d3_rails 0.0.3 → 0.0.4

Sign up to get free protection for your applications and to get access to all the features.
@@ -1,3 +1,3 @@
1
1
  module D3Rails
2
- VERSION = "0.0.3"
2
+ VERSION = "0.0.4"
3
3
  end
@@ -0,0 +1,32 @@
1
+ /*
2
+ * This product includes color specifications and designs developed by Cynthia
3
+ * Brewer (http://colorbrewer.org/).
4
+ */
5
+ var colorbrewer = {
6
+ YlGn:{3:["rgb(247,252,185)","rgb(173,221,142)","rgb(49,163,84)"],4:["rgb(255,255,204)","rgb(194,230,153)","rgb(120,198,121)","rgb(35,132,67)"],5:["rgb(255,255,204)","rgb(194,230,153)","rgb(120,198,121)","rgb(49,163,84)","rgb(0,104,55)"],6:["rgb(255,255,204)","rgb(217,240,163)","rgb(173,221,142)","rgb(120,198,121)","rgb(49,163,84)","rgb(0,104,55)"],7:["rgb(255,255,204)","rgb(217,240,163)","rgb(173,221,142)","rgb(120,198,121)","rgb(65,171,93)","rgb(35,132,67)","rgb(0,90,50)"],8:["rgb(255,255,229)","rgb(247,252,185)","rgb(217,240,163)","rgb(173,221,142)","rgb(120,198,121)","rgb(65,171,93)","rgb(35,132,67)","rgb(0,90,50)"],9:["rgb(255,255,229)","rgb(247,252,185)","rgb(217,240,163)","rgb(173,221,142)","rgb(120,198,121)","rgb(65,171,93)","rgb(35,132,67)","rgb(0,104,55)","rgb(0,69,41)"]},
7
+ YlGnBu:{3:["rgb(237,248,177)","rgb(127,205,187)","rgb(44,127,184)"],4:["rgb(255,255,204)","rgb(161,218,180)","rgb(65,182,196)","rgb(34,94,168)"],5:["rgb(255,255,204)","rgb(161,218,180)","rgb(65,182,196)","rgb(44,127,184)","rgb(37,52,148)"],6:["rgb(255,255,204)","rgb(199,233,180)","rgb(127,205,187)","rgb(65,182,196)","rgb(44,127,184)","rgb(37,52,148)"],7:["rgb(255,255,204)","rgb(199,233,180)","rgb(127,205,187)","rgb(65,182,196)","rgb(29,145,192)","rgb(34,94,168)","rgb(12,44,132)"],8:["rgb(255,255,217)","rgb(237,248,177)","rgb(199,233,180)","rgb(127,205,187)","rgb(65,182,196)","rgb(29,145,192)","rgb(34,94,168)","rgb(12,44,132)"],9:["rgb(255,255,217)","rgb(237,248,177)","rgb(199,233,180)","rgb(127,205,187)","rgb(65,182,196)","rgb(29,145,192)","rgb(34,94,168)","rgb(37,52,148)","rgb(8,29,88)"]},
8
+ GnBu:{3:["rgb(224,243,219)","rgb(168,221,181)","rgb(67,162,202)"],4:["rgb(240,249,232)","rgb(186,228,188)","rgb(123,204,196)","rgb(43,140,190)"],5:["rgb(240,249,232)","rgb(186,228,188)","rgb(123,204,196)","rgb(67,162,202)","rgb(8,104,172)"],6:["rgb(240,249,232)","rgb(204,235,197)","rgb(168,221,181)","rgb(123,204,196)","rgb(67,162,202)","rgb(8,104,172)"],7:["rgb(240,249,232)","rgb(204,235,197)","rgb(168,221,181)","rgb(123,204,196)","rgb(78,179,211)","rgb(43,140,190)","rgb(8,88,158)"],8:["rgb(247,252,240)","rgb(224,243,219)","rgb(204,235,197)","rgb(168,221,181)","rgb(123,204,196)","rgb(78,179,211)","rgb(43,140,190)","rgb(8,88,158)"],9:["rgb(247,252,240)","rgb(224,243,219)","rgb(204,235,197)","rgb(168,221,181)","rgb(123,204,196)","rgb(78,179,211)","rgb(43,140,190)","rgb(8,104,172)","rgb(8,64,129)"]},
9
+ BuGn:{3:["rgb(229,245,249)","rgb(153,216,201)","rgb(44,162,95)"],4:["rgb(237,248,251)","rgb(178,226,226)","rgb(102,194,164)","rgb(35,139,69)"],5:["rgb(237,248,251)","rgb(178,226,226)","rgb(102,194,164)","rgb(44,162,95)","rgb(0,109,44)"],6:["rgb(237,248,251)","rgb(204,236,230)","rgb(153,216,201)","rgb(102,194,164)","rgb(44,162,95)","rgb(0,109,44)"],7:["rgb(237,248,251)","rgb(204,236,230)","rgb(153,216,201)","rgb(102,194,164)","rgb(65,174,118)","rgb(35,139,69)","rgb(0,88,36)"],8:["rgb(247,252,253)","rgb(229,245,249)","rgb(204,236,230)","rgb(153,216,201)","rgb(102,194,164)","rgb(65,174,118)","rgb(35,139,69)","rgb(0,88,36)"],9:["rgb(247,252,253)","rgb(229,245,249)","rgb(204,236,230)","rgb(153,216,201)","rgb(102,194,164)","rgb(65,174,118)","rgb(35,139,69)","rgb(0,109,44)","rgb(0,68,27)"]},
10
+ PuBuGn:{3:["rgb(236,226,240)","rgb(166,189,219)","rgb(28,144,153)"],4:["rgb(246,239,247)","rgb(189,201,225)","rgb(103,169,207)","rgb(2,129,138)"],5:["rgb(246,239,247)","rgb(189,201,225)","rgb(103,169,207)","rgb(28,144,153)","rgb(1,108,89)"],6:["rgb(246,239,247)","rgb(208,209,230)","rgb(166,189,219)","rgb(103,169,207)","rgb(28,144,153)","rgb(1,108,89)"],7:["rgb(246,239,247)","rgb(208,209,230)","rgb(166,189,219)","rgb(103,169,207)","rgb(54,144,192)","rgb(2,129,138)","rgb(1,100,80)"],8:["rgb(255,247,251)","rgb(236,226,240)","rgb(208,209,230)","rgb(166,189,219)","rgb(103,169,207)","rgb(54,144,192)","rgb(2,129,138)","rgb(1,100,80)"],9:["rgb(255,247,251)","rgb(236,226,240)","rgb(208,209,230)","rgb(166,189,219)","rgb(103,169,207)","rgb(54,144,192)","rgb(2,129,138)","rgb(1,108,89)","rgb(1,70,54)"]},
11
+ PuBu:{3:["rgb(236,231,242)","rgb(166,189,219)","rgb(43,140,190)"],4:["rgb(241,238,246)","rgb(189,201,225)","rgb(116,169,207)","rgb(5,112,176)"],5:["rgb(241,238,246)","rgb(189,201,225)","rgb(116,169,207)","rgb(43,140,190)","rgb(4,90,141)"],6:["rgb(241,238,246)","rgb(208,209,230)","rgb(166,189,219)","rgb(116,169,207)","rgb(43,140,190)","rgb(4,90,141)"],7:["rgb(241,238,246)","rgb(208,209,230)","rgb(166,189,219)","rgb(116,169,207)","rgb(54,144,192)","rgb(5,112,176)","rgb(3,78,123)"],8:["rgb(255,247,251)","rgb(236,231,242)","rgb(208,209,230)","rgb(166,189,219)","rgb(116,169,207)","rgb(54,144,192)","rgb(5,112,176)","rgb(3,78,123)"],9:["rgb(255,247,251)","rgb(236,231,242)","rgb(208,209,230)","rgb(166,189,219)","rgb(116,169,207)","rgb(54,144,192)","rgb(5,112,176)","rgb(4,90,141)","rgb(2,56,88)"]},
12
+ BuPu:{3:["rgb(224,236,244)","rgb(158,188,218)","rgb(136,86,167)"],4:["rgb(237,248,251)","rgb(179,205,227)","rgb(140,150,198)","rgb(136,65,157)"],5:["rgb(237,248,251)","rgb(179,205,227)","rgb(140,150,198)","rgb(136,86,167)","rgb(129,15,124)"],6:["rgb(237,248,251)","rgb(191,211,230)","rgb(158,188,218)","rgb(140,150,198)","rgb(136,86,167)","rgb(129,15,124)"],7:["rgb(237,248,251)","rgb(191,211,230)","rgb(158,188,218)","rgb(140,150,198)","rgb(140,107,177)","rgb(136,65,157)","rgb(110,1,107)"],8:["rgb(247,252,253)","rgb(224,236,244)","rgb(191,211,230)","rgb(158,188,218)","rgb(140,150,198)","rgb(140,107,177)","rgb(136,65,157)","rgb(110,1,107)"],9:["rgb(247,252,253)","rgb(224,236,244)","rgb(191,211,230)","rgb(158,188,218)","rgb(140,150,198)","rgb(140,107,177)","rgb(136,65,157)","rgb(129,15,124)","rgb(77,0,75)"]},
13
+ RdPu:{3:["rgb(253,224,221)","rgb(250,159,181)","rgb(197,27,138)"],4:["rgb(254,235,226)","rgb(251,180,185)","rgb(247,104,161)","rgb(174,1,126)"],5:["rgb(254,235,226)","rgb(251,180,185)","rgb(247,104,161)","rgb(197,27,138)","rgb(122,1,119)"],6:["rgb(254,235,226)","rgb(252,197,192)","rgb(250,159,181)","rgb(247,104,161)","rgb(197,27,138)","rgb(122,1,119)"],7:["rgb(254,235,226)","rgb(252,197,192)","rgb(250,159,181)","rgb(247,104,161)","rgb(221,52,151)","rgb(174,1,126)","rgb(122,1,119)"],8:["rgb(255,247,243)","rgb(253,224,221)","rgb(252,197,192)","rgb(250,159,181)","rgb(247,104,161)","rgb(221,52,151)","rgb(174,1,126)","rgb(122,1,119)"],9:["rgb(255,247,243)","rgb(253,224,221)","rgb(252,197,192)","rgb(250,159,181)","rgb(247,104,161)","rgb(221,52,151)","rgb(174,1,126)","rgb(122,1,119)","rgb(73,0,106)"]},
14
+ PuRd:{3:["rgb(231,225,239)","rgb(201,148,199)","rgb(221,28,119)"],4:["rgb(241,238,246)","rgb(215,181,216)","rgb(223,101,176)","rgb(206,18,86)"],5:["rgb(241,238,246)","rgb(215,181,216)","rgb(223,101,176)","rgb(221,28,119)","rgb(152,0,67)"],6:["rgb(241,238,246)","rgb(212,185,218)","rgb(201,148,199)","rgb(223,101,176)","rgb(221,28,119)","rgb(152,0,67)"],7:["rgb(241,238,246)","rgb(212,185,218)","rgb(201,148,199)","rgb(223,101,176)","rgb(231,41,138)","rgb(206,18,86)","rgb(145,0,63)"],8:["rgb(247,244,249)","rgb(231,225,239)","rgb(212,185,218)","rgb(201,148,199)","rgb(223,101,176)","rgb(231,41,138)","rgb(206,18,86)","rgb(145,0,63)"],9:["rgb(247,244,249)","rgb(231,225,239)","rgb(212,185,218)","rgb(201,148,199)","rgb(223,101,176)","rgb(231,41,138)","rgb(206,18,86)","rgb(152,0,67)","rgb(103,0,31)"]},
15
+ OrRd:{3:["rgb(254,232,200)","rgb(253,187,132)","rgb(227,74,51)"],4:["rgb(254,240,217)","rgb(253,204,138)","rgb(252,141,89)","rgb(215,48,31)"],5:["rgb(254,240,217)","rgb(253,204,138)","rgb(252,141,89)","rgb(227,74,51)","rgb(179,0,0)"],6:["rgb(254,240,217)","rgb(253,212,158)","rgb(253,187,132)","rgb(252,141,89)","rgb(227,74,51)","rgb(179,0,0)"],7:["rgb(254,240,217)","rgb(253,212,158)","rgb(253,187,132)","rgb(252,141,89)","rgb(239,101,72)","rgb(215,48,31)","rgb(153,0,0)"],8:["rgb(255,247,236)","rgb(254,232,200)","rgb(253,212,158)","rgb(253,187,132)","rgb(252,141,89)","rgb(239,101,72)","rgb(215,48,31)","rgb(153,0,0)"],9:["rgb(255,247,236)","rgb(254,232,200)","rgb(253,212,158)","rgb(253,187,132)","rgb(252,141,89)","rgb(239,101,72)","rgb(215,48,31)","rgb(179,0,0)","rgb(127,0,0)"]},
16
+ YlOrRd:{3:["rgb(255,237,160)","rgb(254,178,76)","rgb(240,59,32)"],4:["rgb(255,255,178)","rgb(254,204,92)","rgb(253,141,60)","rgb(227,26,28)"],5:["rgb(255,255,178)","rgb(254,204,92)","rgb(253,141,60)","rgb(240,59,32)","rgb(189,0,38)"],6:["rgb(255,255,178)","rgb(254,217,118)","rgb(254,178,76)","rgb(253,141,60)","rgb(240,59,32)","rgb(189,0,38)"],7:["rgb(255,255,178)","rgb(254,217,118)","rgb(254,178,76)","rgb(253,141,60)","rgb(252,78,42)","rgb(227,26,28)","rgb(177,0,38)"],8:["rgb(255,255,204)","rgb(255,237,160)","rgb(254,217,118)","rgb(254,178,76)","rgb(253,141,60)","rgb(252,78,42)","rgb(227,26,28)","rgb(177,0,38)"],9:["rgb(255,255,204)","rgb(255,237,160)","rgb(254,217,118)","rgb(254,178,76)","rgb(253,141,60)","rgb(252,78,42)","rgb(227,26,28)","rgb(189,0,38)","rgb(128,0,38)"]},
17
+ YlOrBr:{3:["rgb(255,247,188)","rgb(254,196,79)","rgb(217,95,14)"],4:["rgb(255,255,212)","rgb(254,217,142)","rgb(254,153,41)","rgb(204,76,2)"],5:["rgb(255,255,212)","rgb(254,217,142)","rgb(254,153,41)","rgb(217,95,14)","rgb(153,52,4)"],6:["rgb(255,255,212)","rgb(254,227,145)","rgb(254,196,79)","rgb(254,153,41)","rgb(217,95,14)","rgb(153,52,4)"],7:["rgb(255,255,212)","rgb(254,227,145)","rgb(254,196,79)","rgb(254,153,41)","rgb(236,112,20)","rgb(204,76,2)","rgb(140,45,4)"],8:["rgb(255,255,229)","rgb(255,247,188)","rgb(254,227,145)","rgb(254,196,79)","rgb(254,153,41)","rgb(236,112,20)","rgb(204,76,2)","rgb(140,45,4)"],9:["rgb(255,255,229)","rgb(255,247,188)","rgb(254,227,145)","rgb(254,196,79)","rgb(254,153,41)","rgb(236,112,20)","rgb(204,76,2)","rgb(153,52,4)","rgb(102,37,6)"]},
18
+ Purples:{3:["rgb(239,237,245)","rgb(188,189,220)","rgb(117,107,177)"],4:["rgb(242,240,247)","rgb(203,201,226)","rgb(158,154,200)","rgb(106,81,163)"],5:["rgb(242,240,247)","rgb(203,201,226)","rgb(158,154,200)","rgb(117,107,177)","rgb(84,39,143)"],6:["rgb(242,240,247)","rgb(218,218,235)","rgb(188,189,220)","rgb(158,154,200)","rgb(117,107,177)","rgb(84,39,143)"],7:["rgb(242,240,247)","rgb(218,218,235)","rgb(188,189,220)","rgb(158,154,200)","rgb(128,125,186)","rgb(106,81,163)","rgb(74,20,134)"],8:["rgb(252,251,253)","rgb(239,237,245)","rgb(218,218,235)","rgb(188,189,220)","rgb(158,154,200)","rgb(128,125,186)","rgb(106,81,163)","rgb(74,20,134)"],9:["rgb(252,251,253)","rgb(239,237,245)","rgb(218,218,235)","rgb(188,189,220)","rgb(158,154,200)","rgb(128,125,186)","rgb(106,81,163)","rgb(84,39,143)","rgb(63,0,125)"]},
19
+ Blues:{3:["rgb(222,235,247)","rgb(158,202,225)","rgb(49,130,189)"],4:["rgb(239,243,255)","rgb(189,215,231)","rgb(107,174,214)","rgb(33,113,181)"],5:["rgb(239,243,255)","rgb(189,215,231)","rgb(107,174,214)","rgb(49,130,189)","rgb(8,81,156)"],6:["rgb(239,243,255)","rgb(198,219,239)","rgb(158,202,225)","rgb(107,174,214)","rgb(49,130,189)","rgb(8,81,156)"],7:["rgb(239,243,255)","rgb(198,219,239)","rgb(158,202,225)","rgb(107,174,214)","rgb(66,146,198)","rgb(33,113,181)","rgb(8,69,148)"],8:["rgb(247,251,255)","rgb(222,235,247)","rgb(198,219,239)","rgb(158,202,225)","rgb(107,174,214)","rgb(66,146,198)","rgb(33,113,181)","rgb(8,69,148)"],9:["rgb(247,251,255)","rgb(222,235,247)","rgb(198,219,239)","rgb(158,202,225)","rgb(107,174,214)","rgb(66,146,198)","rgb(33,113,181)","rgb(8,81,156)","rgb(8,48,107)"]},
20
+ Greens:{3:["rgb(229,245,224)","rgb(161,217,155)","rgb(49,163,84)"],4:["rgb(237,248,233)","rgb(186,228,179)","rgb(116,196,118)","rgb(35,139,69)"],5:["rgb(237,248,233)","rgb(186,228,179)","rgb(116,196,118)","rgb(49,163,84)","rgb(0,109,44)"],6:["rgb(237,248,233)","rgb(199,233,192)","rgb(161,217,155)","rgb(116,196,118)","rgb(49,163,84)","rgb(0,109,44)"],7:["rgb(237,248,233)","rgb(199,233,192)","rgb(161,217,155)","rgb(116,196,118)","rgb(65,171,93)","rgb(35,139,69)","rgb(0,90,50)"],8:["rgb(247,252,245)","rgb(229,245,224)","rgb(199,233,192)","rgb(161,217,155)","rgb(116,196,118)","rgb(65,171,93)","rgb(35,139,69)","rgb(0,90,50)"],9:["rgb(247,252,245)","rgb(229,245,224)","rgb(199,233,192)","rgb(161,217,155)","rgb(116,196,118)","rgb(65,171,93)","rgb(35,139,69)","rgb(0,109,44)","rgb(0,68,27)"]},
21
+ Oranges:{3:["rgb(254,230,206)","rgb(253,174,107)","rgb(230,85,13)"],4:["rgb(254,237,222)","rgb(253,190,133)","rgb(253,141,60)","rgb(217,71,1)"],5:["rgb(254,237,222)","rgb(253,190,133)","rgb(253,141,60)","rgb(230,85,13)","rgb(166,54,3)"],6:["rgb(254,237,222)","rgb(253,208,162)","rgb(253,174,107)","rgb(253,141,60)","rgb(230,85,13)","rgb(166,54,3)"],7:["rgb(254,237,222)","rgb(253,208,162)","rgb(253,174,107)","rgb(253,141,60)","rgb(241,105,19)","rgb(217,72,1)","rgb(140,45,4)"],8:["rgb(255,245,235)","rgb(254,230,206)","rgb(253,208,162)","rgb(253,174,107)","rgb(253,141,60)","rgb(241,105,19)","rgb(217,72,1)","rgb(140,45,4)"],9:["rgb(255,245,235)","rgb(254,230,206)","rgb(253,208,162)","rgb(253,174,107)","rgb(253,141,60)","rgb(241,105,19)","rgb(217,72,1)","rgb(166,54,3)","rgb(127,39,4)"]},
22
+ Reds:{3:["rgb(254,224,210)","rgb(252,146,114)","rgb(222,45,38)"],4:["rgb(254,229,217)","rgb(252,174,145)","rgb(251,106,74)","rgb(203,24,29)"],5:["rgb(254,229,217)","rgb(252,174,145)","rgb(251,106,74)","rgb(222,45,38)","rgb(165,15,21)"],6:["rgb(254,229,217)","rgb(252,187,161)","rgb(252,146,114)","rgb(251,106,74)","rgb(222,45,38)","rgb(165,15,21)"],7:["rgb(254,229,217)","rgb(252,187,161)","rgb(252,146,114)","rgb(251,106,74)","rgb(239,59,44)","rgb(203,24,29)","rgb(153,0,13)"],8:["rgb(255,245,240)","rgb(254,224,210)","rgb(252,187,161)","rgb(252,146,114)","rgb(251,106,74)","rgb(239,59,44)","rgb(203,24,29)","rgb(153,0,13)"],9:["rgb(255,245,240)","rgb(254,224,210)","rgb(252,187,161)","rgb(252,146,114)","rgb(251,106,74)","rgb(239,59,44)","rgb(203,24,29)","rgb(165,15,21)","rgb(103,0,13)"]},
23
+ Greys:{3:["rgb(240,240,240)","rgb(189,189,189)","rgb(99,99,99)"],4:["rgb(247,247,247)","rgb(204,204,204)","rgb(150,150,150)","rgb(82,82,82)"],5:["rgb(247,247,247)","rgb(204,204,204)","rgb(150,150,150)","rgb(99,99,99)","rgb(37,37,37)"],6:["rgb(247,247,247)","rgb(217,217,217)","rgb(189,189,189)","rgb(150,150,150)","rgb(99,99,99)","rgb(37,37,37)"],7:["rgb(247,247,247)","rgb(217,217,217)","rgb(189,189,189)","rgb(150,150,150)","rgb(115,115,115)","rgb(82,82,82)","rgb(37,37,37)"],8:["rgb(255,255,255)","rgb(240,240,240)","rgb(217,217,217)","rgb(189,189,189)","rgb(150,150,150)","rgb(115,115,115)","rgb(82,82,82)","rgb(37,37,37)"],9:["rgb(255,255,255)","rgb(240,240,240)","rgb(217,217,217)","rgb(189,189,189)","rgb(150,150,150)","rgb(115,115,115)","rgb(82,82,82)","rgb(37,37,37)","rgb(0,0,0)"]},
24
+ PuOr:{3:["rgb(241,163,64)","rgb(247,247,247)","rgb(153,142,195)"],4:["rgb(230,97,1)","rgb(253,184,99)","rgb(178,171,210)","rgb(94,60,153)"],5:["rgb(230,97,1)","rgb(253,184,99)","rgb(247,247,247)","rgb(178,171,210)","rgb(94,60,153)"],6:["rgb(179,88,6)","rgb(241,163,64)","rgb(254,224,182)","rgb(216,218,235)","rgb(153,142,195)","rgb(84,39,136)"],7:["rgb(179,88,6)","rgb(241,163,64)","rgb(254,224,182)","rgb(247,247,247)","rgb(216,218,235)","rgb(153,142,195)","rgb(84,39,136)"],8:["rgb(179,88,6)","rgb(224,130,20)","rgb(253,184,99)","rgb(254,224,182)","rgb(216,218,235)","rgb(178,171,210)","rgb(128,115,172)","rgb(84,39,136)"],9:["rgb(179,88,6)","rgb(224,130,20)","rgb(253,184,99)","rgb(254,224,182)","rgb(247,247,247)","rgb(216,218,235)","rgb(178,171,210)","rgb(128,115,172)","rgb(84,39,136)"],10:["rgb(127,59,8)","rgb(179,88,6)","rgb(224,130,20)","rgb(253,184,99)","rgb(254,224,182)","rgb(216,218,235)","rgb(178,171,210)","rgb(128,115,172)","rgb(84,39,136)","rgb(45,0,75)"],11:["rgb(127,59,8)","rgb(179,88,6)","rgb(224,130,20)","rgb(253,184,99)","rgb(254,224,182)","rgb(247,247,247)","rgb(216,218,235)","rgb(178,171,210)","rgb(128,115,172)","rgb(84,39,136)","rgb(45,0,75)"]},
25
+ BrBG:{3:["rgb(216,179,101)","rgb(245,245,245)","rgb(90,180,172)"],4:["rgb(166,97,26)","rgb(223,194,125)","rgb(128,205,193)","rgb(1,133,113)"],5:["rgb(166,97,26)","rgb(223,194,125)","rgb(245,245,245)","rgb(128,205,193)","rgb(1,133,113)"],6:["rgb(140,81,10)","rgb(216,179,101)","rgb(246,232,195)","rgb(199,234,229)","rgb(90,180,172)","rgb(1,102,94)"],7:["rgb(140,81,10)","rgb(216,179,101)","rgb(246,232,195)","rgb(245,245,245)","rgb(199,234,229)","rgb(90,180,172)","rgb(1,102,94)"],8:["rgb(140,81,10)","rgb(191,129,45)","rgb(223,194,125)","rgb(246,232,195)","rgb(199,234,229)","rgb(128,205,193)","rgb(53,151,143)","rgb(1,102,94)"],9:["rgb(140,81,10)","rgb(191,129,45)","rgb(223,194,125)","rgb(246,232,195)","rgb(245,245,245)","rgb(199,234,229)","rgb(128,205,193)","rgb(53,151,143)","rgb(1,102,94)"],10:["rgb(84,48,5)","rgb(140,81,10)","rgb(191,129,45)","rgb(223,194,125)","rgb(246,232,195)","rgb(199,234,229)","rgb(128,205,193)","rgb(53,151,143)","rgb(1,102,94)","rgb(0,60,48)"],11:["rgb(84,48,5)","rgb(140,81,10)","rgb(191,129,45)","rgb(223,194,125)","rgb(246,232,195)","rgb(245,245,245)","rgb(199,234,229)","rgb(128,205,193)","rgb(53,151,143)","rgb(1,102,94)","rgb(0,60,48)"]},
26
+ PRGn:{3:["rgb(175,141,195)","rgb(247,247,247)","rgb(127,191,123)"],4:["rgb(123,50,148)","rgb(194,165,207)","rgb(166,219,160)","rgb(0,136,55)"],5:["rgb(123,50,148)","rgb(194,165,207)","rgb(247,247,247)","rgb(166,219,160)","rgb(0,136,55)"],6:["rgb(118,42,131)","rgb(175,141,195)","rgb(231,212,232)","rgb(217,240,211)","rgb(127,191,123)","rgb(27,120,55)"],7:["rgb(118,42,131)","rgb(175,141,195)","rgb(231,212,232)","rgb(247,247,247)","rgb(217,240,211)","rgb(127,191,123)","rgb(27,120,55)"],8:["rgb(118,42,131)","rgb(153,112,171)","rgb(194,165,207)","rgb(231,212,232)","rgb(217,240,211)","rgb(166,219,160)","rgb(90,174,97)","rgb(27,120,55)"],9:["rgb(118,42,131)","rgb(153,112,171)","rgb(194,165,207)","rgb(231,212,232)","rgb(247,247,247)","rgb(217,240,211)","rgb(166,219,160)","rgb(90,174,97)","rgb(27,120,55)"],10:["rgb(64,0,75)","rgb(118,42,131)","rgb(153,112,171)","rgb(194,165,207)","rgb(231,212,232)","rgb(217,240,211)","rgb(166,219,160)","rgb(90,174,97)","rgb(27,120,55)","rgb(0,68,27)"],11:["rgb(64,0,75)","rgb(118,42,131)","rgb(153,112,171)","rgb(194,165,207)","rgb(231,212,232)","rgb(247,247,247)","rgb(217,240,211)","rgb(166,219,160)","rgb(90,174,97)","rgb(27,120,55)","rgb(0,68,27)"]},
27
+ PiYG:{3:["rgb(233,163,201)","rgb(247,247,247)","rgb(161,215,106)"],4:["rgb(208,28,139)","rgb(241,182,218)","rgb(184,225,134)","rgb(77,172,38)"],5:["rgb(208,28,139)","rgb(241,182,218)","rgb(247,247,247)","rgb(184,225,134)","rgb(77,172,38)"],6:["rgb(197,27,125)","rgb(233,163,201)","rgb(253,224,239)","rgb(230,245,208)","rgb(161,215,106)","rgb(77,146,33)"],7:["rgb(197,27,125)","rgb(233,163,201)","rgb(253,224,239)","rgb(247,247,247)","rgb(230,245,208)","rgb(161,215,106)","rgb(77,146,33)"],8:["rgb(197,27,125)","rgb(222,119,174)","rgb(241,182,218)","rgb(253,224,239)","rgb(230,245,208)","rgb(184,225,134)","rgb(127,188,65)","rgb(77,146,33)"],9:["rgb(197,27,125)","rgb(222,119,174)","rgb(241,182,218)","rgb(253,224,239)","rgb(247,247,247)","rgb(230,245,208)","rgb(184,225,134)","rgb(127,188,65)","rgb(77,146,33)"],10:["rgb(142,1,82)","rgb(197,27,125)","rgb(222,119,174)","rgb(241,182,218)","rgb(253,224,239)","rgb(230,245,208)","rgb(184,225,134)","rgb(127,188,65)","rgb(77,146,33)","rgb(39,100,25)"],11:["rgb(142,1,82)","rgb(197,27,125)","rgb(222,119,174)","rgb(241,182,218)","rgb(253,224,239)","rgb(247,247,247)","rgb(230,245,208)","rgb(184,225,134)","rgb(127,188,65)","rgb(77,146,33)","rgb(39,100,25)"]},
28
+ RdBu:{3:["rgb(239,138,98)","rgb(247,247,247)","rgb(103,169,207)"],4:["rgb(202,0,32)","rgb(244,165,130)","rgb(146,197,222)","rgb(5,113,176)"],5:["rgb(202,0,32)","rgb(244,165,130)","rgb(247,247,247)","rgb(146,197,222)","rgb(5,113,176)"],6:["rgb(178,24,43)","rgb(239,138,98)","rgb(253,219,199)","rgb(209,229,240)","rgb(103,169,207)","rgb(33,102,172)"],7:["rgb(178,24,43)","rgb(239,138,98)","rgb(253,219,199)","rgb(247,247,247)","rgb(209,229,240)","rgb(103,169,207)","rgb(33,102,172)"],8:["rgb(178,24,43)","rgb(214,96,77)","rgb(244,165,130)","rgb(253,219,199)","rgb(209,229,240)","rgb(146,197,222)","rgb(67,147,195)","rgb(33,102,172)"],9:["rgb(178,24,43)","rgb(214,96,77)","rgb(244,165,130)","rgb(253,219,199)","rgb(247,247,247)","rgb(209,229,240)","rgb(146,197,222)","rgb(67,147,195)","rgb(33,102,172)"],10:["rgb(103,0,31)","rgb(178,24,43)","rgb(214,96,77)","rgb(244,165,130)","rgb(253,219,199)","rgb(209,229,240)","rgb(146,197,222)","rgb(67,147,195)","rgb(33,102,172)","rgb(5,48,97)"],11:["rgb(103,0,31)","rgb(178,24,43)","rgb(214,96,77)","rgb(244,165,130)","rgb(253,219,199)","rgb(247,247,247)","rgb(209,229,240)","rgb(146,197,222)","rgb(67,147,195)","rgb(33,102,172)","rgb(5,48,97)"]},
29
+ RdGy:{3:["rgb(239,138,98)","rgb(255,255,255)","rgb(153,153,153)"],4:["rgb(202,0,32)","rgb(244,165,130)","rgb(186,186,186)","rgb(64,64,64)"],5:["rgb(202,0,32)","rgb(244,165,130)","rgb(255,255,255)","rgb(186,186,186)","rgb(64,64,64)"],6:["rgb(178,24,43)","rgb(239,138,98)","rgb(253,219,199)","rgb(224,224,224)","rgb(153,153,153)","rgb(77,77,77)"],7:["rgb(178,24,43)","rgb(239,138,98)","rgb(253,219,199)","rgb(255,255,255)","rgb(224,224,224)","rgb(153,153,153)","rgb(77,77,77)"],8:["rgb(178,24,43)","rgb(214,96,77)","rgb(244,165,130)","rgb(253,219,199)","rgb(224,224,224)","rgb(186,186,186)","rgb(135,135,135)","rgb(77,77,77)"],9:["rgb(178,24,43)","rgb(214,96,77)","rgb(244,165,130)","rgb(253,219,199)","rgb(255,255,255)","rgb(224,224,224)","rgb(186,186,186)","rgb(135,135,135)","rgb(77,77,77)"],10:["rgb(103,0,31)","rgb(178,24,43)","rgb(214,96,77)","rgb(244,165,130)","rgb(253,219,199)","rgb(224,224,224)","rgb(186,186,186)","rgb(135,135,135)","rgb(77,77,77)","rgb(26,26,26)"],11:["rgb(103,0,31)","rgb(178,24,43)","rgb(214,96,77)","rgb(244,165,130)","rgb(253,219,199)","rgb(255,255,255)","rgb(224,224,224)","rgb(186,186,186)","rgb(135,135,135)","rgb(77,77,77)","rgb(26,26,26)"]},
30
+ RdYlBu:{3:["rgb(252,141,89)","rgb(255,255,191)","rgb(145,191,219)"],4:["rgb(215,25,28)","rgb(253,174,97)","rgb(171,217,233)","rgb(44,123,182)"],5:["rgb(215,25,28)","rgb(253,174,97)","rgb(255,255,191)","rgb(171,217,233)","rgb(44,123,182)"],6:["rgb(215,48,39)","rgb(252,141,89)","rgb(254,224,144)","rgb(224,243,248)","rgb(145,191,219)","rgb(69,117,180)"],7:["rgb(215,48,39)","rgb(252,141,89)","rgb(254,224,144)","rgb(255,255,191)","rgb(224,243,248)","rgb(145,191,219)","rgb(69,117,180)"],8:["rgb(215,48,39)","rgb(244,109,67)","rgb(253,174,97)","rgb(254,224,144)","rgb(224,243,248)","rgb(171,217,233)","rgb(116,173,209)","rgb(69,117,180)"],9:["rgb(215,48,39)","rgb(244,109,67)","rgb(253,174,97)","rgb(254,224,144)","rgb(255,255,191)","rgb(224,243,248)","rgb(171,217,233)","rgb(116,173,209)","rgb(69,117,180)"],10:["rgb(165,0,38)","rgb(215,48,39)","rgb(244,109,67)","rgb(253,174,97)","rgb(254,224,144)","rgb(224,243,248)","rgb(171,217,233)","rgb(116,173,209)","rgb(69,117,180)","rgb(49,54,149)"],11:["rgb(165,0,38)","rgb(215,48,39)","rgb(244,109,67)","rgb(253,174,97)","rgb(254,224,144)","rgb(255,255,191)","rgb(224,243,248)","rgb(171,217,233)","rgb(116,173,209)","rgb(69,117,180)","rgb(49,54,149)"]},
31
+ Spectral:{3:["rgb(252,141,89)","rgb(255,255,191)","rgb(153,213,148)"],4:["rgb(215,25,28)","rgb(253,174,97)","rgb(171,221,164)","rgb(43,131,186)"],5:["rgb(215,25,28)","rgb(253,174,97)","rgb(255,255,191)","rgb(171,221,164)","rgb(43,131,186)"],6:["rgb(213,62,79)","rgb(252,141,89)","rgb(254,224,139)","rgb(230,245,152)","rgb(153,213,148)","rgb(50,136,189)"],7:["rgb(213,62,79)","rgb(252,141,89)","rgb(254,224,139)","rgb(255,255,191)","rgb(230,245,152)","rgb(153,213,148)","rgb(50,136,189)"],8:["rgb(213,62,79)","rgb(244,109,67)","rgb(253,174,97)","rgb(254,224,139)","rgb(230,245,152)","rgb(171,221,164)","rgb(102,194,165)","rgb(50,136,189)"],9:["rgb(213,62,79)","rgb(244,109,67)","rgb(253,174,97)","rgb(254,224,139)","rgb(255,255,191)","rgb(230,245,152)","rgb(171,221,164)","rgb(102,194,165)","rgb(50,136,189)"],10:["rgb(158,1,66)","rgb(213,62,79)","rgb(244,109,67)","rgb(253,174,97)","rgb(254,224,139)","rgb(230,245,152)","rgb(171,221,164)","rgb(102,194,165)","rgb(50,136,189)","rgb(94,79,162)"],11:["rgb(158,1,66)","rgb(213,62,79)","rgb(244,109,67)","rgb(253,174,97)","rgb(254,224,139)","rgb(255,255,191)","rgb(230,245,152)","rgb(171,221,164)","rgb(102,194,165)","rgb(50,136,189)","rgb(94,79,162)"]},
32
+ RdYlGn:{3:["rgb(252,141,89)","rgb(255,255,191)","rgb(145,207,96)"],4:["rgb(215,25,28)","rgb(253,174,97)","rgb(166,217,106)","rgb(26,150,65)"],5:["rgb(215,25,28)","rgb(253,174,97)","rgb(255,255,191)","rgb(166,217,106)","rgb(26,150,65)"],6:["rgb(215,48,39)","rgb(252,141,89)","rgb(254,224,139)","rgb(217,239,139)","rgb(145,207,96)","rgb(26,152,80)"],7:["rgb(215,48,39)","rgb(252,141,89)","rgb(254,224,139)","rgb(255,255,191)","rgb(217,239,139)","rgb(145,207,96)","rgb(26,152,80)"],8:["rgb(215,48,39)","rgb(244,109,67)","rgb(253,174,97)","rgb(254,224,139)","rgb(217,239,139)","rgb(166,217,106)","rgb(102,189,99)","rgb(26,152,80)"],9:["rgb(215,48,39)","rgb(244,109,67)","rgb(253,174,97)","rgb(254,224,139)","rgb(255,255,191)","rgb(217,239,139)","rgb(166,217,106)","rgb(102,189,99)","rgb(26,152,80)"],10:["rgb(165,0,38)","rgb(215,48,39)","rgb(244,109,67)","rgb(253,174,97)","rgb(254,224,139)","rgb(217,239,139)","rgb(166,217,106)","rgb(102,189,99)","rgb(26,152,80)","rgb(0,104,55)"],11:["rgb(165,0,38)","rgb(215,48,39)","rgb(244,109,67)","rgb(253,174,97)","rgb(254,224,139)","rgb(255,255,191)","rgb(217,239,139)","rgb(166,217,106)","rgb(102,189,99)","rgb(26,152,80)","rgb(0,104,55)"]}};
@@ -1,7 +1,7 @@
1
1
  //= require d3
2
2
  //= require d3.chart
3
3
  //= require d3.layout
4
- //= require d3.csv
4
+ //= require d3.csv.min
5
5
  //= require d3.geo
6
6
  //= require d3.geom
7
7
  //= require d3.time
@@ -0,0 +1,225 @@
1
+ (function(){science = {version: "1.7.0"}; // semver
2
+ science.ascending = function(a, b) {
3
+ return a - b;
4
+ };
5
+ // Euler's constant.
6
+ science.EULER = .5772156649015329;
7
+ // Compute exp(x) - 1 accurately for small x.
8
+ science.expm1 = function(x) {
9
+ return (x < 1e-5 && x > -1e-5) ? x + .5 * x * x : Math.exp(x) - 1;
10
+ };
11
+ science.functor = function(v) {
12
+ return typeof v === "function" ? v : function() { return v; };
13
+ };
14
+ // Based on:
15
+ // http://www.johndcook.com/blog/2010/06/02/whats-so-hard-about-finding-a-hypotenuse/
16
+ science.hypot = function(x, y) {
17
+ x = Math.abs(x);
18
+ y = Math.abs(y);
19
+ var max,
20
+ min;
21
+ if (x > y) { max = x; min = y; }
22
+ else { max = y; min = x; }
23
+ var r = min / max;
24
+ return max * Math.sqrt(1 + r * r);
25
+ };
26
+ science.quadratic = function() {
27
+ var complex = false;
28
+
29
+ function quadratic(a, b, c) {
30
+ var d = b * b - 4 * a * c;
31
+ if (d > 0) {
32
+ d = Math.sqrt(d) / (2 * a);
33
+ return complex
34
+ ? [{r: -b - d, i: 0}, {r: -b + d, i: 0}]
35
+ : [-b - d, -b + d];
36
+ } else if (d === 0) {
37
+ d = -b / (2 * a);
38
+ return complex ? [{r: d, i: 0}] : [d];
39
+ } else {
40
+ if (complex) {
41
+ d = Math.sqrt(-d) / (2 * a);
42
+ return [
43
+ {r: -b, i: -d},
44
+ {r: -b, i: d}
45
+ ];
46
+ }
47
+ return [];
48
+ }
49
+ }
50
+
51
+ quadratic.complex = function(x) {
52
+ if (!arguments.length) return complex;
53
+ complex = x;
54
+ return quadratic;
55
+ };
56
+
57
+ return quadratic;
58
+ };
59
+ // Constructs a multi-dimensional array filled with zeroes.
60
+ science.zeroes = function(n) {
61
+ var i = -1,
62
+ a = [];
63
+ if (arguments.length === 1)
64
+ while (++i < n)
65
+ a[i] = 0;
66
+ else
67
+ while (++i < n)
68
+ a[i] = science.zeroes.apply(
69
+ this, Array.prototype.slice.call(arguments, 1));
70
+ return a;
71
+ };
72
+ science.vector = {};
73
+ science.vector.cross = function(a, b) {
74
+ // TODO how to handle non-3D vectors?
75
+ // TODO handle 7D vectors?
76
+ return [
77
+ a[1] * b[2] - a[2] * b[1],
78
+ a[2] * b[0] - a[0] * b[2],
79
+ a[0] * b[1] - a[1] * b[0]
80
+ ];
81
+ };
82
+ science.vector.dot = function(a, b) {
83
+ var s = 0,
84
+ i = -1,
85
+ n = Math.min(a.length, b.length);
86
+ while (++i < n) s += a[i] * b[i];
87
+ return s;
88
+ };
89
+ science.vector.length = function(p) {
90
+ return Math.sqrt(science.vector.dot(p, p));
91
+ };
92
+ science.vector.normalize = function(p) {
93
+ var length = science.vector.length(p);
94
+ return p.map(function(d) { return d / length; });
95
+ };
96
+ // 4x4 matrix determinant.
97
+ science.vector.determinant = function(matrix) {
98
+ var m = matrix[0].concat(matrix[1]).concat(matrix[2]).concat(matrix[3]);
99
+ return (
100
+ m[12] * m[9] * m[6] * m[3] - m[8] * m[13] * m[6] * m[3] -
101
+ m[12] * m[5] * m[10] * m[3] + m[4] * m[13] * m[10] * m[3] +
102
+ m[8] * m[5] * m[14] * m[3] - m[4] * m[9] * m[14] * m[3] -
103
+ m[12] * m[9] * m[2] * m[7] + m[8] * m[13] * m[2] * m[7] +
104
+ m[12] * m[1] * m[10] * m[7] - m[0] * m[13] * m[10] * m[7] -
105
+ m[8] * m[1] * m[14] * m[7] + m[0] * m[9] * m[14] * m[7] +
106
+ m[12] * m[5] * m[2] * m[11] - m[4] * m[13] * m[2] * m[11] -
107
+ m[12] * m[1] * m[6] * m[11] + m[0] * m[13] * m[6] * m[11] +
108
+ m[4] * m[1] * m[14] * m[11] - m[0] * m[5] * m[14] * m[11] -
109
+ m[8] * m[5] * m[2] * m[15] + m[4] * m[9] * m[2] * m[15] +
110
+ m[8] * m[1] * m[6] * m[15] - m[0] * m[9] * m[6] * m[15] -
111
+ m[4] * m[1] * m[10] * m[15] + m[0] * m[5] * m[10] * m[15]);
112
+ };
113
+ // Performs in-place Gauss-Jordan elimination.
114
+ //
115
+ // Based on Jarno Elonen's Python version (public domain):
116
+ // http://elonen.iki.fi/code/misc-notes/python-gaussj/index.html
117
+ science.vector.gaussjordan = function(m, eps) {
118
+ if (!eps) eps = 1e-10;
119
+
120
+ var h = m.length,
121
+ w = m[0].length,
122
+ y = -1,
123
+ y2,
124
+ x;
125
+
126
+ while (++y < h) {
127
+ var maxrow = y;
128
+
129
+ // Find max pivot.
130
+ y2 = y; while (++y2 < h) {
131
+ if (Math.abs(m[y2][y]) > Math.abs(m[maxrow][y]))
132
+ maxrow = y2;
133
+ }
134
+
135
+ // Swap.
136
+ var tmp = m[y];
137
+ m[y] = m[maxrow];
138
+ m[maxrow] = tmp;
139
+
140
+ // Singular?
141
+ if (Math.abs(m[y][y]) <= eps) return false;
142
+
143
+ // Eliminate column y.
144
+ y2 = y; while (++y2 < h) {
145
+ var c = m[y2][y] / m[y][y];
146
+ x = y - 1; while (++x < w) {
147
+ m[y2][x] -= m[y][x] * c;
148
+ }
149
+ }
150
+ }
151
+
152
+ // Backsubstitute.
153
+ y = h; while (--y >= 0) {
154
+ var c = m[y][y];
155
+ y2 = -1; while (++y2 < y) {
156
+ x = w; while (--x >= y) {
157
+ m[y2][x] -= m[y][x] * m[y2][y] / c;
158
+ }
159
+ }
160
+ m[y][y] /= c;
161
+ // Normalize row y.
162
+ x = h - 1; while (++x < w) {
163
+ m[y][x] /= c;
164
+ }
165
+ }
166
+ return true;
167
+ };
168
+ // Find matrix inverse using Gauss-Jordan.
169
+ science.vector.inverse = function(m) {
170
+ var n = m.length
171
+ i = -1;
172
+
173
+ // Check if the matrix is square.
174
+ if (n !== m[0].length) return;
175
+
176
+ // Augment with identity matrix I to get AI.
177
+ m = m.map(function(row, i) {
178
+ var identity = new Array(n),
179
+ j = -1;
180
+ while (++j < n) identity[j] = i === j ? 1 : 0;
181
+ return row.concat(identity);
182
+ });
183
+
184
+ // Compute IA^-1.
185
+ science.vector.gaussjordan(m);
186
+
187
+ // Remove identity matrix I to get A^-1.
188
+ while (++i < n) {
189
+ m[i] = m[i].slice(n);
190
+ }
191
+
192
+ return m;
193
+ };
194
+ science.vector.multiply = function(a, b) {
195
+ var m = a.length,
196
+ n = b[0].length,
197
+ p = b.length,
198
+ i = -1,
199
+ j,
200
+ k;
201
+ if (p !== a[0].length) throw {"error": "columns(a) != rows(b); " + a[0].length + " != " + p};
202
+ var ab = new Array(m);
203
+ while (++i < m) {
204
+ ab[i] = new Array(n);
205
+ j = -1; while(++j < n) {
206
+ var s = 0;
207
+ k = -1; while (++k < p) s += a[i][k] * b[k][j];
208
+ ab[i][j] = s;
209
+ }
210
+ }
211
+ return ab;
212
+ };
213
+ science.vector.transpose = function(a) {
214
+ var m = a.length,
215
+ n = a[0].length,
216
+ i = -1,
217
+ j,
218
+ b = new Array(n);
219
+ while (++i < n) {
220
+ b[i] = new Array(m);
221
+ j = -1; while (++j < m) b[i][j] = a[j][i];
222
+ }
223
+ return b;
224
+ };
225
+ })()
@@ -0,0 +1,27 @@
1
+ (function(){science.lin = {};
2
+ /**
3
+ * Solves tridiagonal systems of linear equations.
4
+ *
5
+ * Source: http://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
6
+ *
7
+ * @param {number[]} a
8
+ * @param {number[]} b
9
+ * @param {number[]} c
10
+ * @param {number[]} d
11
+ * @param {number[]} x
12
+ * @param {number} n
13
+ */
14
+ science.lin.tridag = function(a, b, c, d, x, n) {
15
+ var i,
16
+ m;
17
+ for (i = 1; i < n; i++) {
18
+ m = a[i] / b[i - 1];
19
+ b[i] -= m * c[i - 1];
20
+ d[i] -= m * d[i - 1];
21
+ }
22
+ x[n - 1] = d[n - 1] / b[n - 1];
23
+ for (i = n - 2; i >= 0; i--) {
24
+ x[i] = (d[i] - c[i] * x[i + 1]) / b[i];
25
+ }
26
+ };
27
+ })()
@@ -0,0 +1 @@
1
+ (function(){science.lin={},science.lin.tridag=function(a,b,c,d,e,f){var g,h;for(g=1;g<f;g++)h=a[g]/b[g-1],b[g]-=h*c[g-1],d[g]-=h*d[g-1];e[f-1]=d[f-1]/b[f-1];for(g=f-2;g>=0;g--)e[g]=(d[g]-c[g]*e[g+1])/b[g]}})()
@@ -0,0 +1 @@
1
+ (function(){science={version:"1.7.0"},science.ascending=function(a,b){return a-b},science.EULER=.5772156649015329,science.expm1=function(a){return a<1e-5&&a>-0.00001?a+.5*a*a:Math.exp(a)-1},science.functor=function(a){return typeof a=="function"?a:function(){return a}},science.hypot=function(a,b){a=Math.abs(a),b=Math.abs(b);var c,d;a>b?(c=a,d=b):(c=b,d=a);var e=d/c;return c*Math.sqrt(1+e*e)},science.quadratic=function(){function b(b,c,d){var e=c*c-4*b*d;if(e>0){e=Math.sqrt(e)/(2*b);return a?[{r:-c-e,i:0},{r:-c+e,i:0}]:[-c-e,-c+e]}if(e===0){e=-c/(2*b);return a?[{r:e,i:0}]:[e]}if(a){e=Math.sqrt(-e)/(2*b);return[{r:-c,i:-e},{r:-c,i:e}]}return[]}var a=!1;b.complex=function(c){if(!arguments.length)return a;a=c;return b};return b},science.zeroes=function(a){var b=-1,c=[];if(arguments.length===1)while(++b<a)c[b]=0;else while(++b<a)c[b]=science.zeroes.apply(this,Array.prototype.slice.call(arguments,1));return c},science.vector={},science.vector.cross=function(a,b){return[a[1]*b[2]-a[2]*b[1],a[2]*b[0]-a[0]*b[2],a[0]*b[1]-a[1]*b[0]]},science.vector.dot=function(a,b){var c=0,d=-1,e=Math.min(a.length,b.length);while(++d<e)c+=a[d]*b[d];return c},science.vector.length=function(a){return Math.sqrt(science.vector.dot(a,a))},science.vector.normalize=function(a){var b=science.vector.length(a);return a.map(function(a){return a/b})},science.vector.determinant=function(a){var b=a[0].concat(a[1]).concat(a[2]).concat(a[3]);return b[12]*b[9]*b[6]*b[3]-b[8]*b[13]*b[6]*b[3]-b[12]*b[5]*b[10]*b[3]+b[4]*b[13]*b[10]*b[3]+b[8]*b[5]*b[14]*b[3]-b[4]*b[9]*b[14]*b[3]-b[12]*b[9]*b[2]*b[7]+b[8]*b[13]*b[2]*b[7]+b[12]*b[1]*b[10]*b[7]-b[0]*b[13]*b[10]*b[7]-b[8]*b[1]*b[14]*b[7]+b[0]*b[9]*b[14]*b[7]+b[12]*b[5]*b[2]*b[11]-b[4]*b[13]*b[2]*b[11]-b[12]*b[1]*b[6]*b[11]+b[0]*b[13]*b[6]*b[11]+b[4]*b[1]*b[14]*b[11]-b[0]*b[5]*b[14]*b[11]-b[8]*b[5]*b[2]*b[15]+b[4]*b[9]*b[2]*b[15]+b[8]*b[1]*b[6]*b[15]-b[0]*b[9]*b[6]*b[15]-b[4]*b[1]*b[10]*b[15]+b[0]*b[5]*b[10]*b[15]},science.vector.gaussjordan=function(a,b){b||(b=1e-10);var c=a.length,d=a[0].length,e=-1,f,g;while(++e<c){var h=e;f=e;while(++f<c)Math.abs(a[f][e])>Math.abs(a[h][e])&&(h=f);var i=a[e];a[e]=a[h],a[h]=i;if(Math.abs(a[e][e])<=b)return!1;f=e;while(++f<c){var j=a[f][e]/a[e][e];g=e-1;while(++g<d)a[f][g]-=a[e][g]*j}}e=c;while(--e>=0){var j=a[e][e];f=-1;while(++f<e){g=d;while(--g>=e)a[f][g]-=a[e][g]*a[f][e]/j}a[e][e]/=j,g=c-1;while(++g<d)a[e][g]/=j}return!0},science.vector.inverse=function(a){var b=a.length;i=-1;if(b===a[0].length){a=a.map(function(a,c){var d=Array(b),e=-1;while(++e<b)d[e]=c===e?1:0;return a.concat(d)}),science.vector.gaussjordan(a);while(++i<b)a[i]=a[i].slice(b);return a}},science.vector.multiply=function(a,b){var c=a.length,d=b[0].length,e=b.length,f=-1,g,h;if(e!==a[0].length)throw{error:"columns(a) != rows(b); "+a[0].length+" != "+e};var i=Array(c);while(++f<c){i[f]=Array(d),g=-1;while(++g<d){var j=0;h=-1;while(++h<e)j+=a[f][h]*b[h][g];i[f][g]=j}}return i},science.vector.transpose=function(a){var b=a.length,c=a[0].length,d=-1,e,f=Array(c);while(++d<c){f[d]=Array(b),e=-1;while(++e<b)f[d][e]=a[e][d]}return f}})()
@@ -0,0 +1,720 @@
1
+ (function(){science.stats = {};
2
+ // Bandwidth selectors for Gaussian kernels.
3
+ // Based on R's implementations in `stats.bw`.
4
+ science.stats.bandwidth = {
5
+
6
+ // Silverman, B. W. (1986) Density Estimation. London: Chapman and Hall.
7
+ nrd0: function(x) {
8
+ var hi = Math.sqrt(science.stats.variance(x));
9
+ if (!(lo = Math.min(hi, science.stats.iqr(x) / 1.34)))
10
+ (lo = hi) || (lo = Math.abs(x[1])) || (lo = 1);
11
+ return .9 * lo * Math.pow(x.length, -.2);
12
+ },
13
+
14
+ // Scott, D. W. (1992) Multivariate Density Estimation: Theory, Practice, and
15
+ // Visualization. Wiley.
16
+ nrd: function(x) {
17
+ var h = science.stats.iqr(x) / 1.34;
18
+ return 1.06 * Math.min(Math.sqrt(science.stats.variance(x)), h)
19
+ * Math.pow(x.length, -1/5);
20
+ }
21
+ };
22
+ science.stats.distance = {
23
+ euclidean: function(a, b) {
24
+ var n = a.length,
25
+ i = -1,
26
+ s = 0,
27
+ x;
28
+ while (++i < n) {
29
+ x = a[i] - b[i];
30
+ s += x * x;
31
+ }
32
+ return Math.sqrt(s);
33
+ },
34
+ manhattan: function(a, b) {
35
+ var n = a.length,
36
+ i = -1,
37
+ s = 0;
38
+ while (++i < n) s += Math.abs(a[i] - b[i]);
39
+ return s;
40
+ },
41
+ minkowski: function(p) {
42
+ return function(a, b) {
43
+ var n = a.length,
44
+ i = -1,
45
+ s = 0;
46
+ while (++i < n) s += Math.pow(Math.abs(a[i] - b[i]), p);
47
+ return Math.pow(s, 1 / p);
48
+ };
49
+ },
50
+ chebyshev: function(a, b) {
51
+ var n = a.length,
52
+ i = -1,
53
+ max = 0,
54
+ x;
55
+ while (++i < n) {
56
+ x = Math.abs(a[i] - b[i]);
57
+ if (x > max) max = x;
58
+ }
59
+ return max;
60
+ },
61
+ hamming: function(a, b) {
62
+ var n = a.length,
63
+ i = -1,
64
+ d = 0;
65
+ while (++i < n) if (a[i] !== b[i]) d++;
66
+ return d;
67
+ },
68
+ jaccard: function(a, b) {
69
+ var n = a.length,
70
+ i = -1,
71
+ s = 0;
72
+ while (++i < n) if (a[i] === b[i]) s++;
73
+ return s / n;
74
+ },
75
+ braycurtis: function(a, b) {
76
+ var n = a.length,
77
+ i = -1,
78
+ s0 = 0,
79
+ s1 = 0,
80
+ ai,
81
+ bi;
82
+ while (++i < n) {
83
+ ai = a[i];
84
+ bi = b[i];
85
+ s0 += Math.abs(ai - bi);
86
+ s1 += Math.abs(ai + bi);
87
+ }
88
+ return s0 / s1;
89
+ }
90
+ };
91
+ // Based on implementation in http://picomath.org/.
92
+ science.stats.erf = function(x) {
93
+ var a1 = 0.254829592,
94
+ a2 = -0.284496736,
95
+ a3 = 1.421413741,
96
+ a4 = -1.453152027,
97
+ a5 = 1.061405429,
98
+ p = 0.3275911;
99
+
100
+ // Save the sign of x
101
+ var sign = x < 0 ? -1 : 1;
102
+ if (x < 0) {
103
+ sign = -1;
104
+ x = -x;
105
+ }
106
+
107
+ // A&S formula 7.1.26
108
+ var t = 1 / (1 + p * x);
109
+ return sign * (
110
+ 1 - (((((a5 * t + a4) * t) + a3) * t + a2) * t + a1)
111
+ * t * Math.exp(-x * x));
112
+ };
113
+ science.stats.phi = function(x) {
114
+ return .5 * (1 + science.stats.erf(x / Math.SQRT2));
115
+ };
116
+ // See <http://en.wikipedia.org/wiki/Kernel_(statistics)>.
117
+ science.stats.kernel = {
118
+ uniform: function(u) {
119
+ if (u <= 1 && u >= -1) return .5;
120
+ return 0;
121
+ },
122
+ triangular: function(u) {
123
+ if (u <= 1 && u >= -1) return 1 - Math.abs(u);
124
+ return 0;
125
+ },
126
+ epanechnikov: function(u) {
127
+ if (u <= 1 && u >= -1) return .75 * (1 - u * u);
128
+ return 0;
129
+ },
130
+ quartic: function(u) {
131
+ if (u <= 1 && u >= -1) {
132
+ var tmp = 1 - u * u;
133
+ return (15 / 16) * tmp * tmp;
134
+ }
135
+ return 0;
136
+ },
137
+ triweight: function(u) {
138
+ if (u <= 1 && u >= -1) {
139
+ var tmp = 1 - u * u;
140
+ return (35 / 32) * tmp * tmp * tmp;
141
+ }
142
+ return 0;
143
+ },
144
+ gaussian: function(u) {
145
+ return 1 / Math.sqrt(2 * Math.PI) * Math.exp(-.5 * u * u);
146
+ },
147
+ cosine: function(u) {
148
+ if (u <= 1 && u >= -1) return Math.PI / 4 * Math.cos(Math.PI / 2 * u);
149
+ return 0;
150
+ }
151
+ };
152
+ // http://exploringdata.net/den_trac.htm
153
+ science.stats.kde = function() {
154
+ var kernel = science.stats.kernel.gaussian,
155
+ sample = [],
156
+ bandwidth = science.stats.bandwidth.nrd;
157
+
158
+ function kde(points, i) {
159
+ var bw = bandwidth.call(this, sample);
160
+ return points.map(function(x) {
161
+ var i = -1,
162
+ y = 0,
163
+ n = sample.length;
164
+ while (++i < n) {
165
+ y += kernel((x - sample[i]) / bw);
166
+ }
167
+ return [x, y / bw / n];
168
+ });
169
+ }
170
+
171
+ kde.kernel = function(x) {
172
+ if (!arguments.length) return kernel;
173
+ kernel = x;
174
+ return kde;
175
+ };
176
+
177
+ kde.sample = function(x) {
178
+ if (!arguments.length) return sample;
179
+ sample = x;
180
+ return kde;
181
+ };
182
+
183
+ kde.bandwidth = function(x) {
184
+ if (!arguments.length) return bandwidth;
185
+ bandwidth = science.functor(x);
186
+ return kde;
187
+ };
188
+
189
+ return kde;
190
+ };
191
+ // Based on figue implementation by Jean-Yves Delort.
192
+ // http://code.google.com/p/figue/
193
+ science.stats.kmeans = function() {
194
+ var distance = science.stats.distance.euclidean,
195
+ maxIterations = 1000,
196
+ k = 1;
197
+
198
+ function kmeans(vectors) {
199
+ var n = vectors.length,
200
+ assignments = [],
201
+ clusterSizes = [],
202
+ repeat = 1,
203
+ iterations = 0,
204
+ centroids = science_stats_kmeansRandom(k, vectors),
205
+ newCentroids,
206
+ i,
207
+ j,
208
+ x,
209
+ d,
210
+ min,
211
+ best;
212
+
213
+ while (repeat && iterations < maxIterations) {
214
+ // Assignment step.
215
+ j = -1; while (++j < k) {
216
+ clusterSizes[j] = 0;
217
+ }
218
+
219
+ i = -1; while (++i < n) {
220
+ x = vectors[i];
221
+ min = Infinity;
222
+ j = -1; while (++j < k) {
223
+ d = distance.call(this, centroids[j], x);
224
+ if (d < min) {
225
+ min = d;
226
+ best = j;
227
+ }
228
+ }
229
+ clusterSizes[assignments[i] = best]++;
230
+ }
231
+
232
+ // Update centroids step.
233
+ newCentroids = [];
234
+ i = -1; while (++i < n) {
235
+ x = assignments[i];
236
+ d = newCentroids[x];
237
+ if (d == null) newCentroids[x] = vectors[i].slice();
238
+ else {
239
+ j = -1; while (++j < d.length) {
240
+ d[j] += vectors[i][j];
241
+ }
242
+ }
243
+ }
244
+ j = -1; while (++j < k) {
245
+ x = newCentroids[j];
246
+ d = 1 / clusterSizes[j];
247
+ i = -1; while (++i < x.length) x[i] *= d;
248
+ }
249
+
250
+ // Check convergence.
251
+ repeat = 0;
252
+ j = -1; while (++j < k) {
253
+ if (!science_stats_kmeansCompare(newCentroids[j], centroids[j])) {
254
+ repeat = 1;
255
+ break;
256
+ }
257
+ }
258
+ centroids = newCentroids;
259
+ iterations++;
260
+ }
261
+ return {assignments: assignments, centroids: centroids};
262
+ }
263
+
264
+ kmeans.k = function(x) {
265
+ if (!arguments.length) return k;
266
+ k = x;
267
+ return kmeans;
268
+ };
269
+
270
+ kmeans.distance = function(x) {
271
+ if (!arguments.length) return distance;
272
+ distance = x;
273
+ return kmeans;
274
+ };
275
+
276
+ return kmeans;
277
+ };
278
+
279
+ function science_stats_kmeansCompare(a, b) {
280
+ if (!a || !b || a.length !== b.length) return false;
281
+ var n = a.length,
282
+ i = -1;
283
+ while (++i < n) if (a[i] !== b[i]) return false;
284
+ return true;
285
+ }
286
+
287
+ // Returns an array of k distinct vectors randomly selected from the input
288
+ // array of vectors. Returns null if k > n or if there are less than k distinct
289
+ // objects in vectors.
290
+ function science_stats_kmeansRandom(k, vectors) {
291
+ var n = vectors.length;
292
+ if (k > n) return null;
293
+
294
+ var selected_vectors = [];
295
+ var selected_indices = [];
296
+ var tested_indices = {};
297
+ var tested = 0;
298
+ var selected = 0;
299
+ var i,
300
+ vector,
301
+ select;
302
+
303
+ while (selected < k) {
304
+ if (tested === n) return null;
305
+
306
+ var random_index = Math.floor(Math.random() * n);
307
+ if (random_index in tested_indices) continue;
308
+
309
+ tested_indices[random_index] = 1;
310
+ tested++;
311
+ vector = vectors[random_index];
312
+ select = true;
313
+ for (i = 0; i < selected; i++) {
314
+ if (science_stats_kmeansCompare(vector, selected_vectors[i])) {
315
+ select = false;
316
+ break;
317
+ }
318
+ }
319
+ if (select) {
320
+ selected_vectors[selected] = vector;
321
+ selected_indices[selected] = random_index;
322
+ selected++;
323
+ }
324
+ }
325
+ return selected_vectors;
326
+ }
327
+ science.stats.hcluster = function() {
328
+ var distance = science.stats.distance.euclidean,
329
+ linkage = "simple"; // simple, complete or average
330
+
331
+ function hcluster(vectors) {
332
+ var n = vectors.length,
333
+ dMin = [],
334
+ cSize = [],
335
+ distMatrix = [],
336
+ clusters = [],
337
+ c1,
338
+ c2,
339
+ c1Cluster,
340
+ c2Cluster,
341
+ p,
342
+ root,
343
+ i,
344
+ j;
345
+
346
+ // Initialise distance matrix and vector of closest clusters.
347
+ i = -1; while (++i < n) {
348
+ dMin[i] = 0;
349
+ distMatrix[i] = [];
350
+ j = -1; while (++j < n) {
351
+ distMatrix[i][j] = i === j ? Infinity : distance(vectors[i] , vectors[j]);
352
+ if (distMatrix[i][dMin[i]] > distMatrix[i][j]) dMin[i] = j;
353
+ }
354
+ }
355
+
356
+ // create leaves of the tree
357
+ i = -1; while (++i < n) {
358
+ clusters[i] = [];
359
+ clusters[i][0] = {
360
+ left: null,
361
+ right: null,
362
+ dist: 0,
363
+ centroid: vectors[i],
364
+ size: 1,
365
+ depth: 0
366
+ };
367
+ cSize[i] = 1;
368
+ }
369
+
370
+ // Main loop
371
+ for (p = 0; p < n-1; p++) {
372
+ // find the closest pair of clusters
373
+ c1 = 0;
374
+ for (i = 0; i < n; i++) {
375
+ if (distMatrix[i][dMin[i]] < distMatrix[c1][dMin[c1]]) c1 = i;
376
+ }
377
+ c2 = dMin[c1];
378
+
379
+ // create node to store cluster info
380
+ c1Cluster = clusters[c1][0];
381
+ c2Cluster = clusters[c2][0];
382
+
383
+ newCluster = {
384
+ left: c1Cluster,
385
+ right: c2Cluster,
386
+ dist: distMatrix[c1][c2],
387
+ centroid: calculateCentroid(c1Cluster.size, c1Cluster.centroid,
388
+ c2Cluster.size, c2Cluster.centroid),
389
+ size: c1Cluster.size + c2Cluster.size,
390
+ depth: 1 + Math.max(c1Cluster.depth, c2Cluster.depth)
391
+ };
392
+ clusters[c1].splice(0, 0, newCluster);
393
+ cSize[c1] += cSize[c2];
394
+
395
+ // overwrite row c1 with respect to the linkage type
396
+ for (j = 0; j < n; j++) {
397
+ switch (linkage) {
398
+ case "single":
399
+ if (distMatrix[c1][j] > distMatrix[c2][j])
400
+ distMatrix[j][c1] = distMatrix[c1][j] = distMatrix[c2][j];
401
+ break;
402
+ case "complete":
403
+ if (distMatrix[c1][j] < distMatrix[c2][j])
404
+ distMatrix[j][c1] = distMatrix[c1][j] = distMatrix[c2][j];
405
+ break;
406
+ case "average":
407
+ distMatrix[j][c1] = distMatrix[c1][j] = (cSize[c1] * distMatrix[c1][j] + cSize[c2] * distMatrix[c2][j]) / (cSize[c1] + cSize[j]);
408
+ break;
409
+ }
410
+ }
411
+ distMatrix[c1][c1] = Infinity;
412
+
413
+ // infinity ­out old row c2 and column c2
414
+ for (i = 0; i < n; i++)
415
+ distMatrix[i][c2] = distMatrix[c2][i] = Infinity;
416
+
417
+ // update dmin and replace ones that previous pointed to c2 to point to c1
418
+ for (j = 0; j < n; j++) {
419
+ if (dMin[j] == c2) dMin[j] = c1;
420
+ if (distMatrix[c1][j] < distMatrix[c1][dMin[c1]]) dMin[c1] = j;
421
+ }
422
+
423
+ // keep track of the last added cluster
424
+ root = newCluster;
425
+ }
426
+
427
+ return root;
428
+ }
429
+
430
+ hcluster.distance = function(x) {
431
+ if (!arguments.length) return distance;
432
+ distance = x;
433
+ return hcluster;
434
+ };
435
+
436
+ return hcluster;
437
+ };
438
+
439
+ function calculateCentroid(c1Size, c1Centroid, c2Size, c2Centroid) {
440
+ var newCentroid = [],
441
+ newSize = c1Size + c2Size,
442
+ n = c1Centroid.length,
443
+ i = -1;
444
+ while (++i < n) {
445
+ newCentroid[i] = (c1Size * c1Centroid[i] + c2Size * c2Centroid[i]) / newSize;
446
+ }
447
+ return newCentroid;
448
+ }
449
+ science.stats.iqr = function(x) {
450
+ var quartiles = science.stats.quantiles(x, [.25, .75]);
451
+ return quartiles[1] - quartiles[0];
452
+ };
453
+ // Based on org.apache.commons.math.analysis.interpolation.LoessInterpolator
454
+ // from http://commons.apache.org/math/
455
+ science.stats.loess = function() {
456
+ var bandwidth = .3,
457
+ robustnessIters = 2,
458
+ accuracy = 1e-12;
459
+
460
+ function smooth(xval, yval, weights) {
461
+ var n = xval.length,
462
+ i;
463
+
464
+ if (n !== yval.length) throw {error: "Mismatched array lengths"};
465
+ if (n == 0) throw {error: "At least one point required."};
466
+
467
+ if (arguments.length < 3) {
468
+ weights = [];
469
+ i = -1; while (++i < n) weights[i] = 1;
470
+ }
471
+
472
+ science_stats_loessFiniteReal(xval);
473
+ science_stats_loessFiniteReal(yval);
474
+ science_stats_loessFiniteReal(weights);
475
+ science_stats_loessStrictlyIncreasing(xval);
476
+
477
+ if (n == 1) return [yval[0]];
478
+ if (n == 2) return [yval[0], yval[1]];
479
+
480
+ var bandwidthInPoints = Math.floor(bandwidth * n);
481
+
482
+ if (bandwidthInPoints < 2) throw {error: "Bandwidth too small."};
483
+
484
+ var res = [],
485
+ residuals = [],
486
+ robustnessWeights = [];
487
+
488
+ // Do an initial fit and 'robustnessIters' robustness iterations.
489
+ // This is equivalent to doing 'robustnessIters+1' robustness iterations
490
+ // starting with all robustness weights set to 1.
491
+ i = -1; while (++i < n) {
492
+ res[i] = 0;
493
+ residuals[i] = 0;
494
+ robustnessWeights[i] = 1;
495
+ }
496
+
497
+ var iter = -1;
498
+ while (++iter <= robustnessIters) {
499
+ var bandwidthInterval = [0, bandwidthInPoints - 1];
500
+ // At each x, compute a local weighted linear regression
501
+ var x;
502
+ i = -1; while (++i < n) {
503
+ x = xval[i];
504
+
505
+ // Find out the interval of source points on which
506
+ // a regression is to be made.
507
+ if (i > 0) {
508
+ science_stats_loessUpdateBandwidthInterval(xval, weights, i, bandwidthInterval);
509
+ }
510
+
511
+ var ileft = bandwidthInterval[0],
512
+ iright = bandwidthInterval[1];
513
+
514
+ // Compute the point of the bandwidth interval that is
515
+ // farthest from x
516
+ var edge = (xval[i] - xval[ileft]) > (xval[iright] - xval[i]) ? ileft : iright;
517
+
518
+ // Compute a least-squares linear fit weighted by
519
+ // the product of robustness weights and the tricube
520
+ // weight function.
521
+ // See http://en.wikipedia.org/wiki/Linear_regression
522
+ // (section "Univariate linear case")
523
+ // and http://en.wikipedia.org/wiki/Weighted_least_squares
524
+ // (section "Weighted least squares")
525
+ var sumWeights = 0,
526
+ sumX = 0,
527
+ sumXSquared = 0,
528
+ sumY = 0,
529
+ sumXY = 0,
530
+ denom = Math.abs(1 / (xval[edge] - x));
531
+
532
+ for (var k = ileft; k <= iright; ++k) {
533
+ var xk = xval[k],
534
+ yk = yval[k],
535
+ dist = k < i ? x - xk : xk - x,
536
+ w = science_stats_loessTricube(dist * denom) * robustnessWeights[k] * weights[k],
537
+ xkw = xk * w;
538
+ sumWeights += w;
539
+ sumX += xkw;
540
+ sumXSquared += xk * xkw;
541
+ sumY += yk * w;
542
+ sumXY += yk * xkw;
543
+ }
544
+
545
+ var meanX = sumX / sumWeights,
546
+ meanY = sumY / sumWeights,
547
+ meanXY = sumXY / sumWeights,
548
+ meanXSquared = sumXSquared / sumWeights;
549
+
550
+ var beta = (Math.sqrt(Math.abs(meanXSquared - meanX * meanX)) < accuracy)
551
+ ? 0 : ((meanXY - meanX * meanY) / (meanXSquared - meanX * meanX));
552
+
553
+ var alpha = meanY - beta * meanX;
554
+
555
+ res[i] = beta * x + alpha;
556
+ residuals[i] = Math.abs(yval[i] - res[i]);
557
+ }
558
+
559
+ // No need to recompute the robustness weights at the last
560
+ // iteration, they won't be needed anymore
561
+ if (iter === robustnessIters) {
562
+ break;
563
+ }
564
+
565
+ // Recompute the robustness weights.
566
+
567
+ // Find the median residual.
568
+ var sortedResiduals = residuals.slice();
569
+ sortedResiduals.sort();
570
+ var medianResidual = sortedResiduals[Math.floor(n / 2)];
571
+
572
+ if (Math.abs(medianResidual) < accuracy)
573
+ break;
574
+
575
+ var arg,
576
+ w;
577
+ i = -1; while (++i < n) {
578
+ arg = residuals[i] / (6 * medianResidual);
579
+ robustnessWeights[i] = (arg >= 1) ? 0 : ((w = 1 - arg * arg) * w);
580
+ }
581
+ }
582
+
583
+ return res;
584
+ }
585
+
586
+ smooth.bandwidth = function(x) {
587
+ if (!arguments.length) return x;
588
+ bandwidth = x;
589
+ return smooth;
590
+ };
591
+
592
+ smooth.robustnessIterations = function(x) {
593
+ if (!arguments.length) return x;
594
+ robustnessIters = x;
595
+ return smooth;
596
+ };
597
+
598
+ smooth.accuracy = function(x) {
599
+ if (!arguments.length) return x;
600
+ accuracy = x;
601
+ return smooth;
602
+ };
603
+
604
+ return smooth;
605
+ };
606
+
607
+ function science_stats_loessFiniteReal(values) {
608
+ var n = values.length,
609
+ i = -1;
610
+
611
+ while (++i < n) if (!isFinite(values[i])) return false;
612
+
613
+ return true;
614
+ }
615
+
616
+ function science_stats_loessStrictlyIncreasing(xval) {
617
+ var n = xval.length,
618
+ i = 0;
619
+
620
+ while (++i < n) if (xval[i - 1] >= xval[i]) return false;
621
+
622
+ return true;
623
+ }
624
+
625
+ // Compute the tricube weight function.
626
+ // http://en.wikipedia.org/wiki/Local_regression#Weight_function
627
+ function science_stats_loessTricube(x) {
628
+ return (x = 1 - x * x * x) * x * x;
629
+ }
630
+
631
+ // Given an index interval into xval that embraces a certain number of
632
+ // points closest to xval[i-1], update the interval so that it embraces
633
+ // the same number of points closest to xval[i], ignoring zero weights.
634
+ function science_stats_loessUpdateBandwidthInterval(
635
+ xval, weights, i, bandwidthInterval) {
636
+
637
+ var left = bandwidthInterval[0],
638
+ right = bandwidthInterval[1];
639
+
640
+ // The right edge should be adjusted if the next point to the right
641
+ // is closer to xval[i] than the leftmost point of the current interval
642
+ var nextRight = science_stats_loessNextNonzero(weights, right);
643
+ if ((nextRight < xval.length) && (xval[nextRight] - xval[i]) < (xval[i] - xval[left])) {
644
+ var nextLeft = science_stats_loessNextNonzero(weights, left);
645
+ bandwidthInterval[0] = nextLeft;
646
+ bandwidthInterval[1] = nextRight;
647
+ }
648
+ }
649
+
650
+ function science_stats_loessNextNonzero(weights, i) {
651
+ var j = i + 1;
652
+ while (j < weights.length && weights[j] === 0) j++;
653
+ return j;
654
+ }
655
+ // Welford's algorithm.
656
+ science.stats.mean = function(x) {
657
+ var n = x.length;
658
+ if (n === 0) return NaN;
659
+ var m = 0,
660
+ i = -1;
661
+ while (++i < n) m += (x[i] - m) / (i + 1);
662
+ return m;
663
+ };
664
+ science.stats.median = function(x) {
665
+ return science.stats.quantiles(x, [.5])[0];
666
+ };
667
+ science.stats.mode = function(x) {
668
+ x = x.slice().sort(science.ascending);
669
+ var mode,
670
+ n = x.length,
671
+ i = -1,
672
+ l = i,
673
+ last = null,
674
+ max = 0,
675
+ tmp,
676
+ v;
677
+ while (++i < n) {
678
+ if ((v = x[i]) !== last) {
679
+ if ((tmp = i - l) > max) {
680
+ max = tmp;
681
+ mode = last;
682
+ }
683
+ last = v;
684
+ l = i;
685
+ }
686
+ }
687
+ return mode;
688
+ };
689
+ // Uses R's quantile algorithm type=7.
690
+ science.stats.quantiles = function(d, quantiles) {
691
+ d = d.slice().sort(science.ascending);
692
+ var n_1 = d.length - 1;
693
+ return quantiles.map(function(q) {
694
+ if (q === 0) return d[0];
695
+ else if (q === 1) return d[n_1];
696
+
697
+ var index = 1 + q * n_1,
698
+ lo = Math.floor(index),
699
+ h = index - lo,
700
+ a = d[lo - 1];
701
+
702
+ return h === 0 ? a : a + h * (d[lo] - a);
703
+ });
704
+ };
705
+ // Unbiased estimate of a sample's variance.
706
+ // Also known as the sample variance, where the denominator is n - 1.
707
+ science.stats.variance = function(x) {
708
+ var n = x.length;
709
+ if (n < 1) return NaN;
710
+ if (n === 1) return 0;
711
+ var mean = science.stats.mean(x),
712
+ i = -1,
713
+ s = 0;
714
+ while (++i < n) {
715
+ var v = x[i] - mean;
716
+ s += v * v;
717
+ }
718
+ return s / (n - 1);
719
+ };
720
+ })()