d3_rails 2.10.3 → 3.0.0

Sign up to get free protection for your applications and to get access to all the features.
Files changed (47) hide show
  1. data/.DS_Store +0 -0
  2. data/README.md +11 -39
  3. data/lib/.DS_Store +0 -0
  4. data/lib/d3_rails/.DS_Store +0 -0
  5. data/lib/d3_rails/version.rb +1 -1
  6. data/vendor/.DS_Store +0 -0
  7. data/vendor/assets/.DS_Store +0 -0
  8. data/vendor/assets/javascripts/.DS_Store +0 -0
  9. data/vendor/assets/javascripts/d3.js +1 -4765
  10. data/vendor/assets/javascripts/d3.min.js +1 -0
  11. data/vendor/assets/javascripts/{d3.v2.js → d3.v3.js} +5585 -4802
  12. data/vendor/assets/javascripts/d3.v3.min.js +4 -0
  13. data/vendor/assets/stylesheets/.DS_Store +0 -0
  14. metadata +11 -42
  15. data/vendor/assets/javascripts/LICENSE.txt +0 -26
  16. data/vendor/assets/javascripts/colorbrewer.js +0 -32
  17. data/vendor/assets/javascripts/d3.chart.js +0 -984
  18. data/vendor/assets/javascripts/d3.geo.js +0 -938
  19. data/vendor/assets/javascripts/d3.geom.js +0 -835
  20. data/vendor/assets/javascripts/d3.layout.js +0 -1882
  21. data/vendor/assets/javascripts/d3.time.js +0 -726
  22. data/vendor/assets/javascripts/d3.v2.min.js +0 -4
  23. data/vendor/assets/javascripts/d3_csv.js +0 -92
  24. data/vendor/assets/javascripts/d3_rails.js +0 -1
  25. data/vendor/assets/javascripts/science.js +0 -225
  26. data/vendor/assets/javascripts/science.lin.js +0 -27
  27. data/vendor/assets/javascripts/science.stats.js +0 -720
  28. data/vendor/assets/stylesheets/LICENSE.txt +0 -38
  29. data/vendor/assets/stylesheets/azimuthal.css +0 -21
  30. data/vendor/assets/stylesheets/box.css +0 -4
  31. data/vendor/assets/stylesheets/bubble.css +0 -8
  32. data/vendor/assets/stylesheets/bullet.css +0 -10
  33. data/vendor/assets/stylesheets/bundle-radial.css +0 -9
  34. data/vendor/assets/stylesheets/bundle-treemap.css +0 -14
  35. data/vendor/assets/stylesheets/button.css +0 -35
  36. data/vendor/assets/stylesheets/calendar.css +0 -16
  37. data/vendor/assets/stylesheets/cartogram.css +0 -20
  38. data/vendor/assets/stylesheets/chord.css +0 -9
  39. data/vendor/assets/stylesheets/choropleth.css +0 -16
  40. data/vendor/assets/stylesheets/clock.css +0 -23
  41. data/vendor/assets/stylesheets/cluster.css +0 -15
  42. data/vendor/assets/stylesheets/colorbrewer.css +0 -1327
  43. data/vendor/assets/stylesheets/d3_rails.css +0 -6
  44. data/vendor/assets/stylesheets/force.css +0 -9
  45. data/vendor/assets/stylesheets/horizon.css +0 -9
  46. data/vendor/assets/stylesheets/kde.css +0 -9
  47. data/vendor/assets/stylesheets/line.css +0 -22
@@ -1,835 +0,0 @@
1
- (function(){d3.geom = {};
2
- /**
3
- * Computes a contour for a given input grid function using the <a
4
- * href="http://en.wikipedia.org/wiki/Marching_squares">marching
5
- * squares</a> algorithm. Returns the contour polygon as an array of points.
6
- *
7
- * @param grid a two-input function(x, y) that returns true for values
8
- * inside the contour and false for values outside the contour.
9
- * @param start an optional starting point [x, y] on the grid.
10
- * @returns polygon [[x1, y1], [x2, y2], …]
11
- */
12
- d3.geom.contour = function(grid, start) {
13
- var s = start || d3_geom_contourStart(grid), // starting point
14
- c = [], // contour polygon
15
- x = s[0], // current x position
16
- y = s[1], // current y position
17
- dx = 0, // next x direction
18
- dy = 0, // next y direction
19
- pdx = NaN, // previous x direction
20
- pdy = NaN, // previous y direction
21
- i = 0;
22
-
23
- do {
24
- // determine marching squares index
25
- i = 0;
26
- if (grid(x-1, y-1)) i += 1;
27
- if (grid(x, y-1)) i += 2;
28
- if (grid(x-1, y )) i += 4;
29
- if (grid(x, y )) i += 8;
30
-
31
- // determine next direction
32
- if (i === 6) {
33
- dx = pdy === -1 ? -1 : 1;
34
- dy = 0;
35
- } else if (i === 9) {
36
- dx = 0;
37
- dy = pdx === 1 ? -1 : 1;
38
- } else {
39
- dx = d3_geom_contourDx[i];
40
- dy = d3_geom_contourDy[i];
41
- }
42
-
43
- // update contour polygon
44
- if (dx != pdx && dy != pdy) {
45
- c.push([x, y]);
46
- pdx = dx;
47
- pdy = dy;
48
- }
49
-
50
- x += dx;
51
- y += dy;
52
- } while (s[0] != x || s[1] != y);
53
-
54
- return c;
55
- };
56
-
57
- // lookup tables for marching directions
58
- var d3_geom_contourDx = [1, 0, 1, 1,-1, 0,-1, 1,0, 0,0,0,-1, 0,-1,NaN],
59
- d3_geom_contourDy = [0,-1, 0, 0, 0,-1, 0, 0,1,-1,1,1, 0,-1, 0,NaN];
60
-
61
- function d3_geom_contourStart(grid) {
62
- var x = 0,
63
- y = 0;
64
-
65
- // search for a starting point; begin at origin
66
- // and proceed along outward-expanding diagonals
67
- while (true) {
68
- if (grid(x,y)) {
69
- return [x,y];
70
- }
71
- if (x === 0) {
72
- x = y + 1;
73
- y = 0;
74
- } else {
75
- x = x - 1;
76
- y = y + 1;
77
- }
78
- }
79
- }
80
- /**
81
- * Computes the 2D convex hull of a set of points using Graham's scanning
82
- * algorithm. The algorithm has been implemented as described in Cormen,
83
- * Leiserson, and Rivest's Introduction to Algorithms. The running time of
84
- * this algorithm is O(n log n), where n is the number of input points.
85
- *
86
- * @param vertices [[x1, y1], [x2, y2], …]
87
- * @returns polygon [[x1, y1], [x2, y2], …]
88
- */
89
- d3.geom.hull = function(vertices) {
90
- if (vertices.length < 3) return [];
91
-
92
- var len = vertices.length,
93
- plen = len - 1,
94
- points = [],
95
- stack = [],
96
- i, j, h = 0, x1, y1, x2, y2, u, v, a, sp;
97
-
98
- // find the starting ref point: leftmost point with the minimum y coord
99
- for (i=1; i<len; ++i) {
100
- if (vertices[i][1] < vertices[h][1]) {
101
- h = i;
102
- } else if (vertices[i][1] == vertices[h][1]) {
103
- h = (vertices[i][0] < vertices[h][0] ? i : h);
104
- }
105
- }
106
-
107
- // calculate polar angles from ref point and sort
108
- for (i=0; i<len; ++i) {
109
- if (i === h) continue;
110
- y1 = vertices[i][1] - vertices[h][1];
111
- x1 = vertices[i][0] - vertices[h][0];
112
- points.push({angle: Math.atan2(y1, x1), index: i});
113
- }
114
- points.sort(function(a, b) { return a.angle - b.angle; });
115
-
116
- // toss out duplicate angles
117
- a = points[0].angle;
118
- v = points[0].index;
119
- u = 0;
120
- for (i=1; i<plen; ++i) {
121
- j = points[i].index;
122
- if (a == points[i].angle) {
123
- // keep angle for point most distant from the reference
124
- x1 = vertices[v][0] - vertices[h][0];
125
- y1 = vertices[v][1] - vertices[h][1];
126
- x2 = vertices[j][0] - vertices[h][0];
127
- y2 = vertices[j][1] - vertices[h][1];
128
- if ((x1*x1 + y1*y1) >= (x2*x2 + y2*y2)) {
129
- points[i].index = -1;
130
- } else {
131
- points[u].index = -1;
132
- a = points[i].angle;
133
- u = i;
134
- v = j;
135
- }
136
- } else {
137
- a = points[i].angle;
138
- u = i;
139
- v = j;
140
- }
141
- }
142
-
143
- // initialize the stack
144
- stack.push(h);
145
- for (i=0, j=0; i<2; ++j) {
146
- if (points[j].index !== -1) {
147
- stack.push(points[j].index);
148
- i++;
149
- }
150
- }
151
- sp = stack.length;
152
-
153
- // do graham's scan
154
- for (; j<plen; ++j) {
155
- if (points[j].index === -1) continue; // skip tossed out points
156
- while (!d3_geom_hullCCW(stack[sp-2], stack[sp-1], points[j].index, vertices)) {
157
- --sp;
158
- }
159
- stack[sp++] = points[j].index;
160
- }
161
-
162
- // construct the hull
163
- var poly = [];
164
- for (i=0; i<sp; ++i) {
165
- poly.push(vertices[stack[i]]);
166
- }
167
- return poly;
168
- }
169
-
170
- // are three points in counter-clockwise order?
171
- function d3_geom_hullCCW(i1, i2, i3, v) {
172
- var t, a, b, c, d, e, f;
173
- t = v[i1]; a = t[0]; b = t[1];
174
- t = v[i2]; c = t[0]; d = t[1];
175
- t = v[i3]; e = t[0]; f = t[1];
176
- return ((f-b)*(c-a) - (d-b)*(e-a)) > 0;
177
- }
178
- // Note: requires coordinates to be counterclockwise and convex!
179
- d3.geom.polygon = function(coordinates) {
180
-
181
- coordinates.area = function() {
182
- var i = 0,
183
- n = coordinates.length,
184
- a = coordinates[n - 1][0] * coordinates[0][1],
185
- b = coordinates[n - 1][1] * coordinates[0][0];
186
- while (++i < n) {
187
- a += coordinates[i - 1][0] * coordinates[i][1];
188
- b += coordinates[i - 1][1] * coordinates[i][0];
189
- }
190
- return (b - a) * .5;
191
- };
192
-
193
- coordinates.centroid = function(k) {
194
- var i = -1,
195
- n = coordinates.length,
196
- x = 0,
197
- y = 0,
198
- a,
199
- b = coordinates[n - 1],
200
- c;
201
- if (!arguments.length) k = -1 / (6 * coordinates.area());
202
- while (++i < n) {
203
- a = b;
204
- b = coordinates[i];
205
- c = a[0] * b[1] - b[0] * a[1];
206
- x += (a[0] + b[0]) * c;
207
- y += (a[1] + b[1]) * c;
208
- }
209
- return [x * k, y * k];
210
- };
211
-
212
- // The Sutherland-Hodgman clipping algorithm.
213
- coordinates.clip = function(subject) {
214
- var input,
215
- i = -1,
216
- n = coordinates.length,
217
- j,
218
- m,
219
- a = coordinates[n - 1],
220
- b,
221
- c,
222
- d;
223
- while (++i < n) {
224
- input = subject.slice();
225
- subject.length = 0;
226
- b = coordinates[i];
227
- c = input[(m = input.length) - 1];
228
- j = -1;
229
- while (++j < m) {
230
- d = input[j];
231
- if (d3_geom_polygonInside(d, a, b)) {
232
- if (!d3_geom_polygonInside(c, a, b)) {
233
- subject.push(d3_geom_polygonIntersect(c, d, a, b));
234
- }
235
- subject.push(d);
236
- } else if (d3_geom_polygonInside(c, a, b)) {
237
- subject.push(d3_geom_polygonIntersect(c, d, a, b));
238
- }
239
- c = d;
240
- }
241
- a = b;
242
- }
243
- return subject;
244
- };
245
-
246
- return coordinates;
247
- };
248
-
249
- function d3_geom_polygonInside(p, a, b) {
250
- return (b[0] - a[0]) * (p[1] - a[1]) < (b[1] - a[1]) * (p[0] - a[0]);
251
- }
252
-
253
- // Intersect two infinite lines cd and ab.
254
- function d3_geom_polygonIntersect(c, d, a, b) {
255
- var x1 = c[0], x2 = d[0], x3 = a[0], x4 = b[0],
256
- y1 = c[1], y2 = d[1], y3 = a[1], y4 = b[1],
257
- x13 = x1 - x3,
258
- x21 = x2 - x1,
259
- x43 = x4 - x3,
260
- y13 = y1 - y3,
261
- y21 = y2 - y1,
262
- y43 = y4 - y3,
263
- ua = (x43 * y13 - y43 * x13) / (y43 * x21 - x43 * y21);
264
- return [x1 + ua * x21, y1 + ua * y21];
265
- }
266
- // Adapted from Nicolas Garcia Belmonte's JIT implementation:
267
- // http://blog.thejit.org/2010/02/12/voronoi-tessellation/
268
- // http://blog.thejit.org/assets/voronoijs/voronoi.js
269
- // See lib/jit/LICENSE for details.
270
-
271
- // Notes:
272
- //
273
- // This implementation does not clip the returned polygons, so if you want to
274
- // clip them to a particular shape you will need to do that either in SVG or by
275
- // post-processing with d3.geom.polygon's clip method.
276
- //
277
- // If any vertices are coincident or have NaN positions, the behavior of this
278
- // method is undefined. Most likely invalid polygons will be returned. You
279
- // should filter invalid points, and consolidate coincident points, before
280
- // computing the tessellation.
281
-
282
- /**
283
- * @param vertices [[x1, y1], [x2, y2], …]
284
- * @returns polygons [[[x1, y1], [x2, y2], …], …]
285
- */
286
- d3.geom.voronoi = function(vertices) {
287
- var polygons = vertices.map(function() { return []; });
288
-
289
- d3_voronoi_tessellate(vertices, function(e) {
290
- var s1,
291
- s2,
292
- x1,
293
- x2,
294
- y1,
295
- y2;
296
- if (e.a === 1 && e.b >= 0) {
297
- s1 = e.ep.r;
298
- s2 = e.ep.l;
299
- } else {
300
- s1 = e.ep.l;
301
- s2 = e.ep.r;
302
- }
303
- if (e.a === 1) {
304
- y1 = s1 ? s1.y : -1e6;
305
- x1 = e.c - e.b * y1;
306
- y2 = s2 ? s2.y : 1e6;
307
- x2 = e.c - e.b * y2;
308
- } else {
309
- x1 = s1 ? s1.x : -1e6;
310
- y1 = e.c - e.a * x1;
311
- x2 = s2 ? s2.x : 1e6;
312
- y2 = e.c - e.a * x2;
313
- }
314
- var v1 = [x1, y1],
315
- v2 = [x2, y2];
316
- polygons[e.region.l.index].push(v1, v2);
317
- polygons[e.region.r.index].push(v1, v2);
318
- });
319
-
320
- // Reconnect the polygon segments into counterclockwise loops.
321
- return polygons.map(function(polygon, i) {
322
- var cx = vertices[i][0],
323
- cy = vertices[i][1];
324
- polygon.forEach(function(v) {
325
- v.angle = Math.atan2(v[0] - cx, v[1] - cy);
326
- });
327
- return polygon.sort(function(a, b) {
328
- return a.angle - b.angle;
329
- }).filter(function(d, i) {
330
- return !i || (d.angle - polygon[i - 1].angle > 1e-10);
331
- });
332
- });
333
- };
334
-
335
- var d3_voronoi_opposite = {"l": "r", "r": "l"};
336
-
337
- function d3_voronoi_tessellate(vertices, callback) {
338
-
339
- var Sites = {
340
- list: vertices
341
- .map(function(v, i) {
342
- return {
343
- index: i,
344
- x: v[0],
345
- y: v[1]
346
- };
347
- })
348
- .sort(function(a, b) {
349
- return a.y < b.y ? -1
350
- : a.y > b.y ? 1
351
- : a.x < b.x ? -1
352
- : a.x > b.x ? 1
353
- : 0;
354
- }),
355
- bottomSite: null
356
- };
357
-
358
- var EdgeList = {
359
- list: [],
360
- leftEnd: null,
361
- rightEnd: null,
362
-
363
- init: function() {
364
- EdgeList.leftEnd = EdgeList.createHalfEdge(null, "l");
365
- EdgeList.rightEnd = EdgeList.createHalfEdge(null, "l");
366
- EdgeList.leftEnd.r = EdgeList.rightEnd;
367
- EdgeList.rightEnd.l = EdgeList.leftEnd;
368
- EdgeList.list.unshift(EdgeList.leftEnd, EdgeList.rightEnd);
369
- },
370
-
371
- createHalfEdge: function(edge, side) {
372
- return {
373
- edge: edge,
374
- side: side,
375
- vertex: null,
376
- "l": null,
377
- "r": null
378
- };
379
- },
380
-
381
- insert: function(lb, he) {
382
- he.l = lb;
383
- he.r = lb.r;
384
- lb.r.l = he;
385
- lb.r = he;
386
- },
387
-
388
- leftBound: function(p) {
389
- var he = EdgeList.leftEnd;
390
- do {
391
- he = he.r;
392
- } while (he != EdgeList.rightEnd && Geom.rightOf(he, p));
393
- he = he.l;
394
- return he;
395
- },
396
-
397
- del: function(he) {
398
- he.l.r = he.r;
399
- he.r.l = he.l;
400
- he.edge = null;
401
- },
402
-
403
- right: function(he) {
404
- return he.r;
405
- },
406
-
407
- left: function(he) {
408
- return he.l;
409
- },
410
-
411
- leftRegion: function(he) {
412
- return he.edge == null
413
- ? Sites.bottomSite
414
- : he.edge.region[he.side];
415
- },
416
-
417
- rightRegion: function(he) {
418
- return he.edge == null
419
- ? Sites.bottomSite
420
- : he.edge.region[d3_voronoi_opposite[he.side]];
421
- }
422
- };
423
-
424
- var Geom = {
425
-
426
- bisect: function(s1, s2) {
427
- var newEdge = {
428
- region: {"l": s1, "r": s2},
429
- ep: {"l": null, "r": null}
430
- };
431
-
432
- var dx = s2.x - s1.x,
433
- dy = s2.y - s1.y,
434
- adx = dx > 0 ? dx : -dx,
435
- ady = dy > 0 ? dy : -dy;
436
-
437
- newEdge.c = s1.x * dx + s1.y * dy
438
- + (dx * dx + dy * dy) * .5;
439
-
440
- if (adx > ady) {
441
- newEdge.a = 1;
442
- newEdge.b = dy / dx;
443
- newEdge.c /= dx;
444
- } else {
445
- newEdge.b = 1;
446
- newEdge.a = dx / dy;
447
- newEdge.c /= dy;
448
- }
449
-
450
- return newEdge;
451
- },
452
-
453
- intersect: function(el1, el2) {
454
- var e1 = el1.edge,
455
- e2 = el2.edge;
456
- if (!e1 || !e2 || (e1.region.r == e2.region.r)) {
457
- return null;
458
- }
459
- var d = (e1.a * e2.b) - (e1.b * e2.a);
460
- if (Math.abs(d) < 1e-10) {
461
- return null;
462
- }
463
- var xint = (e1.c * e2.b - e2.c * e1.b) / d,
464
- yint = (e2.c * e1.a - e1.c * e2.a) / d,
465
- e1r = e1.region.r,
466
- e2r = e2.region.r,
467
- el,
468
- e;
469
- if ((e1r.y < e2r.y) ||
470
- (e1r.y == e2r.y && e1r.x < e2r.x)) {
471
- el = el1;
472
- e = e1;
473
- } else {
474
- el = el2;
475
- e = e2;
476
- }
477
- var rightOfSite = (xint >= e.region.r.x);
478
- if ((rightOfSite && (el.side === "l")) ||
479
- (!rightOfSite && (el.side === "r"))) {
480
- return null;
481
- }
482
- return {
483
- x: xint,
484
- y: yint
485
- };
486
- },
487
-
488
- rightOf: function(he, p) {
489
- var e = he.edge,
490
- topsite = e.region.r,
491
- rightOfSite = (p.x > topsite.x);
492
-
493
- if (rightOfSite && (he.side === "l")) {
494
- return 1;
495
- }
496
- if (!rightOfSite && (he.side === "r")) {
497
- return 0;
498
- }
499
- if (e.a === 1) {
500
- var dyp = p.y - topsite.y,
501
- dxp = p.x - topsite.x,
502
- fast = 0,
503
- above = 0;
504
-
505
- if ((!rightOfSite && (e.b < 0)) ||
506
- (rightOfSite && (e.b >= 0))) {
507
- above = fast = (dyp >= e.b * dxp);
508
- } else {
509
- above = ((p.x + p.y * e.b) > e.c);
510
- if (e.b < 0) {
511
- above = !above;
512
- }
513
- if (!above) {
514
- fast = 1;
515
- }
516
- }
517
- if (!fast) {
518
- var dxs = topsite.x - e.region.l.x;
519
- above = (e.b * (dxp * dxp - dyp * dyp)) <
520
- (dxs * dyp * (1 + 2 * dxp / dxs + e.b * e.b));
521
-
522
- if (e.b < 0) {
523
- above = !above;
524
- }
525
- }
526
- } else /* e.b == 1 */ {
527
- var yl = e.c - e.a * p.x,
528
- t1 = p.y - yl,
529
- t2 = p.x - topsite.x,
530
- t3 = yl - topsite.y;
531
-
532
- above = (t1 * t1) > (t2 * t2 + t3 * t3);
533
- }
534
- return he.side === "l" ? above : !above;
535
- },
536
-
537
- endPoint: function(edge, side, site) {
538
- edge.ep[side] = site;
539
- if (!edge.ep[d3_voronoi_opposite[side]]) return;
540
- callback(edge);
541
- },
542
-
543
- distance: function(s, t) {
544
- var dx = s.x - t.x,
545
- dy = s.y - t.y;
546
- return Math.sqrt(dx * dx + dy * dy);
547
- }
548
- };
549
-
550
- var EventQueue = {
551
- list: [],
552
-
553
- insert: function(he, site, offset) {
554
- he.vertex = site;
555
- he.ystar = site.y + offset;
556
- for (var i=0, list=EventQueue.list, l=list.length; i<l; i++) {
557
- var next = list[i];
558
- if (he.ystar > next.ystar ||
559
- (he.ystar == next.ystar &&
560
- site.x > next.vertex.x)) {
561
- continue;
562
- } else {
563
- break;
564
- }
565
- }
566
- list.splice(i, 0, he);
567
- },
568
-
569
- del: function(he) {
570
- for (var i=0, ls=EventQueue.list, l=ls.length; i<l && (ls[i] != he); ++i) {}
571
- ls.splice(i, 1);
572
- },
573
-
574
- empty: function() { return EventQueue.list.length === 0; },
575
-
576
- nextEvent: function(he) {
577
- for (var i=0, ls=EventQueue.list, l=ls.length; i<l; ++i) {
578
- if (ls[i] == he) return ls[i+1];
579
- }
580
- return null;
581
- },
582
-
583
- min: function() {
584
- var elem = EventQueue.list[0];
585
- return {
586
- x: elem.vertex.x,
587
- y: elem.ystar
588
- };
589
- },
590
-
591
- extractMin: function() {
592
- return EventQueue.list.shift();
593
- }
594
- };
595
-
596
- EdgeList.init();
597
- Sites.bottomSite = Sites.list.shift();
598
-
599
- var newSite = Sites.list.shift(), newIntStar;
600
- var lbnd, rbnd, llbnd, rrbnd, bisector;
601
- var bot, top, temp, p, v;
602
- var e, pm;
603
-
604
- while (true) {
605
- if (!EventQueue.empty()) {
606
- newIntStar = EventQueue.min();
607
- }
608
- if (newSite && (EventQueue.empty()
609
- || newSite.y < newIntStar.y
610
- || (newSite.y == newIntStar.y
611
- && newSite.x < newIntStar.x))) { //new site is smallest
612
- lbnd = EdgeList.leftBound(newSite);
613
- rbnd = EdgeList.right(lbnd);
614
- bot = EdgeList.rightRegion(lbnd);
615
- e = Geom.bisect(bot, newSite);
616
- bisector = EdgeList.createHalfEdge(e, "l");
617
- EdgeList.insert(lbnd, bisector);
618
- p = Geom.intersect(lbnd, bisector);
619
- if (p) {
620
- EventQueue.del(lbnd);
621
- EventQueue.insert(lbnd, p, Geom.distance(p, newSite));
622
- }
623
- lbnd = bisector;
624
- bisector = EdgeList.createHalfEdge(e, "r");
625
- EdgeList.insert(lbnd, bisector);
626
- p = Geom.intersect(bisector, rbnd);
627
- if (p) {
628
- EventQueue.insert(bisector, p, Geom.distance(p, newSite));
629
- }
630
- newSite = Sites.list.shift();
631
- } else if (!EventQueue.empty()) { //intersection is smallest
632
- lbnd = EventQueue.extractMin();
633
- llbnd = EdgeList.left(lbnd);
634
- rbnd = EdgeList.right(lbnd);
635
- rrbnd = EdgeList.right(rbnd);
636
- bot = EdgeList.leftRegion(lbnd);
637
- top = EdgeList.rightRegion(rbnd);
638
- v = lbnd.vertex;
639
- Geom.endPoint(lbnd.edge, lbnd.side, v);
640
- Geom.endPoint(rbnd.edge, rbnd.side, v);
641
- EdgeList.del(lbnd);
642
- EventQueue.del(rbnd);
643
- EdgeList.del(rbnd);
644
- pm = "l";
645
- if (bot.y > top.y) {
646
- temp = bot;
647
- bot = top;
648
- top = temp;
649
- pm = "r";
650
- }
651
- e = Geom.bisect(bot, top);
652
- bisector = EdgeList.createHalfEdge(e, pm);
653
- EdgeList.insert(llbnd, bisector);
654
- Geom.endPoint(e, d3_voronoi_opposite[pm], v);
655
- p = Geom.intersect(llbnd, bisector);
656
- if (p) {
657
- EventQueue.del(llbnd);
658
- EventQueue.insert(llbnd, p, Geom.distance(p, bot));
659
- }
660
- p = Geom.intersect(bisector, rrbnd);
661
- if (p) {
662
- EventQueue.insert(bisector, p, Geom.distance(p, bot));
663
- }
664
- } else {
665
- break;
666
- }
667
- }//end while
668
-
669
- for (lbnd = EdgeList.right(EdgeList.leftEnd);
670
- lbnd != EdgeList.rightEnd;
671
- lbnd = EdgeList.right(lbnd)) {
672
- callback(lbnd.edge);
673
- }
674
- }
675
- /**
676
- * @param vertices [[x1, y1], [x2, y2], …]
677
- * @returns triangles [[[x1, y1], [x2, y2], [x3, y3]], …]
678
- */
679
- d3.geom.delaunay = function(vertices) {
680
- var edges = vertices.map(function() { return []; }),
681
- triangles = [];
682
-
683
- // Use the Voronoi tessellation to determine Delaunay edges.
684
- d3_voronoi_tessellate(vertices, function(e) {
685
- edges[e.region.l.index].push(vertices[e.region.r.index]);
686
- });
687
-
688
- // Reconnect the edges into counterclockwise triangles.
689
- edges.forEach(function(edge, i) {
690
- var v = vertices[i],
691
- cx = v[0],
692
- cy = v[1];
693
- edge.forEach(function(v) {
694
- v.angle = Math.atan2(v[0] - cx, v[1] - cy);
695
- });
696
- edge.sort(function(a, b) {
697
- return a.angle - b.angle;
698
- });
699
- for (var j = 0, m = edge.length - 1; j < m; j++) {
700
- triangles.push([v, edge[j], edge[j + 1]]);
701
- }
702
- });
703
-
704
- return triangles;
705
- };
706
- // Constructs a new quadtree for the specified array of points. A quadtree is a
707
- // two-dimensional recursive spatial subdivision. This implementation uses
708
- // square partitions, dividing each square into four equally-sized squares. Each
709
- // point exists in a unique node; if multiple points are in the same position,
710
- // some points may be stored on internal nodes rather than leaf nodes. Quadtrees
711
- // can be used to accelerate various spatial operations, such as the Barnes-Hut
712
- // approximation for computing n-body forces, or collision detection.
713
- d3.geom.quadtree = function(points, x1, y1, x2, y2) {
714
- var p,
715
- i = -1,
716
- n = points.length;
717
-
718
- // Type conversion for deprecated API.
719
- if (n && isNaN(points[0].x)) points = points.map(d3_geom_quadtreePoint);
720
-
721
- // Allow bounds to be specified explicitly.
722
- if (arguments.length < 5) {
723
- if (arguments.length === 3) {
724
- y2 = x2 = y1;
725
- y1 = x1;
726
- } else {
727
- x1 = y1 = Infinity;
728
- x2 = y2 = -Infinity;
729
-
730
- // Compute bounds.
731
- while (++i < n) {
732
- p = points[i];
733
- if (p.x < x1) x1 = p.x;
734
- if (p.y < y1) y1 = p.y;
735
- if (p.x > x2) x2 = p.x;
736
- if (p.y > y2) y2 = p.y;
737
- }
738
-
739
- // Squarify the bounds.
740
- var dx = x2 - x1,
741
- dy = y2 - y1;
742
- if (dx > dy) y2 = y1 + dx;
743
- else x2 = x1 + dy;
744
- }
745
- }
746
-
747
- // Recursively inserts the specified point p at the node n or one of its
748
- // descendants. The bounds are defined by [x1, x2] and [y1, y2].
749
- function insert(n, p, x1, y1, x2, y2) {
750
- if (isNaN(p.x) || isNaN(p.y)) return; // ignore invalid points
751
- if (n.leaf) {
752
- var v = n.point;
753
- if (v) {
754
- // If the point at this leaf node is at the same position as the new
755
- // point we are adding, we leave the point associated with the
756
- // internal node while adding the new point to a child node. This
757
- // avoids infinite recursion.
758
- if ((Math.abs(v.x - p.x) + Math.abs(v.y - p.y)) < .01) {
759
- insertChild(n, p, x1, y1, x2, y2);
760
- } else {
761
- n.point = null;
762
- insertChild(n, v, x1, y1, x2, y2);
763
- insertChild(n, p, x1, y1, x2, y2);
764
- }
765
- } else {
766
- n.point = p;
767
- }
768
- } else {
769
- insertChild(n, p, x1, y1, x2, y2);
770
- }
771
- }
772
-
773
- // Recursively inserts the specified point p into a descendant of node n. The
774
- // bounds are defined by [x1, x2] and [y1, y2].
775
- function insertChild(n, p, x1, y1, x2, y2) {
776
- // Compute the split point, and the quadrant in which to insert p.
777
- var sx = (x1 + x2) * .5,
778
- sy = (y1 + y2) * .5,
779
- right = p.x >= sx,
780
- bottom = p.y >= sy,
781
- i = (bottom << 1) + right;
782
-
783
- // Recursively insert into the child node.
784
- n.leaf = false;
785
- n = n.nodes[i] || (n.nodes[i] = d3_geom_quadtreeNode());
786
-
787
- // Update the bounds as we recurse.
788
- if (right) x1 = sx; else x2 = sx;
789
- if (bottom) y1 = sy; else y2 = sy;
790
- insert(n, p, x1, y1, x2, y2);
791
- }
792
-
793
- // Create the root node.
794
- var root = d3_geom_quadtreeNode();
795
-
796
- root.add = function(p) {
797
- insert(root, p, x1, y1, x2, y2);
798
- };
799
-
800
- root.visit = function(f) {
801
- d3_geom_quadtreeVisit(f, root, x1, y1, x2, y2);
802
- };
803
-
804
- // Insert all points.
805
- points.forEach(root.add);
806
- return root;
807
- };
808
-
809
- function d3_geom_quadtreeNode() {
810
- return {
811
- leaf: true,
812
- nodes: [],
813
- point: null
814
- };
815
- }
816
-
817
- function d3_geom_quadtreeVisit(f, node, x1, y1, x2, y2) {
818
- if (!f(node, x1, y1, x2, y2)) {
819
- var sx = (x1 + x2) * .5,
820
- sy = (y1 + y2) * .5,
821
- children = node.nodes;
822
- if (children[0]) d3_geom_quadtreeVisit(f, children[0], x1, y1, sx, sy);
823
- if (children[1]) d3_geom_quadtreeVisit(f, children[1], sx, y1, x2, sy);
824
- if (children[2]) d3_geom_quadtreeVisit(f, children[2], x1, sy, sx, y2);
825
- if (children[3]) d3_geom_quadtreeVisit(f, children[3], sx, sy, x2, y2);
826
- }
827
- }
828
-
829
- function d3_geom_quadtreePoint(p) {
830
- return {
831
- x: p[0],
832
- y: p[1]
833
- };
834
- }
835
- })();