datasketches 0.3.2 → 0.4.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +6 -0
- data/NOTICE +1 -1
- data/README.md +0 -2
- data/ext/datasketches/cpc_wrapper.cpp +2 -2
- data/ext/datasketches/kll_wrapper.cpp +0 -10
- data/lib/datasketches/version.rb +1 -1
- data/lib/datasketches.rb +1 -1
- data/vendor/datasketches-cpp/CMakeLists.txt +1 -0
- data/vendor/datasketches-cpp/CODE_OF_CONDUCT.md +3 -0
- data/vendor/datasketches-cpp/CONTRIBUTING.md +50 -0
- data/vendor/datasketches-cpp/Doxyfile +2827 -0
- data/vendor/datasketches-cpp/LICENSE +0 -76
- data/vendor/datasketches-cpp/NOTICE +1 -1
- data/vendor/datasketches-cpp/README.md +1 -3
- data/vendor/datasketches-cpp/common/CMakeLists.txt +12 -11
- data/vendor/datasketches-cpp/common/include/common_defs.hpp +11 -8
- data/vendor/datasketches-cpp/common/include/count_zeros.hpp +0 -2
- data/vendor/datasketches-cpp/common/include/kolmogorov_smirnov.hpp +9 -6
- data/vendor/datasketches-cpp/common/include/optional.hpp +148 -0
- data/vendor/datasketches-cpp/common/include/quantiles_sorted_view.hpp +95 -2
- data/vendor/datasketches-cpp/common/include/quantiles_sorted_view_impl.hpp +1 -1
- data/vendor/datasketches-cpp/common/include/serde.hpp +69 -20
- data/vendor/datasketches-cpp/common/test/CMakeLists.txt +1 -1
- data/vendor/datasketches-cpp/common/test/optional_test.cpp +85 -0
- data/vendor/datasketches-cpp/common/test/test_allocator.hpp +14 -14
- data/vendor/datasketches-cpp/count/include/count_min.hpp +132 -78
- data/vendor/datasketches-cpp/count/include/count_min_impl.hpp +132 -152
- data/vendor/datasketches-cpp/count/test/CMakeLists.txt +11 -12
- data/vendor/datasketches-cpp/count/test/count_min_allocation_test.cpp +61 -61
- data/vendor/datasketches-cpp/count/test/count_min_test.cpp +175 -178
- data/vendor/datasketches-cpp/cpc/include/cpc_common.hpp +14 -20
- data/vendor/datasketches-cpp/cpc/include/cpc_compressor.hpp +7 -4
- data/vendor/datasketches-cpp/cpc/include/cpc_compressor_impl.hpp +17 -17
- data/vendor/datasketches-cpp/cpc/include/cpc_sketch.hpp +40 -40
- data/vendor/datasketches-cpp/cpc/include/cpc_sketch_impl.hpp +13 -10
- data/vendor/datasketches-cpp/cpc/include/cpc_union.hpp +35 -11
- data/vendor/datasketches-cpp/cpc/include/cpc_union_impl.hpp +8 -8
- data/vendor/datasketches-cpp/cpc/include/u32_table.hpp +3 -2
- data/vendor/datasketches-cpp/cpc/include/u32_table_impl.hpp +5 -5
- data/vendor/datasketches-cpp/cpc/test/CMakeLists.txt +20 -7
- data/vendor/datasketches-cpp/cpc/test/cpc_sketch_deserialize_from_java_test.cpp +60 -0
- data/vendor/datasketches-cpp/{python/include/py_object_lt.hpp → cpc/test/cpc_sketch_serialize_for_java.cpp} +15 -14
- data/vendor/datasketches-cpp/cpc/test/cpc_sketch_test.cpp +4 -29
- data/vendor/datasketches-cpp/cpc/test/cpc_union_test.cpp +4 -4
- data/vendor/datasketches-cpp/density/include/density_sketch.hpp +29 -9
- data/vendor/datasketches-cpp/density/include/density_sketch_impl.hpp +1 -1
- data/vendor/datasketches-cpp/density/test/CMakeLists.txt +0 -1
- data/vendor/datasketches-cpp/fi/include/frequent_items_sketch.hpp +21 -9
- data/vendor/datasketches-cpp/fi/include/frequent_items_sketch_impl.hpp +6 -4
- data/vendor/datasketches-cpp/fi/test/CMakeLists.txt +14 -1
- data/vendor/datasketches-cpp/fi/test/frequent_items_sketch_deserialize_from_java_test.cpp +95 -0
- data/vendor/datasketches-cpp/fi/test/frequent_items_sketch_serialize_for_java.cpp +83 -0
- data/vendor/datasketches-cpp/fi/test/frequent_items_sketch_test.cpp +3 -42
- data/vendor/datasketches-cpp/hll/include/CouponList-internal.hpp +2 -2
- data/vendor/datasketches-cpp/hll/include/CouponList.hpp +3 -1
- data/vendor/datasketches-cpp/hll/include/HllArray-internal.hpp +3 -3
- data/vendor/datasketches-cpp/hll/include/HllArray.hpp +5 -3
- data/vendor/datasketches-cpp/hll/include/HllSketch-internal.hpp +4 -4
- data/vendor/datasketches-cpp/hll/include/HllSketchImpl.hpp +3 -1
- data/vendor/datasketches-cpp/hll/include/HllUtil.hpp +0 -12
- data/vendor/datasketches-cpp/hll/include/hll.hpp +70 -57
- data/vendor/datasketches-cpp/hll/test/CMakeLists.txt +14 -1
- data/vendor/datasketches-cpp/hll/test/ToFromByteArrayTest.cpp +0 -68
- data/vendor/datasketches-cpp/hll/test/hll_sketch_deserialize_from_java_test.cpp +69 -0
- data/vendor/datasketches-cpp/hll/test/hll_sketch_serialize_for_java.cpp +52 -0
- data/vendor/datasketches-cpp/kll/include/kll_helper_impl.hpp +2 -2
- data/vendor/datasketches-cpp/kll/include/kll_sketch.hpp +71 -50
- data/vendor/datasketches-cpp/kll/include/kll_sketch_impl.hpp +59 -130
- data/vendor/datasketches-cpp/kll/test/CMakeLists.txt +14 -1
- data/vendor/datasketches-cpp/kll/test/kll_sketch_deserialize_from_java_test.cpp +103 -0
- data/vendor/datasketches-cpp/kll/test/kll_sketch_serialize_for_java.cpp +62 -0
- data/vendor/datasketches-cpp/kll/test/kll_sketch_test.cpp +3 -38
- data/vendor/datasketches-cpp/quantiles/include/quantiles_sketch.hpp +68 -51
- data/vendor/datasketches-cpp/quantiles/include/quantiles_sketch_impl.hpp +62 -132
- data/vendor/datasketches-cpp/quantiles/test/CMakeLists.txt +14 -1
- data/vendor/datasketches-cpp/quantiles/test/quantiles_sketch_deserialize_from_java_test.cpp +84 -0
- data/vendor/datasketches-cpp/quantiles/test/quantiles_sketch_serialize_for_java.cpp +52 -0
- data/vendor/datasketches-cpp/quantiles/test/quantiles_sketch_test.cpp +14 -38
- data/vendor/datasketches-cpp/req/include/req_common.hpp +7 -3
- data/vendor/datasketches-cpp/req/include/req_compactor_impl.hpp +2 -2
- data/vendor/datasketches-cpp/req/include/req_sketch.hpp +97 -23
- data/vendor/datasketches-cpp/req/include/req_sketch_impl.hpp +48 -109
- data/vendor/datasketches-cpp/req/test/CMakeLists.txt +14 -1
- data/vendor/datasketches-cpp/req/test/req_sketch_deserialize_from_java_test.cpp +55 -0
- data/vendor/datasketches-cpp/{tuple/include/array_of_doubles_intersection_impl.hpp → req/test/req_sketch_serialize_for_java.cpp} +12 -7
- data/vendor/datasketches-cpp/req/test/req_sketch_test.cpp +3 -89
- data/vendor/datasketches-cpp/sampling/CMakeLists.txt +4 -0
- data/vendor/datasketches-cpp/sampling/include/ebpps_sample.hpp +210 -0
- data/vendor/datasketches-cpp/sampling/include/ebpps_sample_impl.hpp +535 -0
- data/vendor/datasketches-cpp/sampling/include/ebpps_sketch.hpp +281 -0
- data/vendor/datasketches-cpp/sampling/include/ebpps_sketch_impl.hpp +531 -0
- data/vendor/datasketches-cpp/sampling/include/var_opt_sketch.hpp +69 -26
- data/vendor/datasketches-cpp/sampling/include/var_opt_sketch_impl.hpp +3 -3
- data/vendor/datasketches-cpp/sampling/include/var_opt_union.hpp +10 -11
- data/vendor/datasketches-cpp/sampling/include/var_opt_union_impl.hpp +4 -4
- data/vendor/datasketches-cpp/sampling/test/CMakeLists.txt +55 -8
- data/vendor/datasketches-cpp/sampling/test/ebpps_allocation_test.cpp +96 -0
- data/vendor/datasketches-cpp/sampling/test/ebpps_sample_test.cpp +137 -0
- data/vendor/datasketches-cpp/sampling/test/ebpps_sketch_test.cpp +266 -0
- data/vendor/datasketches-cpp/sampling/test/var_opt_sketch_deserialize_from_java_test.cpp +81 -0
- data/vendor/datasketches-cpp/sampling/test/var_opt_sketch_serialize_for_java.cpp +54 -0
- data/vendor/datasketches-cpp/sampling/test/var_opt_sketch_test.cpp +0 -37
- data/vendor/datasketches-cpp/sampling/test/var_opt_union_deserialize_from_java_test.cpp +50 -0
- data/vendor/datasketches-cpp/sampling/test/var_opt_union_serialize_for_java.cpp +56 -0
- data/vendor/datasketches-cpp/sampling/test/var_opt_union_test.cpp +0 -18
- data/vendor/datasketches-cpp/theta/include/bit_packing.hpp +2608 -2608
- data/vendor/datasketches-cpp/theta/include/bounds_on_ratios_in_sampled_sets.hpp +1 -0
- data/vendor/datasketches-cpp/theta/include/bounds_on_ratios_in_theta_sketched_sets.hpp +7 -6
- data/vendor/datasketches-cpp/theta/include/theta_a_not_b.hpp +20 -5
- data/vendor/datasketches-cpp/theta/include/theta_constants.hpp +10 -4
- data/vendor/datasketches-cpp/theta/include/theta_helpers.hpp +1 -1
- data/vendor/datasketches-cpp/theta/include/theta_intersection.hpp +13 -5
- data/vendor/datasketches-cpp/theta/include/theta_intersection_base_impl.hpp +5 -5
- data/vendor/datasketches-cpp/theta/include/theta_intersection_impl.hpp +3 -3
- data/vendor/datasketches-cpp/theta/include/theta_jaccard_similarity.hpp +2 -1
- data/vendor/datasketches-cpp/theta/include/theta_jaccard_similarity_base.hpp +1 -0
- data/vendor/datasketches-cpp/theta/include/theta_set_difference_base_impl.hpp +1 -1
- data/vendor/datasketches-cpp/theta/include/theta_sketch.hpp +126 -27
- data/vendor/datasketches-cpp/theta/include/theta_sketch_impl.hpp +8 -8
- data/vendor/datasketches-cpp/theta/include/theta_union.hpp +17 -10
- data/vendor/datasketches-cpp/theta/include/theta_union_base_impl.hpp +1 -1
- data/vendor/datasketches-cpp/theta/include/theta_union_impl.hpp +3 -3
- data/vendor/datasketches-cpp/theta/include/theta_update_sketch_base.hpp +5 -2
- data/vendor/datasketches-cpp/theta/include/theta_update_sketch_base_impl.hpp +11 -1
- data/vendor/datasketches-cpp/theta/test/CMakeLists.txt +14 -1
- data/vendor/datasketches-cpp/theta/test/theta_sketch_deserialize_from_java_test.cpp +57 -0
- data/vendor/datasketches-cpp/theta/test/theta_sketch_serialize_for_java.cpp +61 -0
- data/vendor/datasketches-cpp/theta/test/theta_sketch_test.cpp +0 -188
- data/vendor/datasketches-cpp/tuple/CMakeLists.txt +8 -7
- data/vendor/datasketches-cpp/tuple/include/array_of_doubles_sketch.hpp +19 -144
- data/vendor/datasketches-cpp/tuple/include/{array_of_doubles_a_not_b.hpp → array_tuple_a_not_b.hpp} +24 -16
- data/vendor/datasketches-cpp/tuple/include/{array_of_doubles_a_not_b_impl.hpp → array_tuple_a_not_b_impl.hpp} +4 -4
- data/vendor/datasketches-cpp/tuple/include/array_tuple_intersection.hpp +65 -0
- data/vendor/datasketches-cpp/{python/include/py_object_ostream.hpp → tuple/include/array_tuple_intersection_impl.hpp} +7 -24
- data/vendor/datasketches-cpp/tuple/include/array_tuple_sketch.hpp +237 -0
- data/vendor/datasketches-cpp/tuple/include/{array_of_doubles_sketch_impl.hpp → array_tuple_sketch_impl.hpp} +40 -41
- data/vendor/datasketches-cpp/tuple/include/array_tuple_union.hpp +81 -0
- data/vendor/datasketches-cpp/tuple/include/array_tuple_union_impl.hpp +43 -0
- data/vendor/datasketches-cpp/tuple/include/tuple_a_not_b.hpp +11 -2
- data/vendor/datasketches-cpp/tuple/include/tuple_intersection.hpp +17 -10
- data/vendor/datasketches-cpp/tuple/include/tuple_jaccard_similarity.hpp +2 -1
- data/vendor/datasketches-cpp/tuple/include/tuple_sketch.hpp +95 -32
- data/vendor/datasketches-cpp/tuple/include/tuple_union.hpp +19 -11
- data/vendor/datasketches-cpp/tuple/test/CMakeLists.txt +16 -1
- data/vendor/datasketches-cpp/tuple/test/aod_sketch_deserialize_from_java_test.cpp +76 -0
- data/vendor/datasketches-cpp/tuple/test/aod_sketch_serialize_for_java.cpp +62 -0
- data/vendor/datasketches-cpp/tuple/test/array_of_doubles_sketch_test.cpp +5 -129
- data/vendor/datasketches-cpp/tuple/test/engagement_test.cpp +85 -89
- data/vendor/datasketches-cpp/tuple/test/tuple_jaccard_similarity_test.cpp +3 -1
- data/vendor/datasketches-cpp/tuple/test/tuple_sketch_deserialize_from_java_test.cpp +47 -0
- data/vendor/datasketches-cpp/tuple/test/tuple_sketch_serialize_for_java.cpp +38 -0
- data/vendor/datasketches-cpp/tuple/test/tuple_sketch_test.cpp +1 -1
- data/vendor/datasketches-cpp/version.cfg.in +1 -1
- metadata +47 -93
- data/vendor/datasketches-cpp/MANIFEST.in +0 -39
- data/vendor/datasketches-cpp/fi/test/items_sketch_string_from_java.sk +0 -0
- data/vendor/datasketches-cpp/fi/test/items_sketch_string_utf8_from_java.sk +0 -0
- data/vendor/datasketches-cpp/fi/test/longs_sketch_from_java.sk +0 -0
- data/vendor/datasketches-cpp/hll/test/array6_from_java.sk +0 -0
- data/vendor/datasketches-cpp/hll/test/compact_array4_from_java.sk +0 -0
- data/vendor/datasketches-cpp/hll/test/compact_set_from_java.sk +0 -0
- data/vendor/datasketches-cpp/hll/test/list_from_java.sk +0 -0
- data/vendor/datasketches-cpp/hll/test/updatable_array4_from_java.sk +0 -0
- data/vendor/datasketches-cpp/hll/test/updatable_set_from_java.sk +0 -0
- data/vendor/datasketches-cpp/kll/test/kll_sketch_from_java.sk +0 -0
- data/vendor/datasketches-cpp/pyproject.toml +0 -23
- data/vendor/datasketches-cpp/python/CMakeLists.txt +0 -87
- data/vendor/datasketches-cpp/python/README.md +0 -85
- data/vendor/datasketches-cpp/python/datasketches/DensityWrapper.py +0 -87
- data/vendor/datasketches-cpp/python/datasketches/KernelFunction.py +0 -35
- data/vendor/datasketches-cpp/python/datasketches/PySerDe.py +0 -110
- data/vendor/datasketches-cpp/python/datasketches/TuplePolicy.py +0 -77
- data/vendor/datasketches-cpp/python/datasketches/TupleWrapper.py +0 -205
- data/vendor/datasketches-cpp/python/datasketches/__init__.py +0 -38
- data/vendor/datasketches-cpp/python/include/kernel_function.hpp +0 -98
- data/vendor/datasketches-cpp/python/include/py_serde.hpp +0 -113
- data/vendor/datasketches-cpp/python/include/quantile_conditional.hpp +0 -104
- data/vendor/datasketches-cpp/python/include/tuple_policy.hpp +0 -136
- data/vendor/datasketches-cpp/python/jupyter/CPCSketch.ipynb +0 -345
- data/vendor/datasketches-cpp/python/jupyter/FrequentItemsSketch.ipynb +0 -354
- data/vendor/datasketches-cpp/python/jupyter/HLLSketch.ipynb +0 -346
- data/vendor/datasketches-cpp/python/jupyter/KLLSketch.ipynb +0 -463
- data/vendor/datasketches-cpp/python/jupyter/ThetaSketchNotebook.ipynb +0 -403
- data/vendor/datasketches-cpp/python/pybind11Path.cmd +0 -21
- data/vendor/datasketches-cpp/python/src/__init__.py +0 -18
- data/vendor/datasketches-cpp/python/src/count_wrapper.cpp +0 -101
- data/vendor/datasketches-cpp/python/src/cpc_wrapper.cpp +0 -76
- data/vendor/datasketches-cpp/python/src/datasketches.cpp +0 -58
- data/vendor/datasketches-cpp/python/src/density_wrapper.cpp +0 -95
- data/vendor/datasketches-cpp/python/src/fi_wrapper.cpp +0 -182
- data/vendor/datasketches-cpp/python/src/hll_wrapper.cpp +0 -126
- data/vendor/datasketches-cpp/python/src/kll_wrapper.cpp +0 -158
- data/vendor/datasketches-cpp/python/src/ks_wrapper.cpp +0 -68
- data/vendor/datasketches-cpp/python/src/py_serde.cpp +0 -112
- data/vendor/datasketches-cpp/python/src/quantiles_wrapper.cpp +0 -155
- data/vendor/datasketches-cpp/python/src/req_wrapper.cpp +0 -154
- data/vendor/datasketches-cpp/python/src/theta_wrapper.cpp +0 -166
- data/vendor/datasketches-cpp/python/src/tuple_wrapper.cpp +0 -215
- data/vendor/datasketches-cpp/python/src/vector_of_kll.cpp +0 -490
- data/vendor/datasketches-cpp/python/src/vo_wrapper.cpp +0 -173
- data/vendor/datasketches-cpp/python/tests/__init__.py +0 -16
- data/vendor/datasketches-cpp/python/tests/count_min_test.py +0 -86
- data/vendor/datasketches-cpp/python/tests/cpc_test.py +0 -64
- data/vendor/datasketches-cpp/python/tests/density_test.py +0 -93
- data/vendor/datasketches-cpp/python/tests/fi_test.py +0 -149
- data/vendor/datasketches-cpp/python/tests/hll_test.py +0 -129
- data/vendor/datasketches-cpp/python/tests/kll_test.py +0 -159
- data/vendor/datasketches-cpp/python/tests/quantiles_test.py +0 -160
- data/vendor/datasketches-cpp/python/tests/req_test.py +0 -159
- data/vendor/datasketches-cpp/python/tests/theta_test.py +0 -148
- data/vendor/datasketches-cpp/python/tests/tuple_test.py +0 -206
- data/vendor/datasketches-cpp/python/tests/vector_of_kll_test.py +0 -148
- data/vendor/datasketches-cpp/python/tests/vo_test.py +0 -132
- data/vendor/datasketches-cpp/req/test/req_float_empty_from_java.sk +0 -0
- data/vendor/datasketches-cpp/req/test/req_float_estimation_from_java.sk +0 -0
- data/vendor/datasketches-cpp/req/test/req_float_exact_from_java.sk +0 -0
- data/vendor/datasketches-cpp/req/test/req_float_raw_items_from_java.sk +0 -0
- data/vendor/datasketches-cpp/req/test/req_float_single_item_from_java.sk +0 -0
- data/vendor/datasketches-cpp/sampling/test/binaries_from_java.txt +0 -67
- data/vendor/datasketches-cpp/sampling/test/varopt_sketch_long_sampling.sk +0 -0
- data/vendor/datasketches-cpp/sampling/test/varopt_sketch_string_exact.sk +0 -0
- data/vendor/datasketches-cpp/sampling/test/varopt_union_double_sampling.sk +0 -0
- data/vendor/datasketches-cpp/setup.py +0 -110
- data/vendor/datasketches-cpp/theta/test/theta_compact_empty_from_java.sk +0 -0
- data/vendor/datasketches-cpp/theta/test/theta_compact_estimation_from_java.sk +0 -0
- data/vendor/datasketches-cpp/theta/test/theta_compact_exact_from_java.sk +0 -0
- data/vendor/datasketches-cpp/theta/test/theta_compact_single_item_from_java.sk +0 -0
- data/vendor/datasketches-cpp/tox.ini +0 -26
- data/vendor/datasketches-cpp/tuple/include/array_of_doubles_intersection.hpp +0 -52
- data/vendor/datasketches-cpp/tuple/include/array_of_doubles_union.hpp +0 -81
- data/vendor/datasketches-cpp/tuple/include/array_of_doubles_union_impl.hpp +0 -43
- data/vendor/datasketches-cpp/tuple/test/aod_1_compact_empty_from_java.sk +0 -1
- data/vendor/datasketches-cpp/tuple/test/aod_1_compact_estimation_from_java.sk +0 -0
- data/vendor/datasketches-cpp/tuple/test/aod_1_compact_non_empty_no_entries_from_java.sk +0 -0
- data/vendor/datasketches-cpp/tuple/test/aod_2_compact_exact_from_java.sk +0 -0
- data/vendor/datasketches-cpp/tuple/test/aod_3_compact_empty_from_java.sk +0 -1
@@ -1,354 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "markdown",
|
5
|
-
"metadata": {},
|
6
|
-
"source": [
|
7
|
-
"## Frequent Items Sketch Examples"
|
8
|
-
]
|
9
|
-
},
|
10
|
-
{
|
11
|
-
"cell_type": "markdown",
|
12
|
-
"metadata": {},
|
13
|
-
"source": [
|
14
|
-
"### Basic Sketch Usage"
|
15
|
-
]
|
16
|
-
},
|
17
|
-
{
|
18
|
-
"cell_type": "markdown",
|
19
|
-
"metadata": {},
|
20
|
-
"source": [
|
21
|
-
"More so than other sketches in the library, the Frequent Items sketch can take some practice to use since it identifies exceptionally heavy hitters rather than returning a \"top N\" list. We assume readers have already familiarized themselves with the [sketch documentation](https://datasketches.github.io/docs/Frequency/FrequentItemsOverview.html) and are aware of the key concepts around use of this sketch."
|
22
|
-
]
|
23
|
-
},
|
24
|
-
{
|
25
|
-
"cell_type": "code",
|
26
|
-
"execution_count": 2,
|
27
|
-
"metadata": {},
|
28
|
-
"outputs": [],
|
29
|
-
"source": [
|
30
|
-
"from datasketches import frequent_strings_sketch, frequent_items_error_type"
|
31
|
-
]
|
32
|
-
},
|
33
|
-
{
|
34
|
-
"cell_type": "markdown",
|
35
|
-
"metadata": {},
|
36
|
-
"source": [
|
37
|
-
"We'll use a very small sketch in this case so that we can easily fill it, otherwise the difference between error types is more difficult to demonstrate."
|
38
|
-
]
|
39
|
-
},
|
40
|
-
{
|
41
|
-
"cell_type": "code",
|
42
|
-
"execution_count": 3,
|
43
|
-
"metadata": {},
|
44
|
-
"outputs": [],
|
45
|
-
"source": [
|
46
|
-
"k = 3\n",
|
47
|
-
"fi = frequent_strings_sketch(k)"
|
48
|
-
]
|
49
|
-
},
|
50
|
-
{
|
51
|
-
"cell_type": "markdown",
|
52
|
-
"metadata": {},
|
53
|
-
"source": [
|
54
|
-
"A brief digression into implementation details to help explain what we're doing here. The Frequent Items sketch maintains a list of items, but purges the least frequent items when the list fills. For this example, we'll keep inserting items until after a purge takes place.\n",
|
55
|
-
"\n",
|
56
|
-
"We'll insert items with exponentially decreasing weights, which in this case gives us a more interesting set of results when we later query things."
|
57
|
-
]
|
58
|
-
},
|
59
|
-
{
|
60
|
-
"cell_type": "code",
|
61
|
-
"execution_count": 4,
|
62
|
-
"metadata": {},
|
63
|
-
"outputs": [
|
64
|
-
{
|
65
|
-
"name": "stdout",
|
66
|
-
"output_type": "stream",
|
67
|
-
"text": [
|
68
|
-
"Update 1: 1 items\n",
|
69
|
-
"Update 2: 2 items\n",
|
70
|
-
"Update 3: 3 items\n",
|
71
|
-
"Update 4: 4 items\n",
|
72
|
-
"Update 5: 5 items\n",
|
73
|
-
"Update 6: 6 items\n",
|
74
|
-
"Update 7: 3 items\n",
|
75
|
-
"Update 8: 4 items\n"
|
76
|
-
]
|
77
|
-
}
|
78
|
-
],
|
79
|
-
"source": [
|
80
|
-
"n = 8\n",
|
81
|
-
"for i in range(0,n):\n",
|
82
|
-
" fi.update(str(i), 2 ** (n-i))\n",
|
83
|
-
" i += 1\n",
|
84
|
-
" print('Update ' + str(i) + ': ' + str(fi.get_num_active_items()) + ' items')"
|
85
|
-
]
|
86
|
-
},
|
87
|
-
{
|
88
|
-
"cell_type": "markdown",
|
89
|
-
"metadata": {},
|
90
|
-
"source": [
|
91
|
-
"We can see where the purge happened, and in this case we inserted a low-weight item after the purge. We can now compare querying items to exclude either false positives or false negatives.\n",
|
92
|
-
" - `NO_FALSE_POSITIVES` returns all items with a _lower_ bound above the a posteriori error\n",
|
93
|
-
" - `NO_FALSE_NEGATIVES` returns all items with an _upper_ bound above the a posteriori error\n",
|
94
|
-
"\n",
|
95
|
-
"The latter option will always include any results from the first set and may include others. Items are returned as (id, estimate, lower_bound, upper_bound) and are sorted by decreasing weight."
|
96
|
-
]
|
97
|
-
},
|
98
|
-
{
|
99
|
-
"cell_type": "code",
|
100
|
-
"execution_count": 5,
|
101
|
-
"metadata": {},
|
102
|
-
"outputs": [
|
103
|
-
{
|
104
|
-
"data": {
|
105
|
-
"text/plain": [
|
106
|
-
"[('0', 256, 224, 256), ('1', 128, 96, 128)]"
|
107
|
-
]
|
108
|
-
},
|
109
|
-
"execution_count": 5,
|
110
|
-
"metadata": {},
|
111
|
-
"output_type": "execute_result"
|
112
|
-
}
|
113
|
-
],
|
114
|
-
"source": [
|
115
|
-
"fi.get_frequent_items(frequent_items_error_type.NO_FALSE_POSITIVES)"
|
116
|
-
]
|
117
|
-
},
|
118
|
-
{
|
119
|
-
"cell_type": "code",
|
120
|
-
"execution_count": 6,
|
121
|
-
"metadata": {},
|
122
|
-
"outputs": [
|
123
|
-
{
|
124
|
-
"data": {
|
125
|
-
"text/plain": [
|
126
|
-
"[('0', 256, 224, 256),\n",
|
127
|
-
" ('1', 128, 96, 128),\n",
|
128
|
-
" ('2', 64, 32, 64),\n",
|
129
|
-
" ('7', 34, 2, 34)]"
|
130
|
-
]
|
131
|
-
},
|
132
|
-
"execution_count": 6,
|
133
|
-
"metadata": {},
|
134
|
-
"output_type": "execute_result"
|
135
|
-
}
|
136
|
-
],
|
137
|
-
"source": [
|
138
|
-
"fi.get_frequent_items(frequent_items_error_type.NO_FALSE_NEGATIVES)"
|
139
|
-
]
|
140
|
-
},
|
141
|
-
{
|
142
|
-
"cell_type": "markdown",
|
143
|
-
"metadata": {},
|
144
|
-
"source": [
|
145
|
-
"The sketch also allows us to query for individual items directly."
|
146
|
-
]
|
147
|
-
},
|
148
|
-
{
|
149
|
-
"cell_type": "code",
|
150
|
-
"execution_count": 7,
|
151
|
-
"metadata": {},
|
152
|
-
"outputs": [
|
153
|
-
{
|
154
|
-
"name": "stdout",
|
155
|
-
"output_type": "stream",
|
156
|
-
"text": [
|
157
|
-
"256\n",
|
158
|
-
"64\n",
|
159
|
-
"2\n"
|
160
|
-
]
|
161
|
-
}
|
162
|
-
],
|
163
|
-
"source": [
|
164
|
-
"print(fi.get_estimate(\"0\"))\n",
|
165
|
-
"print(fi.get_upper_bound(\"2\"))\n",
|
166
|
-
"print(fi.get_lower_bound(\"7\"))"
|
167
|
-
]
|
168
|
-
},
|
169
|
-
{
|
170
|
-
"cell_type": "markdown",
|
171
|
-
"metadata": {},
|
172
|
-
"source": [
|
173
|
-
"We can also query for items not in the the list, whether the item has never been seen or if it has been evicted from the active set."
|
174
|
-
]
|
175
|
-
},
|
176
|
-
{
|
177
|
-
"cell_type": "code",
|
178
|
-
"execution_count": 8,
|
179
|
-
"metadata": {},
|
180
|
-
"outputs": [
|
181
|
-
{
|
182
|
-
"data": {
|
183
|
-
"text/plain": [
|
184
|
-
"0"
|
185
|
-
]
|
186
|
-
},
|
187
|
-
"execution_count": 8,
|
188
|
-
"metadata": {},
|
189
|
-
"output_type": "execute_result"
|
190
|
-
}
|
191
|
-
],
|
192
|
-
"source": [
|
193
|
-
"fi.get_estimate(\"5\")"
|
194
|
-
]
|
195
|
-
},
|
196
|
-
{
|
197
|
-
"cell_type": "markdown",
|
198
|
-
"metadata": {},
|
199
|
-
"source": [
|
200
|
-
"The sketch may also be serialized for archiving, and reconstructed."
|
201
|
-
]
|
202
|
-
},
|
203
|
-
{
|
204
|
-
"cell_type": "code",
|
205
|
-
"execution_count": 9,
|
206
|
-
"metadata": {},
|
207
|
-
"outputs": [
|
208
|
-
{
|
209
|
-
"data": {
|
210
|
-
"text/plain": [
|
211
|
-
"84"
|
212
|
-
]
|
213
|
-
},
|
214
|
-
"execution_count": 9,
|
215
|
-
"metadata": {},
|
216
|
-
"output_type": "execute_result"
|
217
|
-
}
|
218
|
-
],
|
219
|
-
"source": [
|
220
|
-
"sk_bytes = fi.serialize()\n",
|
221
|
-
"len(sk_bytes)"
|
222
|
-
]
|
223
|
-
},
|
224
|
-
{
|
225
|
-
"cell_type": "code",
|
226
|
-
"execution_count": 11,
|
227
|
-
"metadata": {},
|
228
|
-
"outputs": [
|
229
|
-
{
|
230
|
-
"name": "stdout",
|
231
|
-
"output_type": "stream",
|
232
|
-
"text": [
|
233
|
-
"### Frequent items sketch summary:\n",
|
234
|
-
" lg cur map size : 3\n",
|
235
|
-
" lg max map size : 3\n",
|
236
|
-
" num active items : 4\n",
|
237
|
-
" total weight : 510\n",
|
238
|
-
" max error : 32\n",
|
239
|
-
"### End sketch summary\n",
|
240
|
-
"\n"
|
241
|
-
]
|
242
|
-
}
|
243
|
-
],
|
244
|
-
"source": [
|
245
|
-
"fi2 = frequent_strings_sketch.deserialize(sk_bytes)\n",
|
246
|
-
"print(fi2)"
|
247
|
-
]
|
248
|
-
},
|
249
|
-
{
|
250
|
-
"cell_type": "markdown",
|
251
|
-
"metadata": {},
|
252
|
-
"source": [
|
253
|
-
"### Merging Example"
|
254
|
-
]
|
255
|
-
},
|
256
|
-
{
|
257
|
-
"cell_type": "markdown",
|
258
|
-
"metadata": {},
|
259
|
-
"source": [
|
260
|
-
"Frequent Items sketches support `merge()` to combine sketches. Keep in mind that the combined sketches may not have any meaningfully frequent items, even if there were frequent items in one of the input sketches.\n",
|
261
|
-
"\n",
|
262
|
-
"We'll start by creating a sketch with lots of equally-weighted very light items, but with a combined weight several times greater than that of the first sketch, and then merge that into the first sketch."
|
263
|
-
]
|
264
|
-
},
|
265
|
-
{
|
266
|
-
"cell_type": "code",
|
267
|
-
"execution_count": 12,
|
268
|
-
"metadata": {},
|
269
|
-
"outputs": [],
|
270
|
-
"source": [
|
271
|
-
"fi2 = frequent_strings_sketch(k)\n",
|
272
|
-
"wt = fi.get_total_weight()\n",
|
273
|
-
"for i in range(0,4*wt):\n",
|
274
|
-
" fi2.update(str(i))\n",
|
275
|
-
"fi.merge(fi2)"
|
276
|
-
]
|
277
|
-
},
|
278
|
-
{
|
279
|
-
"cell_type": "markdown",
|
280
|
-
"metadata": {},
|
281
|
-
"source": [
|
282
|
-
"Even though all these new items have weight 1, there are so many of them that we have nothing if we ask for no fasle positives."
|
283
|
-
]
|
284
|
-
},
|
285
|
-
{
|
286
|
-
"cell_type": "code",
|
287
|
-
"execution_count": 13,
|
288
|
-
"metadata": {},
|
289
|
-
"outputs": [
|
290
|
-
{
|
291
|
-
"data": {
|
292
|
-
"text/plain": [
|
293
|
-
"0"
|
294
|
-
]
|
295
|
-
},
|
296
|
-
"execution_count": 13,
|
297
|
-
"metadata": {},
|
298
|
-
"output_type": "execute_result"
|
299
|
-
}
|
300
|
-
],
|
301
|
-
"source": [
|
302
|
-
"len(fi.get_frequent_items(frequent_items_error_type.NO_FALSE_POSITIVES))"
|
303
|
-
]
|
304
|
-
},
|
305
|
-
{
|
306
|
-
"cell_type": "markdown",
|
307
|
-
"metadata": {},
|
308
|
-
"source": [
|
309
|
-
"We do, however, see a few potentially heavy items if we request no false negatives."
|
310
|
-
]
|
311
|
-
},
|
312
|
-
{
|
313
|
-
"cell_type": "code",
|
314
|
-
"execution_count": 14,
|
315
|
-
"metadata": {},
|
316
|
-
"outputs": [
|
317
|
-
{
|
318
|
-
"data": {
|
319
|
-
"text/plain": [
|
320
|
-
"3"
|
321
|
-
]
|
322
|
-
},
|
323
|
-
"execution_count": 14,
|
324
|
-
"metadata": {},
|
325
|
-
"output_type": "execute_result"
|
326
|
-
}
|
327
|
-
],
|
328
|
-
"source": [
|
329
|
-
"len(fi.get_frequent_items(frequent_items_error_type.NO_FALSE_NEGATIVES))"
|
330
|
-
]
|
331
|
-
}
|
332
|
-
],
|
333
|
-
"metadata": {
|
334
|
-
"kernelspec": {
|
335
|
-
"display_name": "Python 3",
|
336
|
-
"language": "python",
|
337
|
-
"name": "python3"
|
338
|
-
},
|
339
|
-
"language_info": {
|
340
|
-
"codemirror_mode": {
|
341
|
-
"name": "ipython",
|
342
|
-
"version": 3
|
343
|
-
},
|
344
|
-
"file_extension": ".py",
|
345
|
-
"mimetype": "text/x-python",
|
346
|
-
"name": "python",
|
347
|
-
"nbconvert_exporter": "python",
|
348
|
-
"pygments_lexer": "ipython3",
|
349
|
-
"version": "3.7.0"
|
350
|
-
}
|
351
|
-
},
|
352
|
-
"nbformat": 4,
|
353
|
-
"nbformat_minor": 2
|
354
|
-
}
|
@@ -1,346 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "markdown",
|
5
|
-
"metadata": {},
|
6
|
-
"source": [
|
7
|
-
"## HLL Sketch Examples"
|
8
|
-
]
|
9
|
-
},
|
10
|
-
{
|
11
|
-
"cell_type": "markdown",
|
12
|
-
"metadata": {},
|
13
|
-
"source": [
|
14
|
-
"### Basic Sketch Usage"
|
15
|
-
]
|
16
|
-
},
|
17
|
-
{
|
18
|
-
"cell_type": "code",
|
19
|
-
"execution_count": 1,
|
20
|
-
"metadata": {},
|
21
|
-
"outputs": [],
|
22
|
-
"source": [
|
23
|
-
"from datasketches import hll_sketch, hll_union, tgt_hll_type"
|
24
|
-
]
|
25
|
-
},
|
26
|
-
{
|
27
|
-
"cell_type": "markdown",
|
28
|
-
"metadata": {},
|
29
|
-
"source": [
|
30
|
-
"We'll create a sketch with log2(k) = 12"
|
31
|
-
]
|
32
|
-
},
|
33
|
-
{
|
34
|
-
"cell_type": "code",
|
35
|
-
"execution_count": 2,
|
36
|
-
"metadata": {},
|
37
|
-
"outputs": [],
|
38
|
-
"source": [
|
39
|
-
"sk = hll_sketch(12)"
|
40
|
-
]
|
41
|
-
},
|
42
|
-
{
|
43
|
-
"cell_type": "markdown",
|
44
|
-
"metadata": {},
|
45
|
-
"source": [
|
46
|
-
"Insert ~2 million points. Values are hashed, so using sequential integers is fine for demonstration purposes."
|
47
|
-
]
|
48
|
-
},
|
49
|
-
{
|
50
|
-
"cell_type": "code",
|
51
|
-
"execution_count": 3,
|
52
|
-
"metadata": {},
|
53
|
-
"outputs": [
|
54
|
-
{
|
55
|
-
"name": "stdout",
|
56
|
-
"output_type": "stream",
|
57
|
-
"text": [
|
58
|
-
"### HLL SKETCH SUMMARY: \n",
|
59
|
-
" Log Config K : 12\n",
|
60
|
-
" Hll Target : HLL_4\n",
|
61
|
-
" Current Mode : HLL\n",
|
62
|
-
" LB : 2.06958e+06\n",
|
63
|
-
" Estimate : 2.09635e+06\n",
|
64
|
-
" UB : 2.12379e+06\n",
|
65
|
-
" OutOfOrder flag: 0\n",
|
66
|
-
" CurMin : 7\n",
|
67
|
-
" NumAtCurMin : 72\n",
|
68
|
-
" HipAccum : 2.09635e+06\n",
|
69
|
-
" KxQ0 : 5.80703\n",
|
70
|
-
" KxQ1 : 0\n",
|
71
|
-
"\n"
|
72
|
-
]
|
73
|
-
}
|
74
|
-
],
|
75
|
-
"source": [
|
76
|
-
"n = 1 << 21\n",
|
77
|
-
"for i in range(0, n):\n",
|
78
|
-
" sk.update(i)\n",
|
79
|
-
"print(sk)"
|
80
|
-
]
|
81
|
-
},
|
82
|
-
{
|
83
|
-
"cell_type": "markdown",
|
84
|
-
"metadata": {},
|
85
|
-
"source": [
|
86
|
-
"Since we know the exact value of n we can look at the estimate and upper/lower bounds as a % of the true value. We'll look at the bounds at 1 standard deviation. In this case, the true value does lie within the bounds, but since these are probabilistic bounds the true value will sometimes be outside them (especially at 1 standard deviation)."
|
87
|
-
]
|
88
|
-
},
|
89
|
-
{
|
90
|
-
"cell_type": "code",
|
91
|
-
"execution_count": 4,
|
92
|
-
"metadata": {},
|
93
|
-
"outputs": [
|
94
|
-
{
|
95
|
-
"name": "stdout",
|
96
|
-
"output_type": "stream",
|
97
|
-
"text": [
|
98
|
-
"Upper bound (1 std. dev) as % of true value: 101.2703\n"
|
99
|
-
]
|
100
|
-
}
|
101
|
-
],
|
102
|
-
"source": [
|
103
|
-
"print(\"Upper bound (1 std. dev) as % of true value: \", round(100*sk.get_upper_bound(1) / n, 4))"
|
104
|
-
]
|
105
|
-
},
|
106
|
-
{
|
107
|
-
"cell_type": "code",
|
108
|
-
"execution_count": 5,
|
109
|
-
"metadata": {},
|
110
|
-
"outputs": [
|
111
|
-
{
|
112
|
-
"name": "stdout",
|
113
|
-
"output_type": "stream",
|
114
|
-
"text": [
|
115
|
-
"Estimate as % of true value: 99.9618\n"
|
116
|
-
]
|
117
|
-
}
|
118
|
-
],
|
119
|
-
"source": [
|
120
|
-
"print(\"Estimate as % of true value: \", round(100*sk.get_estimate() / n, 4))"
|
121
|
-
]
|
122
|
-
},
|
123
|
-
{
|
124
|
-
"cell_type": "code",
|
125
|
-
"execution_count": 6,
|
126
|
-
"metadata": {},
|
127
|
-
"outputs": [
|
128
|
-
{
|
129
|
-
"name": "stdout",
|
130
|
-
"output_type": "stream",
|
131
|
-
"text": [
|
132
|
-
"Lower bound (1 std. dev) as % of true value: 98.6852\n"
|
133
|
-
]
|
134
|
-
}
|
135
|
-
],
|
136
|
-
"source": [
|
137
|
-
"print(\"Lower bound (1 std. dev) as % of true value: \", round(100*sk.get_lower_bound(1) / n, 4))"
|
138
|
-
]
|
139
|
-
},
|
140
|
-
{
|
141
|
-
"cell_type": "markdown",
|
142
|
-
"metadata": {},
|
143
|
-
"source": [
|
144
|
-
"Finally, we can serialize and deserialize the sketch, which will give us back the same structure."
|
145
|
-
]
|
146
|
-
},
|
147
|
-
{
|
148
|
-
"cell_type": "code",
|
149
|
-
"execution_count": 7,
|
150
|
-
"metadata": {},
|
151
|
-
"outputs": [
|
152
|
-
{
|
153
|
-
"data": {
|
154
|
-
"text/plain": [
|
155
|
-
"2096"
|
156
|
-
]
|
157
|
-
},
|
158
|
-
"execution_count": 7,
|
159
|
-
"metadata": {},
|
160
|
-
"output_type": "execute_result"
|
161
|
-
}
|
162
|
-
],
|
163
|
-
"source": [
|
164
|
-
"sk_bytes = sk.serialize_compact()\n",
|
165
|
-
"len(sk_bytes)"
|
166
|
-
]
|
167
|
-
},
|
168
|
-
{
|
169
|
-
"cell_type": "code",
|
170
|
-
"execution_count": 8,
|
171
|
-
"metadata": {},
|
172
|
-
"outputs": [
|
173
|
-
{
|
174
|
-
"name": "stdout",
|
175
|
-
"output_type": "stream",
|
176
|
-
"text": [
|
177
|
-
"### HLL SKETCH SUMMARY: \n",
|
178
|
-
" Log Config K : 12\n",
|
179
|
-
" Hll Target : HLL_4\n",
|
180
|
-
" Current Mode : HLL\n",
|
181
|
-
" LB : 2.06958e+06\n",
|
182
|
-
" Estimate : 2.09635e+06\n",
|
183
|
-
" UB : 2.12379e+06\n",
|
184
|
-
" OutOfOrder flag: 0\n",
|
185
|
-
" CurMin : 7\n",
|
186
|
-
" NumAtCurMin : 72\n",
|
187
|
-
" HipAccum : 2.09635e+06\n",
|
188
|
-
" KxQ0 : 5.80703\n",
|
189
|
-
" KxQ1 : 0\n",
|
190
|
-
"\n"
|
191
|
-
]
|
192
|
-
}
|
193
|
-
],
|
194
|
-
"source": [
|
195
|
-
"sk2 = hll_sketch.deserialize(sk_bytes)\n",
|
196
|
-
"print(sk2)"
|
197
|
-
]
|
198
|
-
},
|
199
|
-
{
|
200
|
-
"cell_type": "markdown",
|
201
|
-
"metadata": {},
|
202
|
-
"source": [
|
203
|
-
"### Sketch Union Usage"
|
204
|
-
]
|
205
|
-
},
|
206
|
-
{
|
207
|
-
"cell_type": "markdown",
|
208
|
-
"metadata": {},
|
209
|
-
"source": [
|
210
|
-
"Here, we'll create two sketches with partial overlap in values. For good measure, we'll let k be larger in one sketch. For most applications we'd generally create all new data using the same size sketch, allowing differences to creep in when combining new and historica data."
|
211
|
-
]
|
212
|
-
},
|
213
|
-
{
|
214
|
-
"cell_type": "code",
|
215
|
-
"execution_count": 9,
|
216
|
-
"metadata": {},
|
217
|
-
"outputs": [],
|
218
|
-
"source": [
|
219
|
-
"k = 12\n",
|
220
|
-
"n = 1 << 20\n",
|
221
|
-
"offset = int(3 * n / 4)"
|
222
|
-
]
|
223
|
-
},
|
224
|
-
{
|
225
|
-
"cell_type": "code",
|
226
|
-
"execution_count": 10,
|
227
|
-
"metadata": {},
|
228
|
-
"outputs": [],
|
229
|
-
"source": [
|
230
|
-
"sk1 = hll_sketch(k)\n",
|
231
|
-
"sk2 = hll_sketch(k + 1)\n",
|
232
|
-
"for i in range(0, n):\n",
|
233
|
-
" sk1.update(i)\n",
|
234
|
-
" sk2.update(i + offset)"
|
235
|
-
]
|
236
|
-
},
|
237
|
-
{
|
238
|
-
"cell_type": "markdown",
|
239
|
-
"metadata": {},
|
240
|
-
"source": [
|
241
|
-
"Create a union object and add the sketches to that. To demonstrate smoothly handling multiple sketch sizes, we'll use a size of k+1 here."
|
242
|
-
]
|
243
|
-
},
|
244
|
-
{
|
245
|
-
"cell_type": "code",
|
246
|
-
"execution_count": 11,
|
247
|
-
"metadata": {},
|
248
|
-
"outputs": [],
|
249
|
-
"source": [
|
250
|
-
"union = hll_union(k+1)\n",
|
251
|
-
"union.update(sk1)\n",
|
252
|
-
"union.update(sk2)"
|
253
|
-
]
|
254
|
-
},
|
255
|
-
{
|
256
|
-
"cell_type": "markdown",
|
257
|
-
"metadata": {},
|
258
|
-
"source": [
|
259
|
-
"Note how log config k has automatically adopted the value of the smaller input sketch."
|
260
|
-
]
|
261
|
-
},
|
262
|
-
{
|
263
|
-
"cell_type": "code",
|
264
|
-
"execution_count": 12,
|
265
|
-
"metadata": {},
|
266
|
-
"outputs": [
|
267
|
-
{
|
268
|
-
"name": "stdout",
|
269
|
-
"output_type": "stream",
|
270
|
-
"text": [
|
271
|
-
"### HLL SKETCH SUMMARY: \n",
|
272
|
-
" Log Config K : 12\n",
|
273
|
-
" Hll Target : HLL_4\n",
|
274
|
-
" Current Mode : HLL\n",
|
275
|
-
" LB : 1.80197e+06\n",
|
276
|
-
" Estimate : 1.83108e+06\n",
|
277
|
-
" UB : 1.86121e+06\n",
|
278
|
-
" OutOfOrder flag: 1\n",
|
279
|
-
" CurMin : 6\n",
|
280
|
-
" NumAtCurMin : 2\n",
|
281
|
-
" HipAccum : 1.76932e+06\n",
|
282
|
-
" KxQ0 : 6.60752\n",
|
283
|
-
" KxQ1 : 0\n",
|
284
|
-
"\n"
|
285
|
-
]
|
286
|
-
}
|
287
|
-
],
|
288
|
-
"source": [
|
289
|
-
"result = union.get_result()\n",
|
290
|
-
"print(result)"
|
291
|
-
]
|
292
|
-
},
|
293
|
-
{
|
294
|
-
"cell_type": "markdown",
|
295
|
-
"metadata": {},
|
296
|
-
"source": [
|
297
|
-
"We can again compare against the exact result, in this case 1.75*n"
|
298
|
-
]
|
299
|
-
},
|
300
|
-
{
|
301
|
-
"cell_type": "code",
|
302
|
-
"execution_count": 13,
|
303
|
-
"metadata": {},
|
304
|
-
"outputs": [
|
305
|
-
{
|
306
|
-
"name": "stdout",
|
307
|
-
"output_type": "stream",
|
308
|
-
"text": [
|
309
|
-
"Estimate as % of true value: 99.7859\n"
|
310
|
-
]
|
311
|
-
}
|
312
|
-
],
|
313
|
-
"source": [
|
314
|
-
"print(\"Estimate as % of true value: \", round(100*result.get_estimate() / (7*n/4), 4))"
|
315
|
-
]
|
316
|
-
},
|
317
|
-
{
|
318
|
-
"cell_type": "code",
|
319
|
-
"execution_count": null,
|
320
|
-
"metadata": {},
|
321
|
-
"outputs": [],
|
322
|
-
"source": []
|
323
|
-
}
|
324
|
-
],
|
325
|
-
"metadata": {
|
326
|
-
"kernelspec": {
|
327
|
-
"display_name": "Python 3",
|
328
|
-
"language": "python",
|
329
|
-
"name": "python3"
|
330
|
-
},
|
331
|
-
"language_info": {
|
332
|
-
"codemirror_mode": {
|
333
|
-
"name": "ipython",
|
334
|
-
"version": 3
|
335
|
-
},
|
336
|
-
"file_extension": ".py",
|
337
|
-
"mimetype": "text/x-python",
|
338
|
-
"name": "python",
|
339
|
-
"nbconvert_exporter": "python",
|
340
|
-
"pygments_lexer": "ipython3",
|
341
|
-
"version": "3.7.0"
|
342
|
-
}
|
343
|
-
},
|
344
|
-
"nbformat": 4,
|
345
|
-
"nbformat_minor": 2
|
346
|
-
}
|