cumo 0.2.5 → 0.3.0.pre1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +14 -1
- data/README.md +12 -1
- data/cumo.gemspec +1 -1
- data/ext/cumo/cuda/cudnn.c +80 -0
- data/ext/cumo/cuda/cudnn_impl.cpp +572 -0
- data/ext/cumo/cuda/runtime.c +1 -0
- data/ext/cumo/cumo.c +5 -0
- data/ext/cumo/extconf.rb +8 -2
- data/ext/cumo/include/cumo.h +2 -2
- data/ext/cumo/include/cumo/cuda/cudnn.h +205 -0
- data/ext/cumo/include/cumo/hash_combine.hpp +17 -0
- data/ext/cumo/include/cumo/intern.h +5 -0
- data/ext/cumo/include/cumo/types/dfloat.h +1 -0
- data/ext/cumo/include/cumo/types/sfloat.h +1 -0
- data/ext/cumo/narray/gen/spec.rb +21 -0
- data/ext/cumo/narray/gen/tmpl/batch_norm.c +197 -0
- data/ext/cumo/narray/gen/tmpl/batch_norm_backward.c +191 -0
- data/ext/cumo/narray/gen/tmpl/conv.c +216 -0
- data/ext/cumo/narray/gen/tmpl/conv_grad_w.c +183 -0
- data/ext/cumo/narray/gen/tmpl/conv_transpose.c +244 -0
- data/ext/cumo/narray/gen/tmpl/gemm.c +14 -0
- data/ext/cumo/narray/gen/tmpl/pooling_backward.c +136 -0
- data/ext/cumo/narray/gen/tmpl/pooling_forward.c +136 -0
- data/ext/cumo/narray/narray.c +29 -0
- data/lib/cumo/cuda.rb +1 -0
- data/lib/cumo/cuda/cudnn.rb +88 -0
- metadata +18 -5
@@ -0,0 +1,244 @@
|
|
1
|
+
#ifdef CUDNN_FOUND
|
2
|
+
|
3
|
+
<%
|
4
|
+
cudnn_dtype =
|
5
|
+
case type_name
|
6
|
+
when 'sfloat'
|
7
|
+
'CUDNN_DATA_FLOAT'
|
8
|
+
when 'dfloat'
|
9
|
+
'CUDNN_DATA_DOUBLE'
|
10
|
+
else
|
11
|
+
# CUDNN_DATA_HALF
|
12
|
+
raise 'not supported'
|
13
|
+
end
|
14
|
+
%>
|
15
|
+
|
16
|
+
// VALUE is Ruby Array
|
17
|
+
static void
|
18
|
+
get_int_out_size(int* int_out_size, VALUE out_size, size_t ndim, size_t* x_shape, size_t* w_shape, int* int_stride, int* int_pad)
|
19
|
+
{
|
20
|
+
if (out_size == Qnil) {
|
21
|
+
for (size_t i = 0; i < ndim; ++i) {
|
22
|
+
int_out_size[i] = cumo_cuda_cudnn_GetConvTransposeOutDim(
|
23
|
+
x_shape[i + 2], w_shape[i + 2], int_stride[i], int_pad[i]);
|
24
|
+
}
|
25
|
+
} else {
|
26
|
+
Check_Type(out_size, T_ARRAY);
|
27
|
+
CUMO_CUDA_CUDNN_CHECK_DIM_EQ((size_t)(RARRAY_LEN(out_size)), ndim);
|
28
|
+
for (size_t i = 0; i < ndim; ++i) {
|
29
|
+
int_out_size[i] = NUM2INT(rb_ary_entry(out_size, (long)i));
|
30
|
+
}
|
31
|
+
}
|
32
|
+
// only cover_all=false is supported
|
33
|
+
for (size_t i = 0; i < ndim; ++i) {
|
34
|
+
if (x_shape[i + 2] != cumo_cuda_cudnn_GetConvOutDim(
|
35
|
+
int_out_size[i], w_shape[i + 2], int_stride[i], int_pad[i])) {
|
36
|
+
rb_raise(rb_eRuntimeError, "CUDA transposed convolution does not support specified output sizes");
|
37
|
+
}
|
38
|
+
}
|
39
|
+
}
|
40
|
+
|
41
|
+
// cover_all=true is not supported with CUDNN
|
42
|
+
// dilation > 1 is not supported yet
|
43
|
+
// x.conv(w, b: nil, stride: 1, pad: 0, out_size: nil, y: nil)
|
44
|
+
static VALUE
|
45
|
+
<%=c_func(-1)%>(int argc, VALUE argv[], VALUE self)
|
46
|
+
{
|
47
|
+
cudnnDataType_t cudnn_dtype = <%= cudnn_dtype %>;
|
48
|
+
cudnnStatus_t status = 0;
|
49
|
+
cudnnHandle_t handle = 0;
|
50
|
+
dtype alpha = 1;
|
51
|
+
dtype beta = 0;
|
52
|
+
|
53
|
+
VALUE x=self, w, b, stride, pad, out_size, y;
|
54
|
+
VALUE kw_hash = Qnil;
|
55
|
+
ID kw_table[5] = {rb_intern("b"), rb_intern("stride"), rb_intern("pad"), rb_intern("out_size"), rb_intern("y")};
|
56
|
+
VALUE opts[5] = {Qundef, Qundef, Qundef, Qundef, Qundef};
|
57
|
+
|
58
|
+
size_t ndim;
|
59
|
+
cumo_narray_t *nx, *nw;
|
60
|
+
size_t *x_shape, *w_shape;
|
61
|
+
size_t out_channels, batch_size;
|
62
|
+
|
63
|
+
VALUE x_cont, w_cont;
|
64
|
+
cudnnTensorDescriptor_t x_desc = 0;
|
65
|
+
cudnnTensorDescriptor_t y_desc = 0;
|
66
|
+
cudnnTensorDescriptor_t b_desc = 0;
|
67
|
+
cudnnFilterDescriptor_t w_desc = 0;
|
68
|
+
cudnnConvolutionDescriptor_t conv_desc = 0;
|
69
|
+
char *x_cont_ptr, *w_cont_ptr, *y_ptr;
|
70
|
+
|
71
|
+
cudnnConvolutionBwdDataAlgoPerf_t perf_result;
|
72
|
+
cudnnConvolutionBwdDataAlgo_t algo;
|
73
|
+
size_t max_workspace_size = CUMO_CUDA_CUDNN_DEFAULT_MAX_WORKSPACE_SIZE;
|
74
|
+
size_t workspace_size;
|
75
|
+
char* workspace = 0;
|
76
|
+
|
77
|
+
int int_stride[CUMO_NA_MAX_DIMENSION];
|
78
|
+
int int_pad[CUMO_NA_MAX_DIMENSION];
|
79
|
+
int int_out_size[CUMO_NA_MAX_DIMENSION];
|
80
|
+
|
81
|
+
rb_scan_args(argc, argv, "1:", &w, &kw_hash);
|
82
|
+
rb_get_kwargs(kw_hash, kw_table, 0, 4, opts);
|
83
|
+
b = cumo_cuda_cudnn_option_value(opts[0], Qnil);
|
84
|
+
stride = cumo_cuda_cudnn_option_value(opts[1], Qnil);
|
85
|
+
pad = cumo_cuda_cudnn_option_value(opts[2], Qnil);
|
86
|
+
out_size = cumo_cuda_cudnn_option_value(opts[3], Qnil);
|
87
|
+
y = cumo_cuda_cudnn_option_value(opts[4], Qnil);
|
88
|
+
|
89
|
+
CumoGetNArray(x, nx);
|
90
|
+
CumoGetNArray(w, nw);
|
91
|
+
|
92
|
+
CUMO_CUDA_CUDNN_CHECK_DIM_EQ(nx->ndim, nw->ndim);
|
93
|
+
CUMO_CUDA_CUDNN_CHECK_NARRAY_TYPE(x, cT);
|
94
|
+
CUMO_CUDA_CUDNN_CHECK_NARRAY_TYPE(w, cT);
|
95
|
+
if (nx->ndim - 2 < 2) {
|
96
|
+
rb_raise(cumo_na_eShapeError, "CUDNN convolution requires number of spatial "
|
97
|
+
"dimensions to be greater than or equal to 2, but %d", nx->ndim - 2);
|
98
|
+
}
|
99
|
+
ndim = nx->ndim - 2; // Number of spatial dimensions
|
100
|
+
|
101
|
+
x_shape = nx->shape;
|
102
|
+
w_shape = nw->shape;
|
103
|
+
batch_size = x_shape[0]; // x_shape = (batch_size, in_channels, d_1, d_2, ..., d_N)
|
104
|
+
out_channels = w_shape[1]; // w.shape = (in_channels, out_channels, k_1, k_2, ..., k_N)
|
105
|
+
if (x_shape[1] != w_shape[0]) {
|
106
|
+
rb_raise(cumo_na_eShapeError, "x_shape[1]:%d does not match with w_shape[0]:%d",
|
107
|
+
(int)x_shape[1], (int)w_shape[0]);
|
108
|
+
}
|
109
|
+
|
110
|
+
cumo_cuda_cudnn_get_int_ary(int_stride, stride, ndim, 1);
|
111
|
+
cumo_cuda_cudnn_get_int_ary(int_pad, pad, ndim, 0);
|
112
|
+
get_int_out_size(int_out_size, out_size, ndim, x_shape, w_shape, int_stride, int_pad);
|
113
|
+
|
114
|
+
// out_shape = (batch_size, out_channels, out_1, out_2, ..., out_N)
|
115
|
+
if (y != Qnil) {
|
116
|
+
CUMO_CUDA_CUDNN_CHECK_NARRAY_TYPE(y, cT);
|
117
|
+
// TODO: shape check
|
118
|
+
}
|
119
|
+
else {
|
120
|
+
size_t *y_shape = ALLOCA_N(size_t, ndim + 2);
|
121
|
+
y_shape[0] = batch_size;
|
122
|
+
y_shape[1] = out_channels;
|
123
|
+
for (size_t i = 0; i < ndim; ++i) {
|
124
|
+
y_shape[i + 2] = int_out_size[i];
|
125
|
+
}
|
126
|
+
y = cumo_na_new(cT, ndim + 2, y_shape);
|
127
|
+
}
|
128
|
+
|
129
|
+
x_cont = cumo_na_as_contiguous_array(x);
|
130
|
+
w_cont = cumo_na_as_contiguous_array(w);
|
131
|
+
|
132
|
+
x_cont_ptr = cumo_na_get_offset_pointer_for_read(x_cont);
|
133
|
+
w_cont_ptr = cumo_na_get_offset_pointer_for_read(w_cont);
|
134
|
+
y_ptr = cumo_na_get_offset_pointer_for_write(y);
|
135
|
+
|
136
|
+
status = cumo_cuda_cudnn_CreateTensorDescriptor(&x_desc, x_cont, cudnn_dtype);
|
137
|
+
if (status != CUDNN_STATUS_SUCCESS) goto CONV_ERROR;
|
138
|
+
status = cumo_cuda_cudnn_CreateTensorDescriptor(&y_desc, y, cudnn_dtype);
|
139
|
+
if (status != CUDNN_STATUS_SUCCESS) goto CONV_ERROR;
|
140
|
+
status = cumo_cuda_cudnn_CreateFilterDescriptor(&w_desc, w_cont, cudnn_dtype);
|
141
|
+
if (status != CUDNN_STATUS_SUCCESS) goto CONV_ERROR;
|
142
|
+
status = cumo_cuda_cudnn_CreateConvolutionDescriptor(&conv_desc, ndim, int_stride, int_pad, cudnn_dtype);
|
143
|
+
if (status != CUDNN_STATUS_SUCCESS) goto CONV_ERROR;
|
144
|
+
|
145
|
+
handle = cumo_cuda_cudnn_handle();
|
146
|
+
|
147
|
+
// auto tune
|
148
|
+
status = cumo_cuda_cudnn_FindConvolutionBackwardDataAlgorithm(
|
149
|
+
&perf_result,
|
150
|
+
handle,
|
151
|
+
w_desc,
|
152
|
+
w_cont,
|
153
|
+
x_desc,
|
154
|
+
x_cont,
|
155
|
+
conv_desc,
|
156
|
+
y_desc,
|
157
|
+
y,
|
158
|
+
max_workspace_size,
|
159
|
+
int_stride,
|
160
|
+
int_pad,
|
161
|
+
ndim,
|
162
|
+
cudnn_dtype);
|
163
|
+
if (status != CUDNN_STATUS_SUCCESS) goto CONV_ERROR;
|
164
|
+
algo = perf_result.algo;
|
165
|
+
workspace_size = perf_result.memory;
|
166
|
+
|
167
|
+
workspace = cumo_cuda_runtime_malloc(max_workspace_size);
|
168
|
+
status = cudnnConvolutionBackwardData(
|
169
|
+
handle,
|
170
|
+
(void*)&alpha,
|
171
|
+
w_desc,
|
172
|
+
(void*)w_cont_ptr,
|
173
|
+
x_desc,
|
174
|
+
(void*)x_cont_ptr,
|
175
|
+
conv_desc,
|
176
|
+
algo,
|
177
|
+
(void*)workspace,
|
178
|
+
workspace_size,
|
179
|
+
(void*)&beta,
|
180
|
+
y_desc,
|
181
|
+
(void*)y_ptr);
|
182
|
+
if (status != CUDNN_STATUS_SUCCESS) goto CONV_ERROR;
|
183
|
+
|
184
|
+
if (b != Qnil) {
|
185
|
+
size_t new_shape[CUMO_NA_MAX_DIMENSION];
|
186
|
+
VALUE b_cont;
|
187
|
+
char* b_cont_ptr;
|
188
|
+
cumo_narray_t *nb, *nb_cont;
|
189
|
+
size_t *b_shape;
|
190
|
+
int b_ndim;
|
191
|
+
|
192
|
+
CUMO_CUDA_CUDNN_CHECK_NARRAY_TYPE(b, cT);
|
193
|
+
CumoGetNArray(b, nb);
|
194
|
+
new_shape[0] = 1;
|
195
|
+
new_shape[1] = nb->size;
|
196
|
+
for (size_t i = 0; i < ndim; ++i) {
|
197
|
+
new_shape[i + 2] = 1;
|
198
|
+
}
|
199
|
+
b_cont = cumo_na_as_contiguous_array(b);
|
200
|
+
b_cont_ptr = cumo_na_get_offset_pointer_for_read(b_cont);
|
201
|
+
CumoGetNArray(b_cont, nb_cont);
|
202
|
+
b_shape = nb_cont->shape;
|
203
|
+
b_ndim = nb_cont->ndim;
|
204
|
+
// reshape b
|
205
|
+
nb_cont->ndim = ndim + 2;
|
206
|
+
nb_cont->shape = new_shape;
|
207
|
+
status = cumo_cuda_cudnn_CreateTensorDescriptor(&b_desc, b_cont, cudnn_dtype);
|
208
|
+
// restore b.shape
|
209
|
+
nb_cont->ndim = b_ndim;
|
210
|
+
nb_cont->shape = b_shape;
|
211
|
+
if (status != CUDNN_STATUS_SUCCESS) goto CONV_ERROR;
|
212
|
+
|
213
|
+
status = cudnnAddTensor(
|
214
|
+
handle,
|
215
|
+
(void*)&alpha,
|
216
|
+
b_desc,
|
217
|
+
(void*)b_cont_ptr,
|
218
|
+
(void*)&alpha,
|
219
|
+
y_desc,
|
220
|
+
(void*)y_ptr);
|
221
|
+
if (status != CUDNN_STATUS_SUCCESS) goto CONV_ERROR;
|
222
|
+
}
|
223
|
+
|
224
|
+
CONV_ERROR:
|
225
|
+
if (x_desc) cudnnDestroyTensorDescriptor(x_desc);
|
226
|
+
if (y_desc) cudnnDestroyTensorDescriptor(y_desc);
|
227
|
+
if (b_desc) cudnnDestroyTensorDescriptor(b_desc);
|
228
|
+
if (w_desc) cudnnDestroyFilterDescriptor(w_desc);
|
229
|
+
if (conv_desc) cudnnDestroyConvolutionDescriptor(conv_desc);
|
230
|
+
if (workspace) cumo_cuda_runtime_free(workspace);
|
231
|
+
cumo_cuda_cudnn_check_status(status);
|
232
|
+
|
233
|
+
return y;
|
234
|
+
}
|
235
|
+
|
236
|
+
#else // CUDNN_FOUND
|
237
|
+
VALUE cumo_cuda_eCUDNNError;
|
238
|
+
|
239
|
+
static VALUE
|
240
|
+
<%=c_func(-1)%>(int argc, VALUE argv[], VALUE self)
|
241
|
+
{
|
242
|
+
rb_raise(cumo_cuda_eCUDNNError, "cuDNN is not available");
|
243
|
+
}
|
244
|
+
#endif // CUDNN_FOUND
|
@@ -345,3 +345,17 @@ static VALUE
|
|
345
345
|
<%=c_iter%>(a, b, c, &g);
|
346
346
|
return c;
|
347
347
|
}
|
348
|
+
|
349
|
+
#undef ROW_SIZE
|
350
|
+
#undef COL_SIZE
|
351
|
+
#undef CHECK_NARRAY_TYPE
|
352
|
+
#undef CHECK_DIM_GE
|
353
|
+
#undef CHECK_DIM_EQ
|
354
|
+
#undef CHECK_SQUARE
|
355
|
+
#undef CHECK_SIZE_GE
|
356
|
+
#undef CHECK_NON_EMPTY
|
357
|
+
#undef CHECK_SIZE_EQ
|
358
|
+
#undef CHECK_SAME_SHAPE
|
359
|
+
#undef CHECK_INT_EQ
|
360
|
+
#undef CHECK_LEADING_GE
|
361
|
+
#undef COPY_OR_CAST_TO
|
@@ -0,0 +1,136 @@
|
|
1
|
+
#ifdef CUDNN_FOUND
|
2
|
+
|
3
|
+
<%
|
4
|
+
cudnn_dtype =
|
5
|
+
case type_name
|
6
|
+
when 'sfloat'
|
7
|
+
'CUDNN_DATA_FLOAT'
|
8
|
+
when 'dfloat'
|
9
|
+
'CUDNN_DATA_DOUBLE'
|
10
|
+
else
|
11
|
+
# CUDNN_DATA_HALF
|
12
|
+
raise 'not supported'
|
13
|
+
end
|
14
|
+
%>
|
15
|
+
|
16
|
+
// cover_all=true is not supported with CUDNN
|
17
|
+
// gy = x.pooling_backward(mode, y, kernel_size, stride: 1, pad: 0)
|
18
|
+
//CUDNN_POOLING_MAX
|
19
|
+
//CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING
|
20
|
+
//CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING
|
21
|
+
//CUDNN_POOLING_MAX_DETERMINISTIC
|
22
|
+
static VALUE
|
23
|
+
<%=c_func(-1)%>(int argc, VALUE argv[], VALUE self)
|
24
|
+
{
|
25
|
+
cudnnDataType_t cudnn_dtype = <%= cudnn_dtype %>;
|
26
|
+
cudnnStatus_t status = 0;
|
27
|
+
cudnnHandle_t handle = 0;
|
28
|
+
dtype alpha = 1;
|
29
|
+
dtype beta = 0;
|
30
|
+
|
31
|
+
VALUE x=self, y, gy, mode, kernel_size, stride, pad, gx;
|
32
|
+
VALUE kw_hash = Qnil;
|
33
|
+
ID kw_table[4] = {rb_intern("stride"), rb_intern("pad"), rb_intern("gx")};
|
34
|
+
VALUE opts[4] = {Qundef, Qundef, Qundef};
|
35
|
+
|
36
|
+
size_t ndim;
|
37
|
+
cumo_narray_t *nx;
|
38
|
+
size_t *x_shape;
|
39
|
+
|
40
|
+
VALUE x_cont, y_cont, gy_cont;
|
41
|
+
cudnnTensorDescriptor_t x_desc = 0;
|
42
|
+
cudnnTensorDescriptor_t y_desc = 0;
|
43
|
+
cudnnPoolingDescriptor_t pool_desc = 0;
|
44
|
+
char *x_cont_ptr, *y_cont_ptr, *gy_cont_ptr, *gx_ptr;
|
45
|
+
|
46
|
+
cudnnPoolingMode_t int_mode;
|
47
|
+
int int_kernel_size[CUMO_NA_MAX_DIMENSION];
|
48
|
+
int int_stride[CUMO_NA_MAX_DIMENSION];
|
49
|
+
int int_pad[CUMO_NA_MAX_DIMENSION];
|
50
|
+
|
51
|
+
rb_scan_args(argc, argv, "4:", &mode, &y, &gy, &kernel_size, &kw_hash);
|
52
|
+
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
|
53
|
+
stride = cumo_cuda_cudnn_option_value(opts[0], Qnil);
|
54
|
+
pad = cumo_cuda_cudnn_option_value(opts[1], Qnil);
|
55
|
+
gx = cumo_cuda_cudnn_option_value(opts[2], Qnil);
|
56
|
+
|
57
|
+
CumoGetNArray(x, nx);
|
58
|
+
|
59
|
+
CUMO_CUDA_CUDNN_CHECK_NARRAY_TYPE(x, cT);
|
60
|
+
if (nx->ndim - 2 < 2) {
|
61
|
+
rb_raise(cumo_na_eShapeError, "cuDNN pooling requires number of spatial "
|
62
|
+
"dimensions to be greater than or equal to 2, but %d", nx->ndim - 2);
|
63
|
+
}
|
64
|
+
ndim = nx->ndim - 2; // Number of spatial dimensions
|
65
|
+
|
66
|
+
// required parameter
|
67
|
+
int_mode = (cudnnPoolingMode_t)NUM2INT(mode);
|
68
|
+
cumo_cuda_cudnn_get_int_ary(int_kernel_size, kernel_size, ndim, 0);
|
69
|
+
// default to kernel_size
|
70
|
+
if (stride == Qnil) {
|
71
|
+
memcpy(int_stride, int_kernel_size, sizeof(int) * ndim);
|
72
|
+
} else {
|
73
|
+
cumo_cuda_cudnn_get_int_ary(int_stride, stride, ndim, 0);
|
74
|
+
}
|
75
|
+
// default to 0
|
76
|
+
cumo_cuda_cudnn_get_int_ary(int_pad, pad, ndim, 0);
|
77
|
+
|
78
|
+
x_shape = nx->shape;
|
79
|
+
|
80
|
+
if (gx != Qnil) {
|
81
|
+
CUMO_CUDA_CUDNN_CHECK_NARRAY_TYPE(gx, cT);
|
82
|
+
}
|
83
|
+
else {
|
84
|
+
gx = cumo_na_new(cT, ndim + 2, x_shape);
|
85
|
+
}
|
86
|
+
|
87
|
+
x_cont = cumo_na_as_contiguous_array(x);
|
88
|
+
y_cont = cumo_na_as_contiguous_array(y);
|
89
|
+
gy_cont = cumo_na_as_contiguous_array(gy);
|
90
|
+
|
91
|
+
x_cont_ptr = cumo_na_get_offset_pointer_for_read(x_cont);
|
92
|
+
y_cont_ptr = cumo_na_get_offset_pointer_for_read(y_cont);
|
93
|
+
gy_cont_ptr = cumo_na_get_offset_pointer_for_read(gy_cont);
|
94
|
+
gx_ptr = cumo_na_get_offset_pointer_for_write(gx);
|
95
|
+
|
96
|
+
status = cumo_cuda_cudnn_CreateTensorDescriptor(&x_desc, x_cont, cudnn_dtype);
|
97
|
+
if (status != CUDNN_STATUS_SUCCESS) goto POOLING_ERROR;
|
98
|
+
status = cumo_cuda_cudnn_CreateTensorDescriptor(&y_desc, y, cudnn_dtype);
|
99
|
+
if (status != CUDNN_STATUS_SUCCESS) goto POOLING_ERROR;
|
100
|
+
status = cumo_cuda_cudnn_CreatePoolingDescriptor(&pool_desc, int_mode, ndim, int_kernel_size, int_stride, int_pad);
|
101
|
+
if (status != CUDNN_STATUS_SUCCESS) goto POOLING_ERROR;
|
102
|
+
|
103
|
+
handle = cumo_cuda_cudnn_handle();
|
104
|
+
status = cudnnPoolingBackward(
|
105
|
+
handle,
|
106
|
+
pool_desc,
|
107
|
+
(void*)&alpha,
|
108
|
+
y_desc,
|
109
|
+
(void*)y_cont_ptr,
|
110
|
+
y_desc,
|
111
|
+
(void*)gy_cont_ptr,
|
112
|
+
x_desc,
|
113
|
+
(void*)x_cont_ptr,
|
114
|
+
(void*)&beta,
|
115
|
+
x_desc,
|
116
|
+
(void*)gx_ptr);
|
117
|
+
if (status != CUDNN_STATUS_SUCCESS) goto POOLING_ERROR;
|
118
|
+
|
119
|
+
POOLING_ERROR:
|
120
|
+
if (x_desc) cudnnDestroyTensorDescriptor(x_desc);
|
121
|
+
if (y_desc) cudnnDestroyTensorDescriptor(y_desc);
|
122
|
+
if (pool_desc) cudnnDestroyPoolingDescriptor(pool_desc);
|
123
|
+
cumo_cuda_cudnn_check_status(status);
|
124
|
+
|
125
|
+
return gx;
|
126
|
+
}
|
127
|
+
|
128
|
+
#else // CUDNN_FOUND
|
129
|
+
VALUE cumo_cuda_eCUDNNError;
|
130
|
+
|
131
|
+
static VALUE
|
132
|
+
<%=c_func(-1)%>(int argc, VALUE argv[], VALUE self)
|
133
|
+
{
|
134
|
+
rb_raise(cumo_cuda_eCUDNNError, "cuDNN is not available");
|
135
|
+
}
|
136
|
+
#endif // CUDNN_FOUND
|
@@ -0,0 +1,136 @@
|
|
1
|
+
#ifdef CUDNN_FOUND
|
2
|
+
|
3
|
+
<%
|
4
|
+
cudnn_dtype =
|
5
|
+
case type_name
|
6
|
+
when 'sfloat'
|
7
|
+
'CUDNN_DATA_FLOAT'
|
8
|
+
when 'dfloat'
|
9
|
+
'CUDNN_DATA_DOUBLE'
|
10
|
+
else
|
11
|
+
# CUDNN_DATA_HALF
|
12
|
+
raise 'not supported'
|
13
|
+
end
|
14
|
+
%>
|
15
|
+
|
16
|
+
// cover_all=true is not supported with CUDNN
|
17
|
+
// x.pooling_forward(mode, kernel_size, stride: 1, pad: 0, y: nil)
|
18
|
+
//CUDNN_POOLING_MAX
|
19
|
+
//CUDNN_POOLING_AVERAGE_COUNT_INCLUDE_PADDING
|
20
|
+
//CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING
|
21
|
+
//CUDNN_POOLING_MAX_DETERMINISTIC
|
22
|
+
static VALUE
|
23
|
+
<%=c_func(-1)%>(int argc, VALUE argv[], VALUE self)
|
24
|
+
{
|
25
|
+
cudnnDataType_t cudnn_dtype = <%= cudnn_dtype %>;
|
26
|
+
cudnnStatus_t status = 0;
|
27
|
+
cudnnHandle_t handle = 0;
|
28
|
+
dtype alpha = 1;
|
29
|
+
dtype beta = 0;
|
30
|
+
|
31
|
+
VALUE x=self, mode, kernel_size, stride, pad, y;
|
32
|
+
VALUE kw_hash = Qnil;
|
33
|
+
ID kw_table[4] = {rb_intern("stride"), rb_intern("pad"), rb_intern("y")};
|
34
|
+
VALUE opts[4] = {Qundef, Qundef, Qundef};
|
35
|
+
|
36
|
+
size_t ndim;
|
37
|
+
cumo_narray_t *nx;
|
38
|
+
size_t *x_shape;
|
39
|
+
|
40
|
+
VALUE x_cont;
|
41
|
+
cudnnTensorDescriptor_t x_desc = 0;
|
42
|
+
cudnnTensorDescriptor_t y_desc = 0;
|
43
|
+
cudnnPoolingDescriptor_t pool_desc = 0;
|
44
|
+
char *x_cont_ptr, *y_ptr;
|
45
|
+
|
46
|
+
cudnnPoolingMode_t int_mode;
|
47
|
+
int int_kernel_size[CUMO_NA_MAX_DIMENSION];
|
48
|
+
int int_stride[CUMO_NA_MAX_DIMENSION];
|
49
|
+
int int_pad[CUMO_NA_MAX_DIMENSION];
|
50
|
+
|
51
|
+
rb_scan_args(argc, argv, "2:", &mode, &kernel_size, &kw_hash);
|
52
|
+
rb_get_kwargs(kw_hash, kw_table, 0, 3, opts);
|
53
|
+
stride = cumo_cuda_cudnn_option_value(opts[0], Qnil);
|
54
|
+
pad = cumo_cuda_cudnn_option_value(opts[1], Qnil);
|
55
|
+
y = cumo_cuda_cudnn_option_value(opts[2], Qnil);
|
56
|
+
|
57
|
+
CumoGetNArray(x, nx);
|
58
|
+
|
59
|
+
CUMO_CUDA_CUDNN_CHECK_NARRAY_TYPE(x, cT);
|
60
|
+
if (nx->ndim - 2 < 2) {
|
61
|
+
rb_raise(cumo_na_eShapeError, "CUDNN pooling requires number of spatial "
|
62
|
+
"dimensions to be greater than or equal to 2, but %d", nx->ndim - 2);
|
63
|
+
}
|
64
|
+
ndim = nx->ndim - 2; // Number of spatial dimensions
|
65
|
+
|
66
|
+
// required parameter
|
67
|
+
int_mode = (cudnnPoolingMode_t)NUM2INT(mode);
|
68
|
+
cumo_cuda_cudnn_get_int_ary(int_kernel_size, kernel_size, ndim, 0);
|
69
|
+
// default to kernel_size
|
70
|
+
if (stride == Qnil) {
|
71
|
+
memcpy(int_stride, int_kernel_size, sizeof(int) * ndim);
|
72
|
+
} else {
|
73
|
+
cumo_cuda_cudnn_get_int_ary(int_stride, stride, ndim, 0);
|
74
|
+
}
|
75
|
+
// default to 0
|
76
|
+
cumo_cuda_cudnn_get_int_ary(int_pad, pad, ndim, 0);
|
77
|
+
|
78
|
+
x_shape = nx->shape;
|
79
|
+
|
80
|
+
if (y != Qnil) {
|
81
|
+
CUMO_CUDA_CUDNN_CHECK_NARRAY_TYPE(y, cT);
|
82
|
+
}
|
83
|
+
else {
|
84
|
+
size_t *y_shape = ALLOCA_N(size_t, ndim + 2);
|
85
|
+
// out_shape = (batch_size, num_channels, out_1, out_2, ..., out_N)
|
86
|
+
y_shape[0] = x_shape[0];
|
87
|
+
y_shape[1] = x_shape[1];
|
88
|
+
for (size_t i = 0; i < ndim; ++i) {
|
89
|
+
y_shape[i + 2] = cumo_cuda_cudnn_GetConvOutDim(
|
90
|
+
x_shape[i + 2], int_kernel_size[i], int_stride[i], int_pad[i]);
|
91
|
+
}
|
92
|
+
y = cumo_na_new(cT, ndim + 2, y_shape);
|
93
|
+
}
|
94
|
+
|
95
|
+
x_cont = cumo_na_as_contiguous_array(x);
|
96
|
+
|
97
|
+
x_cont_ptr = cumo_na_get_offset_pointer_for_read(x_cont);
|
98
|
+
y_ptr = cumo_na_get_offset_pointer_for_write(y);
|
99
|
+
|
100
|
+
status = cumo_cuda_cudnn_CreateTensorDescriptor(&x_desc, x_cont, cudnn_dtype);
|
101
|
+
if (status != CUDNN_STATUS_SUCCESS) goto POOLING_ERROR;
|
102
|
+
status = cumo_cuda_cudnn_CreateTensorDescriptor(&y_desc, y, cudnn_dtype);
|
103
|
+
if (status != CUDNN_STATUS_SUCCESS) goto POOLING_ERROR;
|
104
|
+
status = cumo_cuda_cudnn_CreatePoolingDescriptor(&pool_desc, int_mode, ndim, int_kernel_size, int_stride, int_pad);
|
105
|
+
if (status != CUDNN_STATUS_SUCCESS) goto POOLING_ERROR;
|
106
|
+
|
107
|
+
handle = cumo_cuda_cudnn_handle();
|
108
|
+
status = cudnnPoolingForward(
|
109
|
+
handle,
|
110
|
+
pool_desc,
|
111
|
+
(void*)&alpha,
|
112
|
+
x_desc,
|
113
|
+
(void*)x_cont_ptr,
|
114
|
+
(void*)&beta,
|
115
|
+
y_desc,
|
116
|
+
(void*)y_ptr);
|
117
|
+
if (status != CUDNN_STATUS_SUCCESS) goto POOLING_ERROR;
|
118
|
+
|
119
|
+
POOLING_ERROR:
|
120
|
+
if (x_desc) cudnnDestroyTensorDescriptor(x_desc);
|
121
|
+
if (y_desc) cudnnDestroyTensorDescriptor(y_desc);
|
122
|
+
if (pool_desc) cudnnDestroyPoolingDescriptor(pool_desc);
|
123
|
+
cumo_cuda_cudnn_check_status(status);
|
124
|
+
|
125
|
+
return y;
|
126
|
+
}
|
127
|
+
|
128
|
+
#else // CUDNN_FOUND
|
129
|
+
VALUE cumo_cuda_eCUDNNError;
|
130
|
+
|
131
|
+
static VALUE
|
132
|
+
<%=c_func(-1)%>(int argc, VALUE argv[], VALUE self)
|
133
|
+
{
|
134
|
+
rb_raise(cumo_cuda_eCUDNNError, "cuDNN is not available");
|
135
|
+
}
|
136
|
+
#endif // CUDNN_FOUND
|