data_structures_rmolinari 0.2.2 → 0.4.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,670 +0,0 @@
1
- require 'must_be'
2
-
3
- require_relative 'shared'
4
-
5
- # A priority search tree (PST) stores points in two dimensions (x,y) and can efficiently answer certain questions about the set of
6
- # point.
7
- #
8
- # The structure was introduced by McCreight [1].
9
- #
10
- # It is a binary search tree which is a max-heap by the y-coordinate, and, for a non-leaf node N storing (x, y), all the nodes in
11
- # the left subtree of N have smaller x values than any of the nodes in the right subtree of N. Note, though, that the x-value at N
12
- # has no particular property relative to the x values in its subtree. It is thus _almost_ a binary search tree in the x coordinate.
13
- #
14
- # See more: https://en.wikipedia.org/wiki/Priority_search_tree
15
- #
16
- # It is possible to build such a tree in place, given an array of pairs. See [2]. In a follow-up paper, [3], the authors show how to
17
- # construct a more flexible data structure,
18
- #
19
- # "[T]he Min-Max Priority Search tree for a set P of n points in R^2. It is a binary tree T with the following properties:
20
- #
21
- # * For each internal node u, all points in the left subtree of u have an x-coordinate which is less than the x-coordinate of any
22
- # point in the right subtree of u.
23
- # * The y-coordinate values of the nodes on even (resp. odd) levels are smaller (resp. greater) than the y-coordinate values of
24
- # their descendants (if any), where the root is at level zero.
25
- #
26
- # "The first property implies that T is a binary search three on the x-coordinates of the points in P, excepts that there is no
27
- # relation between the x-coordinates of the points stored at u and any of its children. The second property implies that T is a
28
- # min-max heap on the y-coordinates of the points in P."
29
- #
30
- # I started implementing the in-place PST. Then, finding the follow-up paper [3], decided to do that one instead, as the paper says
31
- # it is more flexible. The point is to learn a new data structure and its associated algorithms.
32
- #
33
- # The algorithms are rather bewildering. Highest3SidedUp is complicated, and only two of the functions CheckLeft, CheckLeftIn,
34
- # CheckRight, CheckRightIn are given; the other two are "symmetric". But it's not really clear what the first are actually doing, so
35
- # it's hard to know what the others actually do.
36
- #
37
- # The implementation is incomplete. The pseduo-code in the paper is buggy (see the code below), which makes progress difficult.
38
- #
39
- # [1] E. McCreight, _Priority Search Trees_, SIAM J. Computing, v14, no 3, May 1985, pp 257-276.
40
- # [2] De, Maheshwari, Nandy, Smid, _An in-place priority search tree_, 23rd Annual Canadian Conference on Computational Geometry.
41
- # [3] De, Maheshwari, Nandy, Smid, _An in-place min-max priority search tree_, Computational Geometry, v46 (2013), pp 310-327.
42
- # [4] Atkinson, Sack, Santoro, Strothotte, _Min-max heaps and generalized priority queues_, Commun. ACM 29 (10) (1986), pp 996-1000.
43
- class DataStructuresRMolinari::MinmaxPrioritySearchTree
44
- include Shared
45
-
46
- # The array of pairs is turned into a minmax PST in-place without cloning. So clone before passing it in, if you care.
47
- #
48
- # Each element must respond to #x and #y. Use Pair (above) if you like.
49
- def initialize(data, verify: false)
50
- @data = data
51
- @size = @data.size
52
-
53
- construct_pst
54
- return unless verify
55
-
56
- # puts "Validating tree structure..."
57
- verify_properties
58
- end
59
-
60
- # Let Q = [x0, infty) X [y0, infty) be the northeast "quadrant" defined by the point (x0, y0) and let P be the points in this data
61
- # structure. Define p* as
62
- #
63
- # - (infty, infty) if Q \intersect P is empty and
64
- # - the leftmost (i.e., min-x) point in Q \intersect P otherwise
65
- #
66
- # This method returns p*.
67
- #
68
- # From De et al:
69
- #
70
- # [t]he variables best, p, and q satisfy the folling invariant:
71
- #
72
- # - if Q \intersect P is nonempty then p* \in {best} \union T(p) \union T(q)
73
- # - if Q \intersect P is empty then p* = best
74
- # - p and q are at the same level of T and x(p) <= x(q)
75
- #
76
- # Here T(x) is the subtree rooted at x
77
- def leftmost_ne(x0, y0)
78
- best = Pair.new(INFINITY, INFINITY)
79
- p = q = root
80
-
81
- in_q = ->(pair) { pair.x >= x0 && pair.y >= y0 }
82
-
83
- # From the paper:
84
- #
85
- # takes as input a point t \in P and updates best as follows: if t \in Q and x(t) < x(best) then it assignes best = t
86
- #
87
- # Note that the paper identifies a node in the tree with its value. We need to grab the correct node.
88
- update_leftmost = lambda do |node|
89
- t = val_at(node)
90
- if in_q.call(t) && t.x < best.x
91
- best = t
92
- end
93
- end
94
-
95
- # Generalize the c1,...,c4 idea from the paper in line with the BUG 2 IN PAPER notes, below.
96
- #
97
- # Given: 0 or more nodes n1, ..., nk in the tree. All are at the same level, which is a "max level" in our MinmaxPST, such that
98
- # x(n1) <= x(n2) <= ... <= x(nk). (Note: it is expected that the nj are either children or grandchildren of p and q, though we
99
- # don't check that.)
100
- #
101
- # If k = 0 return nil. Otherwise...
102
- #
103
- # We return two values p_goal, q_goal (possibly equal) from among the nj such that
104
- #
105
- # - p_goal is not to the right of q_goal in the tree and so, in particular x(p_goal) <= x(q_goal)
106
- # - if and when the auction reaches p = p_goal and q = q_goal the algorithm invariant will be satisfied.
107
- #
108
- # As a special case, we return nil if we detect that none of the subtrees T(nj) contain any points in Q. This is a sign to
109
- # terminate the algorithm.
110
- #
111
- # See the notes at "BUG 2 IN PAPER" below for more details about what is going on.
112
- determine_goal_nodes = lambda do |nodes|
113
- node_count = nodes.size
114
- return nil if node_count.zero?
115
-
116
- if val_at(nodes.last).x <= x0
117
- # Only the rightmost subtree can possibly have anything Q, assuming that all the x-values are distinct.
118
- return [nodes.last, nodes.last]
119
- end
120
-
121
- if val_at(nodes.first).x > x0
122
- # All subtrees have x-values large enough to provide elements of Q. Since we are at a max-level the y-values help us work
123
- # out which subtree to focus on.
124
- leftmost = nodes.find { |node| val_at(node).y >= y0 }
125
-
126
- return nil unless leftmost # nothing left to find
127
-
128
- # Otherwise we explore the leftmost subtree. Its root is in Q and can't be beaten by anything to its right.
129
- return [leftmost, leftmost]
130
- end
131
-
132
- values = nodes.map { |n| val_at(n) }
133
-
134
- # Otherwise x(n1) <= x0 < x(nk). Thus i is well-defined.
135
- i = (0...node_count).select { |j| values[j].x <= x0 && x0 < values[j + 1].x }.min
136
-
137
- # these nodes all have large-enough x-values and so this finds the ones in the set Q.
138
- new_q = nodes[(i + 1)..].select { |node| val_at(node).y >= y0 }.min # could be nil
139
- new_p = nodes[i] if values[i].y >= y0 # The leftmost subtree is worth exploring if the y-value is big enough. Otherwise not
140
- new_p ||= new_q # if nodes[i] is no good we send p along with q
141
- new_q ||= new_p # but if there was no worthwhile value for q we should send it along with p
142
-
143
- return nil unless new_p
144
-
145
- [new_p, new_q]
146
- end
147
-
148
- until leaf?(p)
149
- level = Math.log2(p).floor # TODO: don't calculate log every time!
150
-
151
- update_leftmost.call(p)
152
- update_leftmost.call(q)
153
-
154
- if p == q
155
- if one_child?(p)
156
- p = q = left(p)
157
- else
158
- q = right(p)
159
- p = left(p)
160
- end
161
- else
162
- # p != q
163
- if leaf?(q)
164
- q = p # p itself is just one layer above the leaves, or is itself a leaf
165
- elsif one_child?(q)
166
- # Note that p has two children
167
- if val_at(left(q)).x < x0
168
- # x-values below p are too small
169
- p = q = left(q)
170
- elsif val_at(right(p)).x <= x0
171
- # x-values in T(right(p)) are too small. DISTINCT-X
172
- p = right(p)
173
- q = left(q)
174
- else
175
- # BUG 1 IN PAPER.
176
- #
177
- # So, x(q_l) >= x0 and x(p_r) > x0. But how can we be sure that the child of q isn't the winner?. Should we be trying
178
- # it in this case?
179
- #
180
- # Yes: otherwise it never gets checked.
181
-
182
- update_leftmost.call(left(q))
183
- q = right(p)
184
- p = left(p)
185
- end
186
- else
187
- # p and q both have two children
188
-
189
- # BUG 2 IN PAPER.
190
- #
191
- # Define c as the paper does:
192
- #
193
- # (c1, c2, c3, c4) = (left(p), right(p), left(q), right(q))
194
- #
195
- # Because of the PST property on x and the invariant x(p) <= x(q) we know that
196
- #
197
- # x(c1) <= x(c2) <= x(c3) <= x(c4)
198
- #
199
- # Similarly, the sets of values x(T(ci)) are pairwise ordered in the same sense.
200
- #
201
- # Suppose further that x(ci) <= x0 <= x(c(i+i)). Then we know several things
202
- #
203
- # - there might be a "winner" (point in Q) in T(ci), perhaps ci itself.
204
- # - there are not any winners in T(cj) for j < i, becasue the x-values there aren't big enough
205
- # - any winner in ck, for k >= i, will be the left of and thus beat any winner in c(k+1), because of the ordering of
206
- # x-values
207
- #
208
- # If x(c4) <= x0 then the rightmost subtree T(c4) is the only one worth checking and we set p = q = c4.
209
- # If x(c1) > x0 then we take i = 0 and ignore the logic on ci in what follows and setting p = q.
210
- #
211
- # Pretend for the moment that we are using a MaxPST instead of a MinmaxPST. Then we can look at y values to learn more.
212
- #
213
- # - if y(ci) >= y0 then we need to search T(ci), so we will update p = ci
214
- # - but if y(ci) < y0 then there are no winners in T(ci) because the y-values are too small.
215
- # - similarly, if y(c(i+i)) >= y0 then we need to search T(c(i+1)). Indeed c(i+1) itself is in Q and beats any winner in
216
- # subtrees further to the right
217
- # - so, let k > i be minimal such that y(ck) >= y0, if there is any. Note that ck is itself a winner. Then
218
- # - if y(ci) >= y0,
219
- # - set p = ci, and q = ck (or q = ci if there is no such k)
220
- # - otherwise (T(ci) has no winners because its y-values are too small)
221
- # - if k is defined set p = q = ck. Otherwise HALT (there are no more winners)
222
- #
223
- # But we are working with a MinmaxPST rather than a MaxPST, so we have to work harder. If c1, ..., c4 (the children of p
224
- # and q) are in a "max-level" of the tree - that is, an even level - then the logic above still applies. But if they are
225
- # at a min level things are trickier and we need to go another layer down.
226
- #
227
- # The paper knows that we need to look a further layer down, but the logic is too simplistic. It looks at cj for j > i and
228
- # checks if cj or either of its children are in Q. But that's not good enough. For the same reason that in a MaxPST we may
229
- # need to explore below T(ci) even if ci isn't in Q, we may need to decend through one of the grandchilden of p or q even
230
- # if that grandchild isn't in Q.
231
- #
232
- # Getting a bit handwavey especially over what happens near the leaves...
233
- #
234
- # Consider the children d1, d2, ..., dm, of ci, ..., c4 (and so grandchildren of p and q). They are at a max-level and so
235
- # the logic described applies to the dk. If ci happens to be a winner we can set p = ci and work out what to do with q by
236
- # looking at the children of c(i+1), ..., c4. Otherwise we look at all the dj values (up to 8 of them), apply the logic
237
- # above to work out that we want to head for, say, p = ds and q = dt, and in this cycle update p = parent(ds), q =
238
- # parent(dt). (We also need to submit the values c(i+1)..c4 to UpdateLeftmost.)
239
- #
240
- # In other words, we can use the MaxPST logic on d1,...,dm to decide where we need to go, and then step to the relevant
241
- # parents among the cj.
242
-
243
- c = [left(p), right(p), left(q), right(q)]
244
- if level.odd?
245
- # the elements of c are at an even level, and hence their y values are maxima for the subtrees. We can learn what we
246
- # need to know from them
247
- p, q = determine_goal_nodes.call(c)
248
- if p && !q
249
- # byebug
250
- # determine_goal_nodes.call(c)
251
- raise 'bad logic'
252
- end
253
- else
254
- # They are at an odd level and so aren't helpful in working out what to do next: we look at their children, which are in
255
- # a max-level. We need to check the elements of c against best since we are otherwise ignoring them.
256
- c.each { |n| update_leftmost.call(n) }
257
-
258
- d = c.map { [left(_1), right(_1)]}.flatten.select { |n| n <= @size }
259
-
260
- # Note that we are jumping down two levels here!
261
- p, q = determine_goal_nodes.call(d)
262
- if p && !q
263
- # byebug
264
- # determine_goal_nodes.call(c)
265
- raise 'bad logic'
266
- end
267
-
268
- p
269
- end
270
-
271
- return best unless p # nothing more to do
272
- end
273
- end
274
- end
275
- update_leftmost.call(p)
276
- update_leftmost.call(q)
277
- best
278
- end
279
-
280
- # Let Q be the "three-sided query range" [x0, x1] X [y0, infty) and let P_Q be P \intersect Q.
281
- #
282
- # If P_Q is empty then p* = (infty, -infty).
283
- # Otherwise, p* is the point in P_Q with maximal y value.
284
- #
285
- # This method returns p*
286
- # def highest_3_sided_up(x0, x1, y0)
287
- # best = Pair.new(INFINITY, -INFINITY)
288
-
289
- # in_q = lambda do |pair|
290
- # pair.x >= x0 && pair.x <= x1 && pair.y >= y0
291
- # end
292
-
293
- # # From the paper:
294
- # #
295
- # # takes as input a point t and does the following: if t \in Q and y(t) > y(best) then it assignes best = t
296
- # #
297
- # # Note that the paper identifies a node in the tree with its value. We need to grab the correct node.
298
- # #
299
- # # The algorithm is complicated. From the paper:
300
- # #
301
- # # Since Q is bounded by two vertical sides, we use four index variables p, p', q and q' to guide the search path. In addition,
302
- # # we use four bits L, L', R and R'; these correspond to the subtrees of T rooted at the nodes p, p', q, and q', respectively;
303
- # # if a bit is equal to one, then the corresonding node is referred to as an _active node_ (for example, if L = 1 then p is an
304
- # # active node), and the subtree rooted at that node may contain a candidate point for p*. So the search is required to be
305
- # # performed in the subtree rooted at all active nodes. More formally, at any instant of time the variables satisfy the folling
306
- # # invariants:
307
- # #
308
- # # - If L = 1 the x(p) < x0.
309
- # # - If L' = 1 then x0 <= x(p') <= x1.
310
- # # - If R = 1 then x(q) > x1.
311
- # # - If R' = 1 then x0 <= x(q') <= x1.
312
- # # - If L' = 1 and R' = 1 then x(p') <= x(q').
313
- # # - If P_Q is non-empty then p* = best or p* is in the subtree rooted at any one of the active nodes.
314
- # #
315
- # # There are more details in the paper
316
- # update_highest = lambda do |node|
317
- # t = val_at(node)
318
- # if in_q.call(t) && t.y > best.y
319
- # best = t
320
- # end
321
- # end
322
-
323
- # ex_update_highest = lambda do |node|
324
- # update_highest.call(node)
325
- # update_highest.call(left(node)) unless leaf?(node)
326
- # update_highest.call(right(node)) unless one_child?(node)
327
- # end
328
-
329
- # if val_at(root).x < x0
330
- # p = root
331
- # l = true
332
- # l_prime = r = r_prime = false
333
- # elsif val_at(root).x < x1
334
- # p_prime = root
335
- # l_prime = true
336
- # l = r = r_prime = false
337
- # else
338
- # q = root
339
- # r = true
340
- # l = l_prime = r_prime = false
341
- # end
342
-
343
- # set_z = lambda do
344
- # r = []
345
- # r << p if l
346
- # r << p_prime if l_prime
347
- # r << q if r
348
- # r << q_prime if r_primg
349
- # r
350
- # end
351
-
352
- # check_left = lambda do
353
- # if leaf?(p)
354
- # l = false
355
- # elsif one_child?(p)
356
- # p_l_x = val_at(left(p))
357
- # if x0 <= p_l_x && p_l_x <= x1
358
- # update_highest.call(left(p))
359
- # if l_prime && r_prime
360
- # ex_update_highest.call(p_prime)
361
- # elsif l_prime
362
- # q_prime = p_prime
363
- # r_prime = true
364
- # end
365
- # p_prime = left(p)
366
- # l_prime = true
367
- # l = false
368
- # elsif p_l_x < x0
369
- # p = left(p)
370
- # else
371
- # q = left(p)
372
- # r = true
373
- # l = false
374
- # end
375
- # else
376
- # # p has two children
377
-
378
- # end
379
-
380
- # while l || l_prime || r || r_prime
381
- # z_star = set_z.call.min_by(4) { level(_1) }
382
- # if z_star.include? p_prime
383
- # check_left_in(p_prime)
384
- # elsif z_star.include? q_prime
385
- # check_right_in(q_prime)
386
- # elsif z_star.include? p
387
- # check_left(p)
388
- # else
389
- # check_right(q)
390
- # end
391
- # end
392
- # end
393
-
394
- # Find the "highest" (max-y) point that is "northeast" of (x, y).
395
- #
396
- # That is, the point p* in Q = [x, infty) X [y, infty) with the largest y value, or (infty, -infty) if there is no point in that
397
- # quadrant.
398
- #
399
- # Algorithm is from De et al. section 3.1
400
- def highest_ne(x0, y0)
401
- raise "Write me"
402
- # From the paper:
403
- #
404
- # The algorithm uses two variables best and p, which satisfy the following invariant
405
- #
406
- # - If Q intersect P is nonempty then p* in {best} union T_p
407
- # - If Q intersect P is empty then p* = best
408
- #
409
- # Here, P is the set of points in our data structure and T_p is the subtree rooted at p
410
- best = Pair.new(INFINITY, -INFINITY)
411
- p = root # root of the whole tree AND the pair stored there
412
-
413
- in_q = lambda do |pair|
414
- pair.x >= x0 && pair.y >= y0
415
- end
416
-
417
- # From the paper:
418
- #
419
- # takes as input a point t and does the following: if t \in Q and y(t) > y(best) then it assignes best = t
420
- #
421
- # Note that the paper identifies a node in the tree with its value. We need to grab the correct node.
422
- update_highest = lambda do |node|
423
- t = val_at(node)
424
- if in_q.call(t) && t.y > best.y
425
- best = t
426
- end
427
- end
428
-
429
- # We could make this code more efficient. But since we only have O(log n) steps we won't actually gain much so let's keep it
430
- # readable and close to the paper's pseudocode for now.
431
- until leaf?(p)
432
- p_val = val_at(p)
433
- if in_q.call(p_val)
434
- # p \in Q and nothing in its subtree can beat it because of the max-heap
435
- update_highest.call(p)
436
- return best
437
-
438
- # p = left(p) <- from paper
439
- elsif p_val.y < y0
440
- # p is too low for Q, so the entire subtree is too low as well
441
- return best
442
-
443
- # p = left(p)
444
- elsif one_child?(p)
445
- # With just one child we need to check it
446
- p = left(p)
447
- elsif val_at(right(p)).x <= x0
448
- # right(p) might be in Q, but nothing in the left subtree can be, by the PST property on x.
449
- p = right(p)
450
- elsif val_at(left(p)).x >= x0
451
- # Both children are in Q, so try the higher of them. Note that nothing in either subtree will beat this one.
452
- higher = left(p)
453
- if val_at(right(p)).y > val_at(left(p)).y
454
- higher = right(p)
455
- end
456
- p = higher
457
- elsif val_at(right(p)).y < y0
458
- # Nothing in the right subtree is in Q, but maybe we'll find something in the left
459
- p = left(p)
460
- else
461
- # At this point we know that right(p) \in Q so we need to check it. Nothing in its subtree can beat it so we don't need to
462
- # look there. But there might be something better in the left subtree.
463
- update_highest.call(right(p))
464
- p = left(p)
465
- end
466
- end
467
- update_highest.call(p) # try the leaf
468
- best
469
- end
470
-
471
- # O(n log^2 n)
472
- private def construct_pst
473
- # We follow the algorithm in [3]. Indexing is from 1 there and we follow that here. The algorithm is almost exactly the same as
474
- # for the (max) PST.
475
- h = Math.log2(@size).floor
476
- a = @size - (2**h - 1) # the paper calls it A
477
- sort_subarray(1, @size)
478
- level = 0 # TODO: isn't level always equal to i in the loop?
479
-
480
- (0...h).each do |i|
481
- sense = level.even? ? :max : :min
482
- pow_of_2 = 2**i
483
-
484
- k = a / (2**(h - i))
485
- k1 = 2**(h + 1 - i) - 1
486
- k2 = (1 - k) * 2**(h - i) - 1 + a
487
- k3 = 2**(h - i) - 1
488
- (1..k).each do |j|
489
- l = index_with_extremal_y_in(pow_of_2 + (j - 1) * k1, pow_of_2 + j * k1 - 1, sense:)
490
- swap(l, pow_of_2 + j - 1)
491
- end
492
-
493
- if k < pow_of_2
494
- l = index_with_extremal_y_in(pow_of_2 + k * k1, pow_of_2 + k * k1 + k2 - 1, sense:)
495
- swap(l, pow_of_2 + k)
496
-
497
- m = pow_of_2 + k * k1 + k2
498
- (1..(pow_of_2 - k - 1)).each do |j|
499
- l = index_with_extremal_y_in(m + (j - 1) * k3, m + j * k3 - 1, sense:)
500
- swap(l, pow_of_2 + k + j)
501
- end
502
- end
503
- sort_subarray(2 * pow_of_2, @size)
504
- level += 1
505
- end
506
- end
507
-
508
- ########################################
509
- # Indexing the data structure as though it were from 1, even though the underlying @data is indexed from zero.
510
-
511
- # First element and root of the tree structure
512
- private def root
513
- 1
514
- end
515
-
516
- private def val_at(idx)
517
- @data[idx - 1]
518
- end
519
-
520
- # Indexing is from 1
521
- private def parent(i)
522
- i >> 1
523
- end
524
-
525
- private def left(i)
526
- i << 1
527
- end
528
-
529
- private def right(i)
530
- 1 + (i << 1)
531
- end
532
-
533
- private def leaf?(i)
534
- left(i) > @size
535
- end
536
-
537
- private def one_child?(i)
538
- left(i) <= @size && right(i) > @size
539
- end
540
-
541
- private def swap(index1, index2)
542
- return if index1 == index2
543
-
544
- @data[index1 - 1], @data[index2 - 1] = @data[index2 - 1], @data[index1 - 1]
545
- end
546
-
547
- private def level(i)
548
- count = 0
549
- while i > root
550
- i >>= 1
551
- count += 1
552
- end
553
- count
554
- end
555
-
556
- # The index in @data[l..r] having the largest/smallest value for y
557
- # The sense argument should be :min or :max
558
- private def index_with_extremal_y_in(l, r, sense:)
559
- return nil if r < l
560
-
561
- case sense
562
- when :min
563
- (l..r).min_by { |idx| val_at(idx).y }
564
- when :max
565
- (l..r).max_by { |idx| val_at(idx).y }
566
- else
567
- raise "Bad comparison sense #{sense}"
568
- end
569
- end
570
-
571
- # Sort the subarray @data[l..r]. This is much faster than a Ruby-layer heapsort because it is mostly happening in C.
572
- private def sort_subarray(l, r)
573
- # heapsort_subarray(l, r)
574
- return if l == r # 1-array already sorted!
575
-
576
- l -= 1
577
- r -= 1
578
- @data[l..r] = @data[l..r].sort_by(&:x)
579
- end
580
-
581
- ########################################
582
- # Debugging support
583
- #
584
- # These methods are not written for speed
585
-
586
- # Check that our data satisfies the requirements of a Priority Search Tree:
587
- # - max-heap in y
588
- # - all the x values in the left subtree are less than all the x values in the right subtree
589
- def verify_properties
590
- # It's a min-max heap in y
591
- (2..@size).each do |node|
592
- level = Math.log2(node).floor
593
- parent_level = level - 1
594
-
595
- _, _, min_y, max_y = minmax_in_subtree(node)
596
- parent_y = val_at(parent(node)).y
597
-
598
- it_is_fine = if parent_level.even?
599
- # max!
600
- parent_y > max_y
601
- else
602
- parent_y < min_y
603
- end
604
-
605
- raise "Heap property violated at child #{node}" unless it_is_fine
606
- end
607
-
608
- # Left subtree has x values less than all of the right subtree
609
- (1..@size).each do |node|
610
- next if right(node) >= @size
611
-
612
- left_max = max_x_in_subtree(left(node))
613
- right_min = min_x_in_subtree(right(node))
614
-
615
- raise "Left-right property of x-values violated at #{node}" unless left_max < right_min
616
- end
617
-
618
- nil
619
- end
620
-
621
- private def max_x_in_subtree(root)
622
- minmax_in_subtree(root)[1]
623
- end
624
-
625
- private def min_x_in_subtree(root)
626
- minmax_in_subtree(root)[0]
627
- end
628
-
629
- # Return min_x, max_x, min_y, max_y in subtree rooted at and including root
630
- private def minmax_in_subtree(root)
631
- @minmax_vals ||= []
632
- @minmax_vals[root] ||= calc_minmax_at(root).freeze
633
- end
634
-
635
- # No memoization
636
- private def calc_minmax_at(root)
637
- return [INFINITY, -INFINITY, INFINITY, -INFINITY] if root > @size
638
-
639
- pair = val_at(root)
640
-
641
- return [pair.x, pair.x, pair.y, pair.y] if leaf?(root)
642
-
643
- left = left(root)
644
- left_min_max = minmax_in_subtree(left)
645
- return left_min_max if one_child?(root)
646
-
647
- right = right(root)
648
- right_min_max = minmax_in_subtree(right)
649
-
650
- [
651
- [pair.x, left_min_max[0], right_min_max[0]].min,
652
- [pair.x, left_min_max[1], right_min_max[1]].max,
653
- [pair.y, left_min_max[2], right_min_max[2]].min,
654
- [pair.y, left_min_max[3], right_min_max[3]].max
655
- ]
656
- end
657
-
658
- private def output_quasi_dot
659
- (2..@size).to_a.reverse.map do |node|
660
- "#{val_at(parent(node)).fmt} -- #{val_at(node).fmt}"
661
- end.join("\n")
662
- end
663
-
664
- private def pair_to_s
665
- end
666
-
667
- ########################################
668
- # Dead code
669
-
670
- end