datasketches 0.3.1 → 0.3.2
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +4 -0
- data/ext/datasketches/cpc_wrapper.cpp +1 -1
- data/lib/datasketches/version.rb +1 -1
- data/vendor/datasketches-cpp/CMakeLists.txt +22 -20
- data/vendor/datasketches-cpp/NOTICE +1 -1
- data/vendor/datasketches-cpp/common/include/MurmurHash3.h +25 -27
- data/vendor/datasketches-cpp/common/include/common_defs.hpp +8 -6
- data/vendor/datasketches-cpp/common/include/count_zeros.hpp +11 -0
- data/vendor/datasketches-cpp/common/include/memory_operations.hpp +5 -4
- data/vendor/datasketches-cpp/common/test/CMakeLists.txt +1 -1
- data/vendor/datasketches-cpp/common/test/integration_test.cpp +6 -0
- data/vendor/datasketches-cpp/count/CMakeLists.txt +42 -0
- data/vendor/datasketches-cpp/count/include/count_min.hpp +351 -0
- data/vendor/datasketches-cpp/count/include/count_min_impl.hpp +517 -0
- data/vendor/datasketches-cpp/count/test/CMakeLists.txt +43 -0
- data/vendor/datasketches-cpp/count/test/count_min_allocation_test.cpp +155 -0
- data/vendor/datasketches-cpp/count/test/count_min_test.cpp +306 -0
- data/vendor/datasketches-cpp/cpc/include/cpc_confidence.hpp +3 -3
- data/vendor/datasketches-cpp/cpc/include/cpc_sketch_impl.hpp +1 -1
- data/vendor/datasketches-cpp/cpc/include/cpc_util.hpp +16 -8
- data/vendor/datasketches-cpp/density/CMakeLists.txt +42 -0
- data/vendor/datasketches-cpp/density/include/density_sketch.hpp +236 -0
- data/vendor/datasketches-cpp/density/include/density_sketch_impl.hpp +543 -0
- data/vendor/datasketches-cpp/density/test/CMakeLists.txt +35 -0
- data/vendor/datasketches-cpp/density/test/density_sketch_test.cpp +244 -0
- data/vendor/datasketches-cpp/fi/include/reverse_purge_hash_map.hpp +9 -3
- data/vendor/datasketches-cpp/hll/include/Hll4Array-internal.hpp +19 -11
- data/vendor/datasketches-cpp/hll/include/Hll4Array.hpp +2 -5
- data/vendor/datasketches-cpp/hll/include/Hll6Array-internal.hpp +19 -7
- data/vendor/datasketches-cpp/hll/include/Hll6Array.hpp +1 -1
- data/vendor/datasketches-cpp/hll/include/Hll8Array-internal.hpp +98 -42
- data/vendor/datasketches-cpp/hll/include/Hll8Array.hpp +2 -0
- data/vendor/datasketches-cpp/hll/include/HllArray-internal.hpp +92 -59
- data/vendor/datasketches-cpp/hll/include/HllArray.hpp +16 -6
- data/vendor/datasketches-cpp/hll/include/HllSketchImplFactory.hpp +3 -21
- data/vendor/datasketches-cpp/hll/include/HllUnion-internal.hpp +8 -0
- data/vendor/datasketches-cpp/hll/include/HllUtil.hpp +14 -6
- data/vendor/datasketches-cpp/hll/include/coupon_iterator-internal.hpp +1 -1
- data/vendor/datasketches-cpp/hll/include/coupon_iterator.hpp +8 -2
- data/vendor/datasketches-cpp/hll/include/hll.hpp +9 -8
- data/vendor/datasketches-cpp/hll/test/HllUnionTest.cpp +7 -1
- data/vendor/datasketches-cpp/kll/include/kll_helper.hpp +0 -1
- data/vendor/datasketches-cpp/kll/include/kll_sketch.hpp +8 -3
- data/vendor/datasketches-cpp/kll/include/kll_sketch_impl.hpp +2 -2
- data/vendor/datasketches-cpp/kll/test/kll_sketch_test.cpp +2 -2
- data/vendor/datasketches-cpp/python/CMakeLists.txt +6 -0
- data/vendor/datasketches-cpp/python/README.md +5 -5
- data/vendor/datasketches-cpp/python/datasketches/DensityWrapper.py +87 -0
- data/vendor/datasketches-cpp/python/datasketches/KernelFunction.py +35 -0
- data/vendor/datasketches-cpp/python/datasketches/PySerDe.py +15 -9
- data/vendor/datasketches-cpp/python/datasketches/TuplePolicy.py +77 -0
- data/vendor/datasketches-cpp/python/datasketches/TupleWrapper.py +205 -0
- data/vendor/datasketches-cpp/python/datasketches/__init__.py +17 -1
- data/vendor/datasketches-cpp/python/include/kernel_function.hpp +98 -0
- data/vendor/datasketches-cpp/python/include/py_object_lt.hpp +37 -0
- data/vendor/datasketches-cpp/python/include/py_object_ostream.hpp +48 -0
- data/vendor/datasketches-cpp/python/include/quantile_conditional.hpp +104 -0
- data/vendor/datasketches-cpp/python/include/tuple_policy.hpp +136 -0
- data/vendor/datasketches-cpp/python/src/count_wrapper.cpp +101 -0
- data/vendor/datasketches-cpp/python/src/cpc_wrapper.cpp +16 -30
- data/vendor/datasketches-cpp/python/src/datasketches.cpp +6 -0
- data/vendor/datasketches-cpp/python/src/density_wrapper.cpp +95 -0
- data/vendor/datasketches-cpp/python/src/fi_wrapper.cpp +127 -73
- data/vendor/datasketches-cpp/python/src/hll_wrapper.cpp +28 -36
- data/vendor/datasketches-cpp/python/src/kll_wrapper.cpp +108 -160
- data/vendor/datasketches-cpp/python/src/py_serde.cpp +5 -4
- data/vendor/datasketches-cpp/python/src/quantiles_wrapper.cpp +99 -148
- data/vendor/datasketches-cpp/python/src/req_wrapper.cpp +117 -178
- data/vendor/datasketches-cpp/python/src/theta_wrapper.cpp +67 -73
- data/vendor/datasketches-cpp/python/src/tuple_wrapper.cpp +215 -0
- data/vendor/datasketches-cpp/python/src/vo_wrapper.cpp +1 -1
- data/vendor/datasketches-cpp/python/tests/count_min_test.py +86 -0
- data/vendor/datasketches-cpp/python/tests/cpc_test.py +10 -10
- data/vendor/datasketches-cpp/python/tests/density_test.py +93 -0
- data/vendor/datasketches-cpp/python/tests/fi_test.py +41 -2
- data/vendor/datasketches-cpp/python/tests/hll_test.py +19 -20
- data/vendor/datasketches-cpp/python/tests/kll_test.py +40 -6
- data/vendor/datasketches-cpp/python/tests/quantiles_test.py +39 -5
- data/vendor/datasketches-cpp/python/tests/req_test.py +38 -5
- data/vendor/datasketches-cpp/python/tests/theta_test.py +16 -14
- data/vendor/datasketches-cpp/python/tests/tuple_test.py +206 -0
- data/vendor/datasketches-cpp/python/tests/vo_test.py +7 -0
- data/vendor/datasketches-cpp/quantiles/include/quantiles_sketch.hpp +8 -3
- data/vendor/datasketches-cpp/quantiles/include/quantiles_sketch_impl.hpp +4 -4
- data/vendor/datasketches-cpp/quantiles/test/quantiles_sketch_test.cpp +1 -1
- data/vendor/datasketches-cpp/req/include/req_compactor_impl.hpp +0 -2
- data/vendor/datasketches-cpp/req/include/req_sketch.hpp +8 -3
- data/vendor/datasketches-cpp/req/include/req_sketch_impl.hpp +2 -2
- data/vendor/datasketches-cpp/sampling/include/var_opt_sketch.hpp +20 -6
- data/vendor/datasketches-cpp/sampling/include/var_opt_sketch_impl.hpp +30 -16
- data/vendor/datasketches-cpp/sampling/include/var_opt_union.hpp +5 -1
- data/vendor/datasketches-cpp/sampling/include/var_opt_union_impl.hpp +19 -15
- data/vendor/datasketches-cpp/sampling/test/var_opt_sketch_test.cpp +33 -14
- data/vendor/datasketches-cpp/sampling/test/var_opt_union_test.cpp +0 -2
- data/vendor/datasketches-cpp/setup.py +1 -1
- data/vendor/datasketches-cpp/theta/CMakeLists.txt +1 -0
- data/vendor/datasketches-cpp/theta/include/bit_packing.hpp +6279 -0
- data/vendor/datasketches-cpp/theta/include/compact_theta_sketch_parser.hpp +14 -8
- data/vendor/datasketches-cpp/theta/include/compact_theta_sketch_parser_impl.hpp +60 -46
- data/vendor/datasketches-cpp/theta/include/theta_helpers.hpp +4 -2
- data/vendor/datasketches-cpp/theta/include/theta_sketch.hpp +58 -10
- data/vendor/datasketches-cpp/theta/include/theta_sketch_impl.hpp +430 -130
- data/vendor/datasketches-cpp/theta/include/theta_union_base_impl.hpp +9 -9
- data/vendor/datasketches-cpp/theta/include/theta_update_sketch_base.hpp +16 -4
- data/vendor/datasketches-cpp/theta/include/theta_update_sketch_base_impl.hpp +2 -2
- data/vendor/datasketches-cpp/theta/test/CMakeLists.txt +1 -0
- data/vendor/datasketches-cpp/theta/test/bit_packing_test.cpp +80 -0
- data/vendor/datasketches-cpp/theta/test/theta_sketch_test.cpp +42 -3
- data/vendor/datasketches-cpp/theta/test/theta_union_test.cpp +25 -0
- data/vendor/datasketches-cpp/tuple/include/tuple_sketch_impl.hpp +2 -1
- data/vendor/datasketches-cpp/version.cfg.in +1 -1
- metadata +31 -3
@@ -17,194 +17,142 @@
|
|
17
17
|
* under the License.
|
18
18
|
*/
|
19
19
|
|
20
|
+
#include "py_object_lt.hpp"
|
21
|
+
#include "py_object_ostream.hpp"
|
22
|
+
#include "quantile_conditional.hpp"
|
20
23
|
#include "kll_sketch.hpp"
|
21
24
|
|
22
25
|
#include <pybind11/pybind11.h>
|
23
26
|
#include <pybind11/stl.h>
|
24
|
-
#include <pybind11/numpy.h>
|
25
|
-
#include <sstream>
|
26
27
|
#include <vector>
|
27
28
|
#include <stdexcept>
|
28
29
|
|
29
30
|
namespace py = pybind11;
|
30
31
|
|
31
|
-
|
32
|
-
|
33
|
-
namespace python {
|
34
|
-
|
35
|
-
template<typename T>
|
36
|
-
kll_sketch<T> kll_sketch_deserialize(py::bytes skBytes) {
|
37
|
-
std::string skStr = skBytes; // implicit cast
|
38
|
-
return kll_sketch<T>::deserialize(skStr.c_str(), skStr.length());
|
39
|
-
}
|
40
|
-
|
41
|
-
template<typename T>
|
42
|
-
py::object kll_sketch_serialize(const kll_sketch<T>& sk) {
|
43
|
-
auto serResult = sk.serialize();
|
44
|
-
return py::bytes((char*)serResult.data(), serResult.size());
|
45
|
-
}
|
46
|
-
|
47
|
-
// maybe possible to disambiguate the static vs method rank error calls, but
|
48
|
-
// this is easier for now
|
49
|
-
template<typename T>
|
50
|
-
double kll_sketch_generic_normalized_rank_error(uint16_t k, bool pmf) {
|
51
|
-
return kll_sketch<T>::get_normalized_rank_error(k, pmf);
|
52
|
-
}
|
53
|
-
|
54
|
-
template<typename T>
|
55
|
-
py::list kll_sketch_get_quantiles(const kll_sketch<T>& sk,
|
56
|
-
std::vector<double>& ranks,
|
57
|
-
bool inclusive) {
|
58
|
-
size_t nQuantiles = ranks.size();
|
59
|
-
auto result = sk.get_quantiles(ranks.data(), nQuantiles, inclusive);
|
60
|
-
// returning as std::vector<> would copy values to a list anyway
|
61
|
-
py::list list(nQuantiles);
|
62
|
-
for (size_t i = 0; i < nQuantiles; ++i) {
|
63
|
-
list[i] = result[i];
|
64
|
-
}
|
65
|
-
return list;
|
66
|
-
}
|
67
|
-
|
68
|
-
template<typename T>
|
69
|
-
py::list kll_sketch_get_pmf(const kll_sketch<T>& sk,
|
70
|
-
std::vector<T>& split_points,
|
71
|
-
bool inclusive) {
|
72
|
-
size_t nPoints = split_points.size();
|
73
|
-
auto result = sk.get_PMF(split_points.data(), nPoints, inclusive);
|
74
|
-
py::list list(nPoints + 1);
|
75
|
-
for (size_t i = 0; i <= nPoints; ++i) {
|
76
|
-
list[i] = result[i];
|
77
|
-
}
|
78
|
-
return list;
|
79
|
-
}
|
80
|
-
|
81
|
-
template<typename T>
|
82
|
-
py::list kll_sketch_get_cdf(const kll_sketch<T>& sk,
|
83
|
-
std::vector<T>& split_points,
|
84
|
-
bool inclusive) {
|
85
|
-
size_t nPoints = split_points.size();
|
86
|
-
auto result = sk.get_CDF(split_points.data(), nPoints, inclusive);
|
87
|
-
py::list list(nPoints + 1);
|
88
|
-
for (size_t i = 0; i <= nPoints; ++i) {
|
89
|
-
list[i] = result[i];
|
90
|
-
}
|
91
|
-
return list;
|
92
|
-
}
|
93
|
-
|
94
|
-
template<typename T>
|
95
|
-
void kll_sketch_update(kll_sketch<T>& sk, py::array_t<T, py::array::c_style | py::array::forcecast> items) {
|
96
|
-
if (items.ndim() != 1) {
|
97
|
-
throw std::invalid_argument("input data must have only one dimension. Found: "
|
98
|
-
+ std::to_string(items.ndim()));
|
99
|
-
}
|
100
|
-
|
101
|
-
auto data = items.template unchecked<1>();
|
102
|
-
for (uint32_t i = 0; i < data.size(); ++i) {
|
103
|
-
sk.update(data(i));
|
104
|
-
}
|
105
|
-
}
|
106
|
-
|
107
|
-
}
|
108
|
-
}
|
109
|
-
|
110
|
-
namespace dspy = datasketches::python;
|
111
|
-
|
112
|
-
template<typename T>
|
32
|
+
template<typename T, typename C>
|
113
33
|
void bind_kll_sketch(py::module &m, const char* name) {
|
114
34
|
using namespace datasketches;
|
115
35
|
|
116
|
-
py::class_<kll_sketch<T>>(m, name)
|
36
|
+
auto kll_class = py::class_<kll_sketch<T, C>>(m, name)
|
117
37
|
.def(py::init<uint16_t>(), py::arg("k")=kll_constants::DEFAULT_K)
|
118
|
-
.def(py::init<const kll_sketch<T>&>())
|
119
|
-
.def(
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
.def("
|
126
|
-
|
127
|
-
.def("
|
128
|
-
|
129
|
-
.def("
|
130
|
-
|
131
|
-
.def("
|
132
|
-
|
133
|
-
.def("
|
134
|
-
|
135
|
-
.def("
|
136
|
-
|
137
|
-
.def("
|
138
|
-
|
139
|
-
.def("
|
140
|
-
|
141
|
-
.def("
|
142
|
-
|
143
|
-
.def("
|
144
|
-
|
145
|
-
|
146
|
-
|
147
|
-
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
38
|
+
.def(py::init<const kll_sketch<T, C>&>())
|
39
|
+
.def(
|
40
|
+
"update",
|
41
|
+
static_cast<void (kll_sketch<T, C>::*)(const T&)>(&kll_sketch<T, C>::update),
|
42
|
+
py::arg("item"),
|
43
|
+
"Updates the sketch with the given value"
|
44
|
+
)
|
45
|
+
.def("merge", (void (kll_sketch<T, C>::*)(const kll_sketch<T, C>&)) &kll_sketch<T, C>::merge, py::arg("sketch"),
|
46
|
+
"Merges the provided sketch into this one")
|
47
|
+
.def("__str__", &kll_sketch<T, C>::to_string, py::arg("print_levels")=false, py::arg("print_items")=false,
|
48
|
+
"Produces a string summary of the sketch")
|
49
|
+
.def("to_string", &kll_sketch<T, C>::to_string, py::arg("print_levels")=false, py::arg("print_items")=false,
|
50
|
+
"Produces a string summary of the sketch")
|
51
|
+
.def("is_empty", &kll_sketch<T, C>::is_empty,
|
52
|
+
"Returns True if the sketch is empty, otherwise False")
|
53
|
+
.def("get_k", &kll_sketch<T, C>::get_k,
|
54
|
+
"Returns the configured parameter k")
|
55
|
+
.def("get_n", &kll_sketch<T, C>::get_n,
|
56
|
+
"Returns the length of the input stream")
|
57
|
+
.def("get_num_retained", &kll_sketch<T, C>::get_num_retained,
|
58
|
+
"Returns the number of retained items (samples) in the sketch")
|
59
|
+
.def("is_estimation_mode", &kll_sketch<T, C>::is_estimation_mode,
|
60
|
+
"Returns True if the sketch is in estimation mode, otherwise False")
|
61
|
+
.def("get_min_value", &kll_sketch<T, C>::get_min_item,
|
62
|
+
"Returns the minimum value from the stream. If empty, kll_floats_sketch returns nan; kll_ints_sketch throws a RuntimeError")
|
63
|
+
.def("get_max_value", &kll_sketch<T, C>::get_max_item,
|
64
|
+
"Returns the maximum value from the stream. If empty, kll_floats_sketch returns nan; kll_ints_sketch throws a RuntimeError")
|
65
|
+
.def("get_quantile", &kll_sketch<T, C>::get_quantile, py::arg("rank"), py::arg("inclusive")=false,
|
66
|
+
"Returns an approximation to the data value "
|
67
|
+
"associated with the given normalized rank in a hypothetical sorted "
|
68
|
+
"version of the input stream so far.\n"
|
69
|
+
"For kll_floats_sketch: if the sketch is empty this returns nan. "
|
70
|
+
"For kll_ints_sketch: if the sketch is empty this throws a RuntimeError.")
|
71
|
+
.def(
|
72
|
+
"get_quantiles",
|
73
|
+
[](const kll_sketch<T, C>& sk, const std::vector<double>& ranks, bool inclusive) {
|
74
|
+
return sk.get_quantiles(ranks.data(), ranks.size(), inclusive);
|
75
|
+
},
|
76
|
+
py::arg("ranks"), py::arg("inclusive")=false,
|
77
|
+
"This returns an array that could have been generated by using get_quantile() for each "
|
78
|
+
"normalized rank separately.\n"
|
79
|
+
"If the sketch is empty this returns an empty vector.\n"
|
80
|
+
"Deprecated. Will be removed in the next major version. Use get_quantile() instead."
|
81
|
+
)
|
82
|
+
.def("get_rank", &kll_sketch<T, C>::get_rank, py::arg("value"), py::arg("inclusive")=false,
|
155
83
|
"Returns an approximation to the normalized rank of the given value from 0 to 1, inclusive.\n"
|
156
84
|
"The resulting approximation has a probabilistic guarantee that can be obtained from the "
|
157
85
|
"get_normalized_rank_error(False) function.\n"
|
158
86
|
"With the parameter inclusive=true the weight of the given value is included into the rank."
|
159
87
|
"Otherwise the rank equals the sum of the weights of values less than the given value.\n"
|
160
88
|
"If the sketch is empty this returns nan.")
|
161
|
-
.def(
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
169
|
-
|
170
|
-
|
171
|
-
|
172
|
-
|
173
|
-
|
174
|
-
|
175
|
-
|
176
|
-
|
177
|
-
|
178
|
-
|
179
|
-
|
180
|
-
|
181
|
-
|
182
|
-
|
183
|
-
|
184
|
-
|
185
|
-
|
186
|
-
|
187
|
-
|
188
|
-
|
189
|
-
|
89
|
+
.def(
|
90
|
+
"get_pmf",
|
91
|
+
[](const kll_sketch<T, C>& sk, const std::vector<T>& split_points, bool inclusive) {
|
92
|
+
return sk.get_PMF(split_points.data(), split_points.size(), inclusive);
|
93
|
+
},
|
94
|
+
py::arg("split_points"), py::arg("inclusive")=false,
|
95
|
+
"Returns an approximation to the Probability Mass Function (PMF) of the input stream "
|
96
|
+
"given a set of split points (values).\n"
|
97
|
+
"The resulting approximations have a probabilistic guarantee that can be obtained from the "
|
98
|
+
"get_normalized_rank_error(True) function.\n"
|
99
|
+
"If the sketch is empty this returns an empty vector.\n"
|
100
|
+
"split_points is an array of m unique, monotonically increasing float values "
|
101
|
+
"that divide the real number line into m+1 consecutive disjoint intervals.\n"
|
102
|
+
"If the parameter inclusive=false, the definition of an 'interval' is inclusive of the left split point (or minimum value) and "
|
103
|
+
"exclusive of the right split point, with the exception that the last interval will include "
|
104
|
+
"the maximum value.\n"
|
105
|
+
"If the parameter inclusive=true, the definition of an 'interval' is exclusive of the left split point (or minimum value) and "
|
106
|
+
"inclusive of the right split point.\n"
|
107
|
+
"It is not necessary to include either the min or max values in these split points."
|
108
|
+
)
|
109
|
+
.def(
|
110
|
+
"get_cdf",
|
111
|
+
[](const kll_sketch<T, C>& sk, const std::vector<T>& split_points, bool inclusive) {
|
112
|
+
return sk.get_CDF(split_points.data(), split_points.size(), inclusive);
|
113
|
+
},
|
114
|
+
py::arg("split_points"), py::arg("inclusive")=false,
|
115
|
+
"Returns an approximation to the Cumulative Distribution Function (CDF), which is the "
|
116
|
+
"cumulative analog of the PMF, of the input stream given a set of split points (values).\n"
|
117
|
+
"The resulting approximations have a probabilistic guarantee that can be obtained from the "
|
118
|
+
"get_normalized_rank_error(True) function.\n"
|
119
|
+
"If the sketch is empty this returns an empty vector.\n"
|
120
|
+
"split_points is an array of m unique, monotonically increasing float values "
|
121
|
+
"that divide the real number line into m+1 consecutive disjoint intervals.\n"
|
122
|
+
"If the parameter inclusive=false, the definition of an 'interval' is inclusive of the left split point (or minimum value) and "
|
123
|
+
"exclusive of the right split point, with the exception that the last interval will include "
|
124
|
+
"the maximum value.\n"
|
125
|
+
"If the parameter inclusive=true, the definition of an 'interval' is exclusive of the left split point (or minimum value) and "
|
126
|
+
"inclusive of the right split point.\n"
|
127
|
+
"It is not necessary to include either the min or max values in these split points."
|
128
|
+
)
|
129
|
+
.def(
|
130
|
+
"normalized_rank_error",
|
131
|
+
static_cast<double (kll_sketch<T, C>::*)(bool) const>(&kll_sketch<T, C>::get_normalized_rank_error),
|
190
132
|
py::arg("as_pmf"),
|
191
133
|
"Gets the normalized rank error for this sketch.\n"
|
192
134
|
"If pmf is True, returns the 'double-sided' normalized rank error for the get_PMF() function.\n"
|
193
135
|
"Otherwise, it is the 'single-sided' normalized rank error for all the other queries.\n"
|
194
|
-
"Constants were derived as the best fit to 99 percentile empirically measured max error in thousands of trials"
|
195
|
-
|
136
|
+
"Constants were derived as the best fit to 99 percentile empirically measured max error in thousands of trials"
|
137
|
+
)
|
138
|
+
.def_static(
|
139
|
+
"get_normalized_rank_error",
|
140
|
+
[](uint16_t k, bool pmf) { return kll_sketch<T, C>::get_normalized_rank_error(k, pmf); },
|
196
141
|
py::arg("k"), py::arg("as_pmf"),
|
197
142
|
"Gets the normalized rank error given parameters k and the pmf flag.\n"
|
198
143
|
"If pmf is True, returns the 'double-sided' normalized rank error for the get_PMF() function.\n"
|
199
144
|
"Otherwise, it is the 'single-sided' normalized rank error for all the other queries.\n"
|
200
|
-
"Constants were derived as the best fit to 99 percentile empirically measured max error in thousands of trials"
|
201
|
-
|
202
|
-
.
|
203
|
-
|
145
|
+
"Constants were derived as the best fit to 99 percentile empirically measured max error in thousands of trials"
|
146
|
+
)
|
147
|
+
.def("__iter__", [](const kll_sketch<T, C>& s) { return py::make_iterator(s.begin(), s.end()); });
|
148
|
+
|
149
|
+
add_serialization<T>(kll_class);
|
150
|
+
add_vector_update<T>(kll_class);
|
204
151
|
}
|
205
152
|
|
206
153
|
void init_kll(py::module &m) {
|
207
|
-
bind_kll_sketch<int
|
208
|
-
bind_kll_sketch<float
|
209
|
-
bind_kll_sketch<double
|
154
|
+
bind_kll_sketch<int, std::less<int>>(m, "kll_ints_sketch");
|
155
|
+
bind_kll_sketch<float, std::less<float>>(m, "kll_floats_sketch");
|
156
|
+
bind_kll_sketch<double, std::less<double>>(m, "kll_doubles_sketch");
|
157
|
+
bind_kll_sketch<py::object, py_object_lt>(m, "kll_items_sketch");
|
210
158
|
}
|
@@ -27,13 +27,14 @@
|
|
27
27
|
namespace py = pybind11;
|
28
28
|
|
29
29
|
void init_serde(py::module& m) {
|
30
|
-
|
30
|
+
using namespace datasketches;
|
31
|
+
py::class_<py_object_serde, PyObjectSerDe /* <--- trampoline*/>(m, "PyObjectSerDe")
|
31
32
|
.def(py::init<>())
|
32
|
-
.def("get_size", &
|
33
|
+
.def("get_size", &py_object_serde::get_size, py::arg("item"),
|
33
34
|
"Returns the size in bytes of an item")
|
34
|
-
.def("to_bytes", &
|
35
|
+
.def("to_bytes", &py_object_serde::to_bytes, py::arg("item"),
|
35
36
|
"Retuns a bytes object with a serialized version of an item")
|
36
|
-
.def("from_bytes", &
|
37
|
+
.def("from_bytes", &py_object_serde::from_bytes, py::arg("data"), py::arg("offset"),
|
37
38
|
"Reads a bytes object starting from the given offest and returns a tuple of the reconstructed "
|
38
39
|
"object and the number of additional bytes read")
|
39
40
|
;
|