data_structures_rmolinari 0.2.2 → 0.4.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/CHANGELOG.md +33 -0
- data/lib/data_structures_rmolinari/disjoint_union.rb +30 -14
- data/lib/data_structures_rmolinari/generic_segment_tree.rb +8 -8
- data/lib/data_structures_rmolinari/heap.rb +64 -42
- data/lib/data_structures_rmolinari/max_priority_search_tree.rb +70 -119
- data/lib/data_structures_rmolinari/shared.rb +9 -1
- data/lib/data_structures_rmolinari.rb +17 -14
- metadata +3 -3
- data/lib/data_structures_rmolinari/minmax_priority_search_tree.rb +0 -670
@@ -1,670 +0,0 @@
|
|
1
|
-
require 'must_be'
|
2
|
-
|
3
|
-
require_relative 'shared'
|
4
|
-
|
5
|
-
# A priority search tree (PST) stores points in two dimensions (x,y) and can efficiently answer certain questions about the set of
|
6
|
-
# point.
|
7
|
-
#
|
8
|
-
# The structure was introduced by McCreight [1].
|
9
|
-
#
|
10
|
-
# It is a binary search tree which is a max-heap by the y-coordinate, and, for a non-leaf node N storing (x, y), all the nodes in
|
11
|
-
# the left subtree of N have smaller x values than any of the nodes in the right subtree of N. Note, though, that the x-value at N
|
12
|
-
# has no particular property relative to the x values in its subtree. It is thus _almost_ a binary search tree in the x coordinate.
|
13
|
-
#
|
14
|
-
# See more: https://en.wikipedia.org/wiki/Priority_search_tree
|
15
|
-
#
|
16
|
-
# It is possible to build such a tree in place, given an array of pairs. See [2]. In a follow-up paper, [3], the authors show how to
|
17
|
-
# construct a more flexible data structure,
|
18
|
-
#
|
19
|
-
# "[T]he Min-Max Priority Search tree for a set P of n points in R^2. It is a binary tree T with the following properties:
|
20
|
-
#
|
21
|
-
# * For each internal node u, all points in the left subtree of u have an x-coordinate which is less than the x-coordinate of any
|
22
|
-
# point in the right subtree of u.
|
23
|
-
# * The y-coordinate values of the nodes on even (resp. odd) levels are smaller (resp. greater) than the y-coordinate values of
|
24
|
-
# their descendants (if any), where the root is at level zero.
|
25
|
-
#
|
26
|
-
# "The first property implies that T is a binary search three on the x-coordinates of the points in P, excepts that there is no
|
27
|
-
# relation between the x-coordinates of the points stored at u and any of its children. The second property implies that T is a
|
28
|
-
# min-max heap on the y-coordinates of the points in P."
|
29
|
-
#
|
30
|
-
# I started implementing the in-place PST. Then, finding the follow-up paper [3], decided to do that one instead, as the paper says
|
31
|
-
# it is more flexible. The point is to learn a new data structure and its associated algorithms.
|
32
|
-
#
|
33
|
-
# The algorithms are rather bewildering. Highest3SidedUp is complicated, and only two of the functions CheckLeft, CheckLeftIn,
|
34
|
-
# CheckRight, CheckRightIn are given; the other two are "symmetric". But it's not really clear what the first are actually doing, so
|
35
|
-
# it's hard to know what the others actually do.
|
36
|
-
#
|
37
|
-
# The implementation is incomplete. The pseduo-code in the paper is buggy (see the code below), which makes progress difficult.
|
38
|
-
#
|
39
|
-
# [1] E. McCreight, _Priority Search Trees_, SIAM J. Computing, v14, no 3, May 1985, pp 257-276.
|
40
|
-
# [2] De, Maheshwari, Nandy, Smid, _An in-place priority search tree_, 23rd Annual Canadian Conference on Computational Geometry.
|
41
|
-
# [3] De, Maheshwari, Nandy, Smid, _An in-place min-max priority search tree_, Computational Geometry, v46 (2013), pp 310-327.
|
42
|
-
# [4] Atkinson, Sack, Santoro, Strothotte, _Min-max heaps and generalized priority queues_, Commun. ACM 29 (10) (1986), pp 996-1000.
|
43
|
-
class DataStructuresRMolinari::MinmaxPrioritySearchTree
|
44
|
-
include Shared
|
45
|
-
|
46
|
-
# The array of pairs is turned into a minmax PST in-place without cloning. So clone before passing it in, if you care.
|
47
|
-
#
|
48
|
-
# Each element must respond to #x and #y. Use Pair (above) if you like.
|
49
|
-
def initialize(data, verify: false)
|
50
|
-
@data = data
|
51
|
-
@size = @data.size
|
52
|
-
|
53
|
-
construct_pst
|
54
|
-
return unless verify
|
55
|
-
|
56
|
-
# puts "Validating tree structure..."
|
57
|
-
verify_properties
|
58
|
-
end
|
59
|
-
|
60
|
-
# Let Q = [x0, infty) X [y0, infty) be the northeast "quadrant" defined by the point (x0, y0) and let P be the points in this data
|
61
|
-
# structure. Define p* as
|
62
|
-
#
|
63
|
-
# - (infty, infty) if Q \intersect P is empty and
|
64
|
-
# - the leftmost (i.e., min-x) point in Q \intersect P otherwise
|
65
|
-
#
|
66
|
-
# This method returns p*.
|
67
|
-
#
|
68
|
-
# From De et al:
|
69
|
-
#
|
70
|
-
# [t]he variables best, p, and q satisfy the folling invariant:
|
71
|
-
#
|
72
|
-
# - if Q \intersect P is nonempty then p* \in {best} \union T(p) \union T(q)
|
73
|
-
# - if Q \intersect P is empty then p* = best
|
74
|
-
# - p and q are at the same level of T and x(p) <= x(q)
|
75
|
-
#
|
76
|
-
# Here T(x) is the subtree rooted at x
|
77
|
-
def leftmost_ne(x0, y0)
|
78
|
-
best = Pair.new(INFINITY, INFINITY)
|
79
|
-
p = q = root
|
80
|
-
|
81
|
-
in_q = ->(pair) { pair.x >= x0 && pair.y >= y0 }
|
82
|
-
|
83
|
-
# From the paper:
|
84
|
-
#
|
85
|
-
# takes as input a point t \in P and updates best as follows: if t \in Q and x(t) < x(best) then it assignes best = t
|
86
|
-
#
|
87
|
-
# Note that the paper identifies a node in the tree with its value. We need to grab the correct node.
|
88
|
-
update_leftmost = lambda do |node|
|
89
|
-
t = val_at(node)
|
90
|
-
if in_q.call(t) && t.x < best.x
|
91
|
-
best = t
|
92
|
-
end
|
93
|
-
end
|
94
|
-
|
95
|
-
# Generalize the c1,...,c4 idea from the paper in line with the BUG 2 IN PAPER notes, below.
|
96
|
-
#
|
97
|
-
# Given: 0 or more nodes n1, ..., nk in the tree. All are at the same level, which is a "max level" in our MinmaxPST, such that
|
98
|
-
# x(n1) <= x(n2) <= ... <= x(nk). (Note: it is expected that the nj are either children or grandchildren of p and q, though we
|
99
|
-
# don't check that.)
|
100
|
-
#
|
101
|
-
# If k = 0 return nil. Otherwise...
|
102
|
-
#
|
103
|
-
# We return two values p_goal, q_goal (possibly equal) from among the nj such that
|
104
|
-
#
|
105
|
-
# - p_goal is not to the right of q_goal in the tree and so, in particular x(p_goal) <= x(q_goal)
|
106
|
-
# - if and when the auction reaches p = p_goal and q = q_goal the algorithm invariant will be satisfied.
|
107
|
-
#
|
108
|
-
# As a special case, we return nil if we detect that none of the subtrees T(nj) contain any points in Q. This is a sign to
|
109
|
-
# terminate the algorithm.
|
110
|
-
#
|
111
|
-
# See the notes at "BUG 2 IN PAPER" below for more details about what is going on.
|
112
|
-
determine_goal_nodes = lambda do |nodes|
|
113
|
-
node_count = nodes.size
|
114
|
-
return nil if node_count.zero?
|
115
|
-
|
116
|
-
if val_at(nodes.last).x <= x0
|
117
|
-
# Only the rightmost subtree can possibly have anything Q, assuming that all the x-values are distinct.
|
118
|
-
return [nodes.last, nodes.last]
|
119
|
-
end
|
120
|
-
|
121
|
-
if val_at(nodes.first).x > x0
|
122
|
-
# All subtrees have x-values large enough to provide elements of Q. Since we are at a max-level the y-values help us work
|
123
|
-
# out which subtree to focus on.
|
124
|
-
leftmost = nodes.find { |node| val_at(node).y >= y0 }
|
125
|
-
|
126
|
-
return nil unless leftmost # nothing left to find
|
127
|
-
|
128
|
-
# Otherwise we explore the leftmost subtree. Its root is in Q and can't be beaten by anything to its right.
|
129
|
-
return [leftmost, leftmost]
|
130
|
-
end
|
131
|
-
|
132
|
-
values = nodes.map { |n| val_at(n) }
|
133
|
-
|
134
|
-
# Otherwise x(n1) <= x0 < x(nk). Thus i is well-defined.
|
135
|
-
i = (0...node_count).select { |j| values[j].x <= x0 && x0 < values[j + 1].x }.min
|
136
|
-
|
137
|
-
# these nodes all have large-enough x-values and so this finds the ones in the set Q.
|
138
|
-
new_q = nodes[(i + 1)..].select { |node| val_at(node).y >= y0 }.min # could be nil
|
139
|
-
new_p = nodes[i] if values[i].y >= y0 # The leftmost subtree is worth exploring if the y-value is big enough. Otherwise not
|
140
|
-
new_p ||= new_q # if nodes[i] is no good we send p along with q
|
141
|
-
new_q ||= new_p # but if there was no worthwhile value for q we should send it along with p
|
142
|
-
|
143
|
-
return nil unless new_p
|
144
|
-
|
145
|
-
[new_p, new_q]
|
146
|
-
end
|
147
|
-
|
148
|
-
until leaf?(p)
|
149
|
-
level = Math.log2(p).floor # TODO: don't calculate log every time!
|
150
|
-
|
151
|
-
update_leftmost.call(p)
|
152
|
-
update_leftmost.call(q)
|
153
|
-
|
154
|
-
if p == q
|
155
|
-
if one_child?(p)
|
156
|
-
p = q = left(p)
|
157
|
-
else
|
158
|
-
q = right(p)
|
159
|
-
p = left(p)
|
160
|
-
end
|
161
|
-
else
|
162
|
-
# p != q
|
163
|
-
if leaf?(q)
|
164
|
-
q = p # p itself is just one layer above the leaves, or is itself a leaf
|
165
|
-
elsif one_child?(q)
|
166
|
-
# Note that p has two children
|
167
|
-
if val_at(left(q)).x < x0
|
168
|
-
# x-values below p are too small
|
169
|
-
p = q = left(q)
|
170
|
-
elsif val_at(right(p)).x <= x0
|
171
|
-
# x-values in T(right(p)) are too small. DISTINCT-X
|
172
|
-
p = right(p)
|
173
|
-
q = left(q)
|
174
|
-
else
|
175
|
-
# BUG 1 IN PAPER.
|
176
|
-
#
|
177
|
-
# So, x(q_l) >= x0 and x(p_r) > x0. But how can we be sure that the child of q isn't the winner?. Should we be trying
|
178
|
-
# it in this case?
|
179
|
-
#
|
180
|
-
# Yes: otherwise it never gets checked.
|
181
|
-
|
182
|
-
update_leftmost.call(left(q))
|
183
|
-
q = right(p)
|
184
|
-
p = left(p)
|
185
|
-
end
|
186
|
-
else
|
187
|
-
# p and q both have two children
|
188
|
-
|
189
|
-
# BUG 2 IN PAPER.
|
190
|
-
#
|
191
|
-
# Define c as the paper does:
|
192
|
-
#
|
193
|
-
# (c1, c2, c3, c4) = (left(p), right(p), left(q), right(q))
|
194
|
-
#
|
195
|
-
# Because of the PST property on x and the invariant x(p) <= x(q) we know that
|
196
|
-
#
|
197
|
-
# x(c1) <= x(c2) <= x(c3) <= x(c4)
|
198
|
-
#
|
199
|
-
# Similarly, the sets of values x(T(ci)) are pairwise ordered in the same sense.
|
200
|
-
#
|
201
|
-
# Suppose further that x(ci) <= x0 <= x(c(i+i)). Then we know several things
|
202
|
-
#
|
203
|
-
# - there might be a "winner" (point in Q) in T(ci), perhaps ci itself.
|
204
|
-
# - there are not any winners in T(cj) for j < i, becasue the x-values there aren't big enough
|
205
|
-
# - any winner in ck, for k >= i, will be the left of and thus beat any winner in c(k+1), because of the ordering of
|
206
|
-
# x-values
|
207
|
-
#
|
208
|
-
# If x(c4) <= x0 then the rightmost subtree T(c4) is the only one worth checking and we set p = q = c4.
|
209
|
-
# If x(c1) > x0 then we take i = 0 and ignore the logic on ci in what follows and setting p = q.
|
210
|
-
#
|
211
|
-
# Pretend for the moment that we are using a MaxPST instead of a MinmaxPST. Then we can look at y values to learn more.
|
212
|
-
#
|
213
|
-
# - if y(ci) >= y0 then we need to search T(ci), so we will update p = ci
|
214
|
-
# - but if y(ci) < y0 then there are no winners in T(ci) because the y-values are too small.
|
215
|
-
# - similarly, if y(c(i+i)) >= y0 then we need to search T(c(i+1)). Indeed c(i+1) itself is in Q and beats any winner in
|
216
|
-
# subtrees further to the right
|
217
|
-
# - so, let k > i be minimal such that y(ck) >= y0, if there is any. Note that ck is itself a winner. Then
|
218
|
-
# - if y(ci) >= y0,
|
219
|
-
# - set p = ci, and q = ck (or q = ci if there is no such k)
|
220
|
-
# - otherwise (T(ci) has no winners because its y-values are too small)
|
221
|
-
# - if k is defined set p = q = ck. Otherwise HALT (there are no more winners)
|
222
|
-
#
|
223
|
-
# But we are working with a MinmaxPST rather than a MaxPST, so we have to work harder. If c1, ..., c4 (the children of p
|
224
|
-
# and q) are in a "max-level" of the tree - that is, an even level - then the logic above still applies. But if they are
|
225
|
-
# at a min level things are trickier and we need to go another layer down.
|
226
|
-
#
|
227
|
-
# The paper knows that we need to look a further layer down, but the logic is too simplistic. It looks at cj for j > i and
|
228
|
-
# checks if cj or either of its children are in Q. But that's not good enough. For the same reason that in a MaxPST we may
|
229
|
-
# need to explore below T(ci) even if ci isn't in Q, we may need to decend through one of the grandchilden of p or q even
|
230
|
-
# if that grandchild isn't in Q.
|
231
|
-
#
|
232
|
-
# Getting a bit handwavey especially over what happens near the leaves...
|
233
|
-
#
|
234
|
-
# Consider the children d1, d2, ..., dm, of ci, ..., c4 (and so grandchildren of p and q). They are at a max-level and so
|
235
|
-
# the logic described applies to the dk. If ci happens to be a winner we can set p = ci and work out what to do with q by
|
236
|
-
# looking at the children of c(i+1), ..., c4. Otherwise we look at all the dj values (up to 8 of them), apply the logic
|
237
|
-
# above to work out that we want to head for, say, p = ds and q = dt, and in this cycle update p = parent(ds), q =
|
238
|
-
# parent(dt). (We also need to submit the values c(i+1)..c4 to UpdateLeftmost.)
|
239
|
-
#
|
240
|
-
# In other words, we can use the MaxPST logic on d1,...,dm to decide where we need to go, and then step to the relevant
|
241
|
-
# parents among the cj.
|
242
|
-
|
243
|
-
c = [left(p), right(p), left(q), right(q)]
|
244
|
-
if level.odd?
|
245
|
-
# the elements of c are at an even level, and hence their y values are maxima for the subtrees. We can learn what we
|
246
|
-
# need to know from them
|
247
|
-
p, q = determine_goal_nodes.call(c)
|
248
|
-
if p && !q
|
249
|
-
# byebug
|
250
|
-
# determine_goal_nodes.call(c)
|
251
|
-
raise 'bad logic'
|
252
|
-
end
|
253
|
-
else
|
254
|
-
# They are at an odd level and so aren't helpful in working out what to do next: we look at their children, which are in
|
255
|
-
# a max-level. We need to check the elements of c against best since we are otherwise ignoring them.
|
256
|
-
c.each { |n| update_leftmost.call(n) }
|
257
|
-
|
258
|
-
d = c.map { [left(_1), right(_1)]}.flatten.select { |n| n <= @size }
|
259
|
-
|
260
|
-
# Note that we are jumping down two levels here!
|
261
|
-
p, q = determine_goal_nodes.call(d)
|
262
|
-
if p && !q
|
263
|
-
# byebug
|
264
|
-
# determine_goal_nodes.call(c)
|
265
|
-
raise 'bad logic'
|
266
|
-
end
|
267
|
-
|
268
|
-
p
|
269
|
-
end
|
270
|
-
|
271
|
-
return best unless p # nothing more to do
|
272
|
-
end
|
273
|
-
end
|
274
|
-
end
|
275
|
-
update_leftmost.call(p)
|
276
|
-
update_leftmost.call(q)
|
277
|
-
best
|
278
|
-
end
|
279
|
-
|
280
|
-
# Let Q be the "three-sided query range" [x0, x1] X [y0, infty) and let P_Q be P \intersect Q.
|
281
|
-
#
|
282
|
-
# If P_Q is empty then p* = (infty, -infty).
|
283
|
-
# Otherwise, p* is the point in P_Q with maximal y value.
|
284
|
-
#
|
285
|
-
# This method returns p*
|
286
|
-
# def highest_3_sided_up(x0, x1, y0)
|
287
|
-
# best = Pair.new(INFINITY, -INFINITY)
|
288
|
-
|
289
|
-
# in_q = lambda do |pair|
|
290
|
-
# pair.x >= x0 && pair.x <= x1 && pair.y >= y0
|
291
|
-
# end
|
292
|
-
|
293
|
-
# # From the paper:
|
294
|
-
# #
|
295
|
-
# # takes as input a point t and does the following: if t \in Q and y(t) > y(best) then it assignes best = t
|
296
|
-
# #
|
297
|
-
# # Note that the paper identifies a node in the tree with its value. We need to grab the correct node.
|
298
|
-
# #
|
299
|
-
# # The algorithm is complicated. From the paper:
|
300
|
-
# #
|
301
|
-
# # Since Q is bounded by two vertical sides, we use four index variables p, p', q and q' to guide the search path. In addition,
|
302
|
-
# # we use four bits L, L', R and R'; these correspond to the subtrees of T rooted at the nodes p, p', q, and q', respectively;
|
303
|
-
# # if a bit is equal to one, then the corresonding node is referred to as an _active node_ (for example, if L = 1 then p is an
|
304
|
-
# # active node), and the subtree rooted at that node may contain a candidate point for p*. So the search is required to be
|
305
|
-
# # performed in the subtree rooted at all active nodes. More formally, at any instant of time the variables satisfy the folling
|
306
|
-
# # invariants:
|
307
|
-
# #
|
308
|
-
# # - If L = 1 the x(p) < x0.
|
309
|
-
# # - If L' = 1 then x0 <= x(p') <= x1.
|
310
|
-
# # - If R = 1 then x(q) > x1.
|
311
|
-
# # - If R' = 1 then x0 <= x(q') <= x1.
|
312
|
-
# # - If L' = 1 and R' = 1 then x(p') <= x(q').
|
313
|
-
# # - If P_Q is non-empty then p* = best or p* is in the subtree rooted at any one of the active nodes.
|
314
|
-
# #
|
315
|
-
# # There are more details in the paper
|
316
|
-
# update_highest = lambda do |node|
|
317
|
-
# t = val_at(node)
|
318
|
-
# if in_q.call(t) && t.y > best.y
|
319
|
-
# best = t
|
320
|
-
# end
|
321
|
-
# end
|
322
|
-
|
323
|
-
# ex_update_highest = lambda do |node|
|
324
|
-
# update_highest.call(node)
|
325
|
-
# update_highest.call(left(node)) unless leaf?(node)
|
326
|
-
# update_highest.call(right(node)) unless one_child?(node)
|
327
|
-
# end
|
328
|
-
|
329
|
-
# if val_at(root).x < x0
|
330
|
-
# p = root
|
331
|
-
# l = true
|
332
|
-
# l_prime = r = r_prime = false
|
333
|
-
# elsif val_at(root).x < x1
|
334
|
-
# p_prime = root
|
335
|
-
# l_prime = true
|
336
|
-
# l = r = r_prime = false
|
337
|
-
# else
|
338
|
-
# q = root
|
339
|
-
# r = true
|
340
|
-
# l = l_prime = r_prime = false
|
341
|
-
# end
|
342
|
-
|
343
|
-
# set_z = lambda do
|
344
|
-
# r = []
|
345
|
-
# r << p if l
|
346
|
-
# r << p_prime if l_prime
|
347
|
-
# r << q if r
|
348
|
-
# r << q_prime if r_primg
|
349
|
-
# r
|
350
|
-
# end
|
351
|
-
|
352
|
-
# check_left = lambda do
|
353
|
-
# if leaf?(p)
|
354
|
-
# l = false
|
355
|
-
# elsif one_child?(p)
|
356
|
-
# p_l_x = val_at(left(p))
|
357
|
-
# if x0 <= p_l_x && p_l_x <= x1
|
358
|
-
# update_highest.call(left(p))
|
359
|
-
# if l_prime && r_prime
|
360
|
-
# ex_update_highest.call(p_prime)
|
361
|
-
# elsif l_prime
|
362
|
-
# q_prime = p_prime
|
363
|
-
# r_prime = true
|
364
|
-
# end
|
365
|
-
# p_prime = left(p)
|
366
|
-
# l_prime = true
|
367
|
-
# l = false
|
368
|
-
# elsif p_l_x < x0
|
369
|
-
# p = left(p)
|
370
|
-
# else
|
371
|
-
# q = left(p)
|
372
|
-
# r = true
|
373
|
-
# l = false
|
374
|
-
# end
|
375
|
-
# else
|
376
|
-
# # p has two children
|
377
|
-
|
378
|
-
# end
|
379
|
-
|
380
|
-
# while l || l_prime || r || r_prime
|
381
|
-
# z_star = set_z.call.min_by(4) { level(_1) }
|
382
|
-
# if z_star.include? p_prime
|
383
|
-
# check_left_in(p_prime)
|
384
|
-
# elsif z_star.include? q_prime
|
385
|
-
# check_right_in(q_prime)
|
386
|
-
# elsif z_star.include? p
|
387
|
-
# check_left(p)
|
388
|
-
# else
|
389
|
-
# check_right(q)
|
390
|
-
# end
|
391
|
-
# end
|
392
|
-
# end
|
393
|
-
|
394
|
-
# Find the "highest" (max-y) point that is "northeast" of (x, y).
|
395
|
-
#
|
396
|
-
# That is, the point p* in Q = [x, infty) X [y, infty) with the largest y value, or (infty, -infty) if there is no point in that
|
397
|
-
# quadrant.
|
398
|
-
#
|
399
|
-
# Algorithm is from De et al. section 3.1
|
400
|
-
def highest_ne(x0, y0)
|
401
|
-
raise "Write me"
|
402
|
-
# From the paper:
|
403
|
-
#
|
404
|
-
# The algorithm uses two variables best and p, which satisfy the following invariant
|
405
|
-
#
|
406
|
-
# - If Q intersect P is nonempty then p* in {best} union T_p
|
407
|
-
# - If Q intersect P is empty then p* = best
|
408
|
-
#
|
409
|
-
# Here, P is the set of points in our data structure and T_p is the subtree rooted at p
|
410
|
-
best = Pair.new(INFINITY, -INFINITY)
|
411
|
-
p = root # root of the whole tree AND the pair stored there
|
412
|
-
|
413
|
-
in_q = lambda do |pair|
|
414
|
-
pair.x >= x0 && pair.y >= y0
|
415
|
-
end
|
416
|
-
|
417
|
-
# From the paper:
|
418
|
-
#
|
419
|
-
# takes as input a point t and does the following: if t \in Q and y(t) > y(best) then it assignes best = t
|
420
|
-
#
|
421
|
-
# Note that the paper identifies a node in the tree with its value. We need to grab the correct node.
|
422
|
-
update_highest = lambda do |node|
|
423
|
-
t = val_at(node)
|
424
|
-
if in_q.call(t) && t.y > best.y
|
425
|
-
best = t
|
426
|
-
end
|
427
|
-
end
|
428
|
-
|
429
|
-
# We could make this code more efficient. But since we only have O(log n) steps we won't actually gain much so let's keep it
|
430
|
-
# readable and close to the paper's pseudocode for now.
|
431
|
-
until leaf?(p)
|
432
|
-
p_val = val_at(p)
|
433
|
-
if in_q.call(p_val)
|
434
|
-
# p \in Q and nothing in its subtree can beat it because of the max-heap
|
435
|
-
update_highest.call(p)
|
436
|
-
return best
|
437
|
-
|
438
|
-
# p = left(p) <- from paper
|
439
|
-
elsif p_val.y < y0
|
440
|
-
# p is too low for Q, so the entire subtree is too low as well
|
441
|
-
return best
|
442
|
-
|
443
|
-
# p = left(p)
|
444
|
-
elsif one_child?(p)
|
445
|
-
# With just one child we need to check it
|
446
|
-
p = left(p)
|
447
|
-
elsif val_at(right(p)).x <= x0
|
448
|
-
# right(p) might be in Q, but nothing in the left subtree can be, by the PST property on x.
|
449
|
-
p = right(p)
|
450
|
-
elsif val_at(left(p)).x >= x0
|
451
|
-
# Both children are in Q, so try the higher of them. Note that nothing in either subtree will beat this one.
|
452
|
-
higher = left(p)
|
453
|
-
if val_at(right(p)).y > val_at(left(p)).y
|
454
|
-
higher = right(p)
|
455
|
-
end
|
456
|
-
p = higher
|
457
|
-
elsif val_at(right(p)).y < y0
|
458
|
-
# Nothing in the right subtree is in Q, but maybe we'll find something in the left
|
459
|
-
p = left(p)
|
460
|
-
else
|
461
|
-
# At this point we know that right(p) \in Q so we need to check it. Nothing in its subtree can beat it so we don't need to
|
462
|
-
# look there. But there might be something better in the left subtree.
|
463
|
-
update_highest.call(right(p))
|
464
|
-
p = left(p)
|
465
|
-
end
|
466
|
-
end
|
467
|
-
update_highest.call(p) # try the leaf
|
468
|
-
best
|
469
|
-
end
|
470
|
-
|
471
|
-
# O(n log^2 n)
|
472
|
-
private def construct_pst
|
473
|
-
# We follow the algorithm in [3]. Indexing is from 1 there and we follow that here. The algorithm is almost exactly the same as
|
474
|
-
# for the (max) PST.
|
475
|
-
h = Math.log2(@size).floor
|
476
|
-
a = @size - (2**h - 1) # the paper calls it A
|
477
|
-
sort_subarray(1, @size)
|
478
|
-
level = 0 # TODO: isn't level always equal to i in the loop?
|
479
|
-
|
480
|
-
(0...h).each do |i|
|
481
|
-
sense = level.even? ? :max : :min
|
482
|
-
pow_of_2 = 2**i
|
483
|
-
|
484
|
-
k = a / (2**(h - i))
|
485
|
-
k1 = 2**(h + 1 - i) - 1
|
486
|
-
k2 = (1 - k) * 2**(h - i) - 1 + a
|
487
|
-
k3 = 2**(h - i) - 1
|
488
|
-
(1..k).each do |j|
|
489
|
-
l = index_with_extremal_y_in(pow_of_2 + (j - 1) * k1, pow_of_2 + j * k1 - 1, sense:)
|
490
|
-
swap(l, pow_of_2 + j - 1)
|
491
|
-
end
|
492
|
-
|
493
|
-
if k < pow_of_2
|
494
|
-
l = index_with_extremal_y_in(pow_of_2 + k * k1, pow_of_2 + k * k1 + k2 - 1, sense:)
|
495
|
-
swap(l, pow_of_2 + k)
|
496
|
-
|
497
|
-
m = pow_of_2 + k * k1 + k2
|
498
|
-
(1..(pow_of_2 - k - 1)).each do |j|
|
499
|
-
l = index_with_extremal_y_in(m + (j - 1) * k3, m + j * k3 - 1, sense:)
|
500
|
-
swap(l, pow_of_2 + k + j)
|
501
|
-
end
|
502
|
-
end
|
503
|
-
sort_subarray(2 * pow_of_2, @size)
|
504
|
-
level += 1
|
505
|
-
end
|
506
|
-
end
|
507
|
-
|
508
|
-
########################################
|
509
|
-
# Indexing the data structure as though it were from 1, even though the underlying @data is indexed from zero.
|
510
|
-
|
511
|
-
# First element and root of the tree structure
|
512
|
-
private def root
|
513
|
-
1
|
514
|
-
end
|
515
|
-
|
516
|
-
private def val_at(idx)
|
517
|
-
@data[idx - 1]
|
518
|
-
end
|
519
|
-
|
520
|
-
# Indexing is from 1
|
521
|
-
private def parent(i)
|
522
|
-
i >> 1
|
523
|
-
end
|
524
|
-
|
525
|
-
private def left(i)
|
526
|
-
i << 1
|
527
|
-
end
|
528
|
-
|
529
|
-
private def right(i)
|
530
|
-
1 + (i << 1)
|
531
|
-
end
|
532
|
-
|
533
|
-
private def leaf?(i)
|
534
|
-
left(i) > @size
|
535
|
-
end
|
536
|
-
|
537
|
-
private def one_child?(i)
|
538
|
-
left(i) <= @size && right(i) > @size
|
539
|
-
end
|
540
|
-
|
541
|
-
private def swap(index1, index2)
|
542
|
-
return if index1 == index2
|
543
|
-
|
544
|
-
@data[index1 - 1], @data[index2 - 1] = @data[index2 - 1], @data[index1 - 1]
|
545
|
-
end
|
546
|
-
|
547
|
-
private def level(i)
|
548
|
-
count = 0
|
549
|
-
while i > root
|
550
|
-
i >>= 1
|
551
|
-
count += 1
|
552
|
-
end
|
553
|
-
count
|
554
|
-
end
|
555
|
-
|
556
|
-
# The index in @data[l..r] having the largest/smallest value for y
|
557
|
-
# The sense argument should be :min or :max
|
558
|
-
private def index_with_extremal_y_in(l, r, sense:)
|
559
|
-
return nil if r < l
|
560
|
-
|
561
|
-
case sense
|
562
|
-
when :min
|
563
|
-
(l..r).min_by { |idx| val_at(idx).y }
|
564
|
-
when :max
|
565
|
-
(l..r).max_by { |idx| val_at(idx).y }
|
566
|
-
else
|
567
|
-
raise "Bad comparison sense #{sense}"
|
568
|
-
end
|
569
|
-
end
|
570
|
-
|
571
|
-
# Sort the subarray @data[l..r]. This is much faster than a Ruby-layer heapsort because it is mostly happening in C.
|
572
|
-
private def sort_subarray(l, r)
|
573
|
-
# heapsort_subarray(l, r)
|
574
|
-
return if l == r # 1-array already sorted!
|
575
|
-
|
576
|
-
l -= 1
|
577
|
-
r -= 1
|
578
|
-
@data[l..r] = @data[l..r].sort_by(&:x)
|
579
|
-
end
|
580
|
-
|
581
|
-
########################################
|
582
|
-
# Debugging support
|
583
|
-
#
|
584
|
-
# These methods are not written for speed
|
585
|
-
|
586
|
-
# Check that our data satisfies the requirements of a Priority Search Tree:
|
587
|
-
# - max-heap in y
|
588
|
-
# - all the x values in the left subtree are less than all the x values in the right subtree
|
589
|
-
def verify_properties
|
590
|
-
# It's a min-max heap in y
|
591
|
-
(2..@size).each do |node|
|
592
|
-
level = Math.log2(node).floor
|
593
|
-
parent_level = level - 1
|
594
|
-
|
595
|
-
_, _, min_y, max_y = minmax_in_subtree(node)
|
596
|
-
parent_y = val_at(parent(node)).y
|
597
|
-
|
598
|
-
it_is_fine = if parent_level.even?
|
599
|
-
# max!
|
600
|
-
parent_y > max_y
|
601
|
-
else
|
602
|
-
parent_y < min_y
|
603
|
-
end
|
604
|
-
|
605
|
-
raise "Heap property violated at child #{node}" unless it_is_fine
|
606
|
-
end
|
607
|
-
|
608
|
-
# Left subtree has x values less than all of the right subtree
|
609
|
-
(1..@size).each do |node|
|
610
|
-
next if right(node) >= @size
|
611
|
-
|
612
|
-
left_max = max_x_in_subtree(left(node))
|
613
|
-
right_min = min_x_in_subtree(right(node))
|
614
|
-
|
615
|
-
raise "Left-right property of x-values violated at #{node}" unless left_max < right_min
|
616
|
-
end
|
617
|
-
|
618
|
-
nil
|
619
|
-
end
|
620
|
-
|
621
|
-
private def max_x_in_subtree(root)
|
622
|
-
minmax_in_subtree(root)[1]
|
623
|
-
end
|
624
|
-
|
625
|
-
private def min_x_in_subtree(root)
|
626
|
-
minmax_in_subtree(root)[0]
|
627
|
-
end
|
628
|
-
|
629
|
-
# Return min_x, max_x, min_y, max_y in subtree rooted at and including root
|
630
|
-
private def minmax_in_subtree(root)
|
631
|
-
@minmax_vals ||= []
|
632
|
-
@minmax_vals[root] ||= calc_minmax_at(root).freeze
|
633
|
-
end
|
634
|
-
|
635
|
-
# No memoization
|
636
|
-
private def calc_minmax_at(root)
|
637
|
-
return [INFINITY, -INFINITY, INFINITY, -INFINITY] if root > @size
|
638
|
-
|
639
|
-
pair = val_at(root)
|
640
|
-
|
641
|
-
return [pair.x, pair.x, pair.y, pair.y] if leaf?(root)
|
642
|
-
|
643
|
-
left = left(root)
|
644
|
-
left_min_max = minmax_in_subtree(left)
|
645
|
-
return left_min_max if one_child?(root)
|
646
|
-
|
647
|
-
right = right(root)
|
648
|
-
right_min_max = minmax_in_subtree(right)
|
649
|
-
|
650
|
-
[
|
651
|
-
[pair.x, left_min_max[0], right_min_max[0]].min,
|
652
|
-
[pair.x, left_min_max[1], right_min_max[1]].max,
|
653
|
-
[pair.y, left_min_max[2], right_min_max[2]].min,
|
654
|
-
[pair.y, left_min_max[3], right_min_max[3]].max
|
655
|
-
]
|
656
|
-
end
|
657
|
-
|
658
|
-
private def output_quasi_dot
|
659
|
-
(2..@size).to_a.reverse.map do |node|
|
660
|
-
"#{val_at(parent(node)).fmt} -- #{val_at(node).fmt}"
|
661
|
-
end.join("\n")
|
662
|
-
end
|
663
|
-
|
664
|
-
private def pair_to_s
|
665
|
-
end
|
666
|
-
|
667
|
-
########################################
|
668
|
-
# Dead code
|
669
|
-
|
670
|
-
end
|