data_structures_rmolinari 0.4.3 → 0.4.4

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: c9022e9531472d1125c6172025c2d10c5d4ef4f9c43e326a43f1c5b4f0721263
4
- data.tar.gz: '0212619be7fe32e68b63d2087730f81ffd6b4179b8b8bf63aa0026e4e3056224'
3
+ metadata.gz: 943ac55678a074cc0da3667dccbb07ee7d203639233f53bd8587af7fd8cd062e
4
+ data.tar.gz: ad235e5f4714e699f1cf5f113dd4b3a356a194cced5a74b60e17c5e3a896e01b
5
5
  SHA512:
6
- metadata.gz: a7f9258eeed2dc7e7fa5713aaecfcdf44e061bb161aa3d0d2662fb662bfb6b2685c61be221b4a109792982c3b2aa6215da75b51ae299d4a9237b6226000612e4
7
- data.tar.gz: e585a245f753ef731895163eedba802e3fe2f6000720d10705b5a0cd02a12642a35220eea57c8b71f504b66db7cb06161fdfca1660edc0dc132ee026dd83be4d
6
+ metadata.gz: a68de76c88c67fadc42752610c695b1f0b8fd17f34db9c806291aeab4c933fe84c6523615deb4197e1c9fa6d36dce30987cc4e8896a2b0c1700b7e72b5bd2fff
7
+ data.tar.gz: 9063d89a98d599f27db2585bf383dbfb13e8f927abce64ac7eafb2edd70c490ddad1f1fc51e0f11c24adf29f28ab8c56548a6db264b15ace239c63b1a2ce5a01
data/CHANGELOG.md CHANGED
@@ -1,5 +1,13 @@
1
1
  # Changelog
2
2
 
3
+ ## [Unreleased]
4
+
5
+ - Disjoint Union
6
+ - C extension: use Convenient Containers rather than my janky Dynamic Array attempt.
7
+
8
+ - Segment Tree
9
+ - Add a C implementation as CSegmentTreeTemplate.
10
+
3
11
  ## [0.4.3] 2023-01-27
4
12
 
5
13
  - Fix bad directive in Rakefile for DisjointUnion C extension
data/README.md CHANGED
@@ -4,8 +4,8 @@ This is a small collection of Ruby data structures that I have implemented for m
4
4
  structure is almost always more educational than simply reading about it and is usually fun. I wrote some of them while
5
5
  participating in the Advent of Code (https://adventofcode.com/).
6
6
 
7
- These implementations are not particularly clever. They are based on the expository descriptions and pseudo-code I found as I read
8
- about each structure and so are not as fast as possible.
7
+ The implementations are based on the expository descriptions and pseudo-code I found as I read about each structure and so are not
8
+ as fast as possible.
9
9
 
10
10
  The code is available as a gem: https://rubygems.org/gems/data_structures_rmolinari.
11
11
 
@@ -42,9 +42,6 @@ It also provides
42
42
  For more details see https://en.wikipedia.org/wiki/Disjoint-set_data_structure and the paper [[TvL1984]](#references) by Tarjan and
43
43
  van Leeuwen.
44
44
 
45
- There is an experimental implementation as a C extension in c_disjoint_union.c. The Ruby class for this implementation is
46
- `CDisjointUnion`. Benchmarks indicate that a long sequence of `unite` calls is about twice as fast.
47
-
48
45
  ## Heap
49
46
 
50
47
  This is a standard binary heap with an `update` method, suitable for use as a priority queue. There are several supported
@@ -84,15 +81,15 @@ pointing north.
84
81
 
85
82
  There is no `smallest_x_in_3_sided(x0, x1, y0)`. Just use `smallest_x_in_ne(x0, y0)`.
86
83
 
84
+ (These queries appear rather abstract at first but there are interesting applications. See, for example, section 4 of
85
+ [[McC85]](#references), keeping in mind that the data structure in that paper is actually a _MinPST_.)
86
+
87
87
  The single-point queries run in O(log n) time, where n is the size of P, while `enumerate_3_sided` runs in O(m + log n), where m is
88
88
  the number of points actually enumerated.
89
89
 
90
90
  The implementation is in `MaxPrioritySearchTree` (MaxPST for short), so called because internally the structure is, among other
91
91
  things, a max-heap on the y-coordinates.
92
92
 
93
- These queries appear rather abstract at first but there are interesting applications. See, for example, section 4 of
94
- [[McC85]](#references), keeping in mind that the data structure in that paper is actually a _MinPST_.
95
-
96
93
  We also provide a `MinPrioritySearchTree`, which answers analagous queries in the southward-infinite quadrants and 3-sided
97
94
  regions.
98
95
 
@@ -108,17 +105,17 @@ both a MaxPST and MinPST. But the presentiation is hard to follow in places and
108
105
 
109
106
  ## Segment Tree
110
107
 
111
- Segment trees store information related to subintervals of a certain array. For example, they can be used to find the sum of the
112
- elements in an arbitrary subinterval A[i..j] of an array A[0..n] in O(log n) time. Each node in the tree corresponds to a subarray
113
- of A in such a way that the values we store in the nodes can be combined efficiently to determine the desired result for arbitrary
114
- subarrays.
108
+ A segment tree stores information related to subintervals of a certain array. For example, a segment tree can be used to find the
109
+ sum of the elements in an arbitrary subinterval A(i..j) of an array A(0..n) in O(log n) time. Each node in the tree corresponds to a
110
+ subarray of A in such a way that the values we store in the nodes can be combined efficiently to determine the desired result for
111
+ arbitrary subarrays.
115
112
 
116
113
  An excellent description of the idea is found at https://cp-algorithms.com/data_structures/segment_tree.html.
117
114
 
118
- Generic code is provided in `SegmentTreeTemplate`. Concrete classes are written by providing a handful of simple lambdas and
119
- constants to the template class's initializer. Figuring out the details requires some knowledge of the internal mechanisms of a
120
- segment tree, for which the link at cp-algorithms.com is very helpful. See the definitions of the concrete classes,
121
- `MaxValSegmentTree` and `IndexOfMaxValSegmentTree`, for examples.
115
+ Generic code is provided in `SegmentTreeTemplate`. Concrete classes provide a handful of simple lambdas and constants to the
116
+ template class's initializer. Figuring out the details requires some knowledge of the internal mechanisms of a segment tree, for
117
+ which the link at cp-algorithms.com is very helpful. See the definitions of the concrete classes `MaxValSegmentTree` and
118
+ `IndexOfMaxValSegmentTree` for examples.
122
119
 
123
120
  ## Algorithms
124
121
 
@@ -131,7 +128,29 @@ The Algorithms submodule contains some algorithms using the data structures.
131
128
  [left, right, bottom, top].
132
129
  - The algorithm is due to [[DMNS2013]](#references).
133
130
 
131
+ # C Extensions
132
+
133
+ As another learning process I have implemented several of these data structures as C extensions. The class names have a "C" prefixed
134
+ and they can be required like their pure Ruby versions. They have the same APIs as their Ruby cousins.
135
+
136
+ ## Disjoint Union
137
+
138
+ A benchmark suggests that a long sequence of `unite` operations is about 3 times as fast with the `CDisjointUnion` as with
139
+ `DisjointUnion`.
140
+
141
+ The implementation uses the remarkable Convenient Containers library from Jackson Allan.[[Allan]](#references).
142
+
143
+ ## Segment Tree
144
+
145
+ `CSegmentTreeTemplate` is the C implementation of the generic class. Concrete classes are built on top of this in Ruby, just as with
146
+ the pure Ruby `SegmentTreeTemplate` class.
147
+
148
+ A benchmark suggests that a long sequence of `max_on` operations against a max-val Segment Tree is about 4 times as fast with the C
149
+ version as with the Ruby version. I'm a bit suprised the improvment isn't larger, but we must remember that the C code must still
150
+ interact with the Ruby objects in the underlying data array, and must "combine" them, etc., by calling Ruby lambdas.
151
+
134
152
  # References
153
+ - [Allan] Allan, J., _CC: Convenient Containers_, https://github.com/JacksonAllan/CC, retrieved 2023-02-01.
135
154
  - [TvL1984] Tarjan, Robert E., van Leeuwen, J., _Worst-case Analysis of Set Union Algorithms_, Journal of the ACM, v31:2 (1984), pp 245–281.
136
155
  - [EEK2017] Edelkamp, S., Elmasry, A., Katajainen, J., _Optimizing Binary Heaps_, Theory Comput Syst (2017), vol 61, pp 606-636, DOI 10.1007/s00224-017-9760-2.
137
156
  - [McC1985] McCreight, E. M., _Priority Search Trees_, SIAM J. Comput., 14(2):257-276, 1985.
data/Rakefile CHANGED
@@ -2,10 +2,12 @@ require 'rubygems'
2
2
  require 'rake/testtask'
3
3
  require 'rake/extensiontask'
4
4
 
5
- Rake::ExtensionTask.new('data_structures_rmolinari/c_disjoint_union') do |ext|
6
- ext.name = 'c_disjoint_union'
7
- ext.ext_dir = 'ext/c_disjoint_union'
8
- ext.lib_dir = 'lib/data_structures_rmolinari/'
5
+ ['c_disjoint_union', 'c_segment_tree_template'].each do |extension_name|
6
+ Rake::ExtensionTask.new("data_structures_rmolinari/#{extension_name}") do |ext|
7
+ ext.name = extension_name
8
+ ext.ext_dir = "ext/#{extension_name}"
9
+ ext.lib_dir = 'lib/data_structures_rmolinari/'
10
+ end
9
11
  end
10
12
 
11
13
  Rake::TestTask.new do |t|
@@ -16,118 +16,69 @@
16
16
  */
17
17
 
18
18
  #include "ruby.h"
19
-
20
- // The Shared::DataError exception type in the Ruby code. We only need it when we detect a runtime error, so a macro should be fine.
21
- #define mShared rb_define_module("Shared")
22
- #define eSharedDataError rb_const_get(mShared, rb_intern_const("DataError"))
19
+ #include "cc.h" // Convenient Containers
20
+ #include "shared.h"
23
21
 
24
22
  /**
25
- * It's been so long since I've written non-trival C that I need to copy examples from online.
26
- *
27
- * Dynamic array of longs, with an initial value for otherwise uninitialized elements.
28
- * Based on https://stackoverflow.com/questions/3536153/c-dynamically-growing-array
29
- */
30
- typedef struct {
31
- long *array;
32
- size_t size;
33
- long default_val;
34
- } DynamicArray;
35
-
36
- /*
37
- * Initialize a DynamicArray struct with the given initial size and with all values set to the default value.
38
- *
39
- * The default value is stored and used to initialize new array sections if and when the array needs to be expanded.
40
- */
41
- void initDynamicArray(DynamicArray *a, size_t initial_size, long default_val) {
42
- a->array = malloc(initial_size * sizeof(long));
43
- a->size = initial_size;
44
- a->default_val = default_val;
45
-
46
- for (size_t i = 0; i < initial_size; i++) {
47
- a->array[i] = default_val;
48
- }
49
- }
50
-
51
- /*
52
- * Assign +value+ to the the +index+-th element of the array, expanding the available space if necessary.
23
+ * Data type for the (parent, rank) pair, and some accessor helpers for the vec() container we are going to be using.
53
24
  */
54
- void assignInDynamicArray(DynamicArray *a, unsigned long index, long value) {
55
- if (a->size <= index) {
56
- size_t new_size = a->size;
57
- while (new_size <= index) {
58
- new_size = 8 * new_size / 5 + 8; // 8/5 gives "Fibonnacci-like" growth; adding 8 to avoid small arrays having to reallocate
59
- // too often as they grow. Who knows if it's worth being "clever".
60
- }
61
25
 
62
- long *new_array = realloc(a->array, new_size * sizeof(long));
63
- if (!new_array) {
64
- rb_raise(rb_eRuntimeError, "Cannot allocate memory to expand DynamicArray!");
65
- }
26
+ typedef struct data_pair {
27
+ long parent;
28
+ unsigned long rank;
29
+ } data_pair;
66
30
 
67
- a->array = new_array;
68
- for (size_t i = a->size; i < new_size; i++) {
69
- a->array[i] = a->default_val;
70
- }
71
-
72
- a->size = new_size;
73
- }
31
+ #define DEFAULT_PARENT -1
32
+ #define DEFAULT_RANK 0
33
+ static data_pair default_pair = { .parent = DEFAULT_PARENT, .rank = DEFAULT_RANK };
74
34
 
75
- a->array[index] = value;
35
+ static data_pair make_data_pair(long parent, unsigned long rank) {
36
+ data_pair pair = { .parent = parent, .rank = rank };
37
+ return pair;
76
38
  }
77
39
 
78
- void freeDynamicArray(DynamicArray *a) {
79
- free(a->array);
80
- a->array = NULL;
81
- a->size = 0;
82
- }
40
+ /* The vector generic from Convenient Containers */
41
+ typedef vec(data_pair) pair_vector;
83
42
 
84
- size_t _size_of(DynamicArray *a) {
85
- return a->size * sizeof(a->default_val);
86
- }
43
+ #define parent(disjoint_union_ptr, idx) (get(disjoint_union->pairs, idx)->parent)
44
+ #define rank(disjoint_union_ptr, idx) (get(disjoint_union->pairs, idx)->rank)
87
45
 
88
46
  /**
89
47
  * The C implementation of a Disjoint Union
90
48
  *
91
- * See Tarjan, Robert E., van Leeuwen, J., _Worst-case Analysis of Set Union Algorithms_, Journal of the ACM, v31:2 (1984), pp 245–281.
49
+ * See the paper for optimizations we use to get almost constant time for find() and unite().
50
+ *
51
+ * Tarjan, Robert E., van Leeuwen, J., _Worst-case Analysis of Set Union Algorithms_, Journal of the ACM, v31:2 (1984), pp 245–281.
92
52
  */
93
53
 
94
54
  /*
95
55
  * The Disjoint Union struct.
96
- * - forest: an array of longs giving, for each element, the element's parent.
97
- * - An element e is the root of its tree just when forest[e] == e.
98
- * - Two elements are in the same subset just when they are in the same tree in the forest.
56
+ * - pairs: a vector (dynamic array) of pairs, the i-th of which contains
57
+ * - the "parent" of element i in its membership tree
58
+ * - An element e is the root of its tree just when it is its own parent
59
+ * - Two elements are in the same subset just when they are in the same tree in the forest.
99
60
  * - So the key idea is that we can check this by navigating via parents from each element to their roots. Clever optimizations
100
61
  * keep the trees flat and so most nodes are close to their roots.
101
- * - rank: a array of longs giving the "rank" of each element.
102
- * - This value is used to guide the "linking" of trees when subsets are being merged to keep the trees flat. See Tarjan & van
103
- * Leeuwen
62
+ * - the "rank" of element i
63
+ * - this value is used to guide the "linking" of trees when subsets are being merged to keep the trees flat.
104
64
  * - subset_count: the number of (disjoint) subsets.
105
65
  * - it isn't needed internally but may be useful to client code.
106
66
  */
107
67
  typedef struct du_data {
108
- DynamicArray *forest; // the forest that describes the unified subsets
109
- DynamicArray *rank; // the "ranks" of the elements, used when uniting subsets
68
+ pair_vector *pairs; // The generic vector container from the amazing Convenient Containers library
110
69
  size_t subset_count;
111
70
  } disjoint_union_data;
112
71
 
113
72
  /*
114
73
  * Create one (on the heap).
115
- *
116
- * The dynamic arrays are initialized with a size of 100 because I didn't have a better idea. This will end up getting called from
117
- * the Ruby #allocate method, which happens before #initialize. Thus we don't know the calling code's desired initial size.
118
74
  */
119
- #define INITIAL_SIZE 100
120
75
  static disjoint_union_data *create_disjoint_union() {
121
76
  disjoint_union_data *disjoint_union = (disjoint_union_data *)malloc(sizeof(disjoint_union_data));
122
77
 
123
78
  // Allocate the structures
124
- DynamicArray *forest = (DynamicArray *)malloc(sizeof(DynamicArray));
125
- DynamicArray *rank = (DynamicArray *)malloc(sizeof(DynamicArray));
126
- initDynamicArray(forest, INITIAL_SIZE, -1);
127
- initDynamicArray(rank, INITIAL_SIZE, 0);
79
+ disjoint_union->pairs = malloc(sizeof(pair_vector));
80
+ init(disjoint_union->pairs);
128
81
 
129
- disjoint_union->forest = forest;
130
- disjoint_union->rank = rank;
131
82
  disjoint_union->subset_count = 0;
132
83
 
133
84
  return disjoint_union;
@@ -141,15 +92,7 @@ static disjoint_union_data *create_disjoint_union() {
141
92
  static void disjoint_union_free(void *ptr) {
142
93
  if (ptr) {
143
94
  disjoint_union_data *disjoint_union = ptr;
144
- freeDynamicArray(disjoint_union->forest);
145
- freeDynamicArray(disjoint_union->rank);
146
-
147
- free(disjoint_union->forest);
148
- disjoint_union->forest = NULL;
149
-
150
- free(disjoint_union->rank);
151
- disjoint_union->rank = NULL;
152
-
95
+ cleanup(disjoint_union->pairs);
153
96
  xfree(disjoint_union);
154
97
  }
155
98
  }
@@ -162,8 +105,7 @@ static void disjoint_union_free(void *ptr) {
162
105
  * Is the given element already a member of the universe?
163
106
  */
164
107
  static int present_p(disjoint_union_data *disjoint_union, size_t element) {
165
- DynamicArray *forest = (DynamicArray *)disjoint_union->forest;
166
- return (forest->size > element && (forest->array[element] != forest->default_val));
108
+ return (size(disjoint_union->pairs) > element && (parent(disjoint_union, element) != DEFAULT_PARENT));
167
109
  }
168
110
 
169
111
  /*
@@ -172,6 +114,13 @@ static int present_p(disjoint_union_data *disjoint_union, size_t element) {
172
114
  static void assert_membership(disjoint_union_data *disjoint_union, size_t element) {
173
115
  if (!present_p(disjoint_union, element)) {
174
116
  rb_raise(eSharedDataError, "Value %zu is not part of the universe", element);
117
+ /* rb_raise( */
118
+ /* eSharedDataError, */
119
+ /* "Value %zu is not part of the universe, size = %zu, forest_val = %lu", */
120
+ /* element, */
121
+ /* size(disjoint_union->pairs), */
122
+ /* get(disjoint_union->pairs, element)->parent */
123
+ /* ); */
175
124
  }
176
125
  }
177
126
 
@@ -185,47 +134,52 @@ static void add_new_element(disjoint_union_data *disjoint_union, size_t element)
185
134
  rb_raise(eSharedDataError, "Element %zu already present in the universe", element);
186
135
  }
187
136
 
188
- assignInDynamicArray(disjoint_union->forest, element, element);
189
- assignInDynamicArray(disjoint_union->rank, element, 0);
137
+ // Expand the underlying vector if necessary
138
+ size_t sz = size(disjoint_union->pairs);
139
+ if (sz <= element) {
140
+ resize(disjoint_union->pairs, element + 1);
141
+ for (size_t i = sz + 1; i <= element; i++) {
142
+ lval(disjoint_union->pairs, i) = default_pair;
143
+ }
144
+ }
145
+
146
+ lval(disjoint_union->pairs, element) = make_data_pair(element, 0l);
190
147
  disjoint_union->subset_count++;
191
148
  }
192
149
 
193
150
  /*
194
- * Find the canonical representative of the given element. This is the root of the tree (in forest) containing element.
151
+ * Find the canonical representative of the given element. This is the root of the tree containing it.
195
152
  *
196
153
  * Two elements are in the same subset exactly when their canonical representatives are equal.
197
154
  */
198
155
  static size_t find(disjoint_union_data *disjoint_union, size_t element) {
199
156
  assert_membership(disjoint_union, element);
200
157
 
201
- // We implement find with "halving" to shrink the length of paths to the root. See Tarjan and van Leeuwin p 252.
202
- long *d = disjoint_union->forest->array; // the actual forest data
158
+ // We use "halving" to shrink the length of paths to the root. See Tarjan and van Leeuwin p 252.
203
159
  size_t x = element;
204
- while (d[d[x]] != d[x]) {
205
- x = d[x] = d[d[x]];
160
+ long p, gp; // parent and grandparent
161
+ while (p = parent(disjoint_union, x), gp = parent(disjoint_union, p), p != gp) {
162
+ parent(disjoint_union, p) = gp;
163
+ x = gp;
206
164
  }
207
- return d[x];
165
+ return parent(disjoint_union, x);
208
166
  }
209
167
 
210
168
  /*
211
- * "Link"" the two given elements so that they are in the same subset now.
169
+ * "Link" the two given elements so that they are in the same subset now.
212
170
  *
213
171
  * In other words, merge the subtrees containing the two elements.
214
172
  *
215
- * Good performace (see Tarjan and van Leeuwin) assumes that elt1 and elt2 area are disinct and already the roots of their trees,
216
- * though we don't check that here.
173
+ * elt1 and elt2 area must be disinct and the roots of their trees, though we don't check that here.
217
174
  */
218
175
  static void link_roots(disjoint_union_data *disjoint_union, size_t elt1, size_t elt2) {
219
- long *rank = disjoint_union->rank->array;
220
- long *forest = disjoint_union->forest->array;
221
-
222
- if (rank[elt1] > rank[elt2]) {
223
- forest[elt2] = elt1;
224
- } else if (rank[elt1] == rank[elt2]) {
225
- forest[elt2] = elt1;
226
- rank[elt1]++;
176
+ if (rank(disjoint_union, elt1) > rank(disjoint_union, elt2)) {
177
+ parent(disjoint_union, elt2) = elt1;
178
+ } else if (rank(disjoint_union, elt1) == rank(disjoint_union, elt2)) {
179
+ parent(disjoint_union, elt2) = elt1;
180
+ rank(disjoint_union, elt1)++;
227
181
  } else {
228
- forest[elt1] = elt2;
182
+ parent(disjoint_union, elt1) = elt2;
229
183
  }
230
184
 
231
185
  disjoint_union->subset_count--;
@@ -263,7 +217,9 @@ static void unite(disjoint_union_data *disjoint_union, size_t elt1, size_t elt2)
263
217
  static size_t disjoint_union_memsize(const void *ptr) {
264
218
  if (ptr) {
265
219
  const disjoint_union_data *du = ptr;
266
- return sizeof(disjoint_union_data) + _size_of(du->forest) + _size_of(du->rank);
220
+
221
+ // See https://github.com/JacksonAllan/CC/issues/3
222
+ return sizeof( cc_vec_hdr_ty ) + cap( du->pairs ) * CC_EL_SIZE( *(du->pairs) );
267
223
  } else {
268
224
  return 0;
269
225
  }
@@ -286,21 +242,7 @@ static const rb_data_type_t disjoint_union_type = {
286
242
  };
287
243
 
288
244
  /*
289
- * Helper: check that a Ruby value is a non-negative Fixnum and convert it to a C unsigned long
290
- */
291
- static unsigned long checked_nonneg_fixnum(VALUE val) {
292
- Check_Type(val, T_FIXNUM);
293
- long c_val = FIX2LONG(val);
294
-
295
- if (c_val < 0) {
296
- rb_raise(eSharedDataError, "Value must be non-negative");
297
- }
298
-
299
- return c_val;
300
- }
301
-
302
- /*
303
- * Unwrap a Rubyfied disjoint union to get the C struct inside.
245
+ * Unwrap a Ruby-side disjoint union object to get the C struct inside.
304
246
  */
305
247
  static disjoint_union_data *unwrapped(VALUE self) {
306
248
  disjoint_union_data *disjoint_union;
@@ -333,9 +275,13 @@ static VALUE disjoint_union_init(int argc, VALUE *argv, VALUE self) {
333
275
  size_t initial_size = checked_nonneg_fixnum(argv[0]);
334
276
  disjoint_union_data *disjoint_union = unwrapped(self);
335
277
 
278
+ pair_vector *pair_vec = disjoint_union->pairs;
279
+ resize(pair_vec, initial_size);
280
+
336
281
  for (size_t i = 0; i < initial_size; i++) {
337
- add_new_element(disjoint_union, i);
282
+ lval(pair_vec, i) = make_data_pair(i, 0);
338
283
  }
284
+ disjoint_union->subset_count = initial_size;
339
285
  }
340
286
  return self;
341
287
  }
@@ -343,7 +289,7 @@ static VALUE disjoint_union_init(int argc, VALUE *argv, VALUE self) {
343
289
  /**
344
290
  * And now the simple wrappers around the Disjoint Union C functionality. In each case we
345
291
  * - unwrap a 'VALUE self',
346
- * - i.e., theCDisjointUnion instance that contains a disjoint_union_data struct;
292
+ * - i.e., the CDisjointUnion instance on the Ruby side;
347
293
  * - munge any other arguments into longs;
348
294
  * - call the appropriate C function to act on the struct; and
349
295
  * - return an appropriate VALUE for the Ruby runtime can use.
@@ -354,7 +300,7 @@ static VALUE disjoint_union_init(int argc, VALUE *argv, VALUE self) {
354
300
  /*
355
301
  * Add a new subset to the universe containing the element +new_v+.
356
302
  *
357
- * @param the new element, starting in its own singleton subset
303
+ * @param arg the new element, starting in its own singleton subset
358
304
  * - it must be a non-negative integer, not already part of the universe of elements.
359
305
  */
360
306
  static VALUE disjoint_union_make_set(VALUE self, VALUE arg) {
@@ -412,7 +358,7 @@ static VALUE disjoint_union_unite(VALUE self, VALUE arg1, VALUE arg2) {
412
358
  * - Tarjan, Robert E., van Leeuwen, Jan (1984). _Worst-case analysis of set union algorithms_. Journal of the ACM. 31 (2): 245–281.
413
359
  */
414
360
  void Init_c_disjoint_union() {
415
- VALUE mDataStructuresRMolinari = rb_define_module("DataStructuresRMolinari");
361
+ //VALUE mDataStructuresRMolinari = rb_define_module("DataStructuresRMolinari");
416
362
  VALUE cDisjointUnion = rb_define_class_under(mDataStructuresRMolinari, "CDisjointUnion", rb_cObject);
417
363
 
418
364
  rb_define_alloc_func(cDisjointUnion, disjoint_union_alloc);
@@ -3,10 +3,15 @@ require 'mkmf'
3
3
  abort 'missing malloc()' unless have_func "malloc"
4
4
  abort 'missing realloc()' unless have_func "realloc"
5
5
 
6
- if try_cflags('-O')
7
- append_cflags('-O')
6
+ if try_cflags('-O3')
7
+ append_cflags('-O3')
8
8
  end
9
9
 
10
10
  extension_name = "c_disjoint_union"
11
11
  dir_config(extension_name)
12
+
13
+ $srcs = ["disjoint_union.c", "../shared.c"]
14
+ $INCFLAGS << " -I$(srcdir)/.."
15
+ $VPATH << "$(srcdir)/.."
16
+
12
17
  create_makefile("data_structures_rmolinari/c_disjoint_union")
@@ -0,0 +1,17 @@
1
+ require 'mkmf'
2
+
3
+ abort 'missing malloc()' unless have_func "malloc"
4
+ abort 'missing realloc()' unless have_func "realloc"
5
+
6
+ if try_cflags('-O3')
7
+ append_cflags('-O3')
8
+ end
9
+
10
+ extension_name = "c_segment_tree_template"
11
+ dir_config(extension_name)
12
+
13
+ $srcs = ["segment_tree_template.c", "../shared.c"]
14
+ $INCFLAGS << " -I$(srcdir)/.."
15
+ $VPATH << "$(srcdir)/.."
16
+
17
+ create_makefile("data_structures_rmolinari/c_segment_tree_template")
@@ -0,0 +1,362 @@
1
+ /*
2
+ * This is a C implementation of a Segment Tree data structure.
3
+ *
4
+ * More specifically, it is the C version of the SegmentTreeTemplate Ruby class, for which see elsewhere in the repo.
5
+ */
6
+
7
+ #include "ruby.h"
8
+ #include "shared.h"
9
+
10
+ #define single_cell_val_at(seg_tree, idx) rb_funcall(seg_tree->single_cell_array_val_lambda, rb_intern("call"), 1, LONG2FIX(idx))
11
+ #define combined_val(seg_tree, v1, v2) rb_funcall(seg_tree->combine_lambda, rb_intern("call"), 2, (v1), (v2))
12
+
13
+ /**
14
+ * The C implementation of a generic Segment Tree
15
+ */
16
+
17
+ typedef struct {
18
+ VALUE *tree; // The 1-based implicit binary tree in which the data structure lives
19
+ VALUE single_cell_array_val_lambda;
20
+ VALUE combine_lambda;
21
+ VALUE identity;
22
+ size_t size; // the size of the underlying data array
23
+ size_t tree_alloc_size; // the size of the VALUE* tree array
24
+ } segment_tree_data;
25
+
26
+ /************************************************************
27
+ * Memory Management
28
+ *
29
+ */
30
+
31
+ /*
32
+ * Create one (on the heap).
33
+ */
34
+ static segment_tree_data *create_segment_tree() {
35
+ segment_tree_data *segment_tree = malloc(sizeof(segment_tree_data));
36
+
37
+ // Allocate the structures
38
+ segment_tree->tree = NULL; // we don't yet know how much space we need
39
+
40
+ segment_tree->single_cell_array_val_lambda = 0;
41
+ segment_tree->combine_lambda = 0;
42
+ segment_tree->size = 0; // we don't know the right value yet
43
+
44
+ return segment_tree;
45
+ }
46
+
47
+ /*
48
+ * Free the memory associated with a segment_tree.
49
+ *
50
+ * This will end up getting triggered by the Ruby garbage collector. Ruby learns about it via the segment_tree_type struct below.
51
+ */
52
+ static void segment_tree_free(void *ptr) {
53
+ if (ptr) {
54
+ segment_tree_data *segment_tree = ptr;
55
+ xfree(segment_tree->tree);
56
+ xfree(segment_tree);
57
+ }
58
+ }
59
+
60
+ /*
61
+ * How much memory (roughly) does a segment_tree_data instance consume?
62
+ *
63
+ * I guess the Ruby runtime can use this information when deciding how agressive to be during garbage collection and such.
64
+ */
65
+ static size_t segment_tree_memsize(const void *ptr) {
66
+ if (ptr) {
67
+ const segment_tree_data *st = ptr;
68
+
69
+ // for the tree array plus the size of the segment_tree_data struct itself.
70
+ return sizeof( VALUE ) * st->tree_alloc_size * 4 + sizeof(segment_tree_data);
71
+ } else {
72
+ return 0;
73
+ }
74
+ }
75
+
76
+ /*
77
+ * Mark the Ruby objects we hold so that the Ruby garbage collector knows that they are still in use.
78
+ */
79
+ static void segment_tree_mark(void *ptr) {
80
+ segment_tree_data *st = ptr;
81
+
82
+ rb_gc_mark(st->combine_lambda);
83
+ rb_gc_mark(st->single_cell_array_val_lambda);
84
+ rb_gc_mark(st->identity);
85
+
86
+ for (size_t i = 0; i < st->tree_alloc_size; i++) {
87
+ VALUE value = st->tree[i];
88
+ if (value) {
89
+ rb_gc_mark(value);
90
+ }
91
+ }
92
+ }
93
+
94
+
95
+ /*
96
+ * A configuration struct that tells the Ruby runtime how to deal with a segment_tree_data object.
97
+ *
98
+ * https://docs.ruby-lang.org/en/master/extension_rdoc.html#label-Encapsulate+C+data+into+a+Ruby+object
99
+ */
100
+ static const rb_data_type_t segment_tree_type = {
101
+ .wrap_struct_name = "segment_tree_template",
102
+ { // help for the Ruby garbage collector
103
+ .dmark = segment_tree_mark, // dmark, for marking other Ruby objects.
104
+ .dfree = segment_tree_free, // how to free the memory associated with an object
105
+ .dsize = segment_tree_memsize, // roughly how much space does the object consume?
106
+ },
107
+ .data = NULL, // a data field we could use for something here if we wanted. Ruby ignores it
108
+ .flags = 0 // GC-related flag values.
109
+ };
110
+
111
+ /*
112
+ * End memory management functions.
113
+ ************************************************************/
114
+
115
+
116
+ /************************************************************
117
+ * Wrapping and unwrapping the C struct and other things.
118
+ *
119
+ */
120
+
121
+ /*
122
+ * Unwrap a Ruby-side disjoint union object to get the C struct inside.
123
+ *
124
+ * TODO: consider a macro in a shared header
125
+ */
126
+ static segment_tree_data *unwrapped(VALUE self) {
127
+ segment_tree_data *segment_tree;
128
+ TypedData_Get_Struct((self), segment_tree_data, &segment_tree_type, segment_tree);
129
+ return segment_tree;
130
+ }
131
+
132
+ /*
133
+ * Allocate a segment_tree_data struct and wrap it for the Ruby runtime.
134
+ *
135
+ * This is for CSegmentTreeTemplate.allocate on the Ruby side.
136
+ */
137
+ static VALUE segment_tree_alloc(VALUE klass) {
138
+ // Get one on the heap
139
+ segment_tree_data *segment_tree = create_segment_tree();
140
+ // ...and wrap it into a Ruby object
141
+ return TypedData_Wrap_Struct(klass, &segment_tree_type, segment_tree);
142
+ }
143
+
144
+ /*
145
+ * End wrapping and unwrapping functions.
146
+ ************************************************************/
147
+
148
+ /************************************************************
149
+ * The Segment Tree API on the C side.
150
+ *
151
+ * We wrap these in the Ruby-ready functions below
152
+ */
153
+
154
+ /*
155
+ * Recursively build the internal tree data structure.
156
+ *
157
+ * - tree_idx: the index into the tree array of the node being calculated
158
+ * - [tree_l, tree_r]: the sub-interval of the underlying array data corresponding to the tree node being calculated.
159
+ */
160
+ static void build(segment_tree_data *segment_tree, size_t tree_idx, size_t tree_l, size_t tree_r) {
161
+ VALUE *tree = segment_tree->tree;
162
+
163
+ if (tree_l == tree_r) {
164
+ // Base case: the node corresponds to a subarray of length 1.
165
+ segment_tree->tree[tree_idx] = single_cell_val_at(segment_tree, tree_l);
166
+ } else {
167
+ // Build to two child nodes, and then combine their values for this node.
168
+ size_t mid = midpoint(tree_l, tree_r);
169
+ size_t left = left_child(tree_idx);
170
+ size_t right = right_child(tree_idx);
171
+
172
+ build(segment_tree, left, tree_l, mid);
173
+ build(segment_tree, right, mid + 1, tree_r);
174
+
175
+ VALUE comb_val = combined_val(segment_tree, tree[left], tree[right]);
176
+ segment_tree->tree[tree_idx] = comb_val;
177
+ }
178
+ }
179
+
180
+ /*
181
+ * Set up the internals with the arguments we get from #initialize.
182
+ *
183
+ * - combine: must be callable
184
+ * - single_cell_array_val: must be callable
185
+ * - size: must be a positive integer
186
+ * - identity: we don't care what it is.
187
+ * - maybe we should check at least that it is not 0. But Qnil is fine.
188
+ */
189
+ static void setup(segment_tree_data* seg_tree, VALUE combine, VALUE single_cell_array_val, VALUE size, VALUE identity) {
190
+ VALUE idCall = rb_intern("call");
191
+
192
+ if (!rb_obj_respond_to(combine, idCall, TRUE)) {
193
+ rb_raise(rb_eArgError, "wrong type argument %"PRIsVALUE" (should be callable)", rb_obj_class(combine));
194
+ }
195
+
196
+ if (!rb_obj_respond_to(single_cell_array_val, idCall, TRUE)) {
197
+ rb_raise(rb_eArgError, "wrong type argument %"PRIsVALUE" (should be callable)", rb_obj_class(single_cell_array_val));
198
+ }
199
+
200
+ seg_tree->combine_lambda = combine;
201
+ seg_tree->single_cell_array_val_lambda = single_cell_array_val;
202
+ seg_tree->identity = identity;
203
+ seg_tree->size = checked_nonneg_fixnum(size);
204
+
205
+ if (seg_tree->size == 0) {
206
+ rb_raise(rb_eArgError, "size must be positive.");
207
+ }
208
+
209
+ // Implicit binary tree with n leaves and straightforward left() and right() may use indices up to 4n. But see here for a way to
210
+ // reduce the requirement to 2n: https://cp-algorithms.com/data_structures/segment_tree.html#memory-efficient-implementation
211
+ size_t tree_size = 1 + 4 * seg_tree->size;
212
+ seg_tree->tree = calloc(tree_size, sizeof(VALUE));
213
+ seg_tree->tree_alloc_size = tree_size;
214
+
215
+ build(seg_tree, TREE_ROOT, 0, seg_tree->size - 1);
216
+ }
217
+
218
+
219
+ /*
220
+ * Determine the value for the subarray A(left, right).
221
+ *
222
+ * - tree_idx: the index in the array of the node we are currently visiting
223
+ * - tree_l..tree_r: the subarray handled by the current node.
224
+ * - left..right: the subarray whose value we are currently looking for.
225
+ *
226
+ * As an invariant we have left..right \subset tree_l..tree_r.
227
+ *
228
+ * We start out with
229
+ * - tree_idx = TREE_ROOT
230
+ * - tree_l..tree_r = 0..(size - 1), and
231
+ * - left..right given by the client code's query
232
+ *
233
+ * If [tree_l, tree_r] = [left, right] then the current node gives the desired answer. Otherwise we decend the tree with one or two
234
+ * recursive calls.
235
+ *
236
+ * If left..right is contained the the bottom or top half of tree_l..tree_r we decend to the corresponding child with one recursive
237
+ * call. Otherwise we split left..right at the midpoint of tree_l..tree_r, make two recursive calls, and then combine the results.
238
+ */
239
+ static VALUE determine_val(segment_tree_data* seg_tree, size_t tree_idx, size_t left, size_t right, size_t tree_l, size_t tree_r) {
240
+ // Does the current tree node exactly serve up the interval we're interested in?
241
+ if (left == tree_l && right == tree_r) {
242
+ return seg_tree->tree[tree_idx];
243
+ }
244
+
245
+ // We need to go further down the tree */
246
+ size_t mid = midpoint(tree_l, tree_r);
247
+ if (mid >= right) {
248
+ // Our interval is contained by the left child's interval
249
+ return determine_val(seg_tree, left_child(tree_idx), left, right, tree_l, mid);
250
+ } else if (mid + 1 <= left) {
251
+ // Our interval is contained by the right child's interval
252
+ return determine_val(seg_tree, right_child(tree_idx), left, right, mid + 1, tree_r);
253
+ } else {
254
+ // Our interval is split between the two, so we need to combine the results from the children.
255
+ return rb_funcall(
256
+ seg_tree->combine_lambda, rb_intern("call"), 2,
257
+ determine_val(seg_tree, left_child(tree_idx), left, mid, tree_l, mid),
258
+ determine_val(seg_tree, right_child(tree_idx), mid + 1, right, mid + 1, tree_r)
259
+ );
260
+ }
261
+ }
262
+
263
+ /*
264
+ * Update the structure to reflect the change in the underlying array at index idx.
265
+ *
266
+ * - idx: the index at which the underlying array data has changed.
267
+ * - tree_id: the index in the internal datastructure of the node we are currently visiting.
268
+ * - tree_l..tree_r: the range handled by the current node
269
+ */
270
+ static void update_val_at(segment_tree_data *seg_tree, size_t idx, size_t tree_idx, size_t tree_l, size_t tree_r) {
271
+ if (tree_l == tree_r) {
272
+ // We have found the base case of our update
273
+ if (tree_l != idx) {
274
+ rb_raise(
275
+ eSharedInternalLogicError,
276
+ "tree_l == tree_r == %lu but they do not agree with the idx %lu holding the updated value",
277
+ tree_r, idx
278
+ );
279
+ }
280
+ seg_tree->tree[tree_idx] = single_cell_val_at(seg_tree, tree_l);
281
+ } else {
282
+ // Recursively update the appropriate subtree...
283
+ size_t mid = midpoint(tree_l, tree_r);
284
+ size_t left = left_child(tree_idx);
285
+ size_t right = right_child(tree_idx);
286
+ if (mid >= idx) {
287
+ update_val_at(seg_tree, idx, left, tree_l, mid);
288
+ } else {
289
+ update_val_at(seg_tree, idx, right, mid + 1, tree_r);
290
+ }
291
+ // ...and ourself to incorporate the change
292
+ seg_tree->tree[tree_idx] = combined_val(seg_tree, seg_tree->tree[left], seg_tree->tree[right]);
293
+ }
294
+ }
295
+
296
+ /*
297
+ * End C implementation of the Segment Tree API
298
+ ************************************************************/
299
+
300
+ /**
301
+ * And now the wrappers around the C functionality.
302
+ */
303
+
304
+ /*
305
+ * CSegmentTreeTemplate#c_initialize.
306
+ *
307
+ * (see CSegmentTreeTemplate#initialize).
308
+ */
309
+ static VALUE segment_tree_init(VALUE self, VALUE combine, VALUE single_cell_array_val, VALUE size, VALUE identity) {
310
+ setup(unwrapped(self), combine, single_cell_array_val, size, identity);
311
+ return self;
312
+ }
313
+
314
+ /*
315
+ * (see SegmentTreeTemplate#query_on)
316
+ */
317
+ static VALUE segment_tree_query_on(VALUE self, VALUE left, VALUE right) {
318
+ segment_tree_data* seg_tree = unwrapped(self);
319
+ size_t c_left = checked_nonneg_fixnum(left);
320
+ size_t c_right = checked_nonneg_fixnum(right);
321
+
322
+ if (c_right >= seg_tree->size) {
323
+ rb_raise(eSharedDataError, "Bad query interval %lu..%lu (size = %lu)", c_left, c_right, seg_tree->size);
324
+ }
325
+
326
+ if (left > right) {
327
+ // empty interval.
328
+ return seg_tree->identity;
329
+ }
330
+
331
+ return determine_val(seg_tree, TREE_ROOT, c_left, c_right, 0, seg_tree->size - 1);
332
+ }
333
+
334
+ /*
335
+ * (see SegmentTreeTemplate#update_at)
336
+ */
337
+ static VALUE segment_tree_update_at(VALUE self, VALUE idx) {
338
+ segment_tree_data *seg_tree = unwrapped(self);
339
+ size_t c_idx = checked_nonneg_fixnum(idx);
340
+
341
+ if (c_idx >= seg_tree->size) {
342
+ rb_raise(eSharedDataError, "Cannot update value at index %lu, size = %lu", c_idx, seg_tree->size);
343
+ }
344
+
345
+ update_val_at(seg_tree, c_idx, TREE_ROOT, 0, seg_tree->size - 1);
346
+
347
+ return Qnil;
348
+ }
349
+
350
+ /*
351
+ * A generic Segment Tree template, written in C.
352
+ *
353
+ * (see SegmentTreeTemplate)
354
+ */
355
+ void Init_c_segment_tree_template() {
356
+ VALUE cSegmentTreeTemplate = rb_define_class_under(mDataStructuresRMolinari, "CSegmentTreeTemplate", rb_cObject);
357
+
358
+ rb_define_alloc_func(cSegmentTreeTemplate, segment_tree_alloc);
359
+ rb_define_method(cSegmentTreeTemplate, "c_initialize", segment_tree_init, 4);
360
+ rb_define_method(cSegmentTreeTemplate, "query_on", segment_tree_query_on, 2);
361
+ rb_define_method(cSegmentTreeTemplate, "update_at", segment_tree_update_at, 1);
362
+ }
data/ext/shared.c ADDED
@@ -0,0 +1,32 @@
1
+ #include "shared.h"
2
+
3
+ /*
4
+ * Arithmetic for in-array binary tree
5
+ */
6
+ size_t midpoint(size_t left, size_t right) {
7
+ return (left + right) / 2;
8
+ }
9
+
10
+ size_t left_child(size_t i) {
11
+ return i << 1;
12
+ }
13
+
14
+ size_t right_child(size_t i) {
15
+ return 1 + (i << 1);
16
+ }
17
+
18
+ /*
19
+ * Check that a Ruby value is a non-negative Fixnum and convert it to a C unsigned long
20
+ */
21
+ unsigned long checked_nonneg_fixnum(VALUE val) {
22
+ Check_Type(val, T_FIXNUM);
23
+ long c_val = FIX2LONG(val);
24
+
25
+ if (c_val < 0) {
26
+ rb_raise(eSharedDataError, "Value must be non-negative");
27
+ }
28
+
29
+ return c_val;
30
+ }
31
+
32
+
@@ -0,0 +1,112 @@
1
+ require 'must_be'
2
+
3
+ require_relative 'shared'
4
+ require_relative 'c_segment_tree_template'
5
+
6
+ # The template of Segment Tree, which can be used for various interval-related purposes, like efficiently finding the sum (or min or
7
+ # max) on a arbitrary subarray of a given array.
8
+ #
9
+ # There is an excellent description of the data structure at https://cp-algorithms.com/data_structures/segment_tree.html. The
10
+ # Wikipedia article (https://en.wikipedia.org/wiki/Segment_tree) appears to describe a different data structure which is sometimes
11
+ # called an "interval tree."
12
+ #
13
+ # For more details (and some close-to-metal analysis of run time, especially for large datasets) see
14
+ # https://en.algorithmica.org/hpc/data-structures/segment-trees/. In particular, this shows how to do a bottom-up implementation,
15
+ # which is faster, at least for large datasets and cache-relevant compiled code. These issues don't really apply to code written in
16
+ # Ruby.
17
+ #
18
+ # This is a generic implementation, intended to allow easy configuration for concrete instances. See the parameters to the
19
+ # initializer and the definitions of concrete realisations like MaxValSegmentTree.
20
+ #
21
+ # We do O(n) work to build the internal data structure at initialization. Then we answer queries in O(log n) time.
22
+ class DataStructuresRMolinari::CSegmentTreeTemplate
23
+
24
+ # Construct a concrete instance of a Segment Tree. See details at the links above for the underlying concepts here.
25
+ # @param combine a lambda that takes two values and munges them into a combined value.
26
+ # - For example, if we are calculating sums over subintervals, combine.call(a, b) = a + b, while if we are doing maxima we will
27
+ # return max(a, b).
28
+ # - Things get more complicated when we are calculating, say, the _index_ of the maximal value in a subinterval. Now it is not
29
+ # enough simply to store that index at each tree node, because to combine the indices from two child nodes we need to know
30
+ # both the index of the maximal element in each child node's interval, but also the maximal values themselves, so we know
31
+ # which one "wins" for the parent node. This affects the sort of work we need to do when combining and the value provided by
32
+ # the +single_cell_array_val+ lambda.
33
+ # @param single_cell_array_val a lambda that takes an index i and returns the value we need to store in the #build
34
+ # operation for the subinterval i..i.
35
+ # - This will often simply be the value data[i], but in some cases it will be something else. For example, when we are
36
+ # calculating the index of the maximal value on each subinterval we need [i, data[i]] here.
37
+ # - If +update_at+ is called later, this lambda must close over the underlying data in a way that captures the updated value.
38
+ # @param size the size of the underlying data array, used in certain internal arithmetic.
39
+ # @param identity the value to return when we are querying on an empty interval
40
+ # - for sums, this will be zero; for maxima, this will be -Infinity, etc
41
+ def initialize(combine:, single_cell_array_val:, size:, identity:)
42
+ # having sorted out the keyword arguments, pass them more easily to the C layer.
43
+ c_initialize(combine, single_cell_array_val, size, identity)
44
+ end
45
+ end
46
+
47
+ # A segment tree that for an array A(0...n) answers questions of the form "what is the maximum value in the subinterval A(i..j)?"
48
+ # in O(log n) time.
49
+ #
50
+ # C version
51
+ #
52
+ # TODO: share the definition with (non-C) MasValSegmentTree. The only difference is the class of the underlying segment tree
53
+ # template.
54
+ module DataStructuresRMolinari
55
+ class CMaxValSegmentTree
56
+ extend Forwardable
57
+
58
+ # Tell the tree that the value at idx has changed
59
+ def_delegator :@structure, :update_at
60
+
61
+ # @param data an object that contains values at integer indices based at 0, via +data[i]+.
62
+ # - This will usually be an Array, but it could also be a hash or a proc.
63
+ def initialize(data)
64
+ @structure = CSegmentTreeTemplate.new(
65
+ combine: ->(a, b) { [a, b].max },
66
+ single_cell_array_val: ->(i) { data[i] },
67
+ size: data.size,
68
+ identity: -Shared::INFINITY
69
+ )
70
+ end
71
+
72
+ # The maximum value in A(i..j).
73
+ #
74
+ # The arguments must be integers in 0...(A.size)
75
+ # @return the largest value in A(i..j) or -Infinity if i > j.
76
+ def max_on(i, j)
77
+ @structure.query_on(i, j)
78
+ end
79
+ end
80
+
81
+ # A segment tree that for an array A(0...n) answers questions of the form "what is the index of the maximal value in the
82
+ # subinterval A(i..j)?" in O(log n) time.
83
+ #
84
+ # C version
85
+ class CIndexOfMaxValSegmentTree
86
+ extend Forwardable
87
+
88
+ # Tell the tree that the value at idx has changed
89
+ def_delegator :@structure, :update_at
90
+
91
+ # @param (see MaxValSegmentTree#initialize)
92
+ def initialize(data)
93
+ @structure = CSegmentTreeTemplate.new(
94
+ combine: ->(p1, p2) { p1[1] >= p2[1] ? p1 : p2 },
95
+ single_cell_array_val: ->(i) { [i, data[i]] },
96
+ size: data.size,
97
+ identity: nil
98
+ )
99
+ end
100
+
101
+ # The index of the maximum value in A(i..j)
102
+ #
103
+ # The arguments must be integers in 0...(A.size)
104
+ # @return (Integer, nil) the index of the largest value in A(i..j) or +nil+ if i > j.
105
+ # - If there is more than one entry with that value, return one the indices. There is no guarantee as to which one.
106
+ # - Return +nil+ if i > j
107
+ def index_of_max_val_on(i, j)
108
+ @structure.query_on(i, j)&.first # discard the value part of the pair, which is a bookkeeping
109
+ end
110
+ end
111
+
112
+ end
@@ -17,6 +17,7 @@ require_relative 'shared'
17
17
  #
18
18
  # We do O(n) work to build the internal data structure at initialization. Then we answer queries in O(log n) time.
19
19
  class DataStructuresRMolinari::SegmentTreeTemplate
20
+ include Shared
20
21
  include Shared::BinaryTreeArithmetic
21
22
 
22
23
  # Construct a concrete instance of a Segment Tree. See details at the links above for the underlying concepts here.
@@ -47,27 +48,29 @@ class DataStructuresRMolinari::SegmentTreeTemplate
47
48
  end
48
49
 
49
50
  # The desired value (max, sum, etc.) on the subinterval left..right.
51
+ #
50
52
  # @param left the left end of the subinterval.
51
53
  # @param right the right end (inclusive) of the subinterval.
52
54
  #
55
+ # It must be that left..right is contained in 0...size.
56
+ #
53
57
  # The type of the return value depends on the concrete instance of the segment tree. We return the _identity_ element provided at
54
58
  # construction time if the interval is empty.
55
59
  def query_on(left, right)
56
- raise DataError, "Bad query interval #{left}..#{right}" if left.negative? || right >= @size
60
+ raise DataError, "Bad query interval #{left}..#{right} (size = #{@size})" unless (0...@size).cover?(left..right)
57
61
 
58
62
  return @identity if left > right # empty interval
59
63
 
60
64
  determine_val(root, left, right, 0, @size - 1)
61
65
  end
62
66
 
63
- # Update the value in the underlying array at the given idx
67
+ # Reflect the fact that the underlying array has been updated at the given idx
64
68
  #
65
69
  # @param idx an index in the underlying data array.
66
70
  #
67
71
  # Note that we don't need the updated value itself. We get that by calling the lambda +single_cell_array_val+ supplied at
68
72
  # construction.
69
73
  def update_at(idx)
70
- raise DataError, 'Cannot update an index outside the initial range of the underlying data' unless (0...@size).cover?(idx)
71
74
 
72
75
  update_val_at(idx, root, 0, @size - 1)
73
76
  end
@@ -105,9 +108,9 @@ class DataStructuresRMolinari::SegmentTreeTemplate
105
108
  left = left(tree_idx)
106
109
  right = right(tree_idx)
107
110
  if mid >= idx
108
- update_val_at(idx, left(tree_idx), tree_l, mid)
111
+ update_val_at(idx, left, tree_l, mid)
109
112
  else
110
- update_val_at(idx, right(tree_idx), mid + 1, tree_r)
113
+ update_val_at(idx, right, mid + 1, tree_r)
111
114
  end
112
115
  @tree[tree_idx] = @combine.call(@tree[left], @tree[right])
113
116
  end
@@ -10,9 +10,13 @@ end
10
10
 
11
11
  # These define classes inside module DataStructuresRMolinari
12
12
  require_relative 'data_structures_rmolinari/algorithms'
13
+
13
14
  require_relative 'data_structures_rmolinari/disjoint_union'
14
15
  require_relative 'data_structures_rmolinari/c_disjoint_union' # version as a C extension
16
+
15
17
  require_relative 'data_structures_rmolinari/segment_tree_template'
18
+ require_relative 'data_structures_rmolinari/c_segment_tree_template_impl'
19
+
16
20
  require_relative 'data_structures_rmolinari/heap'
17
21
  require_relative 'data_structures_rmolinari/max_priority_search_tree'
18
22
  require_relative 'data_structures_rmolinari/min_priority_search_tree'
@@ -34,6 +38,8 @@ module DataStructuresRMolinari
34
38
  # @param data an object that contains values at integer indices based at 0, via +data[i]+.
35
39
  # - This will usually be an Array, but it could also be a hash or a proc.
36
40
  def initialize(data)
41
+ data.must_be_a Enumerable
42
+
37
43
  @structure = SegmentTreeTemplate.new(
38
44
  combine: ->(a, b) { [a, b].max },
39
45
  single_cell_array_val: ->(i) { data[i] },
@@ -61,6 +67,8 @@ module DataStructuresRMolinari
61
67
 
62
68
  # @param (see MaxValSegmentTree#initialize)
63
69
  def initialize(data)
70
+ data.must_be_a Enumerable
71
+
64
72
  @structure = SegmentTreeTemplate.new(
65
73
  combine: ->(p1, p2) { p1[1] >= p2[1] ? p1 : p2 },
66
74
  single_cell_array_val: ->(i) { [i, data[i]] },
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: data_structures_rmolinari
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.4.3
4
+ version: 0.4.4
5
5
  platform: ruby
6
6
  authors:
7
7
  - Rory Molinari
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2023-01-27 00:00:00.000000000 Z
11
+ date: 2023-02-02 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: must_be
@@ -79,6 +79,7 @@ email: rorymolinari@gmail.com
79
79
  executables: []
80
80
  extensions:
81
81
  - ext/c_disjoint_union/extconf.rb
82
+ - ext/c_segment_tree_template/extconf.rb
82
83
  extra_rdoc_files: []
83
84
  files:
84
85
  - CHANGELOG.md
@@ -86,8 +87,12 @@ files:
86
87
  - Rakefile
87
88
  - ext/c_disjoint_union/disjoint_union.c
88
89
  - ext/c_disjoint_union/extconf.rb
90
+ - ext/c_segment_tree_template/extconf.rb
91
+ - ext/c_segment_tree_template/segment_tree_template.c
92
+ - ext/shared.c
89
93
  - lib/data_structures_rmolinari.rb
90
94
  - lib/data_structures_rmolinari/algorithms.rb
95
+ - lib/data_structures_rmolinari/c_segment_tree_template_impl.rb
91
96
  - lib/data_structures_rmolinari/disjoint_union.rb
92
97
  - lib/data_structures_rmolinari/heap.rb
93
98
  - lib/data_structures_rmolinari/max_priority_search_tree.rb