data_modeler 0.1.0 → 0.1.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA1:
3
- metadata.gz: 2b665a6495480b44b7d337d0a1acf6a7ad826262
4
- data.tar.gz: 85ab09bec546d8bb18b5f3c0ac3f0a48b926cd86
3
+ metadata.gz: 3daf6a98719d10349658f22bda03ae9763dfe2fd
4
+ data.tar.gz: e7ce8d15928b20dbfda50ea2fafc910bb4f43451
5
5
  SHA512:
6
- metadata.gz: 05d5e05210191c51be3b50fe1db36787d8db0ab6659cdf902d6b41f8d3d86155afb39f714b1a843321a4c39fdd967b3dfc050f0caccebe574301fc281c450e96
7
- data.tar.gz: 5b565eb79f326a0e169a496d12e9b98a8b432bc23caa67df74ac0d03ebeb7772ead78840fb982e0b3bb8e1ffccb503e13a623a6eee9b335f0ffef125d6286091
6
+ metadata.gz: 8a8135391faa041a1ac876c77f06add9311a9c58b0a300d774b28cff0bb9a7ce6e27d11e7bdcf1f085e545f755b82580b38eecf0a898ee29027c376abc95c289
7
+ data.tar.gz: dfaad0abc476b8cee5b357a319be2427b97fe6e69ca10cd7a304ac7993b65df936801ea4df78860478780c9946f42a57629515d40d102bdceaf01161e472fe50
@@ -1,7 +1,8 @@
1
1
 
2
- # Create complex inputs and targets for the model from the given data
3
- # @note checks to validate if enough data is present (given ntimes, tspread
4
- # and look_ahead) should be done on the caller (typically DatasetGen)
2
+ # Build complex inputs and targets from the data to train the model.
3
+ #
4
+ # @note checks to validate if enough data is present (given `ntimes`, `tspread`
5
+ # and `look_ahead`) should be done on the caller (typically `DatasetGen`)
5
6
  class DataModeler::Dataset
6
7
 
7
8
  attr_reader :data, :input_series, :target_series, :first_idx, :end_idx,
@@ -1,11 +1,12 @@
1
1
 
2
- # Create train and test datasets for the training.
3
- # @note: this diagram should help understanding how it works
4
- # ----------------------------------------> data (time)
5
- # v- this is the input+look_ahead window for first training target
6
- # |win|train1|t1| -> train starts after window, test after training
7
- # |train2|t2| -> train starts after window + 1 tset
8
- # |train3|t3| -> train starts after window + 2 tset
2
+ # Build train and test datasets for each run of the training.
3
+ #
4
+ # This diagram should help understanding how it works
5
+ # (win is the input+look_ahead window for first training target)
6
+ # ----------------------------------------> data (time)
7
+ # |win|train1|t1| -> train starts after window, test after training
8
+ # |train2|t2| -> train starts after window + 1 tset
9
+ # |train3|t3| -> train starts after window + 2 tset
9
10
  # Note how the test sets line up. This allows the testing results plots
10
11
  # to be continuous, no model is tested on data on which *itself* has been
11
12
  # trained, and all data is used multiple times
@@ -1,5 +1,5 @@
1
1
  # Main gem module
2
2
  module DataModeler
3
3
  # Version number
4
- VERSION = "0.1.0"
4
+ VERSION = "0.1.1"
5
5
  end
metadata CHANGED
@@ -1,7 +1,7 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: data_modeler
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.1.0
4
+ version: 0.1.1
5
5
  platform: ruby
6
6
  authors:
7
7
  - Giuseppe Cuccu