disco 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/CHANGELOG.md +3 -0
- data/LICENSE.txt +22 -0
- data/README.md +282 -0
- data/lib/disco.rb +29 -0
- data/lib/disco/data.rb +75 -0
- data/lib/disco/engine.rb +4 -0
- data/lib/disco/model.rb +36 -0
- data/lib/disco/recommender.rb +208 -0
- data/lib/disco/version.rb +3 -0
- data/lib/generators/disco/recommendation_generator.rb +18 -0
- data/lib/generators/disco/templates/migration.rb.tt +11 -0
- metadata +165 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: 8f0494a12f2efe7d077d989960b4f40bae39e9d433b8c38d45be367f79ad1a3e
|
4
|
+
data.tar.gz: d5ef0e761f5cc3a409e0b7c3d8cdc14a33d5c03ca4eca7b476159c82954ad163
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 0a4995986ac209da39ff9f7c449225f1fc560364936f6df76647e33500f8f07749dc857f2a334b7bb59dadd941403feeee4f43f51647a7df799051a095f0cb3b
|
7
|
+
data.tar.gz: e1bef5d6f9d3272cbca8a6fc56d7d14bcc2bc2b269ddda7931a256f6a4c019419b2e590e06841e5a09914b9523a5b4c09c9ff8bfd817b3d3bd2e99ecf3368752
|
data/CHANGELOG.md
ADDED
data/LICENSE.txt
ADDED
@@ -0,0 +1,22 @@
|
|
1
|
+
Copyright (c) 2019 Andrew Kane
|
2
|
+
|
3
|
+
MIT License
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining
|
6
|
+
a copy of this software and associated documentation files (the
|
7
|
+
"Software"), to deal in the Software without restriction, including
|
8
|
+
without limitation the rights to use, copy, modify, merge, publish,
|
9
|
+
distribute, sublicense, and/or sell copies of the Software, and to
|
10
|
+
permit persons to whom the Software is furnished to do so, subject to
|
11
|
+
the following conditions:
|
12
|
+
|
13
|
+
The above copyright notice and this permission notice shall be
|
14
|
+
included in all copies or substantial portions of the Software.
|
15
|
+
|
16
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
17
|
+
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
18
|
+
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
19
|
+
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
20
|
+
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
21
|
+
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
22
|
+
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
data/README.md
ADDED
@@ -0,0 +1,282 @@
|
|
1
|
+
# Disco
|
2
|
+
|
3
|
+
:fire: Collaborative filtering for Ruby
|
4
|
+
|
5
|
+
- Supports user-based and item-based recommendations
|
6
|
+
- Works with explicit and implicit feedback
|
7
|
+
- Uses matrix factorization
|
8
|
+
|
9
|
+
[](https://travis-ci.org/ankane/disco)
|
10
|
+
|
11
|
+
## Installation
|
12
|
+
|
13
|
+
Add this line to your application’s Gemfile:
|
14
|
+
|
15
|
+
```ruby
|
16
|
+
gem 'disco'
|
17
|
+
```
|
18
|
+
|
19
|
+
## Getting Started
|
20
|
+
|
21
|
+
Create a recommender
|
22
|
+
|
23
|
+
```ruby
|
24
|
+
recommender = Disco::Recommender.new
|
25
|
+
```
|
26
|
+
|
27
|
+
If users rate items directly, this is known as explicit feedback. Fit the recommender with:
|
28
|
+
|
29
|
+
```ruby
|
30
|
+
recommender.fit([
|
31
|
+
{user_id: 1, item_id: 1, rating: 5},
|
32
|
+
{user_id: 2, item_id: 1, rating: 3}
|
33
|
+
])
|
34
|
+
```
|
35
|
+
|
36
|
+
> IDs can be integers, strings, or any other data type
|
37
|
+
|
38
|
+
If users don’t rate items directly (for instance, they’re purchasing items or reading posts), this is known as implicit feedback. Leave out the rating, or use a value like number of purchases, number of page views, or time spent on page:
|
39
|
+
|
40
|
+
```ruby
|
41
|
+
recommender.fit([
|
42
|
+
{user_id: 1, item_id: 1, value: 1},
|
43
|
+
{user_id: 2, item_id: 1, value: 1}
|
44
|
+
])
|
45
|
+
```
|
46
|
+
|
47
|
+
> Use `value` instead of rating for implicit feedback
|
48
|
+
|
49
|
+
Get user-based (user-item) recommendations - “users like you also liked”
|
50
|
+
|
51
|
+
```ruby
|
52
|
+
recommender.user_recs(user_id)
|
53
|
+
```
|
54
|
+
|
55
|
+
Get item-based (item-item) recommendations - “users who liked this item also liked”
|
56
|
+
|
57
|
+
```ruby
|
58
|
+
recommender.item_recs(item_id)
|
59
|
+
```
|
60
|
+
|
61
|
+
Use the `count` option to specify the number of recommendations (default is 5)
|
62
|
+
|
63
|
+
```ruby
|
64
|
+
recommender.user_recs(user_id, count: 3)
|
65
|
+
```
|
66
|
+
|
67
|
+
Get predicted ratings for specific items
|
68
|
+
|
69
|
+
```ruby
|
70
|
+
recommender.user_recs(user_id, item_ids: [1, 2, 3])
|
71
|
+
```
|
72
|
+
|
73
|
+
Get similar users
|
74
|
+
|
75
|
+
```ruby
|
76
|
+
recommender.similar_users(user_id)
|
77
|
+
```
|
78
|
+
|
79
|
+
## Examples
|
80
|
+
|
81
|
+
### MovieLens
|
82
|
+
|
83
|
+
Load the data
|
84
|
+
|
85
|
+
```ruby
|
86
|
+
data = Disco.load_movielens
|
87
|
+
```
|
88
|
+
|
89
|
+
Create a recommender and get similar movies
|
90
|
+
|
91
|
+
```ruby
|
92
|
+
recommender = Disco::Recommender.new(factors: 20)
|
93
|
+
recommender.fit(data)
|
94
|
+
recommender.item_recs("Star Wars (1977)")
|
95
|
+
```
|
96
|
+
|
97
|
+
### Ahoy
|
98
|
+
|
99
|
+
[Ahoy](https://github.com/ankane/ahoy) is a great source for implicit feedback
|
100
|
+
|
101
|
+
```ruby
|
102
|
+
views = Ahoy::Event.
|
103
|
+
where(name: "Viewed post").
|
104
|
+
group(:user_id, "properties->>'post_id'") # postgres syntax
|
105
|
+
count
|
106
|
+
|
107
|
+
data =
|
108
|
+
views.map do |(user_id, post_id), count|
|
109
|
+
{
|
110
|
+
user_id: user_id,
|
111
|
+
post_id: post_id,
|
112
|
+
value: count
|
113
|
+
}
|
114
|
+
end
|
115
|
+
```
|
116
|
+
|
117
|
+
Create a recommender and get recommended posts for a user
|
118
|
+
|
119
|
+
```ruby
|
120
|
+
recommender = Disco::Recommender.new
|
121
|
+
recommender.fit(data)
|
122
|
+
recommender.user_recs(current_user.id)
|
123
|
+
```
|
124
|
+
|
125
|
+
## Storing Recommendations
|
126
|
+
|
127
|
+
Disco makes it easy to store recommendations in Rails.
|
128
|
+
|
129
|
+
```sh
|
130
|
+
rails generate disco:recommendation
|
131
|
+
rails db:migrate
|
132
|
+
```
|
133
|
+
|
134
|
+
For user-based recommendations, use:
|
135
|
+
|
136
|
+
```ruby
|
137
|
+
class User < ApplicationRecord
|
138
|
+
has_recommended :products
|
139
|
+
end
|
140
|
+
```
|
141
|
+
|
142
|
+
> Change `:products` to match the model you’re recommending
|
143
|
+
|
144
|
+
Save recommendations
|
145
|
+
|
146
|
+
```ruby
|
147
|
+
User.find_each do |user|
|
148
|
+
recs = recommender.user_recs(user.id)
|
149
|
+
user.update_recommended_products(recs)
|
150
|
+
end
|
151
|
+
```
|
152
|
+
|
153
|
+
Get recommendations
|
154
|
+
|
155
|
+
```ruby
|
156
|
+
user.recommended_products
|
157
|
+
```
|
158
|
+
|
159
|
+
For item-based recommendations, use:
|
160
|
+
|
161
|
+
```ruby
|
162
|
+
class Product < ApplicationRecord
|
163
|
+
has_recommended :products
|
164
|
+
end
|
165
|
+
```
|
166
|
+
|
167
|
+
Specify multiple types of recommendations for a model with:
|
168
|
+
|
169
|
+
```ruby
|
170
|
+
class User < ApplicationRecord
|
171
|
+
has_recommended :products
|
172
|
+
has_recommended :products_v2, class_name: "Product"
|
173
|
+
end
|
174
|
+
```
|
175
|
+
|
176
|
+
And use the appropriate methods:
|
177
|
+
|
178
|
+
```ruby
|
179
|
+
user.update_recommended_products_v2(recs)
|
180
|
+
user.recommended_products_v2
|
181
|
+
```
|
182
|
+
|
183
|
+
For Rails < 6, speed up inserts by adding [activerecord-import](https://github.com/zdennis/activerecord-import) to your app.
|
184
|
+
|
185
|
+
## Storing Recommenders
|
186
|
+
|
187
|
+
If you’d prefer to perform recommendations on-the-fly, store the recommender
|
188
|
+
|
189
|
+
```ruby
|
190
|
+
bin = Marshal.dump(recommender)
|
191
|
+
File.binwrite("recommender.bin", bin)
|
192
|
+
```
|
193
|
+
|
194
|
+
> You can save it to a file, database, or any other storage system
|
195
|
+
|
196
|
+
Load a recommender
|
197
|
+
|
198
|
+
```ruby
|
199
|
+
bin = File.binread("recommender.bin")
|
200
|
+
recommender = Marshal.load(bin)
|
201
|
+
```
|
202
|
+
|
203
|
+
## Algorithms
|
204
|
+
|
205
|
+
Disco uses matrix factorization.
|
206
|
+
|
207
|
+
- For explicit feedback, it uses [stochastic gradient descent](https://www.csie.ntu.edu.tw/~cjlin/papers/libmf/libmf_journal.pdf)
|
208
|
+
- For implicit feedback, it uses [coordinate descent](https://www.csie.ntu.edu.tw/~cjlin/papers/one-class-mf/biased-mf-sdm-with-supp.pdf)
|
209
|
+
|
210
|
+
Specify the number of factors and epochs
|
211
|
+
|
212
|
+
```ruby
|
213
|
+
Disco::Recommender.new(factors: 8, epochs: 20)
|
214
|
+
```
|
215
|
+
|
216
|
+
If recommendations look off, trying changing `factors`. The default is 8, but 3 could be good for some applications and 300 good for others.
|
217
|
+
|
218
|
+
## Validation
|
219
|
+
|
220
|
+
Pass a validation set with:
|
221
|
+
|
222
|
+
```ruby
|
223
|
+
recommender.fit(data, validation_set: validation_set)
|
224
|
+
```
|
225
|
+
|
226
|
+
## Cold Start
|
227
|
+
|
228
|
+
Collaborative filtering suffers from the [cold start problem](https://www.yuspify.com/blog/cold-start-problem-recommender-systems/). It’s unable to make good recommendations without data on a user or item, which is problematic for new users and items.
|
229
|
+
|
230
|
+
```ruby
|
231
|
+
recommender.user_recs(new_user_id) # returns empty array
|
232
|
+
```
|
233
|
+
|
234
|
+
There are a number of ways to deal with this, but here are some common ones:
|
235
|
+
|
236
|
+
- For user-based recommendations, show new users the most popular items.
|
237
|
+
- For item-based recommendations, make content-based recommendations with a gem like [tf-idf-similarity](https://github.com/jpmckinney/tf-idf-similarity).
|
238
|
+
|
239
|
+
## Daru
|
240
|
+
|
241
|
+
Disco works with Daru data frames
|
242
|
+
|
243
|
+
```ruby
|
244
|
+
data = Daru::DataFrame.from_csv("ratings.csv")
|
245
|
+
recommender.fit(data)
|
246
|
+
```
|
247
|
+
|
248
|
+
## Reference
|
249
|
+
|
250
|
+
Get the global mean
|
251
|
+
|
252
|
+
```ruby
|
253
|
+
recommender.global_mean
|
254
|
+
```
|
255
|
+
|
256
|
+
Get the factors
|
257
|
+
|
258
|
+
```ruby
|
259
|
+
recommender.user_factors
|
260
|
+
recommender.item_factors
|
261
|
+
```
|
262
|
+
|
263
|
+
## Credits
|
264
|
+
|
265
|
+
Thanks to:
|
266
|
+
|
267
|
+
- [LIBMF](https://github.com/cjlin1/libmf) for providing high performance matrix factorization
|
268
|
+
- [Implicit](https://github.com/benfred/implicit/) for serving as an initial reference for user and item similarity
|
269
|
+
- [@dasch](https://github.com/dasch) for the gem name
|
270
|
+
|
271
|
+
## History
|
272
|
+
|
273
|
+
View the [changelog](https://github.com/ankane/disco/blob/master/CHANGELOG.md)
|
274
|
+
|
275
|
+
## Contributing
|
276
|
+
|
277
|
+
Everyone is encouraged to help improve this project. Here are a few ways you can help:
|
278
|
+
|
279
|
+
- [Report bugs](https://github.com/ankane/disco/issues)
|
280
|
+
- Fix bugs and [submit pull requests](https://github.com/ankane/disco/pulls)
|
281
|
+
- Write, clarify, or fix documentation
|
282
|
+
- Suggest or add new features
|
data/lib/disco.rb
ADDED
@@ -0,0 +1,29 @@
|
|
1
|
+
# dependencies
|
2
|
+
require "libmf"
|
3
|
+
require "numo/narray"
|
4
|
+
|
5
|
+
# stdlib
|
6
|
+
require "csv"
|
7
|
+
require "fileutils"
|
8
|
+
require "net/http"
|
9
|
+
|
10
|
+
# modules
|
11
|
+
require "disco/data"
|
12
|
+
require "disco/recommender"
|
13
|
+
require "disco/version"
|
14
|
+
|
15
|
+
# integrations
|
16
|
+
require "disco/engine" if defined?(Rails)
|
17
|
+
|
18
|
+
module Disco
|
19
|
+
class Error < StandardError; end
|
20
|
+
|
21
|
+
extend Data
|
22
|
+
end
|
23
|
+
|
24
|
+
if defined?(ActiveSupport.on_load)
|
25
|
+
ActiveSupport.on_load(:active_record) do
|
26
|
+
require "disco/model"
|
27
|
+
extend Disco::Model
|
28
|
+
end
|
29
|
+
end
|
data/lib/disco/data.rb
ADDED
@@ -0,0 +1,75 @@
|
|
1
|
+
module Disco
|
2
|
+
module Data
|
3
|
+
def load_movielens
|
4
|
+
item_path = download_file("ml-100k/u.item", "http://files.grouplens.org/datasets/movielens/ml-100k/u.item",
|
5
|
+
file_hash: "553841ebc7de3a0fd0d6b62a204ea30c1e651aacfb2814c7a6584ac52f2c5701")
|
6
|
+
data_path = download_file("ml-100k/u.data", "http://files.grouplens.org/datasets/movielens/ml-100k/u.data",
|
7
|
+
file_hash: "06416e597f82b7342361e41163890c81036900f418ad91315590814211dca490")
|
8
|
+
|
9
|
+
# convert u.item to utf-8
|
10
|
+
movies_str = File.read(item_path).encode("UTF-8", "binary", invalid: :replace, undef: :replace, replace: "")
|
11
|
+
|
12
|
+
movies = {}
|
13
|
+
CSV.parse(movies_str, col_sep: "|") do |row|
|
14
|
+
movies[row[0]] = row[1]
|
15
|
+
end
|
16
|
+
|
17
|
+
data = []
|
18
|
+
CSV.foreach(data_path, col_sep: "\t") do |row|
|
19
|
+
data << {
|
20
|
+
user_id: row[0].to_i,
|
21
|
+
item_id: movies[row[1]],
|
22
|
+
rating: row[2].to_i
|
23
|
+
}
|
24
|
+
end
|
25
|
+
|
26
|
+
data
|
27
|
+
end
|
28
|
+
|
29
|
+
private
|
30
|
+
|
31
|
+
def download_file(fname, origin, file_hash:)
|
32
|
+
# TODO handle this better
|
33
|
+
raise "No HOME" unless ENV["HOME"]
|
34
|
+
dest = "#{ENV["HOME"]}/.disco/#{fname}"
|
35
|
+
FileUtils.mkdir_p(File.dirname(dest))
|
36
|
+
|
37
|
+
return dest if File.exist?(dest)
|
38
|
+
|
39
|
+
temp_dir ||= File.dirname(Tempfile.new("disco"))
|
40
|
+
temp_path = "#{temp_dir}/#{Time.now.to_f}" # TODO better name
|
41
|
+
|
42
|
+
digest = Digest::SHA2.new
|
43
|
+
|
44
|
+
uri = URI(origin)
|
45
|
+
|
46
|
+
# Net::HTTP automatically adds Accept-Encoding for compression
|
47
|
+
# of response bodies and automatically decompresses gzip
|
48
|
+
# and deflateresponses unless a Range header was sent.
|
49
|
+
# https://ruby-doc.org/stdlib-2.6.4/libdoc/net/http/rdoc/Net/HTTP.html
|
50
|
+
Net::HTTP.start(uri.host, uri.port, use_ssl: uri.scheme == "https") do |http|
|
51
|
+
request = Net::HTTP::Get.new(uri)
|
52
|
+
|
53
|
+
puts "Downloading data from #{origin}"
|
54
|
+
File.open(temp_path, "wb") do |f|
|
55
|
+
http.request(request) do |response|
|
56
|
+
response.read_body do |chunk|
|
57
|
+
f.write(chunk)
|
58
|
+
digest.update(chunk)
|
59
|
+
end
|
60
|
+
end
|
61
|
+
end
|
62
|
+
end
|
63
|
+
|
64
|
+
if digest.hexdigest != file_hash
|
65
|
+
raise Error, "Bad hash: #{digest.hexdigest}"
|
66
|
+
end
|
67
|
+
|
68
|
+
puts "Hash verified: #{file_hash}"
|
69
|
+
|
70
|
+
FileUtils.mv(temp_path, dest)
|
71
|
+
|
72
|
+
dest
|
73
|
+
end
|
74
|
+
end
|
75
|
+
end
|
data/lib/disco/engine.rb
ADDED
data/lib/disco/model.rb
ADDED
@@ -0,0 +1,36 @@
|
|
1
|
+
module Disco
|
2
|
+
module Model
|
3
|
+
def has_recommended(name, class_name: nil)
|
4
|
+
class_name ||= name.to_s.singularize.camelize
|
5
|
+
|
6
|
+
class_eval do
|
7
|
+
unless reflect_on_association(:recommendations)
|
8
|
+
has_many :recommendations, class_name: "Disco::Recommendation", as: :subject, dependent: :destroy
|
9
|
+
end
|
10
|
+
|
11
|
+
has_many :"recommended_#{name}", -> { where("disco_recommendations.context = ?", name).order("disco_recommendations.score DESC") }, through: :recommendations, source: :item, source_type: class_name
|
12
|
+
|
13
|
+
define_method("update_recommended_#{name}") do |items|
|
14
|
+
now = Time.now
|
15
|
+
items = items.map { |item| {subject_type: model_name.name, subject_id: id, item_type: class_name, item_id: item[:item_id], context: name, score: item[:score], created_at: now, updated_at: now} }
|
16
|
+
|
17
|
+
self.class.transaction do
|
18
|
+
recommendations.where(context: name).delete_all
|
19
|
+
|
20
|
+
if items.any?
|
21
|
+
if recommendations.respond_to?(:insert_all!)
|
22
|
+
# Rails 6
|
23
|
+
recommendations.insert_all!(items)
|
24
|
+
elsif recommendations.respond_to?(:bulk_import!)
|
25
|
+
# activerecord-import
|
26
|
+
recommendations.bulk_import!(items, validate: false)
|
27
|
+
else
|
28
|
+
recommendations.create!([items])
|
29
|
+
end
|
30
|
+
end
|
31
|
+
end
|
32
|
+
end
|
33
|
+
end
|
34
|
+
end
|
35
|
+
end
|
36
|
+
end
|
@@ -0,0 +1,208 @@
|
|
1
|
+
module Disco
|
2
|
+
class Recommender
|
3
|
+
attr_reader :global_mean, :item_factors, :user_factors
|
4
|
+
|
5
|
+
def initialize(factors: 8, epochs: 20, verbose: nil)
|
6
|
+
@factors = factors
|
7
|
+
@epochs = epochs
|
8
|
+
@verbose = verbose
|
9
|
+
end
|
10
|
+
|
11
|
+
def fit(train_set, validation_set: nil)
|
12
|
+
if defined?(Daru)
|
13
|
+
if train_set.is_a?(Daru::DataFrame)
|
14
|
+
train_set = train_set.to_a[0]
|
15
|
+
end
|
16
|
+
if validation_set.is_a?(Daru::DataFrame)
|
17
|
+
validation_set = validation_set.to_a[0]
|
18
|
+
end
|
19
|
+
end
|
20
|
+
|
21
|
+
@implicit = !train_set.any? { |v| v[:rating] }
|
22
|
+
|
23
|
+
unless @implicit
|
24
|
+
ratings = train_set.map { |o| o[:rating] }
|
25
|
+
check_ratings(ratings)
|
26
|
+
@min_rating = ratings.min
|
27
|
+
@max_rating = ratings.max
|
28
|
+
|
29
|
+
if validation_set
|
30
|
+
check_ratings(validation_set.map { |o| o[:rating] })
|
31
|
+
end
|
32
|
+
end
|
33
|
+
|
34
|
+
check_training_set(train_set)
|
35
|
+
create_maps(train_set)
|
36
|
+
|
37
|
+
@rated = Hash.new { |hash, key| hash[key] = {} }
|
38
|
+
input = []
|
39
|
+
value_key = @implicit ? :value : :rating
|
40
|
+
train_set.each do |v|
|
41
|
+
u = @user_map[v[:user_id]]
|
42
|
+
i = @item_map[v[:item_id]]
|
43
|
+
@rated[u][i] = true
|
44
|
+
|
45
|
+
# explicit will always have a value due to check_ratings
|
46
|
+
input << [u, i, v[value_key] || 1]
|
47
|
+
end
|
48
|
+
@rated.default = nil
|
49
|
+
|
50
|
+
eval_set = nil
|
51
|
+
if validation_set
|
52
|
+
eval_set = []
|
53
|
+
validation_set.each do |v|
|
54
|
+
u = @user_map[v[:user_id]]
|
55
|
+
i = @item_map[v[:item_id]]
|
56
|
+
|
57
|
+
# set to non-existent item
|
58
|
+
u ||= -1
|
59
|
+
i ||= -1
|
60
|
+
|
61
|
+
eval_set << [u, i, v[value_key] || 1]
|
62
|
+
end
|
63
|
+
end
|
64
|
+
|
65
|
+
loss = @implicit ? 12 : 0
|
66
|
+
verbose = @verbose
|
67
|
+
verbose = true if verbose.nil? && eval_set
|
68
|
+
model = Libmf::Model.new(loss: loss, factors: @factors, iterations: @epochs, quiet: !verbose)
|
69
|
+
model.fit(input, eval_set: eval_set)
|
70
|
+
|
71
|
+
@global_mean = model.bias
|
72
|
+
|
73
|
+
# TODO read from LIBMF directly to Numo for performance
|
74
|
+
@user_factors = Numo::DFloat.cast(model.p_factors)
|
75
|
+
@item_factors = Numo::DFloat.cast(model.q_factors)
|
76
|
+
end
|
77
|
+
|
78
|
+
def user_recs(user_id, count: 5, item_ids: nil)
|
79
|
+
u = @user_map[user_id]
|
80
|
+
|
81
|
+
if u
|
82
|
+
predictions = @global_mean + @item_factors.dot(@user_factors[u, true])
|
83
|
+
predictions.inplace.clip(@min_rating, @max_rating) if @min_rating
|
84
|
+
|
85
|
+
predictions =
|
86
|
+
@item_map.keys.zip(predictions).map do |item_id, pred|
|
87
|
+
{item_id: item_id, score: pred}
|
88
|
+
end
|
89
|
+
|
90
|
+
if item_ids
|
91
|
+
idx = item_ids.map { |i| @item_map[i] }.compact
|
92
|
+
predictions.values_at(*idx)
|
93
|
+
else
|
94
|
+
@rated[u].keys.each do |i|
|
95
|
+
predictions.delete_at(i)
|
96
|
+
end
|
97
|
+
end
|
98
|
+
|
99
|
+
predictions.sort_by! { |pred| -pred[:score] } # already sorted by id
|
100
|
+
predictions = predictions.first(count) if count && !item_ids
|
101
|
+
predictions
|
102
|
+
else
|
103
|
+
# no items if user is unknown
|
104
|
+
# TODO maybe most popular items
|
105
|
+
[]
|
106
|
+
end
|
107
|
+
end
|
108
|
+
|
109
|
+
def similar_items(item_id, count: 5)
|
110
|
+
similar(item_id, @item_map, @item_factors, item_norms, count)
|
111
|
+
end
|
112
|
+
alias_method :item_recs, :similar_items
|
113
|
+
|
114
|
+
def similar_users(user_id, count: 5)
|
115
|
+
similar(user_id, @user_map, @user_factors, user_norms, count)
|
116
|
+
end
|
117
|
+
|
118
|
+
private
|
119
|
+
|
120
|
+
def user_norms
|
121
|
+
@user_norms ||= norms(@user_factors)
|
122
|
+
end
|
123
|
+
|
124
|
+
def item_norms
|
125
|
+
@item_norms ||= norms(@item_factors)
|
126
|
+
end
|
127
|
+
|
128
|
+
def norms(factors)
|
129
|
+
norms = Numo::DFloat::Math.sqrt((factors * factors).sum(axis: 1))
|
130
|
+
norms[norms.eq(0)] = 1e-10 # no zeros
|
131
|
+
norms
|
132
|
+
end
|
133
|
+
|
134
|
+
def similar(id, map, factors, norms, count)
|
135
|
+
i = map[id]
|
136
|
+
if i
|
137
|
+
predictions = factors.dot(factors[i, true]) / norms
|
138
|
+
|
139
|
+
predictions =
|
140
|
+
map.keys.zip(predictions).map do |item_id, pred|
|
141
|
+
{item_id: item_id, score: pred}
|
142
|
+
end
|
143
|
+
|
144
|
+
predictions.delete_at(i)
|
145
|
+
predictions.sort_by! { |pred| -pred[:score] } # already sorted by id
|
146
|
+
predictions = predictions.first(count) if count
|
147
|
+
predictions
|
148
|
+
else
|
149
|
+
[]
|
150
|
+
end
|
151
|
+
end
|
152
|
+
|
153
|
+
def create_maps(train_set)
|
154
|
+
user_ids = train_set.map { |v| v[:user_id] }.uniq.sort
|
155
|
+
item_ids = train_set.map { |v| v[:item_id] }.uniq.sort
|
156
|
+
|
157
|
+
@user_map = user_ids.zip(user_ids.size.times).to_h
|
158
|
+
@item_map = item_ids.zip(item_ids.size.times).to_h
|
159
|
+
end
|
160
|
+
|
161
|
+
def check_ratings(ratings)
|
162
|
+
unless ratings.all? { |r| !r.nil? }
|
163
|
+
raise ArgumentError, "Missing ratings"
|
164
|
+
end
|
165
|
+
unless ratings.all? { |r| r.is_a?(Numeric) }
|
166
|
+
raise ArgumentError, "Ratings must be numeric"
|
167
|
+
end
|
168
|
+
end
|
169
|
+
|
170
|
+
def check_training_set(train_set)
|
171
|
+
raise ArgumentError, "No training data" if train_set.empty?
|
172
|
+
end
|
173
|
+
|
174
|
+
def marshal_dump
|
175
|
+
obj = {
|
176
|
+
implicit: @implicit,
|
177
|
+
user_map: @user_map,
|
178
|
+
item_map: @item_map,
|
179
|
+
rated: @rated,
|
180
|
+
global_mean: @global_mean,
|
181
|
+
user_factors: @user_factors,
|
182
|
+
item_factors: @item_factors
|
183
|
+
}
|
184
|
+
|
185
|
+
unless @implicit
|
186
|
+
obj[:min_rating] = @min_rating
|
187
|
+
obj[:max_rating] = @max_rating
|
188
|
+
end
|
189
|
+
|
190
|
+
obj
|
191
|
+
end
|
192
|
+
|
193
|
+
def marshal_load(obj)
|
194
|
+
@implicit = obj[:implicit]
|
195
|
+
@user_map = obj[:user_map]
|
196
|
+
@item_map = obj[:item_map]
|
197
|
+
@rated = obj[:rated]
|
198
|
+
@global_mean = obj[:global_mean]
|
199
|
+
@user_factors = obj[:user_factors]
|
200
|
+
@item_factors = obj[:item_factors]
|
201
|
+
|
202
|
+
unless @implicit
|
203
|
+
@min_rating = obj[:min_rating]
|
204
|
+
@max_rating = obj[:max_rating]
|
205
|
+
end
|
206
|
+
end
|
207
|
+
end
|
208
|
+
end
|
@@ -0,0 +1,18 @@
|
|
1
|
+
require "rails/generators/active_record"
|
2
|
+
|
3
|
+
module Disco
|
4
|
+
module Generators
|
5
|
+
class RecommendationGenerator < Rails::Generators::Base
|
6
|
+
include ActiveRecord::Generators::Migration
|
7
|
+
source_root File.join(__dir__, "templates")
|
8
|
+
|
9
|
+
def copy_migration
|
10
|
+
migration_template "migration.rb", "db/migrate/create_disco_recommendations.rb", migration_version: migration_version
|
11
|
+
end
|
12
|
+
|
13
|
+
def migration_version
|
14
|
+
"[#{ActiveRecord::VERSION::MAJOR}.#{ActiveRecord::VERSION::MINOR}]"
|
15
|
+
end
|
16
|
+
end
|
17
|
+
end
|
18
|
+
end
|
@@ -0,0 +1,11 @@
|
|
1
|
+
class <%= migration_class_name %> < ActiveRecord::Migration<%= migration_version %>
|
2
|
+
def change
|
3
|
+
create_table :disco_recommendations do |t|
|
4
|
+
t.references :subject, polymorphic: true
|
5
|
+
t.references :item, polymorphic: true
|
6
|
+
t.string :context
|
7
|
+
t.float :score
|
8
|
+
t.timestamps
|
9
|
+
end
|
10
|
+
end
|
11
|
+
end
|
metadata
ADDED
@@ -0,0 +1,165 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: disco
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.1.0
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- Andrew Kane
|
8
|
+
autorequire:
|
9
|
+
bindir: bin
|
10
|
+
cert_chain: []
|
11
|
+
date: 2019-11-14 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: libmf
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - ">="
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: 0.1.3
|
20
|
+
type: :runtime
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - ">="
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: 0.1.3
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: numo-narray
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
30
|
+
requirements:
|
31
|
+
- - ">="
|
32
|
+
- !ruby/object:Gem::Version
|
33
|
+
version: '0'
|
34
|
+
type: :runtime
|
35
|
+
prerelease: false
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - ">="
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: '0'
|
41
|
+
- !ruby/object:Gem::Dependency
|
42
|
+
name: bundler
|
43
|
+
requirement: !ruby/object:Gem::Requirement
|
44
|
+
requirements:
|
45
|
+
- - ">="
|
46
|
+
- !ruby/object:Gem::Version
|
47
|
+
version: '0'
|
48
|
+
type: :development
|
49
|
+
prerelease: false
|
50
|
+
version_requirements: !ruby/object:Gem::Requirement
|
51
|
+
requirements:
|
52
|
+
- - ">="
|
53
|
+
- !ruby/object:Gem::Version
|
54
|
+
version: '0'
|
55
|
+
- !ruby/object:Gem::Dependency
|
56
|
+
name: rake
|
57
|
+
requirement: !ruby/object:Gem::Requirement
|
58
|
+
requirements:
|
59
|
+
- - ">="
|
60
|
+
- !ruby/object:Gem::Version
|
61
|
+
version: '0'
|
62
|
+
type: :development
|
63
|
+
prerelease: false
|
64
|
+
version_requirements: !ruby/object:Gem::Requirement
|
65
|
+
requirements:
|
66
|
+
- - ">="
|
67
|
+
- !ruby/object:Gem::Version
|
68
|
+
version: '0'
|
69
|
+
- !ruby/object:Gem::Dependency
|
70
|
+
name: minitest
|
71
|
+
requirement: !ruby/object:Gem::Requirement
|
72
|
+
requirements:
|
73
|
+
- - ">="
|
74
|
+
- !ruby/object:Gem::Version
|
75
|
+
version: '5'
|
76
|
+
type: :development
|
77
|
+
prerelease: false
|
78
|
+
version_requirements: !ruby/object:Gem::Requirement
|
79
|
+
requirements:
|
80
|
+
- - ">="
|
81
|
+
- !ruby/object:Gem::Version
|
82
|
+
version: '5'
|
83
|
+
- !ruby/object:Gem::Dependency
|
84
|
+
name: activerecord
|
85
|
+
requirement: !ruby/object:Gem::Requirement
|
86
|
+
requirements:
|
87
|
+
- - ">="
|
88
|
+
- !ruby/object:Gem::Version
|
89
|
+
version: '0'
|
90
|
+
type: :development
|
91
|
+
prerelease: false
|
92
|
+
version_requirements: !ruby/object:Gem::Requirement
|
93
|
+
requirements:
|
94
|
+
- - ">="
|
95
|
+
- !ruby/object:Gem::Version
|
96
|
+
version: '0'
|
97
|
+
- !ruby/object:Gem::Dependency
|
98
|
+
name: sqlite3
|
99
|
+
requirement: !ruby/object:Gem::Requirement
|
100
|
+
requirements:
|
101
|
+
- - ">="
|
102
|
+
- !ruby/object:Gem::Version
|
103
|
+
version: '0'
|
104
|
+
type: :development
|
105
|
+
prerelease: false
|
106
|
+
version_requirements: !ruby/object:Gem::Requirement
|
107
|
+
requirements:
|
108
|
+
- - ">="
|
109
|
+
- !ruby/object:Gem::Version
|
110
|
+
version: '0'
|
111
|
+
- !ruby/object:Gem::Dependency
|
112
|
+
name: daru
|
113
|
+
requirement: !ruby/object:Gem::Requirement
|
114
|
+
requirements:
|
115
|
+
- - ">="
|
116
|
+
- !ruby/object:Gem::Version
|
117
|
+
version: '0'
|
118
|
+
type: :development
|
119
|
+
prerelease: false
|
120
|
+
version_requirements: !ruby/object:Gem::Requirement
|
121
|
+
requirements:
|
122
|
+
- - ">="
|
123
|
+
- !ruby/object:Gem::Version
|
124
|
+
version: '0'
|
125
|
+
description:
|
126
|
+
email: andrew@chartkick.com
|
127
|
+
executables: []
|
128
|
+
extensions: []
|
129
|
+
extra_rdoc_files: []
|
130
|
+
files:
|
131
|
+
- CHANGELOG.md
|
132
|
+
- LICENSE.txt
|
133
|
+
- README.md
|
134
|
+
- lib/disco.rb
|
135
|
+
- lib/disco/data.rb
|
136
|
+
- lib/disco/engine.rb
|
137
|
+
- lib/disco/model.rb
|
138
|
+
- lib/disco/recommender.rb
|
139
|
+
- lib/disco/version.rb
|
140
|
+
- lib/generators/disco/recommendation_generator.rb
|
141
|
+
- lib/generators/disco/templates/migration.rb.tt
|
142
|
+
homepage: https://github.com/ankane/disco
|
143
|
+
licenses:
|
144
|
+
- MIT
|
145
|
+
metadata: {}
|
146
|
+
post_install_message:
|
147
|
+
rdoc_options: []
|
148
|
+
require_paths:
|
149
|
+
- lib
|
150
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
151
|
+
requirements:
|
152
|
+
- - ">="
|
153
|
+
- !ruby/object:Gem::Version
|
154
|
+
version: '2.4'
|
155
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
156
|
+
requirements:
|
157
|
+
- - ">="
|
158
|
+
- !ruby/object:Gem::Version
|
159
|
+
version: '0'
|
160
|
+
requirements: []
|
161
|
+
rubygems_version: 3.0.3
|
162
|
+
signing_key:
|
163
|
+
specification_version: 4
|
164
|
+
summary: Collaborative filtering for Ruby
|
165
|
+
test_files: []
|