|
340
|
+
There’s now a warning when passing `:value` with implicit feedback, as this has no effect on recommendations and can be removed. Earlier versions of the library incorrectly stated this was used.
|
341
|
+
|
342
|
+
```ruby
|
343
|
+
recommender.fit([
|
344
|
+
{user_id: 1, item_id: 1, value: 1},
|
345
|
+
{user_id: 2, item_id: 1, value: 3}
|
346
|
+
])
|
347
|
+
```
|
348
|
+
|
349
|
+
to:
|
350
|
+
|
351
|
+
```ruby
|
352
|
+
recommender.fit([
|
353
|
+
{user_id: 1, item_id: 1},
|
354
|
+
{user_id: 2, item_id: 1}
|
355
|
+
])
|
356
|
+
```
|
357
|
+
|
307
358
|
## History
|
308
359
|
|
309
360
|
View the [changelog](https://github.com/ankane/disco/blob/master/CHANGELOG.md)
|
data/lib/disco.rb
CHANGED
data/lib/disco/recommender.rb
CHANGED
@@ -1,46 +1,73 @@
|
|
1
1
|
module Disco
|
2
2
|
class Recommender
|
3
|
-
attr_reader :global_mean
|
3
|
+
attr_reader :global_mean
|
4
4
|
|
5
|
-
def initialize(factors: 8, epochs: 20, verbose: nil)
|
5
|
+
def initialize(factors: 8, epochs: 20, verbose: nil, top_items: false)
|
6
6
|
@factors = factors
|
7
7
|
@epochs = epochs
|
8
8
|
@verbose = verbose
|
9
|
+
@user_map = {}
|
10
|
+
@item_map = {}
|
11
|
+
@top_items = top_items
|
9
12
|
end
|
10
13
|
|
11
14
|
def fit(train_set, validation_set: nil)
|
12
15
|
train_set = to_dataset(train_set)
|
13
16
|
validation_set = to_dataset(validation_set) if validation_set
|
14
17
|
|
18
|
+
check_training_set(train_set)
|
19
|
+
|
20
|
+
# TODO option to set in initializer to avoid pass
|
21
|
+
# could also just check first few values
|
22
|
+
# but may be confusing if they are all missing and later ones aren't
|
15
23
|
@implicit = !train_set.any? { |v| v[:rating] }
|
16
24
|
|
25
|
+
if @implicit && train_set.any? { |v| v[:value] }
|
26
|
+
warn "[disco] WARNING: Passing `:value` with implicit feedback has no effect on recommendations and can be removed. Earlier versions of the library incorrectly stated this was used."
|
27
|
+
end
|
28
|
+
|
29
|
+
# TODO improve performance
|
30
|
+
# (catch exception instead of checking ahead of time)
|
17
31
|
unless @implicit
|
18
|
-
|
19
|
-
check_ratings(ratings)
|
20
|
-
@min_rating = ratings.min
|
21
|
-
@max_rating = ratings.max
|
32
|
+
check_ratings(train_set)
|
22
33
|
|
23
34
|
if validation_set
|
24
|
-
check_ratings(validation_set
|
35
|
+
check_ratings(validation_set)
|
25
36
|
end
|
26
37
|
end
|
27
38
|
|
28
|
-
check_training_set(train_set)
|
29
|
-
create_maps(train_set)
|
30
|
-
|
31
39
|
@rated = Hash.new { |hash, key| hash[key] = {} }
|
32
40
|
input = []
|
33
|
-
value_key = @implicit ? :value : :rating
|
34
41
|
train_set.each do |v|
|
35
|
-
|
36
|
-
|
42
|
+
# update maps and build matrix in single pass
|
43
|
+
u = (@user_map[v[:user_id]] ||= @user_map.size)
|
44
|
+
i = (@item_map[v[:item_id]] ||= @item_map.size)
|
37
45
|
@rated[u][i] = true
|
38
46
|
|
39
47
|
# explicit will always have a value due to check_ratings
|
40
|
-
input << [u, i,
|
48
|
+
input << [u, i, @implicit ? 1 : v[:rating]]
|
41
49
|
end
|
42
50
|
@rated.default = nil
|
43
51
|
|
52
|
+
# much more efficient than checking every value in another pass
|
53
|
+
raise ArgumentError, "Missing user_id" if @user_map.key?(nil)
|
54
|
+
raise ArgumentError, "Missing item_id" if @item_map.key?(nil)
|
55
|
+
|
56
|
+
# TODO improve performance
|
57
|
+
unless @implicit
|
58
|
+
@min_rating, @max_rating = train_set.minmax_by { |o| o[:rating] }.map { |o| o[:rating] }
|
59
|
+
end
|
60
|
+
|
61
|
+
if @top_items
|
62
|
+
@item_count = [0] * @item_map.size
|
63
|
+
@item_sum = [0.0] * @item_map.size
|
64
|
+
train_set.each do |v|
|
65
|
+
i = @item_map[v[:item_id]]
|
66
|
+
@item_count[i] += 1
|
67
|
+
@item_sum[i] += (@implicit ? 1 : v[:rating])
|
68
|
+
end
|
69
|
+
end
|
70
|
+
|
44
71
|
eval_set = nil
|
45
72
|
if validation_set
|
46
73
|
eval_set = []
|
@@ -52,7 +79,7 @@ module Disco
|
|
52
79
|
u ||= -1
|
53
80
|
i ||= -1
|
54
81
|
|
55
|
-
eval_set << [u, i,
|
82
|
+
eval_set << [u, i, @implicit ? 1 : v[:rating]]
|
56
83
|
end
|
57
84
|
end
|
58
85
|
|
@@ -67,8 +94,12 @@ module Disco
|
|
67
94
|
@user_factors = model.p_factors(format: :numo)
|
68
95
|
@item_factors = model.q_factors(format: :numo)
|
69
96
|
|
70
|
-
@
|
71
|
-
@
|
97
|
+
@normalized_user_factors = nil
|
98
|
+
@normalized_item_factors = nil
|
99
|
+
|
100
|
+
@user_recs_index = nil
|
101
|
+
@similar_users_index = nil
|
102
|
+
@similar_items_index = nil
|
72
103
|
end
|
73
104
|
|
74
105
|
# generates a prediction even if a user has already rated the item
|
@@ -95,139 +126,239 @@ module Disco
|
|
95
126
|
u = @user_map[user_id]
|
96
127
|
|
97
128
|
if u
|
98
|
-
|
99
|
-
|
100
|
-
predictions =
|
101
|
-
@item_map.keys.zip(predictions).map do |item_id, pred|
|
102
|
-
{item_id: item_id, score: pred}
|
103
|
-
end
|
129
|
+
rated = item_ids ? {} : @rated[u]
|
104
130
|
|
105
131
|
if item_ids
|
106
|
-
|
107
|
-
|
132
|
+
ids = Numo::NArray.cast(item_ids.map { |i| @item_map[i] }.compact)
|
133
|
+
return [] if ids.size == 0
|
134
|
+
|
135
|
+
predictions = @item_factors[ids, true].inner(@user_factors[u, true])
|
136
|
+
indexes = predictions.sort_index.reverse
|
137
|
+
indexes = indexes[0...[count + rated.size, indexes.size].min] if count
|
138
|
+
predictions = predictions[indexes]
|
139
|
+
ids = ids[indexes]
|
140
|
+
elsif @user_recs_index && count
|
141
|
+
predictions, ids = @user_recs_index.search(@user_factors[u, true].expand_dims(0), count + rated.size).map { |v| v[0, true] }
|
108
142
|
else
|
109
|
-
@
|
110
|
-
|
111
|
-
|
143
|
+
predictions = @item_factors.inner(@user_factors[u, true])
|
144
|
+
indexes = predictions.sort_index.reverse # reverse just creates view
|
145
|
+
indexes = indexes[0...[count + rated.size, indexes.size].min] if count
|
146
|
+
predictions = predictions[indexes]
|
147
|
+
ids = indexes
|
112
148
|
end
|
113
149
|
|
114
|
-
predictions.
|
115
|
-
predictions = predictions.first(count) if count && !item_ids
|
150
|
+
predictions.inplace.clip(@min_rating, @max_rating) if @min_rating
|
116
151
|
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
pred[:score] = pred[:score].clamp(@min_rating, @max_rating)
|
122
|
-
end
|
123
|
-
end
|
152
|
+
keys = @item_map.keys
|
153
|
+
result = []
|
154
|
+
ids.each_with_index do |item_id, i|
|
155
|
+
next if rated[item_id]
|
124
156
|
|
125
|
-
|
157
|
+
result << {item_id: keys[item_id], score: predictions[i]}
|
158
|
+
break if result.size == count
|
159
|
+
end
|
160
|
+
result
|
161
|
+
elsif @top_items
|
162
|
+
top_items(count: count)
|
126
163
|
else
|
127
|
-
# no items if user is unknown
|
128
|
-
# TODO maybe most popular items
|
129
164
|
[]
|
130
165
|
end
|
131
166
|
end
|
132
167
|
|
133
|
-
def
|
168
|
+
def similar_items(item_id, count: 5)
|
134
169
|
check_fit
|
135
|
-
@
|
170
|
+
similar(item_id, @item_map, normalized_item_factors, count, @similar_items_index)
|
136
171
|
end
|
137
|
-
alias_method :
|
172
|
+
alias_method :item_recs, :similar_items
|
138
173
|
|
139
|
-
def
|
174
|
+
def similar_users(user_id, count: 5)
|
140
175
|
check_fit
|
141
|
-
@
|
176
|
+
similar(user_id, @user_map, normalized_user_factors, count, @similar_users_index)
|
142
177
|
end
|
143
178
|
|
144
|
-
def
|
179
|
+
def top_items(count: 5)
|
145
180
|
check_fit
|
146
|
-
|
181
|
+
raise "top_items not computed" unless @top_items
|
182
|
+
|
183
|
+
if @implicit
|
184
|
+
scores = Numo::UInt64.cast(@item_count)
|
185
|
+
else
|
186
|
+
require "wilson_score"
|
187
|
+
|
188
|
+
range = @min_rating..@max_rating
|
189
|
+
scores = Numo::DFloat.cast(@item_sum.zip(@item_count).map { |s, c| WilsonScore.rating_lower_bound(s / c, c, range) })
|
190
|
+
|
191
|
+
# TODO uncomment in 0.3.0
|
192
|
+
# wilson score with continuity correction
|
193
|
+
# https://en.wikipedia.org/wiki/Binomial_proportion_confidence_interval#Wilson_score_interval_with_continuity_correction
|
194
|
+
# z = 1.96 # 95% confidence
|
195
|
+
# range = @max_rating - @min_rating
|
196
|
+
# n = Numo::DFloat.cast(@item_count)
|
197
|
+
# phat = (Numo::DFloat.cast(@item_sum) - (@min_rating * n)) / range / n
|
198
|
+
# phat = (phat - (1 / 2 * n)).clip(0, 100) # continuity correction
|
199
|
+
# scores = (phat + z**2 / (2 * n) - z * Numo::DFloat::Math.sqrt((phat * (1 - phat) + z**2 / (4 * n)) / n)) / (1 + z**2 / n)
|
200
|
+
# scores = scores * range + @min_rating
|
201
|
+
end
|
202
|
+
|
203
|
+
indexes = scores.sort_index.reverse
|
204
|
+
indexes = indexes[0...[count, indexes.size].min] if count
|
205
|
+
scores = scores[indexes]
|
206
|
+
|
207
|
+
keys = @item_map.keys
|
208
|
+
indexes.size.times.map do |i|
|
209
|
+
{item_id: keys[indexes[i]], score: scores[i]}
|
210
|
+
end
|
147
211
|
end
|
148
|
-
alias_method :item_recs, :similar_items
|
149
212
|
|
150
|
-
def
|
213
|
+
def user_ids
|
214
|
+
@user_map.keys
|
215
|
+
end
|
216
|
+
|
217
|
+
def item_ids
|
218
|
+
@item_map.keys
|
219
|
+
end
|
220
|
+
|
221
|
+
def user_factors(user_id = nil)
|
222
|
+
if user_id
|
223
|
+
u = @user_map[user_id]
|
224
|
+
@user_factors[u, true] if u
|
225
|
+
else
|
226
|
+
@user_factors
|
227
|
+
end
|
228
|
+
end
|
229
|
+
|
230
|
+
def item_factors(item_id = nil)
|
231
|
+
if item_id
|
232
|
+
i = @item_map[item_id]
|
233
|
+
@item_factors[i, true] if i
|
234
|
+
else
|
235
|
+
@item_factors
|
236
|
+
end
|
237
|
+
end
|
238
|
+
|
239
|
+
def optimize_user_recs
|
151
240
|
check_fit
|
152
|
-
|
241
|
+
@user_recs_index = create_index(item_factors, library: "faiss")
|
153
242
|
end
|
154
243
|
|
155
|
-
|
244
|
+
def optimize_similar_items(library: nil)
|
245
|
+
check_fit
|
246
|
+
@similar_items_index = create_index(normalized_item_factors, library: library)
|
247
|
+
end
|
248
|
+
alias_method :optimize_item_recs, :optimize_similar_items
|
249
|
+
|
250
|
+
def optimize_similar_users(library: nil)
|
251
|
+
check_fit
|
252
|
+
@similar_users_index = create_index(normalized_user_factors, library: library)
|
253
|
+
end
|
254
|
+
|
255
|
+
def inspect
|
256
|
+
to_s # for now
|
257
|
+
end
|
156
258
|
|
157
|
-
|
158
|
-
require "ngt"
|
259
|
+
private
|
159
260
|
|
160
|
-
|
161
|
-
|
162
|
-
|
261
|
+
# factors should already be normalized for similar users/items
|
262
|
+
def create_index(factors, library:)
|
263
|
+
# TODO make Faiss the default in 0.3.0
|
264
|
+
library ||= defined?(Faiss) && !defined?(Ngt) ? "faiss" : "ngt"
|
265
|
+
|
266
|
+
case library
|
267
|
+
when "faiss"
|
268
|
+
require "faiss"
|
269
|
+
|
270
|
+
# inner product is cosine similarity with normalized vectors
|
271
|
+
# https://github.com/facebookresearch/faiss/issues/95
|
272
|
+
#
|
273
|
+
# TODO use non-exact index in 0.3.0
|
274
|
+
# https://github.com/facebookresearch/faiss/wiki/Faiss-indexes
|
275
|
+
# index = Faiss::IndexHNSWFlat.new(factors.shape[1], 32, :inner_product)
|
276
|
+
index = Faiss::IndexFlatIP.new(factors.shape[1])
|
277
|
+
|
278
|
+
# ids are from 0...total
|
279
|
+
# https://github.com/facebookresearch/faiss/blob/96b740abedffc8f67389f29c2a180913941534c6/faiss/Index.h#L89
|
280
|
+
index.add(factors)
|
281
|
+
|
282
|
+
index
|
283
|
+
when "ngt"
|
284
|
+
require "ngt"
|
285
|
+
|
286
|
+
# could speed up search with normalized cosine
|
287
|
+
# https://github.com/yahoojapan/NGT/issues/36
|
288
|
+
index = Ngt::Index.new(factors.shape[1], distance_type: "Cosine")
|
289
|
+
|
290
|
+
# NGT normalizes so could call create_index without normalized factors
|
291
|
+
# but keep code simple for now
|
292
|
+
ids = index.batch_insert(factors)
|
293
|
+
raise "Unexpected ids. Please report a bug." if ids.first != 1 || ids.last != factors.shape[0]
|
294
|
+
|
295
|
+
index
|
296
|
+
else
|
297
|
+
raise ArgumentError, "Invalid library: #{library}"
|
298
|
+
end
|
163
299
|
end
|
164
300
|
|
165
|
-
def
|
166
|
-
@
|
301
|
+
def normalized_user_factors
|
302
|
+
@normalized_user_factors ||= normalize(@user_factors)
|
167
303
|
end
|
168
304
|
|
169
|
-
def
|
170
|
-
@
|
305
|
+
def normalized_item_factors
|
306
|
+
@normalized_item_factors ||= normalize(@item_factors)
|
171
307
|
end
|
172
308
|
|
173
|
-
def
|
309
|
+
def normalize(factors)
|
174
310
|
norms = Numo::SFloat::Math.sqrt((factors * factors).sum(axis: 1))
|
175
311
|
norms[norms.eq(0)] = 1e-10 # no zeros
|
176
|
-
norms
|
312
|
+
factors / norms.expand_dims(1)
|
177
313
|
end
|
178
314
|
|
179
|
-
def similar(id, map,
|
315
|
+
def similar(id, map, norm_factors, count, index)
|
180
316
|
i = map[id]
|
181
|
-
|
317
|
+
|
318
|
+
if i && norm_factors.shape[0] > 1
|
182
319
|
if index && count
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
-
|
191
|
-
}
|
320
|
+
if defined?(Faiss) && index.is_a?(Faiss::Index)
|
321
|
+
predictions, ids = index.search(norm_factors[i, true].expand_dims(0), count + 1).map { |v| v.to_a[0] }
|
322
|
+
else
|
323
|
+
result = index.search(norm_factors[i, true], size: count + 1)
|
324
|
+
# ids from batch_insert start at 1 instead of 0
|
325
|
+
ids = result.map { |v| v[:id] - 1 }
|
326
|
+
# convert cosine distance to cosine similarity
|
327
|
+
predictions = result.map { |v| 1 - v[:distance] }
|
192
328
|
end
|
193
329
|
else
|
194
|
-
predictions =
|
195
|
-
|
196
|
-
|
197
|
-
|
198
|
-
|
199
|
-
end
|
200
|
-
|
201
|
-
max_score = predictions.delete_at(i)[:score]
|
202
|
-
predictions.sort_by! { |pred| -pred[:score] } # already sorted by id
|
203
|
-
predictions = predictions.first(count) if count
|
204
|
-
# divide by max score to get cosine similarity
|
205
|
-
# only need to do for returned records
|
206
|
-
predictions.each { |pred| pred[:score] /= max_score }
|
207
|
-
predictions
|
330
|
+
predictions = norm_factors.inner(norm_factors[i, true])
|
331
|
+
indexes = predictions.sort_index.reverse
|
332
|
+
indexes = indexes[0...[count + 1, indexes.size].min] if count
|
333
|
+
predictions = predictions[indexes]
|
334
|
+
ids = indexes
|
208
335
|
end
|
209
|
-
else
|
210
|
-
[]
|
211
|
-
end
|
212
|
-
end
|
213
336
|
|
214
|
-
|
215
|
-
user_ids = train_set.map { |v| v[:user_id] }.uniq.sort
|
216
|
-
item_ids = train_set.map { |v| v[:item_id] }.uniq.sort
|
337
|
+
keys = map.keys
|
217
338
|
|
218
|
-
|
219
|
-
|
339
|
+
# TODO use user_id for similar_users in 0.3.0
|
340
|
+
key = :item_id
|
220
341
|
|
221
|
-
|
222
|
-
|
342
|
+
result = []
|
343
|
+
# items can have the same score
|
344
|
+
# so original item may not be at index 0
|
345
|
+
ids.each_with_index do |id, j|
|
346
|
+
next if id == i
|
347
|
+
|
348
|
+
result << {key => keys[id], score: predictions[j]}
|
349
|
+
end
|
350
|
+
result
|
351
|
+
else
|
352
|
+
[]
|
353
|
+
end
|
223
354
|
end
|
224
355
|
|
225
356
|
def check_ratings(ratings)
|
226
|
-
unless ratings.all? { |r| !r.nil? }
|
227
|
-
raise ArgumentError, "Missing
|
357
|
+
unless ratings.all? { |r| !r[:rating].nil? }
|
358
|
+
raise ArgumentError, "Missing rating"
|
228
359
|
end
|
229
|
-
unless ratings.all? { |r| r.is_a?(Numeric) }
|
230
|
-
raise ArgumentError, "
|
360
|
+
unless ratings.all? { |r| r[:rating].is_a?(Numeric) }
|
361
|
+
raise ArgumentError, "Rating must be numeric"
|
231
362
|
end
|
232
363
|
end
|
233
364
|
|
@@ -266,7 +397,10 @@ module Disco
|
|
266
397
|
rated: @rated,
|
267
398
|
global_mean: @global_mean,
|
268
399
|
user_factors: @user_factors,
|
269
|
-
item_factors: @item_factors
|
400
|
+
item_factors: @item_factors,
|
401
|
+
factors: @factors,
|
402
|
+
epochs: @epochs,
|
403
|
+
verbose: @verbose
|
270
404
|
}
|
271
405
|
|
272
406
|
unless @implicit
|
@@ -274,6 +408,11 @@ module Disco
|
|
274
408
|
obj[:max_rating] = @max_rating
|
275
409
|
end
|
276
410
|
|
411
|
+
if @top_items
|
412
|
+
obj[:item_count] = @item_count
|
413
|
+
obj[:item_sum] = @item_sum
|
414
|
+
end
|
415
|
+
|
277
416
|
obj
|
278
417
|
end
|
279
418
|
|
@@ -285,11 +424,20 @@ module Disco
|
|
285
424
|
@global_mean = obj[:global_mean]
|
286
425
|
@user_factors = obj[:user_factors]
|
287
426
|
@item_factors = obj[:item_factors]
|
427
|
+
@factors = obj[:factors]
|
428
|
+
@epochs = obj[:epochs]
|
429
|
+
@verbose = obj[:verbose]
|
288
430
|
|
289
431
|
unless @implicit
|
290
432
|
@min_rating = obj[:min_rating]
|
291
433
|
@max_rating = obj[:max_rating]
|
292
434
|
end
|
435
|
+
|
436
|
+
@top_items = obj.key?(:item_count)
|
437
|
+
if @top_items
|
438
|
+
@item_count = obj[:item_count]
|
439
|
+
@item_sum = obj[:item_sum]
|
440
|
+
end
|
293
441
|
end
|
294
442
|
end
|
295
443
|
end
|
data/lib/disco/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: disco
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.2.
|
4
|
+
version: 0.2.7
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Andrew Kane
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date:
|
11
|
+
date: 2021-08-06 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: libmf
|
@@ -39,7 +39,7 @@ dependencies:
|
|
39
39
|
- !ruby/object:Gem::Version
|
40
40
|
version: '0'
|
41
41
|
description:
|
42
|
-
email: andrew@
|
42
|
+
email: andrew@ankane.org
|
43
43
|
executables: []
|
44
44
|
extensions: []
|
45
45
|
extra_rdoc_files: []
|
@@ -51,6 +51,7 @@ files:
|
|
51
51
|
- lib/disco.rb
|
52
52
|
- lib/disco/data.rb
|
53
53
|
- lib/disco/engine.rb
|
54
|
+
- lib/disco/metrics.rb
|
54
55
|
- lib/disco/model.rb
|
55
56
|
- lib/disco/recommender.rb
|
56
57
|
- lib/disco/version.rb
|
@@ -75,7 +76,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
75
76
|
- !ruby/object:Gem::Version
|
76
77
|
version: '0'
|
77
78
|
requirements: []
|
78
|
-
rubygems_version: 3.
|
79
|
+
rubygems_version: 3.2.22
|
79
80
|
signing_key:
|
80
81
|
specification_version: 4
|
81
82
|
summary: Recommendations for Ruby and Rails using collaborative filtering
|