data_modeler 1.0.1 → 1.0.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +4 -4
- data/lib/data_modeler/version.rb +1 -1
- metadata +1 -1
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 1aa7bca947d38ae6dbe7f68f157fde886eaecc43
|
4
|
+
data.tar.gz: 892e6adc2270f574124950df2ff39bc5fe5a3fa5
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 6cbb4bfe5ce7ca9aafb61eb78f9d85021a36c0f43987f0c638358f67b5baed1c30ad2e15fb20ae4d1b59ca7888e15a8974418f077df3770f330ada0a92ba3738
|
7
|
+
data.tar.gz: 3bb014b31c5b82f01411448d2759fe10032a7031921aed0d0fb91bd6ec29ae7222f18beb761aa23cb08f77b5fa1df121d90682937c5a6ab43b325dcf6a46fc5e
|
data/README.md
CHANGED
@@ -7,7 +7,7 @@
|
|
7
7
|
[](https://codeclimate.com/github/giuse/data_modeler)
|
8
8
|
|
9
9
|
|
10
|
-
**Using machine learning, create generative models based on your data alone.
|
10
|
+
**Using machine learning, create generative models based on your data alone.
|
11
11
|
Applications span from prediction to imputation and compression.**
|
12
12
|
|
13
13
|
|
@@ -74,7 +74,7 @@ If you don't work with time series, just set them to [1,0,0], use a line counter
|
|
74
74
|
- tspread: time spread between the data lines considered in the point above. For example, if the number is 2, then the data lines considered will have (at least) 2 time (units) between each other.
|
75
75
|
- look_ahead: span between the most recent input considered and the target to be learned. For example, if the number is 5, then the target will be constructed from a data line which is (at least) 5 time (units) later than the most recent input.
|
76
76
|
|
77
|
-
Example configurations
|
77
|
+
*Example configurations:*
|
78
78
|
|
79
79
|
- ninput_points = 1, tspread = 0, look_ahead = 0 -> build input from one line, no spreading, predict results in same line. This is the basic configuration allowing same-timestep prediction, e.g. for static modeling or simple data imputation.
|
80
80
|
- ninput_points = 4, tspread = 7, look_ahead = 7 -> hypothesize the unit of the column `time` to be days: build input from 4 lines spanning 21 days at one-week intervals (+ current), then use it to learn to predict one week ahead. This allows to train a proper time-ahead predictor, which will estimate the target at a constant one-week ahead interval.
|
@@ -82,10 +82,10 @@ Example configurations:
|
|
82
82
|
|
83
83
|
Important: from each line, only the data coming from the listed input time series is considered for input, while the target time series list is used to construct the output.
|
84
84
|
|
85
|
-
Example inputs and targets
|
85
|
+
*Example inputs and targets*, considering `t0` the "current" time for a given iteration:
|
86
86
|
|
87
87
|
- ninput_points = 1, tspread = 0, look_ahead = 0, input_series = [s1, s4], targets = [s3]: inputs -> [s1t0, s2t0], targets = [s3t0]
|
88
|
-
- ninput_points = 4, tspread = 7, look_ahead = 7, input_series = [s1, s4], targets = [s3, s5]: inputs -> [s1t-21, s2t-21, s1t-14, s2t-14, s1t-7, s2t-7, s1t0, s2t0], targets = [
|
88
|
+
- ninput_points = 4, tspread = 7, look_ahead = 7, input_series = [s1, s4], targets = [s3, s5]: inputs -> [s1t-21, s2t-21, s1t-14, s2t-14, s1t-7, s2t-7, s1t0, s2t0], targets = [s3t7, s5t7]
|
89
89
|
|
90
90
|
|
91
91
|
## Contributing
|
data/lib/data_modeler/version.rb
CHANGED