d3_rails 2.10.3 → 3.0.0
Sign up to get free protection for your applications and to get access to all the features.
- data/.DS_Store +0 -0
- data/README.md +11 -39
- data/lib/.DS_Store +0 -0
- data/lib/d3_rails/.DS_Store +0 -0
- data/lib/d3_rails/version.rb +1 -1
- data/vendor/.DS_Store +0 -0
- data/vendor/assets/.DS_Store +0 -0
- data/vendor/assets/javascripts/.DS_Store +0 -0
- data/vendor/assets/javascripts/d3.js +1 -4765
- data/vendor/assets/javascripts/d3.min.js +1 -0
- data/vendor/assets/javascripts/{d3.v2.js → d3.v3.js} +5585 -4802
- data/vendor/assets/javascripts/d3.v3.min.js +4 -0
- data/vendor/assets/stylesheets/.DS_Store +0 -0
- metadata +11 -42
- data/vendor/assets/javascripts/LICENSE.txt +0 -26
- data/vendor/assets/javascripts/colorbrewer.js +0 -32
- data/vendor/assets/javascripts/d3.chart.js +0 -984
- data/vendor/assets/javascripts/d3.geo.js +0 -938
- data/vendor/assets/javascripts/d3.geom.js +0 -835
- data/vendor/assets/javascripts/d3.layout.js +0 -1882
- data/vendor/assets/javascripts/d3.time.js +0 -726
- data/vendor/assets/javascripts/d3.v2.min.js +0 -4
- data/vendor/assets/javascripts/d3_csv.js +0 -92
- data/vendor/assets/javascripts/d3_rails.js +0 -1
- data/vendor/assets/javascripts/science.js +0 -225
- data/vendor/assets/javascripts/science.lin.js +0 -27
- data/vendor/assets/javascripts/science.stats.js +0 -720
- data/vendor/assets/stylesheets/LICENSE.txt +0 -38
- data/vendor/assets/stylesheets/azimuthal.css +0 -21
- data/vendor/assets/stylesheets/box.css +0 -4
- data/vendor/assets/stylesheets/bubble.css +0 -8
- data/vendor/assets/stylesheets/bullet.css +0 -10
- data/vendor/assets/stylesheets/bundle-radial.css +0 -9
- data/vendor/assets/stylesheets/bundle-treemap.css +0 -14
- data/vendor/assets/stylesheets/button.css +0 -35
- data/vendor/assets/stylesheets/calendar.css +0 -16
- data/vendor/assets/stylesheets/cartogram.css +0 -20
- data/vendor/assets/stylesheets/chord.css +0 -9
- data/vendor/assets/stylesheets/choropleth.css +0 -16
- data/vendor/assets/stylesheets/clock.css +0 -23
- data/vendor/assets/stylesheets/cluster.css +0 -15
- data/vendor/assets/stylesheets/colorbrewer.css +0 -1327
- data/vendor/assets/stylesheets/d3_rails.css +0 -6
- data/vendor/assets/stylesheets/force.css +0 -9
- data/vendor/assets/stylesheets/horizon.css +0 -9
- data/vendor/assets/stylesheets/kde.css +0 -9
- data/vendor/assets/stylesheets/line.css +0 -22
@@ -1,835 +0,0 @@
|
|
1
|
-
(function(){d3.geom = {};
|
2
|
-
/**
|
3
|
-
* Computes a contour for a given input grid function using the <a
|
4
|
-
* href="http://en.wikipedia.org/wiki/Marching_squares">marching
|
5
|
-
* squares</a> algorithm. Returns the contour polygon as an array of points.
|
6
|
-
*
|
7
|
-
* @param grid a two-input function(x, y) that returns true for values
|
8
|
-
* inside the contour and false for values outside the contour.
|
9
|
-
* @param start an optional starting point [x, y] on the grid.
|
10
|
-
* @returns polygon [[x1, y1], [x2, y2], …]
|
11
|
-
*/
|
12
|
-
d3.geom.contour = function(grid, start) {
|
13
|
-
var s = start || d3_geom_contourStart(grid), // starting point
|
14
|
-
c = [], // contour polygon
|
15
|
-
x = s[0], // current x position
|
16
|
-
y = s[1], // current y position
|
17
|
-
dx = 0, // next x direction
|
18
|
-
dy = 0, // next y direction
|
19
|
-
pdx = NaN, // previous x direction
|
20
|
-
pdy = NaN, // previous y direction
|
21
|
-
i = 0;
|
22
|
-
|
23
|
-
do {
|
24
|
-
// determine marching squares index
|
25
|
-
i = 0;
|
26
|
-
if (grid(x-1, y-1)) i += 1;
|
27
|
-
if (grid(x, y-1)) i += 2;
|
28
|
-
if (grid(x-1, y )) i += 4;
|
29
|
-
if (grid(x, y )) i += 8;
|
30
|
-
|
31
|
-
// determine next direction
|
32
|
-
if (i === 6) {
|
33
|
-
dx = pdy === -1 ? -1 : 1;
|
34
|
-
dy = 0;
|
35
|
-
} else if (i === 9) {
|
36
|
-
dx = 0;
|
37
|
-
dy = pdx === 1 ? -1 : 1;
|
38
|
-
} else {
|
39
|
-
dx = d3_geom_contourDx[i];
|
40
|
-
dy = d3_geom_contourDy[i];
|
41
|
-
}
|
42
|
-
|
43
|
-
// update contour polygon
|
44
|
-
if (dx != pdx && dy != pdy) {
|
45
|
-
c.push([x, y]);
|
46
|
-
pdx = dx;
|
47
|
-
pdy = dy;
|
48
|
-
}
|
49
|
-
|
50
|
-
x += dx;
|
51
|
-
y += dy;
|
52
|
-
} while (s[0] != x || s[1] != y);
|
53
|
-
|
54
|
-
return c;
|
55
|
-
};
|
56
|
-
|
57
|
-
// lookup tables for marching directions
|
58
|
-
var d3_geom_contourDx = [1, 0, 1, 1,-1, 0,-1, 1,0, 0,0,0,-1, 0,-1,NaN],
|
59
|
-
d3_geom_contourDy = [0,-1, 0, 0, 0,-1, 0, 0,1,-1,1,1, 0,-1, 0,NaN];
|
60
|
-
|
61
|
-
function d3_geom_contourStart(grid) {
|
62
|
-
var x = 0,
|
63
|
-
y = 0;
|
64
|
-
|
65
|
-
// search for a starting point; begin at origin
|
66
|
-
// and proceed along outward-expanding diagonals
|
67
|
-
while (true) {
|
68
|
-
if (grid(x,y)) {
|
69
|
-
return [x,y];
|
70
|
-
}
|
71
|
-
if (x === 0) {
|
72
|
-
x = y + 1;
|
73
|
-
y = 0;
|
74
|
-
} else {
|
75
|
-
x = x - 1;
|
76
|
-
y = y + 1;
|
77
|
-
}
|
78
|
-
}
|
79
|
-
}
|
80
|
-
/**
|
81
|
-
* Computes the 2D convex hull of a set of points using Graham's scanning
|
82
|
-
* algorithm. The algorithm has been implemented as described in Cormen,
|
83
|
-
* Leiserson, and Rivest's Introduction to Algorithms. The running time of
|
84
|
-
* this algorithm is O(n log n), where n is the number of input points.
|
85
|
-
*
|
86
|
-
* @param vertices [[x1, y1], [x2, y2], …]
|
87
|
-
* @returns polygon [[x1, y1], [x2, y2], …]
|
88
|
-
*/
|
89
|
-
d3.geom.hull = function(vertices) {
|
90
|
-
if (vertices.length < 3) return [];
|
91
|
-
|
92
|
-
var len = vertices.length,
|
93
|
-
plen = len - 1,
|
94
|
-
points = [],
|
95
|
-
stack = [],
|
96
|
-
i, j, h = 0, x1, y1, x2, y2, u, v, a, sp;
|
97
|
-
|
98
|
-
// find the starting ref point: leftmost point with the minimum y coord
|
99
|
-
for (i=1; i<len; ++i) {
|
100
|
-
if (vertices[i][1] < vertices[h][1]) {
|
101
|
-
h = i;
|
102
|
-
} else if (vertices[i][1] == vertices[h][1]) {
|
103
|
-
h = (vertices[i][0] < vertices[h][0] ? i : h);
|
104
|
-
}
|
105
|
-
}
|
106
|
-
|
107
|
-
// calculate polar angles from ref point and sort
|
108
|
-
for (i=0; i<len; ++i) {
|
109
|
-
if (i === h) continue;
|
110
|
-
y1 = vertices[i][1] - vertices[h][1];
|
111
|
-
x1 = vertices[i][0] - vertices[h][0];
|
112
|
-
points.push({angle: Math.atan2(y1, x1), index: i});
|
113
|
-
}
|
114
|
-
points.sort(function(a, b) { return a.angle - b.angle; });
|
115
|
-
|
116
|
-
// toss out duplicate angles
|
117
|
-
a = points[0].angle;
|
118
|
-
v = points[0].index;
|
119
|
-
u = 0;
|
120
|
-
for (i=1; i<plen; ++i) {
|
121
|
-
j = points[i].index;
|
122
|
-
if (a == points[i].angle) {
|
123
|
-
// keep angle for point most distant from the reference
|
124
|
-
x1 = vertices[v][0] - vertices[h][0];
|
125
|
-
y1 = vertices[v][1] - vertices[h][1];
|
126
|
-
x2 = vertices[j][0] - vertices[h][0];
|
127
|
-
y2 = vertices[j][1] - vertices[h][1];
|
128
|
-
if ((x1*x1 + y1*y1) >= (x2*x2 + y2*y2)) {
|
129
|
-
points[i].index = -1;
|
130
|
-
} else {
|
131
|
-
points[u].index = -1;
|
132
|
-
a = points[i].angle;
|
133
|
-
u = i;
|
134
|
-
v = j;
|
135
|
-
}
|
136
|
-
} else {
|
137
|
-
a = points[i].angle;
|
138
|
-
u = i;
|
139
|
-
v = j;
|
140
|
-
}
|
141
|
-
}
|
142
|
-
|
143
|
-
// initialize the stack
|
144
|
-
stack.push(h);
|
145
|
-
for (i=0, j=0; i<2; ++j) {
|
146
|
-
if (points[j].index !== -1) {
|
147
|
-
stack.push(points[j].index);
|
148
|
-
i++;
|
149
|
-
}
|
150
|
-
}
|
151
|
-
sp = stack.length;
|
152
|
-
|
153
|
-
// do graham's scan
|
154
|
-
for (; j<plen; ++j) {
|
155
|
-
if (points[j].index === -1) continue; // skip tossed out points
|
156
|
-
while (!d3_geom_hullCCW(stack[sp-2], stack[sp-1], points[j].index, vertices)) {
|
157
|
-
--sp;
|
158
|
-
}
|
159
|
-
stack[sp++] = points[j].index;
|
160
|
-
}
|
161
|
-
|
162
|
-
// construct the hull
|
163
|
-
var poly = [];
|
164
|
-
for (i=0; i<sp; ++i) {
|
165
|
-
poly.push(vertices[stack[i]]);
|
166
|
-
}
|
167
|
-
return poly;
|
168
|
-
}
|
169
|
-
|
170
|
-
// are three points in counter-clockwise order?
|
171
|
-
function d3_geom_hullCCW(i1, i2, i3, v) {
|
172
|
-
var t, a, b, c, d, e, f;
|
173
|
-
t = v[i1]; a = t[0]; b = t[1];
|
174
|
-
t = v[i2]; c = t[0]; d = t[1];
|
175
|
-
t = v[i3]; e = t[0]; f = t[1];
|
176
|
-
return ((f-b)*(c-a) - (d-b)*(e-a)) > 0;
|
177
|
-
}
|
178
|
-
// Note: requires coordinates to be counterclockwise and convex!
|
179
|
-
d3.geom.polygon = function(coordinates) {
|
180
|
-
|
181
|
-
coordinates.area = function() {
|
182
|
-
var i = 0,
|
183
|
-
n = coordinates.length,
|
184
|
-
a = coordinates[n - 1][0] * coordinates[0][1],
|
185
|
-
b = coordinates[n - 1][1] * coordinates[0][0];
|
186
|
-
while (++i < n) {
|
187
|
-
a += coordinates[i - 1][0] * coordinates[i][1];
|
188
|
-
b += coordinates[i - 1][1] * coordinates[i][0];
|
189
|
-
}
|
190
|
-
return (b - a) * .5;
|
191
|
-
};
|
192
|
-
|
193
|
-
coordinates.centroid = function(k) {
|
194
|
-
var i = -1,
|
195
|
-
n = coordinates.length,
|
196
|
-
x = 0,
|
197
|
-
y = 0,
|
198
|
-
a,
|
199
|
-
b = coordinates[n - 1],
|
200
|
-
c;
|
201
|
-
if (!arguments.length) k = -1 / (6 * coordinates.area());
|
202
|
-
while (++i < n) {
|
203
|
-
a = b;
|
204
|
-
b = coordinates[i];
|
205
|
-
c = a[0] * b[1] - b[0] * a[1];
|
206
|
-
x += (a[0] + b[0]) * c;
|
207
|
-
y += (a[1] + b[1]) * c;
|
208
|
-
}
|
209
|
-
return [x * k, y * k];
|
210
|
-
};
|
211
|
-
|
212
|
-
// The Sutherland-Hodgman clipping algorithm.
|
213
|
-
coordinates.clip = function(subject) {
|
214
|
-
var input,
|
215
|
-
i = -1,
|
216
|
-
n = coordinates.length,
|
217
|
-
j,
|
218
|
-
m,
|
219
|
-
a = coordinates[n - 1],
|
220
|
-
b,
|
221
|
-
c,
|
222
|
-
d;
|
223
|
-
while (++i < n) {
|
224
|
-
input = subject.slice();
|
225
|
-
subject.length = 0;
|
226
|
-
b = coordinates[i];
|
227
|
-
c = input[(m = input.length) - 1];
|
228
|
-
j = -1;
|
229
|
-
while (++j < m) {
|
230
|
-
d = input[j];
|
231
|
-
if (d3_geom_polygonInside(d, a, b)) {
|
232
|
-
if (!d3_geom_polygonInside(c, a, b)) {
|
233
|
-
subject.push(d3_geom_polygonIntersect(c, d, a, b));
|
234
|
-
}
|
235
|
-
subject.push(d);
|
236
|
-
} else if (d3_geom_polygonInside(c, a, b)) {
|
237
|
-
subject.push(d3_geom_polygonIntersect(c, d, a, b));
|
238
|
-
}
|
239
|
-
c = d;
|
240
|
-
}
|
241
|
-
a = b;
|
242
|
-
}
|
243
|
-
return subject;
|
244
|
-
};
|
245
|
-
|
246
|
-
return coordinates;
|
247
|
-
};
|
248
|
-
|
249
|
-
function d3_geom_polygonInside(p, a, b) {
|
250
|
-
return (b[0] - a[0]) * (p[1] - a[1]) < (b[1] - a[1]) * (p[0] - a[0]);
|
251
|
-
}
|
252
|
-
|
253
|
-
// Intersect two infinite lines cd and ab.
|
254
|
-
function d3_geom_polygonIntersect(c, d, a, b) {
|
255
|
-
var x1 = c[0], x2 = d[0], x3 = a[0], x4 = b[0],
|
256
|
-
y1 = c[1], y2 = d[1], y3 = a[1], y4 = b[1],
|
257
|
-
x13 = x1 - x3,
|
258
|
-
x21 = x2 - x1,
|
259
|
-
x43 = x4 - x3,
|
260
|
-
y13 = y1 - y3,
|
261
|
-
y21 = y2 - y1,
|
262
|
-
y43 = y4 - y3,
|
263
|
-
ua = (x43 * y13 - y43 * x13) / (y43 * x21 - x43 * y21);
|
264
|
-
return [x1 + ua * x21, y1 + ua * y21];
|
265
|
-
}
|
266
|
-
// Adapted from Nicolas Garcia Belmonte's JIT implementation:
|
267
|
-
// http://blog.thejit.org/2010/02/12/voronoi-tessellation/
|
268
|
-
// http://blog.thejit.org/assets/voronoijs/voronoi.js
|
269
|
-
// See lib/jit/LICENSE for details.
|
270
|
-
|
271
|
-
// Notes:
|
272
|
-
//
|
273
|
-
// This implementation does not clip the returned polygons, so if you want to
|
274
|
-
// clip them to a particular shape you will need to do that either in SVG or by
|
275
|
-
// post-processing with d3.geom.polygon's clip method.
|
276
|
-
//
|
277
|
-
// If any vertices are coincident or have NaN positions, the behavior of this
|
278
|
-
// method is undefined. Most likely invalid polygons will be returned. You
|
279
|
-
// should filter invalid points, and consolidate coincident points, before
|
280
|
-
// computing the tessellation.
|
281
|
-
|
282
|
-
/**
|
283
|
-
* @param vertices [[x1, y1], [x2, y2], …]
|
284
|
-
* @returns polygons [[[x1, y1], [x2, y2], …], …]
|
285
|
-
*/
|
286
|
-
d3.geom.voronoi = function(vertices) {
|
287
|
-
var polygons = vertices.map(function() { return []; });
|
288
|
-
|
289
|
-
d3_voronoi_tessellate(vertices, function(e) {
|
290
|
-
var s1,
|
291
|
-
s2,
|
292
|
-
x1,
|
293
|
-
x2,
|
294
|
-
y1,
|
295
|
-
y2;
|
296
|
-
if (e.a === 1 && e.b >= 0) {
|
297
|
-
s1 = e.ep.r;
|
298
|
-
s2 = e.ep.l;
|
299
|
-
} else {
|
300
|
-
s1 = e.ep.l;
|
301
|
-
s2 = e.ep.r;
|
302
|
-
}
|
303
|
-
if (e.a === 1) {
|
304
|
-
y1 = s1 ? s1.y : -1e6;
|
305
|
-
x1 = e.c - e.b * y1;
|
306
|
-
y2 = s2 ? s2.y : 1e6;
|
307
|
-
x2 = e.c - e.b * y2;
|
308
|
-
} else {
|
309
|
-
x1 = s1 ? s1.x : -1e6;
|
310
|
-
y1 = e.c - e.a * x1;
|
311
|
-
x2 = s2 ? s2.x : 1e6;
|
312
|
-
y2 = e.c - e.a * x2;
|
313
|
-
}
|
314
|
-
var v1 = [x1, y1],
|
315
|
-
v2 = [x2, y2];
|
316
|
-
polygons[e.region.l.index].push(v1, v2);
|
317
|
-
polygons[e.region.r.index].push(v1, v2);
|
318
|
-
});
|
319
|
-
|
320
|
-
// Reconnect the polygon segments into counterclockwise loops.
|
321
|
-
return polygons.map(function(polygon, i) {
|
322
|
-
var cx = vertices[i][0],
|
323
|
-
cy = vertices[i][1];
|
324
|
-
polygon.forEach(function(v) {
|
325
|
-
v.angle = Math.atan2(v[0] - cx, v[1] - cy);
|
326
|
-
});
|
327
|
-
return polygon.sort(function(a, b) {
|
328
|
-
return a.angle - b.angle;
|
329
|
-
}).filter(function(d, i) {
|
330
|
-
return !i || (d.angle - polygon[i - 1].angle > 1e-10);
|
331
|
-
});
|
332
|
-
});
|
333
|
-
};
|
334
|
-
|
335
|
-
var d3_voronoi_opposite = {"l": "r", "r": "l"};
|
336
|
-
|
337
|
-
function d3_voronoi_tessellate(vertices, callback) {
|
338
|
-
|
339
|
-
var Sites = {
|
340
|
-
list: vertices
|
341
|
-
.map(function(v, i) {
|
342
|
-
return {
|
343
|
-
index: i,
|
344
|
-
x: v[0],
|
345
|
-
y: v[1]
|
346
|
-
};
|
347
|
-
})
|
348
|
-
.sort(function(a, b) {
|
349
|
-
return a.y < b.y ? -1
|
350
|
-
: a.y > b.y ? 1
|
351
|
-
: a.x < b.x ? -1
|
352
|
-
: a.x > b.x ? 1
|
353
|
-
: 0;
|
354
|
-
}),
|
355
|
-
bottomSite: null
|
356
|
-
};
|
357
|
-
|
358
|
-
var EdgeList = {
|
359
|
-
list: [],
|
360
|
-
leftEnd: null,
|
361
|
-
rightEnd: null,
|
362
|
-
|
363
|
-
init: function() {
|
364
|
-
EdgeList.leftEnd = EdgeList.createHalfEdge(null, "l");
|
365
|
-
EdgeList.rightEnd = EdgeList.createHalfEdge(null, "l");
|
366
|
-
EdgeList.leftEnd.r = EdgeList.rightEnd;
|
367
|
-
EdgeList.rightEnd.l = EdgeList.leftEnd;
|
368
|
-
EdgeList.list.unshift(EdgeList.leftEnd, EdgeList.rightEnd);
|
369
|
-
},
|
370
|
-
|
371
|
-
createHalfEdge: function(edge, side) {
|
372
|
-
return {
|
373
|
-
edge: edge,
|
374
|
-
side: side,
|
375
|
-
vertex: null,
|
376
|
-
"l": null,
|
377
|
-
"r": null
|
378
|
-
};
|
379
|
-
},
|
380
|
-
|
381
|
-
insert: function(lb, he) {
|
382
|
-
he.l = lb;
|
383
|
-
he.r = lb.r;
|
384
|
-
lb.r.l = he;
|
385
|
-
lb.r = he;
|
386
|
-
},
|
387
|
-
|
388
|
-
leftBound: function(p) {
|
389
|
-
var he = EdgeList.leftEnd;
|
390
|
-
do {
|
391
|
-
he = he.r;
|
392
|
-
} while (he != EdgeList.rightEnd && Geom.rightOf(he, p));
|
393
|
-
he = he.l;
|
394
|
-
return he;
|
395
|
-
},
|
396
|
-
|
397
|
-
del: function(he) {
|
398
|
-
he.l.r = he.r;
|
399
|
-
he.r.l = he.l;
|
400
|
-
he.edge = null;
|
401
|
-
},
|
402
|
-
|
403
|
-
right: function(he) {
|
404
|
-
return he.r;
|
405
|
-
},
|
406
|
-
|
407
|
-
left: function(he) {
|
408
|
-
return he.l;
|
409
|
-
},
|
410
|
-
|
411
|
-
leftRegion: function(he) {
|
412
|
-
return he.edge == null
|
413
|
-
? Sites.bottomSite
|
414
|
-
: he.edge.region[he.side];
|
415
|
-
},
|
416
|
-
|
417
|
-
rightRegion: function(he) {
|
418
|
-
return he.edge == null
|
419
|
-
? Sites.bottomSite
|
420
|
-
: he.edge.region[d3_voronoi_opposite[he.side]];
|
421
|
-
}
|
422
|
-
};
|
423
|
-
|
424
|
-
var Geom = {
|
425
|
-
|
426
|
-
bisect: function(s1, s2) {
|
427
|
-
var newEdge = {
|
428
|
-
region: {"l": s1, "r": s2},
|
429
|
-
ep: {"l": null, "r": null}
|
430
|
-
};
|
431
|
-
|
432
|
-
var dx = s2.x - s1.x,
|
433
|
-
dy = s2.y - s1.y,
|
434
|
-
adx = dx > 0 ? dx : -dx,
|
435
|
-
ady = dy > 0 ? dy : -dy;
|
436
|
-
|
437
|
-
newEdge.c = s1.x * dx + s1.y * dy
|
438
|
-
+ (dx * dx + dy * dy) * .5;
|
439
|
-
|
440
|
-
if (adx > ady) {
|
441
|
-
newEdge.a = 1;
|
442
|
-
newEdge.b = dy / dx;
|
443
|
-
newEdge.c /= dx;
|
444
|
-
} else {
|
445
|
-
newEdge.b = 1;
|
446
|
-
newEdge.a = dx / dy;
|
447
|
-
newEdge.c /= dy;
|
448
|
-
}
|
449
|
-
|
450
|
-
return newEdge;
|
451
|
-
},
|
452
|
-
|
453
|
-
intersect: function(el1, el2) {
|
454
|
-
var e1 = el1.edge,
|
455
|
-
e2 = el2.edge;
|
456
|
-
if (!e1 || !e2 || (e1.region.r == e2.region.r)) {
|
457
|
-
return null;
|
458
|
-
}
|
459
|
-
var d = (e1.a * e2.b) - (e1.b * e2.a);
|
460
|
-
if (Math.abs(d) < 1e-10) {
|
461
|
-
return null;
|
462
|
-
}
|
463
|
-
var xint = (e1.c * e2.b - e2.c * e1.b) / d,
|
464
|
-
yint = (e2.c * e1.a - e1.c * e2.a) / d,
|
465
|
-
e1r = e1.region.r,
|
466
|
-
e2r = e2.region.r,
|
467
|
-
el,
|
468
|
-
e;
|
469
|
-
if ((e1r.y < e2r.y) ||
|
470
|
-
(e1r.y == e2r.y && e1r.x < e2r.x)) {
|
471
|
-
el = el1;
|
472
|
-
e = e1;
|
473
|
-
} else {
|
474
|
-
el = el2;
|
475
|
-
e = e2;
|
476
|
-
}
|
477
|
-
var rightOfSite = (xint >= e.region.r.x);
|
478
|
-
if ((rightOfSite && (el.side === "l")) ||
|
479
|
-
(!rightOfSite && (el.side === "r"))) {
|
480
|
-
return null;
|
481
|
-
}
|
482
|
-
return {
|
483
|
-
x: xint,
|
484
|
-
y: yint
|
485
|
-
};
|
486
|
-
},
|
487
|
-
|
488
|
-
rightOf: function(he, p) {
|
489
|
-
var e = he.edge,
|
490
|
-
topsite = e.region.r,
|
491
|
-
rightOfSite = (p.x > topsite.x);
|
492
|
-
|
493
|
-
if (rightOfSite && (he.side === "l")) {
|
494
|
-
return 1;
|
495
|
-
}
|
496
|
-
if (!rightOfSite && (he.side === "r")) {
|
497
|
-
return 0;
|
498
|
-
}
|
499
|
-
if (e.a === 1) {
|
500
|
-
var dyp = p.y - topsite.y,
|
501
|
-
dxp = p.x - topsite.x,
|
502
|
-
fast = 0,
|
503
|
-
above = 0;
|
504
|
-
|
505
|
-
if ((!rightOfSite && (e.b < 0)) ||
|
506
|
-
(rightOfSite && (e.b >= 0))) {
|
507
|
-
above = fast = (dyp >= e.b * dxp);
|
508
|
-
} else {
|
509
|
-
above = ((p.x + p.y * e.b) > e.c);
|
510
|
-
if (e.b < 0) {
|
511
|
-
above = !above;
|
512
|
-
}
|
513
|
-
if (!above) {
|
514
|
-
fast = 1;
|
515
|
-
}
|
516
|
-
}
|
517
|
-
if (!fast) {
|
518
|
-
var dxs = topsite.x - e.region.l.x;
|
519
|
-
above = (e.b * (dxp * dxp - dyp * dyp)) <
|
520
|
-
(dxs * dyp * (1 + 2 * dxp / dxs + e.b * e.b));
|
521
|
-
|
522
|
-
if (e.b < 0) {
|
523
|
-
above = !above;
|
524
|
-
}
|
525
|
-
}
|
526
|
-
} else /* e.b == 1 */ {
|
527
|
-
var yl = e.c - e.a * p.x,
|
528
|
-
t1 = p.y - yl,
|
529
|
-
t2 = p.x - topsite.x,
|
530
|
-
t3 = yl - topsite.y;
|
531
|
-
|
532
|
-
above = (t1 * t1) > (t2 * t2 + t3 * t3);
|
533
|
-
}
|
534
|
-
return he.side === "l" ? above : !above;
|
535
|
-
},
|
536
|
-
|
537
|
-
endPoint: function(edge, side, site) {
|
538
|
-
edge.ep[side] = site;
|
539
|
-
if (!edge.ep[d3_voronoi_opposite[side]]) return;
|
540
|
-
callback(edge);
|
541
|
-
},
|
542
|
-
|
543
|
-
distance: function(s, t) {
|
544
|
-
var dx = s.x - t.x,
|
545
|
-
dy = s.y - t.y;
|
546
|
-
return Math.sqrt(dx * dx + dy * dy);
|
547
|
-
}
|
548
|
-
};
|
549
|
-
|
550
|
-
var EventQueue = {
|
551
|
-
list: [],
|
552
|
-
|
553
|
-
insert: function(he, site, offset) {
|
554
|
-
he.vertex = site;
|
555
|
-
he.ystar = site.y + offset;
|
556
|
-
for (var i=0, list=EventQueue.list, l=list.length; i<l; i++) {
|
557
|
-
var next = list[i];
|
558
|
-
if (he.ystar > next.ystar ||
|
559
|
-
(he.ystar == next.ystar &&
|
560
|
-
site.x > next.vertex.x)) {
|
561
|
-
continue;
|
562
|
-
} else {
|
563
|
-
break;
|
564
|
-
}
|
565
|
-
}
|
566
|
-
list.splice(i, 0, he);
|
567
|
-
},
|
568
|
-
|
569
|
-
del: function(he) {
|
570
|
-
for (var i=0, ls=EventQueue.list, l=ls.length; i<l && (ls[i] != he); ++i) {}
|
571
|
-
ls.splice(i, 1);
|
572
|
-
},
|
573
|
-
|
574
|
-
empty: function() { return EventQueue.list.length === 0; },
|
575
|
-
|
576
|
-
nextEvent: function(he) {
|
577
|
-
for (var i=0, ls=EventQueue.list, l=ls.length; i<l; ++i) {
|
578
|
-
if (ls[i] == he) return ls[i+1];
|
579
|
-
}
|
580
|
-
return null;
|
581
|
-
},
|
582
|
-
|
583
|
-
min: function() {
|
584
|
-
var elem = EventQueue.list[0];
|
585
|
-
return {
|
586
|
-
x: elem.vertex.x,
|
587
|
-
y: elem.ystar
|
588
|
-
};
|
589
|
-
},
|
590
|
-
|
591
|
-
extractMin: function() {
|
592
|
-
return EventQueue.list.shift();
|
593
|
-
}
|
594
|
-
};
|
595
|
-
|
596
|
-
EdgeList.init();
|
597
|
-
Sites.bottomSite = Sites.list.shift();
|
598
|
-
|
599
|
-
var newSite = Sites.list.shift(), newIntStar;
|
600
|
-
var lbnd, rbnd, llbnd, rrbnd, bisector;
|
601
|
-
var bot, top, temp, p, v;
|
602
|
-
var e, pm;
|
603
|
-
|
604
|
-
while (true) {
|
605
|
-
if (!EventQueue.empty()) {
|
606
|
-
newIntStar = EventQueue.min();
|
607
|
-
}
|
608
|
-
if (newSite && (EventQueue.empty()
|
609
|
-
|| newSite.y < newIntStar.y
|
610
|
-
|| (newSite.y == newIntStar.y
|
611
|
-
&& newSite.x < newIntStar.x))) { //new site is smallest
|
612
|
-
lbnd = EdgeList.leftBound(newSite);
|
613
|
-
rbnd = EdgeList.right(lbnd);
|
614
|
-
bot = EdgeList.rightRegion(lbnd);
|
615
|
-
e = Geom.bisect(bot, newSite);
|
616
|
-
bisector = EdgeList.createHalfEdge(e, "l");
|
617
|
-
EdgeList.insert(lbnd, bisector);
|
618
|
-
p = Geom.intersect(lbnd, bisector);
|
619
|
-
if (p) {
|
620
|
-
EventQueue.del(lbnd);
|
621
|
-
EventQueue.insert(lbnd, p, Geom.distance(p, newSite));
|
622
|
-
}
|
623
|
-
lbnd = bisector;
|
624
|
-
bisector = EdgeList.createHalfEdge(e, "r");
|
625
|
-
EdgeList.insert(lbnd, bisector);
|
626
|
-
p = Geom.intersect(bisector, rbnd);
|
627
|
-
if (p) {
|
628
|
-
EventQueue.insert(bisector, p, Geom.distance(p, newSite));
|
629
|
-
}
|
630
|
-
newSite = Sites.list.shift();
|
631
|
-
} else if (!EventQueue.empty()) { //intersection is smallest
|
632
|
-
lbnd = EventQueue.extractMin();
|
633
|
-
llbnd = EdgeList.left(lbnd);
|
634
|
-
rbnd = EdgeList.right(lbnd);
|
635
|
-
rrbnd = EdgeList.right(rbnd);
|
636
|
-
bot = EdgeList.leftRegion(lbnd);
|
637
|
-
top = EdgeList.rightRegion(rbnd);
|
638
|
-
v = lbnd.vertex;
|
639
|
-
Geom.endPoint(lbnd.edge, lbnd.side, v);
|
640
|
-
Geom.endPoint(rbnd.edge, rbnd.side, v);
|
641
|
-
EdgeList.del(lbnd);
|
642
|
-
EventQueue.del(rbnd);
|
643
|
-
EdgeList.del(rbnd);
|
644
|
-
pm = "l";
|
645
|
-
if (bot.y > top.y) {
|
646
|
-
temp = bot;
|
647
|
-
bot = top;
|
648
|
-
top = temp;
|
649
|
-
pm = "r";
|
650
|
-
}
|
651
|
-
e = Geom.bisect(bot, top);
|
652
|
-
bisector = EdgeList.createHalfEdge(e, pm);
|
653
|
-
EdgeList.insert(llbnd, bisector);
|
654
|
-
Geom.endPoint(e, d3_voronoi_opposite[pm], v);
|
655
|
-
p = Geom.intersect(llbnd, bisector);
|
656
|
-
if (p) {
|
657
|
-
EventQueue.del(llbnd);
|
658
|
-
EventQueue.insert(llbnd, p, Geom.distance(p, bot));
|
659
|
-
}
|
660
|
-
p = Geom.intersect(bisector, rrbnd);
|
661
|
-
if (p) {
|
662
|
-
EventQueue.insert(bisector, p, Geom.distance(p, bot));
|
663
|
-
}
|
664
|
-
} else {
|
665
|
-
break;
|
666
|
-
}
|
667
|
-
}//end while
|
668
|
-
|
669
|
-
for (lbnd = EdgeList.right(EdgeList.leftEnd);
|
670
|
-
lbnd != EdgeList.rightEnd;
|
671
|
-
lbnd = EdgeList.right(lbnd)) {
|
672
|
-
callback(lbnd.edge);
|
673
|
-
}
|
674
|
-
}
|
675
|
-
/**
|
676
|
-
* @param vertices [[x1, y1], [x2, y2], …]
|
677
|
-
* @returns triangles [[[x1, y1], [x2, y2], [x3, y3]], …]
|
678
|
-
*/
|
679
|
-
d3.geom.delaunay = function(vertices) {
|
680
|
-
var edges = vertices.map(function() { return []; }),
|
681
|
-
triangles = [];
|
682
|
-
|
683
|
-
// Use the Voronoi tessellation to determine Delaunay edges.
|
684
|
-
d3_voronoi_tessellate(vertices, function(e) {
|
685
|
-
edges[e.region.l.index].push(vertices[e.region.r.index]);
|
686
|
-
});
|
687
|
-
|
688
|
-
// Reconnect the edges into counterclockwise triangles.
|
689
|
-
edges.forEach(function(edge, i) {
|
690
|
-
var v = vertices[i],
|
691
|
-
cx = v[0],
|
692
|
-
cy = v[1];
|
693
|
-
edge.forEach(function(v) {
|
694
|
-
v.angle = Math.atan2(v[0] - cx, v[1] - cy);
|
695
|
-
});
|
696
|
-
edge.sort(function(a, b) {
|
697
|
-
return a.angle - b.angle;
|
698
|
-
});
|
699
|
-
for (var j = 0, m = edge.length - 1; j < m; j++) {
|
700
|
-
triangles.push([v, edge[j], edge[j + 1]]);
|
701
|
-
}
|
702
|
-
});
|
703
|
-
|
704
|
-
return triangles;
|
705
|
-
};
|
706
|
-
// Constructs a new quadtree for the specified array of points. A quadtree is a
|
707
|
-
// two-dimensional recursive spatial subdivision. This implementation uses
|
708
|
-
// square partitions, dividing each square into four equally-sized squares. Each
|
709
|
-
// point exists in a unique node; if multiple points are in the same position,
|
710
|
-
// some points may be stored on internal nodes rather than leaf nodes. Quadtrees
|
711
|
-
// can be used to accelerate various spatial operations, such as the Barnes-Hut
|
712
|
-
// approximation for computing n-body forces, or collision detection.
|
713
|
-
d3.geom.quadtree = function(points, x1, y1, x2, y2) {
|
714
|
-
var p,
|
715
|
-
i = -1,
|
716
|
-
n = points.length;
|
717
|
-
|
718
|
-
// Type conversion for deprecated API.
|
719
|
-
if (n && isNaN(points[0].x)) points = points.map(d3_geom_quadtreePoint);
|
720
|
-
|
721
|
-
// Allow bounds to be specified explicitly.
|
722
|
-
if (arguments.length < 5) {
|
723
|
-
if (arguments.length === 3) {
|
724
|
-
y2 = x2 = y1;
|
725
|
-
y1 = x1;
|
726
|
-
} else {
|
727
|
-
x1 = y1 = Infinity;
|
728
|
-
x2 = y2 = -Infinity;
|
729
|
-
|
730
|
-
// Compute bounds.
|
731
|
-
while (++i < n) {
|
732
|
-
p = points[i];
|
733
|
-
if (p.x < x1) x1 = p.x;
|
734
|
-
if (p.y < y1) y1 = p.y;
|
735
|
-
if (p.x > x2) x2 = p.x;
|
736
|
-
if (p.y > y2) y2 = p.y;
|
737
|
-
}
|
738
|
-
|
739
|
-
// Squarify the bounds.
|
740
|
-
var dx = x2 - x1,
|
741
|
-
dy = y2 - y1;
|
742
|
-
if (dx > dy) y2 = y1 + dx;
|
743
|
-
else x2 = x1 + dy;
|
744
|
-
}
|
745
|
-
}
|
746
|
-
|
747
|
-
// Recursively inserts the specified point p at the node n or one of its
|
748
|
-
// descendants. The bounds are defined by [x1, x2] and [y1, y2].
|
749
|
-
function insert(n, p, x1, y1, x2, y2) {
|
750
|
-
if (isNaN(p.x) || isNaN(p.y)) return; // ignore invalid points
|
751
|
-
if (n.leaf) {
|
752
|
-
var v = n.point;
|
753
|
-
if (v) {
|
754
|
-
// If the point at this leaf node is at the same position as the new
|
755
|
-
// point we are adding, we leave the point associated with the
|
756
|
-
// internal node while adding the new point to a child node. This
|
757
|
-
// avoids infinite recursion.
|
758
|
-
if ((Math.abs(v.x - p.x) + Math.abs(v.y - p.y)) < .01) {
|
759
|
-
insertChild(n, p, x1, y1, x2, y2);
|
760
|
-
} else {
|
761
|
-
n.point = null;
|
762
|
-
insertChild(n, v, x1, y1, x2, y2);
|
763
|
-
insertChild(n, p, x1, y1, x2, y2);
|
764
|
-
}
|
765
|
-
} else {
|
766
|
-
n.point = p;
|
767
|
-
}
|
768
|
-
} else {
|
769
|
-
insertChild(n, p, x1, y1, x2, y2);
|
770
|
-
}
|
771
|
-
}
|
772
|
-
|
773
|
-
// Recursively inserts the specified point p into a descendant of node n. The
|
774
|
-
// bounds are defined by [x1, x2] and [y1, y2].
|
775
|
-
function insertChild(n, p, x1, y1, x2, y2) {
|
776
|
-
// Compute the split point, and the quadrant in which to insert p.
|
777
|
-
var sx = (x1 + x2) * .5,
|
778
|
-
sy = (y1 + y2) * .5,
|
779
|
-
right = p.x >= sx,
|
780
|
-
bottom = p.y >= sy,
|
781
|
-
i = (bottom << 1) + right;
|
782
|
-
|
783
|
-
// Recursively insert into the child node.
|
784
|
-
n.leaf = false;
|
785
|
-
n = n.nodes[i] || (n.nodes[i] = d3_geom_quadtreeNode());
|
786
|
-
|
787
|
-
// Update the bounds as we recurse.
|
788
|
-
if (right) x1 = sx; else x2 = sx;
|
789
|
-
if (bottom) y1 = sy; else y2 = sy;
|
790
|
-
insert(n, p, x1, y1, x2, y2);
|
791
|
-
}
|
792
|
-
|
793
|
-
// Create the root node.
|
794
|
-
var root = d3_geom_quadtreeNode();
|
795
|
-
|
796
|
-
root.add = function(p) {
|
797
|
-
insert(root, p, x1, y1, x2, y2);
|
798
|
-
};
|
799
|
-
|
800
|
-
root.visit = function(f) {
|
801
|
-
d3_geom_quadtreeVisit(f, root, x1, y1, x2, y2);
|
802
|
-
};
|
803
|
-
|
804
|
-
// Insert all points.
|
805
|
-
points.forEach(root.add);
|
806
|
-
return root;
|
807
|
-
};
|
808
|
-
|
809
|
-
function d3_geom_quadtreeNode() {
|
810
|
-
return {
|
811
|
-
leaf: true,
|
812
|
-
nodes: [],
|
813
|
-
point: null
|
814
|
-
};
|
815
|
-
}
|
816
|
-
|
817
|
-
function d3_geom_quadtreeVisit(f, node, x1, y1, x2, y2) {
|
818
|
-
if (!f(node, x1, y1, x2, y2)) {
|
819
|
-
var sx = (x1 + x2) * .5,
|
820
|
-
sy = (y1 + y2) * .5,
|
821
|
-
children = node.nodes;
|
822
|
-
if (children[0]) d3_geom_quadtreeVisit(f, children[0], x1, y1, sx, sy);
|
823
|
-
if (children[1]) d3_geom_quadtreeVisit(f, children[1], sx, y1, x2, sy);
|
824
|
-
if (children[2]) d3_geom_quadtreeVisit(f, children[2], x1, sy, sx, y2);
|
825
|
-
if (children[3]) d3_geom_quadtreeVisit(f, children[3], sx, sy, x2, y2);
|
826
|
-
}
|
827
|
-
}
|
828
|
-
|
829
|
-
function d3_geom_quadtreePoint(p) {
|
830
|
-
return {
|
831
|
-
x: p[0],
|
832
|
-
y: p[1]
|
833
|
-
};
|
834
|
-
}
|
835
|
-
})();
|