data_structures_rmolinari 0.3.0 → 0.4.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +15 -0
- data/lib/data_structures_rmolinari/disjoint_union.rb +29 -13
- data/lib/data_structures_rmolinari/generic_segment_tree.rb +3 -3
- data/lib/data_structures_rmolinari/max_priority_search_tree.rb +50 -99
- data/lib/data_structures_rmolinari.rb +5 -4
- metadata +2 -3
- data/lib/data_structures_rmolinari/minmax_priority_search_tree.rb +0 -668
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 87a44faaaa62f555546867230df704981671491f040f6be29eeed7db7eb22a0a
|
4
|
+
data.tar.gz: 0a0f1f6cf22bdde5d0510a818af9d8a6dbdbf11a6e69ce2e178bf6f336bb3d92
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 990fc38cbc64c20290317bf2858ff6f2813f832d0046f249faea32c7f88f389e8c8c2db892f8288a0747aa9446181864a3e62435e4846a230411b6afa4b75faf
|
7
|
+
data.tar.gz: f1e641b03d30c4726268c1c8da6d6364f635251152230f89aba2b551f0355d37ce843dba8e631c2fbd4a20e87ae94c78cf30b46dc3d472f1a1b55add258de32a
|
data/CHANGELOG.md
CHANGED
@@ -2,6 +2,21 @@
|
|
2
2
|
|
3
3
|
## [Unreleased]
|
4
4
|
|
5
|
+
### Changed
|
6
|
+
|
7
|
+
- MaxPrioritySearchTree
|
8
|
+
- Duplicate y values are now allowed. Ties are broken with a preference for smaller values of x.
|
9
|
+
- Method names have changed
|
10
|
+
- Instead of "highest", "leftmost", "rightmost" we use "largest_y", "smallest_x", "largest_x"
|
11
|
+
- For example, +highest_ne+ is now +largest_y_in_nw+
|
12
|
+
- DisjointUnion
|
13
|
+
- the size argument to initializer is optional. The default value is 0.
|
14
|
+
- elements can be added to the "universe" of known values with +make_set+
|
15
|
+
|
16
|
+
### Removed
|
17
|
+
- MinmaxPrioritySearchTree is no longer available
|
18
|
+
- it was only a partial implementation anyway
|
19
|
+
|
5
20
|
## [0.3.0] 2023-01-06
|
6
21
|
|
7
22
|
### Added
|
@@ -10,34 +10,48 @@
|
|
10
10
|
# See https://en.wikipedia.org/wiki/Disjoint-set_data_structure for a good introduction.
|
11
11
|
#
|
12
12
|
# The code uses several ideas from Tarjan and van Leeuwen for efficiency. We use "union by rank" in +unite+ and path-halving in
|
13
|
-
# +find+. Together, these make the amortized cost
|
13
|
+
# +find+. Together, these make the amortized cost of each opperation effectively constant.
|
14
14
|
#
|
15
|
-
# - Tarjan, Robert E., van Leeuwen, Jan (1984).
|
15
|
+
# - Tarjan, Robert E., van Leeuwen, Jan (1984). _Worst-case analysis of set union algorithms_. Journal of the ACM. 31 (2): 245–281.
|
16
16
|
#
|
17
17
|
# @todo
|
18
18
|
# - allow caller to expand the size of the universe. This operation is called "make set".
|
19
19
|
# - All we need to do is increase the size of @d, set the parent pointers, define the new ranks (zero), and update @size.
|
20
20
|
class DataStructuresRMolinari::DisjointUnion
|
21
|
+
include Shared
|
22
|
+
|
21
23
|
# The number of subsets in the partition.
|
22
24
|
attr_reader :subset_count
|
23
25
|
|
24
|
-
# @param
|
25
|
-
#
|
26
|
-
def initialize(
|
27
|
-
@size = size
|
26
|
+
# @param initial_size the initial size of the universe. The elements 0, 1, ..., initial_size - 1 start out in disjoint singleton
|
27
|
+
# subsets.
|
28
|
+
def initialize(initial_size = 0)
|
28
29
|
# Initialize to
|
29
|
-
@d = (0...
|
30
|
-
@rank = [0] *
|
30
|
+
@d = (0...initial_size).to_a
|
31
|
+
@rank = [0] * initial_size
|
32
|
+
|
33
|
+
@subset_count = initial_size
|
34
|
+
end
|
35
|
+
|
36
|
+
# Add a new subset to the universe containing the element +new_v+
|
37
|
+
# @param new_v the new element, starting in its own singleton subset
|
38
|
+
# - it must be a non-negative integer, not already part of the universe of elements.
|
39
|
+
def make_set(new_v)
|
40
|
+
raise DataError, "Element #{new_v} must be a non-negative integer" unless new_v.is_a?(Integer) && !new_v.negative?
|
41
|
+
raise DataError, "Element #{new_v} is already present" if @d[new_v]
|
31
42
|
|
32
|
-
@
|
43
|
+
@d[new_v] = new_v
|
44
|
+
@rank[new_v] = 0
|
45
|
+
@subset_count += 1
|
33
46
|
end
|
34
47
|
|
35
48
|
# Declare that e and f are equivalent, i.e., in the same subset. If they are already in the same subset this is a no-op.
|
36
49
|
#
|
37
|
-
# Each argument must be
|
50
|
+
# Each argument must be in the universe of elements
|
38
51
|
def unite(e, f)
|
39
52
|
check_value(e)
|
40
53
|
check_value(f)
|
54
|
+
|
41
55
|
raise 'Uniting an element with itself is meaningless' if e == f
|
42
56
|
|
43
57
|
e_root = find(e)
|
@@ -50,9 +64,11 @@ class DataStructuresRMolinari::DisjointUnion
|
|
50
64
|
|
51
65
|
# The canonical representative of the subset containing e. Two elements d and e are in the same subset exactly when find(d) ==
|
52
66
|
# find(e).
|
53
|
-
# @param e must be
|
54
|
-
# @return (Integer) one of
|
67
|
+
# @param e must be in the universe of elements
|
68
|
+
# @return (Integer) one of the universe of elements
|
55
69
|
def find(e)
|
70
|
+
check_value(e)
|
71
|
+
|
56
72
|
# We implement find with "halving" to shrink the length of paths to the root. See Tarjan and van Leeuwin p 252.
|
57
73
|
x = e
|
58
74
|
x = @d[x] = @d[@d[x]] while @d[@d[x]] != @d[x]
|
@@ -60,7 +76,7 @@ class DataStructuresRMolinari::DisjointUnion
|
|
60
76
|
end
|
61
77
|
|
62
78
|
private def check_value(v)
|
63
|
-
raise DataError, "Value
|
79
|
+
raise Shared::DataError, "Value #{v} is not part of the univserse." unless @d[v]
|
64
80
|
end
|
65
81
|
|
66
82
|
private def link(e, f)
|
@@ -1,7 +1,7 @@
|
|
1
1
|
require_relative 'shared'
|
2
2
|
|
3
|
-
#
|
4
|
-
# arbitrary subarray of a given array.
|
3
|
+
# The template of Segment Tree, which can be used for various interval-related purposes, like efficiently finding the sum (or min or
|
4
|
+
# max) on a arbitrary subarray of a given array.
|
5
5
|
#
|
6
6
|
# There is an excellent description of the data structure at https://cp-algorithms.com/data_structures/segment_tree.html. The
|
7
7
|
# Wikipedia article (https://en.wikipedia.org/wiki/Segment_tree) appears to describe a different data structure which is sometimes
|
@@ -16,7 +16,7 @@ require_relative 'shared'
|
|
16
16
|
# initializer and the definitions of concrete realisations like MaxValSegmentTree.
|
17
17
|
#
|
18
18
|
# We do O(n) work to build the internal data structure at initialization. Then we answer queries in O(log n) time.
|
19
|
-
class DataStructuresRMolinari::
|
19
|
+
class DataStructuresRMolinari::SegmentTreeTemplate
|
20
20
|
include Shared::BinaryTreeArithmetic
|
21
21
|
|
22
22
|
# Construct a concrete instance of a Segment Tree. See details at the links above for the underlying concepts here.
|
@@ -1,3 +1,4 @@
|
|
1
|
+
require 'must_be'
|
1
2
|
require 'set'
|
2
3
|
require_relative 'shared'
|
3
4
|
|
@@ -9,18 +10,18 @@ require_relative 'shared'
|
|
9
10
|
# operations. It is their approach that we have implemented.
|
10
11
|
#
|
11
12
|
# The PST structure is an implicit, balanced binary tree with the following properties:
|
12
|
-
# * The tree is a _max-heap_ in the y coordinate. That is, the point at each node has a y-value
|
13
|
+
# * The tree is a _max-heap_ in the y coordinate. That is, the point at each node has a y-value no greater than its parent.
|
13
14
|
# * For each node p, the x-values of all the nodes in the left subtree of p are less than the x-values of all the nodes in the right
|
14
15
|
# subtree of p. Note that this says nothing about the x-value at the node p itself. The tree is thus _almost_ a binary search tree
|
15
16
|
# in the x coordinate.
|
16
17
|
#
|
17
18
|
# Given a set of n points, we can answer the following questions quickly:
|
18
19
|
#
|
19
|
-
# - +
|
20
|
-
# - +
|
21
|
-
# - +
|
22
|
-
# - +
|
23
|
-
# - +
|
20
|
+
# - +smallest_x_in_ne+: for x0 and y0, what is the leftmost point (x, y) in P satisfying x >= x0 and y >= y0?
|
21
|
+
# - +largest_x_in_nw+: for x0 and y0, what is the rightmost point (x, y) in P satisfying x <= x0 and y >= y0?
|
22
|
+
# - +largest_y_in_ne+: for x0 and y0, what is the highest point (x, y) in P satisfying x >= x0 and y >= y0?
|
23
|
+
# - +largest_y_in_nw+: for x0 and y0, what is the highest point (x, y) in P satisfying x <= x0 and y >= y0?
|
24
|
+
# - +largest_y_in_3_sided+: for x0, x1, and y0, what is the highest point (x, y) in P satisfying x >= x0, x <= x1 and y >= y0?
|
24
25
|
# - +enumerate_3_sided+: for x0, x1, and y0, enumerate all points in P satisfying x >= x0, x <= x1 and y >= y0.
|
25
26
|
#
|
26
27
|
# (Here, "leftmost/rightmost" means "minimal/maximal x", and "highest" means "maximal y".)
|
@@ -29,8 +30,8 @@ require_relative 'shared'
|
|
29
30
|
#
|
30
31
|
# The final operation (enumerate) takes O(m + log n) time, where m is the number of points that are enumerated.
|
31
32
|
#
|
32
|
-
# In the current implementation no two points can share an x-value
|
33
|
-
#
|
33
|
+
# In the current implementation no two points can share an x-value. This (rather severe) restriction can be relaxed with some more
|
34
|
+
# complicated code, but it hasn't been written yet. See issue #9.
|
34
35
|
#
|
35
36
|
#
|
36
37
|
# There is a related data structure called the Min-max priority search tree so we have called this a "Max priority search tree", or
|
@@ -49,7 +50,7 @@ class DataStructuresRMolinari::MaxPrioritySearchTree
|
|
49
50
|
# @param data [Array] the set P of points presented as an array. The tree is built in the array in-place without cloning.
|
50
51
|
# - Each element of the array must respond to +#x+ and +#y+.
|
51
52
|
# - This is not checked explicitly but a missing method exception will be thrown when we try to call one of them.
|
52
|
-
# - The +x+ values must be distinct
|
53
|
+
# - The +x+ values must be distinct. We raise a +Shared::DataError+ if this isn't the case.
|
53
54
|
# - This is a restriction that simplifies some of the algorithm code. It can be removed as the cost of some extra work. Issue
|
54
55
|
# #9.
|
55
56
|
#
|
@@ -60,9 +61,8 @@ class DataStructuresRMolinari::MaxPrioritySearchTree
|
|
60
61
|
@size = @data.size
|
61
62
|
|
62
63
|
construct_pst
|
63
|
-
return unless verify
|
64
64
|
|
65
|
-
verify_properties
|
65
|
+
verify_properties if verify
|
66
66
|
end
|
67
67
|
|
68
68
|
########################################
|
@@ -74,11 +74,11 @@ class DataStructuresRMolinari::MaxPrioritySearchTree
|
|
74
74
|
# structure. Define p* as
|
75
75
|
#
|
76
76
|
# - (infty, -infty) if Q \intersect P is empty and
|
77
|
-
# - the highest (max-
|
77
|
+
# - the highest (max-y) point in Q \intersect P otherwise, breaking ties by preferring smaller values of x
|
78
78
|
#
|
79
79
|
# This method returns p* in O(log n) time and O(1) extra space.
|
80
|
-
def
|
81
|
-
|
80
|
+
def largest_y_in_ne(x0, y0)
|
81
|
+
largest_y_in_quadrant(x0, y0, :ne)
|
82
82
|
end
|
83
83
|
|
84
84
|
# Return the highest point in P to the "northwest" of (x0, y0).
|
@@ -87,17 +87,17 @@ class DataStructuresRMolinari::MaxPrioritySearchTree
|
|
87
87
|
# structure. Define p* as
|
88
88
|
#
|
89
89
|
# - (-infty, -infty) if Q \intersect P is empty and
|
90
|
-
# - the highest (max-y) point in Q \intersect P otherwise
|
90
|
+
# - the highest (max-y) point in Q \intersect P otherwise, breaking ties by preferring smaller values of x
|
91
91
|
#
|
92
92
|
# This method returns p* in O(log n) time and O(1) extra space.
|
93
|
-
def
|
94
|
-
|
93
|
+
def largest_y_in_nw(x0, y0)
|
94
|
+
largest_y_in_quadrant(x0, y0, :nw)
|
95
95
|
end
|
96
96
|
|
97
|
-
# The basic algorithm is from De et al. section 3.1. We have generalaized it slightly to allow it to calculate both
|
98
|
-
#
|
97
|
+
# The basic algorithm is from De et al. section 3.1. We have generalaized it slightly to allow it to calculate both largest_y_in_ne and
|
98
|
+
# largest_y_in_nw
|
99
99
|
#
|
100
|
-
# Note that
|
100
|
+
# Note that largest_y_in_ne(x0, y0) = largest_y_in_3_sided(x0, infinty, y0) so we don't really need this. But it's a bit faster than the
|
101
101
|
# general case and is a simple algorithm that introduces a typical way that an algorithm interacts with the data structure.
|
102
102
|
#
|
103
103
|
# From the paper:
|
@@ -108,7 +108,7 @@ class DataStructuresRMolinari::MaxPrioritySearchTree
|
|
108
108
|
# - If Q intersect P is empty then p* = best
|
109
109
|
#
|
110
110
|
# Here, P is the set of points in our data structure and T_p is the subtree rooted at p
|
111
|
-
private def
|
111
|
+
private def largest_y_in_quadrant(x0, y0, quadrant)
|
112
112
|
quadrant.must_be_in [:ne, :nw]
|
113
113
|
|
114
114
|
p = root
|
@@ -135,10 +135,10 @@ class DataStructuresRMolinari::MaxPrioritySearchTree
|
|
135
135
|
#
|
136
136
|
# takes as input a point t and does the following: if t \in Q and y(t) > y(best) then it assignes best = t
|
137
137
|
#
|
138
|
-
#
|
138
|
+
# We break ties by preferring points with smaller x values
|
139
139
|
update_highest = lambda do |node|
|
140
140
|
t = @data[node]
|
141
|
-
if in_q.call(t) && t.y > best.y
|
141
|
+
if in_q.call(t) && (t.y > best.y || (t.y == best.y && t.x < best.x))
|
142
142
|
best = t
|
143
143
|
end
|
144
144
|
end
|
@@ -194,7 +194,7 @@ class DataStructuresRMolinari::MaxPrioritySearchTree
|
|
194
194
|
# - the leftmost (min-x) point in Q \intersect P otherwise.
|
195
195
|
#
|
196
196
|
# This method returns p* in O(log n) time and O(1) extra space.
|
197
|
-
def
|
197
|
+
def smallest_x_in_ne(x0, y0)
|
198
198
|
extremal_in_x_dimension(x0, y0, :ne)
|
199
199
|
end
|
200
200
|
|
@@ -207,14 +207,14 @@ class DataStructuresRMolinari::MaxPrioritySearchTree
|
|
207
207
|
# - the leftmost (min-x) point in Q \intersect P otherwise.
|
208
208
|
#
|
209
209
|
# This method returns p* in O(log n) time and O(1) extra space.
|
210
|
-
def
|
210
|
+
def largest_x_in_nw(x0, y0)
|
211
211
|
extremal_in_x_dimension(x0, y0, :nw)
|
212
212
|
end
|
213
213
|
|
214
|
-
# A genericized version of the paper's
|
214
|
+
# A genericized version of the paper's smallest_x_in_ne that can calculate either smallest_x_in_ne or largest_x_in_nw as specifies via a
|
215
215
|
# parameter.
|
216
216
|
#
|
217
|
-
# Quadrant is either :ne (which gives
|
217
|
+
# Quadrant is either :ne (which gives smallest_x_in_ne) or :nw (which gives largest_x_in_nw).
|
218
218
|
#
|
219
219
|
# From De et al:
|
220
220
|
#
|
@@ -245,7 +245,7 @@ class DataStructuresRMolinari::MaxPrioritySearchTree
|
|
245
245
|
# takes as input a point t and does the following: if t \in Q and x(t) < x(best) then it assignes best = t
|
246
246
|
#
|
247
247
|
# Note that the paper identifies a node in the tree with its value. We need to grab the correct node.
|
248
|
-
|
248
|
+
update_best = lambda do |node|
|
249
249
|
t = @data[node]
|
250
250
|
if in_q.call(t) && sign * t.x < sign * best.x
|
251
251
|
best = t
|
@@ -261,13 +261,13 @@ class DataStructuresRMolinari::MaxPrioritySearchTree
|
|
261
261
|
#
|
262
262
|
# - If x0 <= x(c1) then all subtrees have large enough x values and we look for the leftmost node in c with a large enough y
|
263
263
|
# value. Both p and q are sent into that subtree.
|
264
|
-
# - If x0 >= x(ck) the the rightmost subtree is our only hope
|
264
|
+
# - If x0 >= x(ck) the the rightmost subtree is our only hope
|
265
265
|
# - Otherwise, x(c1) < x0 < x(ck) and we let i be least so that x(ci) <= x0 < x(c(i+1)). Then q becomes the lefmost cj in c not
|
266
266
|
# to the left of ci such that y(cj) >= y0, if any. p becomes ci if y(ci) >= y0 and q otherwise. If there is no such j, we put
|
267
267
|
# q = p. This may leave both of p, q undefined which means there is no useful way forward and we return nils to signal this to
|
268
268
|
# calling code.
|
269
269
|
#
|
270
|
-
# The same logic applies to
|
270
|
+
# The same logic applies to largest_x_in_nw, though everything is "backwards"
|
271
271
|
# - membership of Q depends on having a small-enough value of x, rather than a large-enough one
|
272
272
|
# - among the ci, values towards the end of the array tend not to be in Q while values towards the start of the array tend to be
|
273
273
|
# in Q
|
@@ -302,14 +302,14 @@ class DataStructuresRMolinari::MaxPrioritySearchTree
|
|
302
302
|
new_p ||= new_q # if nodes[i] is no good, send p along with q
|
303
303
|
new_q ||= new_p # but if there is no worthwhile value for q we should send it along with p
|
304
304
|
|
305
|
-
return [new_q, new_p] if quadrant == :nw # swap for the
|
305
|
+
return [new_q, new_p] if quadrant == :nw # swap for the largest_x_in_nw case.
|
306
306
|
|
307
307
|
[new_p, new_q]
|
308
308
|
end
|
309
309
|
|
310
310
|
until leaf?(p)
|
311
|
-
|
312
|
-
|
311
|
+
update_best.call(p)
|
312
|
+
update_best.call(q)
|
313
313
|
|
314
314
|
if p == q
|
315
315
|
if one_child?(p)
|
@@ -324,7 +324,7 @@ class DataStructuresRMolinari::MaxPrioritySearchTree
|
|
324
324
|
q = p # p itself is just one layer above the leaves, or is itself a leaf
|
325
325
|
elsif one_child?(q)
|
326
326
|
# This generic approach is not as fast as the bespoke checks described in the paper. But it is easier to maintain the code
|
327
|
-
# this way and allows easy implementation of
|
327
|
+
# this way and allows easy implementation of largest_x_in_nw
|
328
328
|
p, q = determine_next_nodes.call(left(p), right(p), left(q))
|
329
329
|
else
|
330
330
|
p, q = determine_next_nodes.call(left(p), right(p), left(q), right(q))
|
@@ -332,8 +332,8 @@ class DataStructuresRMolinari::MaxPrioritySearchTree
|
|
332
332
|
break unless p # we've run out of useful nodes
|
333
333
|
end
|
334
334
|
end
|
335
|
-
|
336
|
-
|
335
|
+
update_best.call(p) if p
|
336
|
+
update_best.call(q) if q
|
337
337
|
best
|
338
338
|
end
|
339
339
|
|
@@ -346,10 +346,10 @@ class DataStructuresRMolinari::MaxPrioritySearchTree
|
|
346
346
|
# MaxPST. (Note that Q is empty if x1 < x0.) Define p* as
|
347
347
|
#
|
348
348
|
# - (infty, -infty) if Q \intersect P is empty and
|
349
|
-
# - the highest (max-
|
349
|
+
# - the highest (max-y) point in Q \intersect P otherwise, breaking ties by preferring smaller x values.
|
350
350
|
#
|
351
351
|
# This method returns p* in O(log n) time and O(1) extra space.
|
352
|
-
def
|
352
|
+
def largest_y_in_3_sided(x0, x1, y0)
|
353
353
|
# From the paper:
|
354
354
|
#
|
355
355
|
# The three real numbers x0, x1, and y0 define the three-sided range Q = [x0,x1] X [y0,∞). If Q \intersect P̸ is not \empty,
|
@@ -389,7 +389,7 @@ class DataStructuresRMolinari::MaxPrioritySearchTree
|
|
389
389
|
# Note that the paper identifies a node in the tree with its value. We need to grab the correct node.
|
390
390
|
update_highest = lambda do |node|
|
391
391
|
t = @data[node]
|
392
|
-
if in_q.call(t) && t.y > best.y
|
392
|
+
if in_q.call(t) && (t.y > best.y || (t.y == best.y && t.x < best.x))
|
393
393
|
best = t
|
394
394
|
end
|
395
395
|
end
|
@@ -570,7 +570,7 @@ class DataStructuresRMolinari::MaxPrioritySearchTree
|
|
570
570
|
# My high-level understanding of the algorithm
|
571
571
|
# --------------------------------------------
|
572
572
|
#
|
573
|
-
# We need to find all elements of Q \intersect P, so it isn't enough, as it was in
|
573
|
+
# We need to find all elements of Q \intersect P, so it isn't enough, as it was in largest_y_in_3_sided simply to keep track of p and
|
574
574
|
# q. We need to track four nodes, p, p', q', and q which are (with a little handwaving) respectively
|
575
575
|
#
|
576
576
|
# - the rightmost node to the left of Q' = [x0, x1] X [-infinity, infinity],
|
@@ -692,8 +692,6 @@ class DataStructuresRMolinari::MaxPrioritySearchTree
|
|
692
692
|
# The four key helpers described in the paper
|
693
693
|
|
694
694
|
# Handle the next step of the subtree at p
|
695
|
-
#
|
696
|
-
# I need to go through this with paper, pencil, and some diagrams.
|
697
695
|
enumerate_left = lambda do
|
698
696
|
if leaf?(p)
|
699
697
|
left = false
|
@@ -999,13 +997,14 @@ class DataStructuresRMolinari::MaxPrioritySearchTree
|
|
999
997
|
|
1000
998
|
private def construct_pst
|
1001
999
|
raise DataError, 'Duplicate x values are not supported' if contains_duplicates?(@data, by: :x)
|
1002
|
-
raise DataError, 'Duplicate y values are not supported' if contains_duplicates?(@data, by: :y)
|
1003
1000
|
|
1004
|
-
# We follow the algorithm in the paper by De, Maheshwari et al.
|
1001
|
+
# We follow the algorithm in the paper by De, Maheshwari et al, which takes O(n log^2 n) time. Their follow-up paper that
|
1002
|
+
# defines the Min-max PST, describes how to do the construction in O(n log n) time, but it is more complex and probably not
|
1003
|
+
# worth the trouble of both a bespoke heapsort the special sorting algorithm of Katajainen and Pasanen.
|
1005
1004
|
|
1006
|
-
# Since we are building an implicit binary tree, things are simpler if the array is 1-based. This
|
1007
|
-
#
|
1008
|
-
# construction.
|
1005
|
+
# Since we are building an implicit binary tree, things are simpler if the array is 1-based. This requires a malloc (perhaps)
|
1006
|
+
# and memcpy (for sure), which isn't great, but it's in the C layer so cheap compared to the O(n log^2 n) work we need to do for
|
1007
|
+
# construction.
|
1009
1008
|
@data.unshift nil
|
1010
1009
|
|
1011
1010
|
h = Math.log2(@size).floor
|
@@ -1052,63 +1051,14 @@ class DataStructuresRMolinari::MaxPrioritySearchTree
|
|
1052
1051
|
end
|
1053
1052
|
end
|
1054
1053
|
|
1055
|
-
########################################
|
1056
|
-
# Tree arithmetic
|
1057
|
-
|
1058
|
-
# # First element and root of the tree structure
|
1059
|
-
# private def root
|
1060
|
-
# 1
|
1061
|
-
# end
|
1062
|
-
|
1063
|
-
# # Indexing is from 1
|
1064
|
-
# private def parent(i)
|
1065
|
-
# i >> 1
|
1066
|
-
# end
|
1067
|
-
|
1068
|
-
# private def left(i)
|
1069
|
-
# i << 1
|
1070
|
-
# end
|
1071
|
-
|
1072
|
-
# private def right(i)
|
1073
|
-
# 1 + (i << 1)
|
1074
|
-
# end
|
1075
|
-
|
1076
|
-
# private def level(i)
|
1077
|
-
# l = 0
|
1078
|
-
# while i > root
|
1079
|
-
# i >>= 1
|
1080
|
-
# l += 1
|
1081
|
-
# end
|
1082
|
-
# l
|
1083
|
-
# end
|
1084
|
-
|
1085
|
-
# # i has no children
|
1086
|
-
# private def leaf?(i)
|
1087
|
-
# i > @last_non_leaf
|
1088
|
-
# end
|
1089
|
-
|
1090
|
-
# # i has exactly one child (the left)
|
1091
|
-
# private def one_child?(i)
|
1092
|
-
# i == @parent_of_one_child
|
1093
|
-
# end
|
1094
|
-
|
1095
|
-
# # i has two children
|
1096
|
-
# private def two_children?(i)
|
1097
|
-
# i <= @last_parent_of_two_children
|
1098
|
-
# end
|
1099
|
-
|
1100
|
-
# # i is the left child of its parent.
|
1101
|
-
# private def left_child?(i)
|
1102
|
-
# (i & 1).zero?
|
1103
|
-
# end
|
1104
|
-
|
1105
1054
|
private def swap(index1, index2)
|
1106
1055
|
return if index1 == index2
|
1107
1056
|
|
1108
1057
|
@data[index1], @data[index2] = @data[index2], @data[index1]
|
1109
1058
|
end
|
1110
1059
|
|
1111
|
-
# The index in @data[l..r] having the largest value for y
|
1060
|
+
# The index in @data[l..r] having the largest value for y, breaking ties with the smaller x value. Since we are already sorted by
|
1061
|
+
# x we don't actually need to check this.
|
1112
1062
|
private def index_with_largest_y_in(l, r)
|
1113
1063
|
return nil if r < l
|
1114
1064
|
|
@@ -1134,7 +1084,8 @@ class DataStructuresRMolinari::MaxPrioritySearchTree
|
|
1134
1084
|
private def verify_properties
|
1135
1085
|
# It's a max-heap in y
|
1136
1086
|
(2..@size).each do |node|
|
1137
|
-
|
1087
|
+
byebug unless @data[node].y <= @data[parent(node)].y
|
1088
|
+
raise InternalLogicError, "Heap property violated at child #{node}" unless @data[node].y <= @data[parent(node)].y
|
1138
1089
|
end
|
1139
1090
|
|
1140
1091
|
# Left subtree has x values less than all of the right subtree
|
@@ -1,3 +1,5 @@
|
|
1
|
+
require 'forwardable'
|
2
|
+
|
1
3
|
require_relative 'data_structures_rmolinari/shared'
|
2
4
|
|
3
5
|
module DataStructuresRMolinari
|
@@ -10,14 +12,13 @@ require_relative 'data_structures_rmolinari/disjoint_union'
|
|
10
12
|
require_relative 'data_structures_rmolinari/generic_segment_tree'
|
11
13
|
require_relative 'data_structures_rmolinari/heap'
|
12
14
|
require_relative 'data_structures_rmolinari/max_priority_search_tree'
|
13
|
-
require_relative 'data_structures_rmolinari/minmax_priority_search_tree'
|
14
15
|
|
15
16
|
# A namespace to hold the provided classes. We want to avoid polluting the global namespace with names like "Heap"
|
16
17
|
module DataStructuresRMolinari
|
17
18
|
########################################
|
18
19
|
# Concrete instances of Segment Tree
|
19
20
|
#
|
20
|
-
# @todo consider moving these into generic_segment_tree.rb
|
21
|
+
# @todo consider moving these into generic_segment_tree.rb and renaming that file
|
21
22
|
|
22
23
|
# A segment tree that for an array A(0...n) answers questions of the form "what is the maximum value in the subinterval A(i..j)?"
|
23
24
|
# in O(log n) time.
|
@@ -30,7 +31,7 @@ module DataStructuresRMolinari
|
|
30
31
|
# @param data an object that contains values at integer indices based at 0, via +data[i]+.
|
31
32
|
# - This will usually be an Array, but it could also be a hash or a proc.
|
32
33
|
def initialize(data)
|
33
|
-
@structure =
|
34
|
+
@structure = SegmentTreeTemplate.new(
|
34
35
|
combine: ->(a, b) { [a, b].max },
|
35
36
|
single_cell_array_val: ->(i) { data[i] },
|
36
37
|
size: data.size,
|
@@ -57,7 +58,7 @@ module DataStructuresRMolinari
|
|
57
58
|
|
58
59
|
# @param (see MaxValSegmentTree#initialize)
|
59
60
|
def initialize(data)
|
60
|
-
@structure =
|
61
|
+
@structure = SegmentTreeTemplate.new(
|
61
62
|
combine: ->(p1, p2) { p1[1] >= p2[1] ? p1 : p2 },
|
62
63
|
single_cell_array_val: ->(i) { [i, data[i]] },
|
63
64
|
size: data.size,
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: data_structures_rmolinari
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.4.0
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Rory Molinari
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-01-
|
11
|
+
date: 2023-01-12 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: must_be
|
@@ -86,7 +86,6 @@ files:
|
|
86
86
|
- lib/data_structures_rmolinari/generic_segment_tree.rb
|
87
87
|
- lib/data_structures_rmolinari/heap.rb
|
88
88
|
- lib/data_structures_rmolinari/max_priority_search_tree.rb
|
89
|
-
- lib/data_structures_rmolinari/minmax_priority_search_tree.rb
|
90
89
|
- lib/data_structures_rmolinari/shared.rb
|
91
90
|
homepage: https://github.com/rmolinari/data_structures
|
92
91
|
licenses:
|
@@ -1,668 +0,0 @@
|
|
1
|
-
require 'must_be'
|
2
|
-
|
3
|
-
require_relative 'shared'
|
4
|
-
|
5
|
-
# THIS CLASS IS INCOMPLETE AND NOT USABLE
|
6
|
-
#
|
7
|
-
# A priority search tree (PST) stores points in two dimensions (x,y) and can efficiently answer certain questions about the set of
|
8
|
-
# point.
|
9
|
-
#
|
10
|
-
# The structure was introduced by McCreight [1].
|
11
|
-
#
|
12
|
-
# See more: https://en.wikipedia.org/wiki/Priority_search_tree
|
13
|
-
#
|
14
|
-
# It is possible to build such a tree in place, given an array of pairs. See [2]. In a follow-up paper, [3], the authors show how to
|
15
|
-
# construct a more flexible data structure,
|
16
|
-
#
|
17
|
-
# "[T]he Min-Max Priority Search tree for a set P of n points in R^2. It is a binary tree T with the following properties:
|
18
|
-
#
|
19
|
-
# * For each internal node u, all points in the left subtree of u have an x-coordinate which is less than the x-coordinate of any
|
20
|
-
# point in the right subtree of u.
|
21
|
-
# * The y-coordinate values of the nodes on even (resp. odd) levels are smaller (resp. greater) than the y-coordinate values of
|
22
|
-
# their descendants (if any), where the root is at level zero.
|
23
|
-
#
|
24
|
-
# "The first property implies that T is a binary search three on the x-coordinates of the points in P, excepts that there is no
|
25
|
-
# relation between the x-coordinates of the points stored at u and any of its children. The second property implies that T is a
|
26
|
-
# min-max heap on the y-coordinates of the points in P."
|
27
|
-
#
|
28
|
-
# I started implementing the in-place PST. Then, finding the follow-up paper [3], decided to do that one instead, as the paper says
|
29
|
-
# it is more flexible. The point is to learn a new data structure and its associated algorithms.
|
30
|
-
#
|
31
|
-
# The algorithms are rather bewildering. Highest3SidedUp is complicated, and only two of the functions CheckLeft, CheckLeftIn,
|
32
|
-
# CheckRight, CheckRightIn are given; the other two are "symmetric". But it's not really clear what the first are actually doing, so
|
33
|
-
# it's hard to know what the others actually do.
|
34
|
-
#
|
35
|
-
# The implementation is incomplete. The pseduo-code in the paper is buggy (see the code below), which makes progress difficult.
|
36
|
-
#
|
37
|
-
# [1] E. McCreight, _Priority Search Trees_, SIAM J. Computing, v14, no 3, May 1985, pp 257-276.
|
38
|
-
# [2] De, Maheshwari, Nandy, Smid, _An in-place priority search tree_, 23rd Annual Canadian Conference on Computational Geometry.
|
39
|
-
# [3] De, Maheshwari, Nandy, Smid, _An in-place min-max priority search tree_, Computational Geometry, v46 (2013), pp 310-327.
|
40
|
-
# [4] Atkinson, Sack, Santoro, Strothotte, _Min-max heaps and generalized priority queues_, Commun. ACM 29 (10) (1986), pp 996-1000.
|
41
|
-
class DataStructuresRMolinari::MinmaxPrioritySearchTree
|
42
|
-
include Shared
|
43
|
-
|
44
|
-
# The array of pairs is turned into a minmax PST in-place without cloning. So clone before passing it in, if you care.
|
45
|
-
#
|
46
|
-
# Each element must respond to #x and #y. Use Point (above) if you like.
|
47
|
-
def initialize(data, verify: false)
|
48
|
-
@data = data
|
49
|
-
@size = @data.size
|
50
|
-
|
51
|
-
construct_pst
|
52
|
-
return unless verify
|
53
|
-
|
54
|
-
# puts "Validating tree structure..."
|
55
|
-
verify_properties
|
56
|
-
end
|
57
|
-
|
58
|
-
# Let Q = [x0, infty) X [y0, infty) be the northeast "quadrant" defined by the point (x0, y0) and let P be the points in this data
|
59
|
-
# structure. Define p* as
|
60
|
-
#
|
61
|
-
# - (infty, infty) if Q \intersect P is empty and
|
62
|
-
# - the leftmost (i.e., min-x) point in Q \intersect P otherwise
|
63
|
-
#
|
64
|
-
# This method returns p*.
|
65
|
-
#
|
66
|
-
# From De et al:
|
67
|
-
#
|
68
|
-
# [t]he variables best, p, and q satisfy the folling invariant:
|
69
|
-
#
|
70
|
-
# - if Q \intersect P is nonempty then p* \in {best} \union T(p) \union T(q)
|
71
|
-
# - if Q \intersect P is empty then p* = best
|
72
|
-
# - p and q are at the same level of T and x(p) <= x(q)
|
73
|
-
#
|
74
|
-
# Here T(x) is the subtree rooted at x
|
75
|
-
def leftmost_ne(x0, y0)
|
76
|
-
best = Point.new(INFINITY, INFINITY)
|
77
|
-
p = q = root
|
78
|
-
|
79
|
-
in_q = ->(pair) { pair.x >= x0 && pair.y >= y0 }
|
80
|
-
|
81
|
-
# From the paper:
|
82
|
-
#
|
83
|
-
# takes as input a point t \in P and updates best as follows: if t \in Q and x(t) < x(best) then it assignes best = t
|
84
|
-
#
|
85
|
-
# Note that the paper identifies a node in the tree with its value. We need to grab the correct node.
|
86
|
-
update_leftmost = lambda do |node|
|
87
|
-
t = val_at(node)
|
88
|
-
if in_q.call(t) && t.x < best.x
|
89
|
-
best = t
|
90
|
-
end
|
91
|
-
end
|
92
|
-
|
93
|
-
# Generalize the c1,...,c4 idea from the paper in line with the BUG 2 IN PAPER notes, below.
|
94
|
-
#
|
95
|
-
# Given: 0 or more nodes n1, ..., nk in the tree. All are at the same level, which is a "max level" in our MinmaxPST, such that
|
96
|
-
# x(n1) <= x(n2) <= ... <= x(nk). (Note: it is expected that the nj are either children or grandchildren of p and q, though we
|
97
|
-
# don't check that.)
|
98
|
-
#
|
99
|
-
# If k = 0 return nil. Otherwise...
|
100
|
-
#
|
101
|
-
# We return two values p_goal, q_goal (possibly equal) from among the nj such that
|
102
|
-
#
|
103
|
-
# - p_goal is not to the right of q_goal in the tree and so, in particular x(p_goal) <= x(q_goal)
|
104
|
-
# - if and when the auction reaches p = p_goal and q = q_goal the algorithm invariant will be satisfied.
|
105
|
-
#
|
106
|
-
# As a special case, we return nil if we detect that none of the subtrees T(nj) contain any points in Q. This is a sign to
|
107
|
-
# terminate the algorithm.
|
108
|
-
#
|
109
|
-
# See the notes at "BUG 2 IN PAPER" below for more details about what is going on.
|
110
|
-
determine_goal_nodes = lambda do |nodes|
|
111
|
-
node_count = nodes.size
|
112
|
-
return nil if node_count.zero?
|
113
|
-
|
114
|
-
if val_at(nodes.last).x <= x0
|
115
|
-
# Only the rightmost subtree can possibly have anything Q, assuming that all the x-values are distinct.
|
116
|
-
return [nodes.last, nodes.last]
|
117
|
-
end
|
118
|
-
|
119
|
-
if val_at(nodes.first).x > x0
|
120
|
-
# All subtrees have x-values large enough to provide elements of Q. Since we are at a max-level the y-values help us work
|
121
|
-
# out which subtree to focus on.
|
122
|
-
leftmost = nodes.find { |node| val_at(node).y >= y0 }
|
123
|
-
|
124
|
-
return nil unless leftmost # nothing left to find
|
125
|
-
|
126
|
-
# Otherwise we explore the leftmost subtree. Its root is in Q and can't be beaten by anything to its right.
|
127
|
-
return [leftmost, leftmost]
|
128
|
-
end
|
129
|
-
|
130
|
-
values = nodes.map { |n| val_at(n) }
|
131
|
-
|
132
|
-
# Otherwise x(n1) <= x0 < x(nk). Thus i is well-defined.
|
133
|
-
i = (0...node_count).select { |j| values[j].x <= x0 && x0 < values[j + 1].x }.min
|
134
|
-
|
135
|
-
# these nodes all have large-enough x-values and so this finds the ones in the set Q.
|
136
|
-
new_q = nodes[(i + 1)..].select { |node| val_at(node).y >= y0 }.min # could be nil
|
137
|
-
new_p = nodes[i] if values[i].y >= y0 # The leftmost subtree is worth exploring if the y-value is big enough. Otherwise not
|
138
|
-
new_p ||= new_q # if nodes[i] is no good we send p along with q
|
139
|
-
new_q ||= new_p # but if there was no worthwhile value for q we should send it along with p
|
140
|
-
|
141
|
-
return nil unless new_p
|
142
|
-
|
143
|
-
[new_p, new_q]
|
144
|
-
end
|
145
|
-
|
146
|
-
until leaf?(p)
|
147
|
-
level = Math.log2(p).floor # TODO: don't calculate log every time!
|
148
|
-
|
149
|
-
update_leftmost.call(p)
|
150
|
-
update_leftmost.call(q)
|
151
|
-
|
152
|
-
if p == q
|
153
|
-
if one_child?(p)
|
154
|
-
p = q = left(p)
|
155
|
-
else
|
156
|
-
q = right(p)
|
157
|
-
p = left(p)
|
158
|
-
end
|
159
|
-
else
|
160
|
-
# p != q
|
161
|
-
if leaf?(q)
|
162
|
-
q = p # p itself is just one layer above the leaves, or is itself a leaf
|
163
|
-
elsif one_child?(q)
|
164
|
-
# Note that p has two children
|
165
|
-
if val_at(left(q)).x < x0
|
166
|
-
# x-values below p are too small
|
167
|
-
p = q = left(q)
|
168
|
-
elsif val_at(right(p)).x <= x0
|
169
|
-
# x-values in T(right(p)) are too small. DISTINCT-X
|
170
|
-
p = right(p)
|
171
|
-
q = left(q)
|
172
|
-
else
|
173
|
-
# BUG 1 IN PAPER.
|
174
|
-
#
|
175
|
-
# So, x(q_l) >= x0 and x(p_r) > x0. But how can we be sure that the child of q isn't the winner?. Should we be trying
|
176
|
-
# it in this case?
|
177
|
-
#
|
178
|
-
# Yes: otherwise it never gets checked.
|
179
|
-
|
180
|
-
update_leftmost.call(left(q))
|
181
|
-
q = right(p)
|
182
|
-
p = left(p)
|
183
|
-
end
|
184
|
-
else
|
185
|
-
# p and q both have two children
|
186
|
-
|
187
|
-
# BUG 2 IN PAPER.
|
188
|
-
#
|
189
|
-
# Define c as the paper does:
|
190
|
-
#
|
191
|
-
# (c1, c2, c3, c4) = (left(p), right(p), left(q), right(q))
|
192
|
-
#
|
193
|
-
# Because of the PST property on x and the invariant x(p) <= x(q) we know that
|
194
|
-
#
|
195
|
-
# x(c1) <= x(c2) <= x(c3) <= x(c4)
|
196
|
-
#
|
197
|
-
# Similarly, the sets of values x(T(ci)) are pairwise ordered in the same sense.
|
198
|
-
#
|
199
|
-
# Suppose further that x(ci) <= x0 <= x(c(i+i)). Then we know several things
|
200
|
-
#
|
201
|
-
# - there might be a "winner" (point in Q) in T(ci), perhaps ci itself.
|
202
|
-
# - there are not any winners in T(cj) for j < i, becasue the x-values there aren't big enough
|
203
|
-
# - any winner in ck, for k >= i, will be the left of and thus beat any winner in c(k+1), because of the ordering of
|
204
|
-
# x-values
|
205
|
-
#
|
206
|
-
# If x(c4) <= x0 then the rightmost subtree T(c4) is the only one worth checking and we set p = q = c4.
|
207
|
-
# If x(c1) > x0 then we take i = 0 and ignore the logic on ci in what follows and setting p = q.
|
208
|
-
#
|
209
|
-
# Pretend for the moment that we are using a MaxPST instead of a MinmaxPST. Then we can look at y values to learn more.
|
210
|
-
#
|
211
|
-
# - if y(ci) >= y0 then we need to search T(ci), so we will update p = ci
|
212
|
-
# - but if y(ci) < y0 then there are no winners in T(ci) because the y-values are too small.
|
213
|
-
# - similarly, if y(c(i+i)) >= y0 then we need to search T(c(i+1)). Indeed c(i+1) itself is in Q and beats any winner in
|
214
|
-
# subtrees further to the right
|
215
|
-
# - so, let k > i be minimal such that y(ck) >= y0, if there is any. Note that ck is itself a winner. Then
|
216
|
-
# - if y(ci) >= y0,
|
217
|
-
# - set p = ci, and q = ck (or q = ci if there is no such k)
|
218
|
-
# - otherwise (T(ci) has no winners because its y-values are too small)
|
219
|
-
# - if k is defined set p = q = ck. Otherwise HALT (there are no more winners)
|
220
|
-
#
|
221
|
-
# But we are working with a MinmaxPST rather than a MaxPST, so we have to work harder. If c1, ..., c4 (the children of p
|
222
|
-
# and q) are in a "max-level" of the tree - that is, an even level - then the logic above still applies. But if they are
|
223
|
-
# at a min level things are trickier and we need to go another layer down.
|
224
|
-
#
|
225
|
-
# The paper knows that we need to look a further layer down, but the logic is too simplistic. It looks at cj for j > i and
|
226
|
-
# checks if cj or either of its children are in Q. But that's not good enough. For the same reason that in a MaxPST we may
|
227
|
-
# need to explore below T(ci) even if ci isn't in Q, we may need to decend through one of the grandchilden of p or q even
|
228
|
-
# if that grandchild isn't in Q.
|
229
|
-
#
|
230
|
-
# Getting a bit handwavey especially over what happens near the leaves...
|
231
|
-
#
|
232
|
-
# Consider the children d1, d2, ..., dm, of ci, ..., c4 (and so grandchildren of p and q). They are at a max-level and so
|
233
|
-
# the logic described applies to the dk. If ci happens to be a winner we can set p = ci and work out what to do with q by
|
234
|
-
# looking at the children of c(i+1), ..., c4. Otherwise we look at all the dj values (up to 8 of them), apply the logic
|
235
|
-
# above to work out that we want to head for, say, p = ds and q = dt, and in this cycle update p = parent(ds), q =
|
236
|
-
# parent(dt). (We also need to submit the values c(i+1)..c4 to UpdateLeftmost.)
|
237
|
-
#
|
238
|
-
# In other words, we can use the MaxPST logic on d1,...,dm to decide where we need to go, and then step to the relevant
|
239
|
-
# parents among the cj.
|
240
|
-
|
241
|
-
c = [left(p), right(p), left(q), right(q)]
|
242
|
-
if level.odd?
|
243
|
-
# the elements of c are at an even level, and hence their y values are maxima for the subtrees. We can learn what we
|
244
|
-
# need to know from them
|
245
|
-
p, q = determine_goal_nodes.call(c)
|
246
|
-
if p && !q
|
247
|
-
# byebug
|
248
|
-
# determine_goal_nodes.call(c)
|
249
|
-
raise 'bad logic'
|
250
|
-
end
|
251
|
-
else
|
252
|
-
# They are at an odd level and so aren't helpful in working out what to do next: we look at their children, which are in
|
253
|
-
# a max-level. We need to check the elements of c against best since we are otherwise ignoring them.
|
254
|
-
c.each { |n| update_leftmost.call(n) }
|
255
|
-
|
256
|
-
d = c.map { [left(_1), right(_1)]}.flatten.select { |n| n <= @size }
|
257
|
-
|
258
|
-
# Note that we are jumping down two levels here!
|
259
|
-
p, q = determine_goal_nodes.call(d)
|
260
|
-
if p && !q
|
261
|
-
# byebug
|
262
|
-
# determine_goal_nodes.call(c)
|
263
|
-
raise 'bad logic'
|
264
|
-
end
|
265
|
-
|
266
|
-
p
|
267
|
-
end
|
268
|
-
|
269
|
-
return best unless p # nothing more to do
|
270
|
-
end
|
271
|
-
end
|
272
|
-
end
|
273
|
-
update_leftmost.call(p)
|
274
|
-
update_leftmost.call(q)
|
275
|
-
best
|
276
|
-
end
|
277
|
-
|
278
|
-
# Let Q be the "three-sided query range" [x0, x1] X [y0, infty) and let P_Q be P \intersect Q.
|
279
|
-
#
|
280
|
-
# If P_Q is empty then p* = (infty, -infty).
|
281
|
-
# Otherwise, p* is the point in P_Q with maximal y value.
|
282
|
-
#
|
283
|
-
# This method returns p*
|
284
|
-
# def highest_3_sided_up(x0, x1, y0)
|
285
|
-
# best = Point.new(INFINITY, -INFINITY)
|
286
|
-
|
287
|
-
# in_q = lambda do |pair|
|
288
|
-
# pair.x >= x0 && pair.x <= x1 && pair.y >= y0
|
289
|
-
# end
|
290
|
-
|
291
|
-
# # From the paper:
|
292
|
-
# #
|
293
|
-
# # takes as input a point t and does the following: if t \in Q and y(t) > y(best) then it assignes best = t
|
294
|
-
# #
|
295
|
-
# # Note that the paper identifies a node in the tree with its value. We need to grab the correct node.
|
296
|
-
# #
|
297
|
-
# # The algorithm is complicated. From the paper:
|
298
|
-
# #
|
299
|
-
# # Since Q is bounded by two vertical sides, we use four index variables p, p', q and q' to guide the search path. In addition,
|
300
|
-
# # we use four bits L, L', R and R'; these correspond to the subtrees of T rooted at the nodes p, p', q, and q', respectively;
|
301
|
-
# # if a bit is equal to one, then the corresonding node is referred to as an _active node_ (for example, if L = 1 then p is an
|
302
|
-
# # active node), and the subtree rooted at that node may contain a candidate point for p*. So the search is required to be
|
303
|
-
# # performed in the subtree rooted at all active nodes. More formally, at any instant of time the variables satisfy the folling
|
304
|
-
# # invariants:
|
305
|
-
# #
|
306
|
-
# # - If L = 1 the x(p) < x0.
|
307
|
-
# # - If L' = 1 then x0 <= x(p') <= x1.
|
308
|
-
# # - If R = 1 then x(q) > x1.
|
309
|
-
# # - If R' = 1 then x0 <= x(q') <= x1.
|
310
|
-
# # - If L' = 1 and R' = 1 then x(p') <= x(q').
|
311
|
-
# # - If P_Q is non-empty then p* = best or p* is in the subtree rooted at any one of the active nodes.
|
312
|
-
# #
|
313
|
-
# # There are more details in the paper
|
314
|
-
# update_highest = lambda do |node|
|
315
|
-
# t = val_at(node)
|
316
|
-
# if in_q.call(t) && t.y > best.y
|
317
|
-
# best = t
|
318
|
-
# end
|
319
|
-
# end
|
320
|
-
|
321
|
-
# ex_update_highest = lambda do |node|
|
322
|
-
# update_highest.call(node)
|
323
|
-
# update_highest.call(left(node)) unless leaf?(node)
|
324
|
-
# update_highest.call(right(node)) unless one_child?(node)
|
325
|
-
# end
|
326
|
-
|
327
|
-
# if val_at(root).x < x0
|
328
|
-
# p = root
|
329
|
-
# l = true
|
330
|
-
# l_prime = r = r_prime = false
|
331
|
-
# elsif val_at(root).x < x1
|
332
|
-
# p_prime = root
|
333
|
-
# l_prime = true
|
334
|
-
# l = r = r_prime = false
|
335
|
-
# else
|
336
|
-
# q = root
|
337
|
-
# r = true
|
338
|
-
# l = l_prime = r_prime = false
|
339
|
-
# end
|
340
|
-
|
341
|
-
# set_z = lambda do
|
342
|
-
# r = []
|
343
|
-
# r << p if l
|
344
|
-
# r << p_prime if l_prime
|
345
|
-
# r << q if r
|
346
|
-
# r << q_prime if r_primg
|
347
|
-
# r
|
348
|
-
# end
|
349
|
-
|
350
|
-
# check_left = lambda do
|
351
|
-
# if leaf?(p)
|
352
|
-
# l = false
|
353
|
-
# elsif one_child?(p)
|
354
|
-
# p_l_x = val_at(left(p))
|
355
|
-
# if x0 <= p_l_x && p_l_x <= x1
|
356
|
-
# update_highest.call(left(p))
|
357
|
-
# if l_prime && r_prime
|
358
|
-
# ex_update_highest.call(p_prime)
|
359
|
-
# elsif l_prime
|
360
|
-
# q_prime = p_prime
|
361
|
-
# r_prime = true
|
362
|
-
# end
|
363
|
-
# p_prime = left(p)
|
364
|
-
# l_prime = true
|
365
|
-
# l = false
|
366
|
-
# elsif p_l_x < x0
|
367
|
-
# p = left(p)
|
368
|
-
# else
|
369
|
-
# q = left(p)
|
370
|
-
# r = true
|
371
|
-
# l = false
|
372
|
-
# end
|
373
|
-
# else
|
374
|
-
# # p has two children
|
375
|
-
|
376
|
-
# end
|
377
|
-
|
378
|
-
# while l || l_prime || r || r_prime
|
379
|
-
# z_star = set_z.call.min_by(4) { level(_1) }
|
380
|
-
# if z_star.include? p_prime
|
381
|
-
# check_left_in(p_prime)
|
382
|
-
# elsif z_star.include? q_prime
|
383
|
-
# check_right_in(q_prime)
|
384
|
-
# elsif z_star.include? p
|
385
|
-
# check_left(p)
|
386
|
-
# else
|
387
|
-
# check_right(q)
|
388
|
-
# end
|
389
|
-
# end
|
390
|
-
# end
|
391
|
-
|
392
|
-
# Find the "highest" (max-y) point that is "northeast" of (x, y).
|
393
|
-
#
|
394
|
-
# That is, the point p* in Q = [x, infty) X [y, infty) with the largest y value, or (infty, -infty) if there is no point in that
|
395
|
-
# quadrant.
|
396
|
-
#
|
397
|
-
# Algorithm is from De et al. section 3.1
|
398
|
-
def highest_ne(x0, y0)
|
399
|
-
raise "Write me"
|
400
|
-
# From the paper:
|
401
|
-
#
|
402
|
-
# The algorithm uses two variables best and p, which satisfy the following invariant
|
403
|
-
#
|
404
|
-
# - If Q intersect P is nonempty then p* in {best} union T_p
|
405
|
-
# - If Q intersect P is empty then p* = best
|
406
|
-
#
|
407
|
-
# Here, P is the set of points in our data structure and T_p is the subtree rooted at p
|
408
|
-
best = Point.new(INFINITY, -INFINITY)
|
409
|
-
p = root # root of the whole tree AND the pair stored there
|
410
|
-
|
411
|
-
in_q = lambda do |pair|
|
412
|
-
pair.x >= x0 && pair.y >= y0
|
413
|
-
end
|
414
|
-
|
415
|
-
# From the paper:
|
416
|
-
#
|
417
|
-
# takes as input a point t and does the following: if t \in Q and y(t) > y(best) then it assignes best = t
|
418
|
-
#
|
419
|
-
# Note that the paper identifies a node in the tree with its value. We need to grab the correct node.
|
420
|
-
update_highest = lambda do |node|
|
421
|
-
t = val_at(node)
|
422
|
-
if in_q.call(t) && t.y > best.y
|
423
|
-
best = t
|
424
|
-
end
|
425
|
-
end
|
426
|
-
|
427
|
-
# We could make this code more efficient. But since we only have O(log n) steps we won't actually gain much so let's keep it
|
428
|
-
# readable and close to the paper's pseudocode for now.
|
429
|
-
until leaf?(p)
|
430
|
-
p_val = val_at(p)
|
431
|
-
if in_q.call(p_val)
|
432
|
-
# p \in Q and nothing in its subtree can beat it because of the max-heap
|
433
|
-
update_highest.call(p)
|
434
|
-
return best
|
435
|
-
|
436
|
-
# p = left(p) <- from paper
|
437
|
-
elsif p_val.y < y0
|
438
|
-
# p is too low for Q, so the entire subtree is too low as well
|
439
|
-
return best
|
440
|
-
|
441
|
-
# p = left(p)
|
442
|
-
elsif one_child?(p)
|
443
|
-
# With just one child we need to check it
|
444
|
-
p = left(p)
|
445
|
-
elsif val_at(right(p)).x <= x0
|
446
|
-
# right(p) might be in Q, but nothing in the left subtree can be, by the PST property on x.
|
447
|
-
p = right(p)
|
448
|
-
elsif val_at(left(p)).x >= x0
|
449
|
-
# Both children are in Q, so try the higher of them. Note that nothing in either subtree will beat this one.
|
450
|
-
higher = left(p)
|
451
|
-
if val_at(right(p)).y > val_at(left(p)).y
|
452
|
-
higher = right(p)
|
453
|
-
end
|
454
|
-
p = higher
|
455
|
-
elsif val_at(right(p)).y < y0
|
456
|
-
# Nothing in the right subtree is in Q, but maybe we'll find something in the left
|
457
|
-
p = left(p)
|
458
|
-
else
|
459
|
-
# At this point we know that right(p) \in Q so we need to check it. Nothing in its subtree can beat it so we don't need to
|
460
|
-
# look there. But there might be something better in the left subtree.
|
461
|
-
update_highest.call(right(p))
|
462
|
-
p = left(p)
|
463
|
-
end
|
464
|
-
end
|
465
|
-
update_highest.call(p) # try the leaf
|
466
|
-
best
|
467
|
-
end
|
468
|
-
|
469
|
-
# O(n log^2 n)
|
470
|
-
private def construct_pst
|
471
|
-
# We follow the algorithm in [3]. Indexing is from 1 there and we follow that here. The algorithm is almost exactly the same as
|
472
|
-
# for the (max) PST.
|
473
|
-
h = Math.log2(@size).floor
|
474
|
-
a = @size - (2**h - 1) # the paper calls it A
|
475
|
-
sort_subarray(1, @size)
|
476
|
-
level = 0 # TODO: isn't level always equal to i in the loop?
|
477
|
-
|
478
|
-
(0...h).each do |i|
|
479
|
-
sense = level.even? ? :max : :min
|
480
|
-
pow_of_2 = 2**i
|
481
|
-
|
482
|
-
k = a / (2**(h - i))
|
483
|
-
k1 = 2**(h + 1 - i) - 1
|
484
|
-
k2 = (1 - k) * 2**(h - i) - 1 + a
|
485
|
-
k3 = 2**(h - i) - 1
|
486
|
-
(1..k).each do |j|
|
487
|
-
l = index_with_extremal_y_in(pow_of_2 + (j - 1) * k1, pow_of_2 + j * k1 - 1, sense:)
|
488
|
-
swap(l, pow_of_2 + j - 1)
|
489
|
-
end
|
490
|
-
|
491
|
-
if k < pow_of_2
|
492
|
-
l = index_with_extremal_y_in(pow_of_2 + k * k1, pow_of_2 + k * k1 + k2 - 1, sense:)
|
493
|
-
swap(l, pow_of_2 + k)
|
494
|
-
|
495
|
-
m = pow_of_2 + k * k1 + k2
|
496
|
-
(1..(pow_of_2 - k - 1)).each do |j|
|
497
|
-
l = index_with_extremal_y_in(m + (j - 1) * k3, m + j * k3 - 1, sense:)
|
498
|
-
swap(l, pow_of_2 + k + j)
|
499
|
-
end
|
500
|
-
end
|
501
|
-
sort_subarray(2 * pow_of_2, @size)
|
502
|
-
level += 1
|
503
|
-
end
|
504
|
-
end
|
505
|
-
|
506
|
-
########################################
|
507
|
-
# Indexing the data structure as though it were from 1, even though the underlying @data is indexed from zero.
|
508
|
-
|
509
|
-
# First element and root of the tree structure
|
510
|
-
private def root
|
511
|
-
1
|
512
|
-
end
|
513
|
-
|
514
|
-
private def val_at(idx)
|
515
|
-
@data[idx - 1]
|
516
|
-
end
|
517
|
-
|
518
|
-
# Indexing is from 1
|
519
|
-
private def parent(i)
|
520
|
-
i >> 1
|
521
|
-
end
|
522
|
-
|
523
|
-
private def left(i)
|
524
|
-
i << 1
|
525
|
-
end
|
526
|
-
|
527
|
-
private def right(i)
|
528
|
-
1 + (i << 1)
|
529
|
-
end
|
530
|
-
|
531
|
-
private def leaf?(i)
|
532
|
-
left(i) > @size
|
533
|
-
end
|
534
|
-
|
535
|
-
private def one_child?(i)
|
536
|
-
left(i) <= @size && right(i) > @size
|
537
|
-
end
|
538
|
-
|
539
|
-
private def swap(index1, index2)
|
540
|
-
return if index1 == index2
|
541
|
-
|
542
|
-
@data[index1 - 1], @data[index2 - 1] = @data[index2 - 1], @data[index1 - 1]
|
543
|
-
end
|
544
|
-
|
545
|
-
private def level(i)
|
546
|
-
count = 0
|
547
|
-
while i > root
|
548
|
-
i >>= 1
|
549
|
-
count += 1
|
550
|
-
end
|
551
|
-
count
|
552
|
-
end
|
553
|
-
|
554
|
-
# The index in @data[l..r] having the largest/smallest value for y
|
555
|
-
# The sense argument should be :min or :max
|
556
|
-
private def index_with_extremal_y_in(l, r, sense:)
|
557
|
-
return nil if r < l
|
558
|
-
|
559
|
-
case sense
|
560
|
-
when :min
|
561
|
-
(l..r).min_by { |idx| val_at(idx).y }
|
562
|
-
when :max
|
563
|
-
(l..r).max_by { |idx| val_at(idx).y }
|
564
|
-
else
|
565
|
-
raise "Bad comparison sense #{sense}"
|
566
|
-
end
|
567
|
-
end
|
568
|
-
|
569
|
-
# Sort the subarray @data[l..r]. This is much faster than a Ruby-layer heapsort because it is mostly happening in C.
|
570
|
-
private def sort_subarray(l, r)
|
571
|
-
# heapsort_subarray(l, r)
|
572
|
-
return if l == r # 1-array already sorted!
|
573
|
-
|
574
|
-
l -= 1
|
575
|
-
r -= 1
|
576
|
-
@data[l..r] = @data[l..r].sort_by(&:x)
|
577
|
-
end
|
578
|
-
|
579
|
-
########################################
|
580
|
-
# Debugging support
|
581
|
-
#
|
582
|
-
# These methods are not written for speed
|
583
|
-
|
584
|
-
# Check that our data satisfies the requirements of a Priority Search Tree:
|
585
|
-
# - max-heap in y
|
586
|
-
# - all the x values in the left subtree are less than all the x values in the right subtree
|
587
|
-
def verify_properties
|
588
|
-
# It's a min-max heap in y
|
589
|
-
(2..@size).each do |node|
|
590
|
-
level = Math.log2(node).floor
|
591
|
-
parent_level = level - 1
|
592
|
-
|
593
|
-
_, _, min_y, max_y = minmax_in_subtree(node)
|
594
|
-
parent_y = val_at(parent(node)).y
|
595
|
-
|
596
|
-
it_is_fine = if parent_level.even?
|
597
|
-
# max!
|
598
|
-
parent_y > max_y
|
599
|
-
else
|
600
|
-
parent_y < min_y
|
601
|
-
end
|
602
|
-
|
603
|
-
raise "Heap property violated at child #{node}" unless it_is_fine
|
604
|
-
end
|
605
|
-
|
606
|
-
# Left subtree has x values less than all of the right subtree
|
607
|
-
(1..@size).each do |node|
|
608
|
-
next if right(node) >= @size
|
609
|
-
|
610
|
-
left_max = max_x_in_subtree(left(node))
|
611
|
-
right_min = min_x_in_subtree(right(node))
|
612
|
-
|
613
|
-
raise "Left-right property of x-values violated at #{node}" unless left_max < right_min
|
614
|
-
end
|
615
|
-
|
616
|
-
nil
|
617
|
-
end
|
618
|
-
|
619
|
-
private def max_x_in_subtree(root)
|
620
|
-
minmax_in_subtree(root)[1]
|
621
|
-
end
|
622
|
-
|
623
|
-
private def min_x_in_subtree(root)
|
624
|
-
minmax_in_subtree(root)[0]
|
625
|
-
end
|
626
|
-
|
627
|
-
# Return min_x, max_x, min_y, max_y in subtree rooted at and including root
|
628
|
-
private def minmax_in_subtree(root)
|
629
|
-
@minmax_vals ||= []
|
630
|
-
@minmax_vals[root] ||= calc_minmax_at(root).freeze
|
631
|
-
end
|
632
|
-
|
633
|
-
# No memoization
|
634
|
-
private def calc_minmax_at(root)
|
635
|
-
return [INFINITY, -INFINITY, INFINITY, -INFINITY] if root > @size
|
636
|
-
|
637
|
-
pair = val_at(root)
|
638
|
-
|
639
|
-
return [pair.x, pair.x, pair.y, pair.y] if leaf?(root)
|
640
|
-
|
641
|
-
left = left(root)
|
642
|
-
left_min_max = minmax_in_subtree(left)
|
643
|
-
return left_min_max if one_child?(root)
|
644
|
-
|
645
|
-
right = right(root)
|
646
|
-
right_min_max = minmax_in_subtree(right)
|
647
|
-
|
648
|
-
[
|
649
|
-
[pair.x, left_min_max[0], right_min_max[0]].min,
|
650
|
-
[pair.x, left_min_max[1], right_min_max[1]].max,
|
651
|
-
[pair.y, left_min_max[2], right_min_max[2]].min,
|
652
|
-
[pair.y, left_min_max[3], right_min_max[3]].max
|
653
|
-
]
|
654
|
-
end
|
655
|
-
|
656
|
-
private def output_quasi_dot
|
657
|
-
(2..@size).to_a.reverse.map do |node|
|
658
|
-
"#{val_at(parent(node)).fmt} -- #{val_at(node).fmt}"
|
659
|
-
end.join("\n")
|
660
|
-
end
|
661
|
-
|
662
|
-
private def pair_to_s
|
663
|
-
end
|
664
|
-
|
665
|
-
########################################
|
666
|
-
# Dead code
|
667
|
-
|
668
|
-
end
|