confusion_matrix 1.1.0 → 1.1.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/LICENSE.rdoc +22 -22
- data/README.rdoc +88 -88
- data/lib/confusion_matrix.rb +383 -451
- data/test/matrix_test.rb +160 -160
- metadata +10 -15
data/test/matrix_test.rb
CHANGED
|
@@ -1,160 +1,160 @@
|
|
|
1
|
-
require 'confusion_matrix'
|
|
2
|
-
require 'minitest/autorun'
|
|
3
|
-
|
|
4
|
-
class TestConfusionMatrix <
|
|
5
|
-
def test_empty_case
|
|
6
|
-
cm = ConfusionMatrix.new
|
|
7
|
-
assert(0, cm.total)
|
|
8
|
-
assert(0, cm.true_positive(:none))
|
|
9
|
-
assert(0, cm.false_negative(:none))
|
|
10
|
-
assert(0, cm.false_positive(:none))
|
|
11
|
-
assert(0, cm.true_negative(:none))
|
|
12
|
-
assert_in_delta(0, cm.true_rate(:none))
|
|
13
|
-
end
|
|
14
|
-
|
|
15
|
-
def test_two_classes
|
|
16
|
-
cm = ConfusionMatrix.new
|
|
17
|
-
10.times { cm.add_for(:pos, :pos) }
|
|
18
|
-
5.times { cm.add_for(:pos, :neg) }
|
|
19
|
-
20.times { cm.add_for(:neg, :neg) }
|
|
20
|
-
5.times { cm.add_for(:neg, :pos) }
|
|
21
|
-
|
|
22
|
-
assert_equal([:neg, :pos], cm.labels)
|
|
23
|
-
assert_equal(10, cm.count_for(:pos, :pos))
|
|
24
|
-
assert_equal(5, cm.count_for(:pos, :neg))
|
|
25
|
-
assert_equal(20, cm.count_for(:neg, :neg))
|
|
26
|
-
assert_equal(5, cm.count_for(:neg, :pos))
|
|
27
|
-
|
|
28
|
-
assert_equal(40, cm.total)
|
|
29
|
-
assert_equal(10, cm.true_positive(:pos))
|
|
30
|
-
assert_equal(5, cm.false_negative(:pos))
|
|
31
|
-
assert_equal(5, cm.false_positive(:pos))
|
|
32
|
-
assert_equal(20, cm.true_negative(:pos))
|
|
33
|
-
assert_equal(20, cm.true_positive(:neg))
|
|
34
|
-
assert_equal(5, cm.false_negative(:neg))
|
|
35
|
-
assert_equal(5, cm.false_positive(:neg))
|
|
36
|
-
assert_equal(10, cm.true_negative(:neg))
|
|
37
|
-
|
|
38
|
-
assert_in_delta(0.6667, cm.true_rate(:pos))
|
|
39
|
-
assert_in_delta(0.8, cm.true_rate(:neg))
|
|
40
|
-
assert_in_delta(0.2, cm.false_rate(:pos))
|
|
41
|
-
assert_in_delta(0.3333, cm.false_rate(:neg))
|
|
42
|
-
assert_in_delta(0.6667, cm.precision(:pos))
|
|
43
|
-
assert_in_delta(0.8, cm.precision(:neg))
|
|
44
|
-
assert_in_delta(0.6667, cm.recall(:pos))
|
|
45
|
-
assert_in_delta(0.8, cm.recall(:neg))
|
|
46
|
-
assert_in_delta(0.6667, cm.sensitivity(:pos))
|
|
47
|
-
assert_in_delta(0.8, cm.sensitivity(:neg))
|
|
48
|
-
assert_in_delta(0.75, cm.overall_accuracy)
|
|
49
|
-
assert_in_delta(0.6667, cm.f_measure(:pos))
|
|
50
|
-
assert_in_delta(0.8, cm.f_measure(:neg))
|
|
51
|
-
assert_in_delta(0.7303, cm.geometric_mean)
|
|
52
|
-
end
|
|
53
|
-
|
|
54
|
-
# Example from:
|
|
55
|
-
# https://www.datatechnotes.com/2019/02/accuracy-metrics-in-classification.html
|
|
56
|
-
def test_two_classes_2
|
|
57
|
-
cm = ConfusionMatrix.new
|
|
58
|
-
5.times { cm.add_for(:pos, :pos) }
|
|
59
|
-
1.times { cm.add_for(:pos, :neg) }
|
|
60
|
-
3.times { cm.add_for(:neg, :neg) }
|
|
61
|
-
2.times { cm.add_for(:neg, :pos) }
|
|
62
|
-
|
|
63
|
-
assert_equal(11, cm.total)
|
|
64
|
-
assert_equal(5, cm.true_positive(:pos))
|
|
65
|
-
assert_equal(1, cm.false_negative(:pos))
|
|
66
|
-
assert_equal(2, cm.false_positive(:pos))
|
|
67
|
-
assert_equal(3, cm.true_negative(:pos))
|
|
68
|
-
|
|
69
|
-
assert_in_delta(0.7142, cm.precision(:pos))
|
|
70
|
-
assert_in_delta(0.8333, cm.recall(:pos))
|
|
71
|
-
assert_in_delta(0.7272, cm.overall_accuracy)
|
|
72
|
-
assert_in_delta(0.7692, cm.f_measure(:pos))
|
|
73
|
-
assert_in_delta(0.8333, cm.sensitivity(:pos))
|
|
74
|
-
assert_in_delta(0.6, cm.specificity(:pos))
|
|
75
|
-
assert_in_delta(0.4407, cm.kappa(:pos))
|
|
76
|
-
assert_in_delta(0.5454, cm.prevalence(:pos))
|
|
77
|
-
end
|
|
78
|
-
|
|
79
|
-
# Examples from:
|
|
80
|
-
# https://standardwisdom.com/softwarejournal/2011/12/matthews-correlation-coefficient-how-well-does-it-do/
|
|
81
|
-
def two_class_case(a,b,c,d,e,f,g,h,i)
|
|
82
|
-
cm = ConfusionMatrix.new
|
|
83
|
-
a.times { cm.add_for(:pos, :pos) }
|
|
84
|
-
b.times { cm.add_for(:pos, :neg) }
|
|
85
|
-
c.times { cm.add_for(:neg, :neg) }
|
|
86
|
-
d.times { cm.add_for(:neg, :pos) }
|
|
87
|
-
|
|
88
|
-
assert_in_delta(e, cm.matthews_correlation(:pos))
|
|
89
|
-
assert_in_delta(f, cm.precision(:pos))
|
|
90
|
-
assert_in_delta(g, cm.recall(:pos))
|
|
91
|
-
assert_in_delta(h, cm.f_measure(:pos))
|
|
92
|
-
assert_in_delta(i, cm.kappa(:pos))
|
|
93
|
-
end
|
|
94
|
-
|
|
95
|
-
def test_two_classes_3
|
|
96
|
-
two_class_case(100, 0, 900, 0, 1.0, 1.0, 1.0, 1.0, 1.0)
|
|
97
|
-
two_class_case(65, 35, 825, 75, 0.490, 0.4643, 0.65, 0.542, 0.4811)
|
|
98
|
-
two_class_case(50, 50, 700, 200, 0.192, 0.2, 0.5, 0.286, 0.1666)
|
|
99
|
-
end
|
|
100
|
-
|
|
101
|
-
def test_three_classes
|
|
102
|
-
cm = ConfusionMatrix.new
|
|
103
|
-
10.times { cm.add_for(:red, :red) }
|
|
104
|
-
7.times { cm.add_for(:red, :blue) }
|
|
105
|
-
5.times { cm.add_for(:red, :green) }
|
|
106
|
-
20.times { cm.add_for(:blue, :red) }
|
|
107
|
-
5.times { cm.add_for(:blue, :blue) }
|
|
108
|
-
15.times { cm.add_for(:blue, :green) }
|
|
109
|
-
30.times { cm.add_for(:green, :red) }
|
|
110
|
-
12.times { cm.add_for(:green, :blue) }
|
|
111
|
-
8.times { cm.add_for(:green, :green) }
|
|
112
|
-
|
|
113
|
-
assert_equal([:blue, :green, :red], cm.labels)
|
|
114
|
-
assert_equal(112, cm.total)
|
|
115
|
-
assert_equal(10, cm.true_positive(:red))
|
|
116
|
-
assert_equal(12, cm.false_negative(:red))
|
|
117
|
-
assert_equal(50, cm.false_positive(:red))
|
|
118
|
-
assert_equal(13, cm.true_negative(:red))
|
|
119
|
-
assert_equal(5, cm.true_positive(:blue))
|
|
120
|
-
assert_equal(35, cm.false_negative(:blue))
|
|
121
|
-
assert_equal(19, cm.false_positive(:blue))
|
|
122
|
-
assert_equal(18, cm.true_negative(:blue))
|
|
123
|
-
assert_equal(8, cm.true_positive(:green))
|
|
124
|
-
assert_equal(42, cm.false_negative(:green))
|
|
125
|
-
assert_equal(20, cm.false_positive(:green))
|
|
126
|
-
assert_equal(15, cm.true_negative(:green))
|
|
127
|
-
end
|
|
128
|
-
|
|
129
|
-
def test_add_for_n
|
|
130
|
-
cm = ConfusionMatrix.new
|
|
131
|
-
cm.add_for(:pos, :pos, 3)
|
|
132
|
-
cm.add_for(:pos, :neg)
|
|
133
|
-
cm.add_for(:neg, :pos, 2)
|
|
134
|
-
cm.add_for(:neg, :neg, 1)
|
|
135
|
-
assert_equal(7, cm.total)
|
|
136
|
-
assert_equal(3, cm.count_for(:pos, :pos))
|
|
137
|
-
# - check errors
|
|
138
|
-
assert_raises(ArgumentError) { cm.add_for(:pos, :pos, 0) }
|
|
139
|
-
assert_raises(ArgumentError) { cm.add_for(:pos, :pos, -3) }
|
|
140
|
-
assert_raises(ArgumentError) { cm.add_for(:pos, :pos, nil) }
|
|
141
|
-
end
|
|
142
|
-
|
|
143
|
-
def test_use_labels
|
|
144
|
-
# - check errors
|
|
145
|
-
assert_raises(ArgumentError) { ConfusionMatrix.new(:pos) }
|
|
146
|
-
assert_raises(ArgumentError) { ConfusionMatrix.new(:pos, :pos) }
|
|
147
|
-
# - check created matrix
|
|
148
|
-
cm = ConfusionMatrix.new(:pos, :neg)
|
|
149
|
-
assert_equal([:pos, :neg], cm.labels)
|
|
150
|
-
assert_raises(ArgumentError) { cm.add_for(:pos, :nothing) }
|
|
151
|
-
cm.add_for(:pos, :neg, 3)
|
|
152
|
-
cm.add_for(:neg, :pos, 2)
|
|
153
|
-
assert_equal(2, cm.false_negative(:neg))
|
|
154
|
-
assert_equal(3, cm.false_negative(:pos))
|
|
155
|
-
assert_equal(3, cm.false_negative())
|
|
156
|
-
assert_raises(ArgumentError) { cm.false_negative(:nothing) }
|
|
157
|
-
assert_raises(ArgumentError) { cm.false_negative(nil) }
|
|
158
|
-
end
|
|
159
|
-
end
|
|
160
|
-
|
|
1
|
+
require 'confusion_matrix'
|
|
2
|
+
require 'minitest/autorun'
|
|
3
|
+
|
|
4
|
+
class TestConfusionMatrix < Minitest::Test
|
|
5
|
+
def test_empty_case
|
|
6
|
+
cm = ConfusionMatrix.new
|
|
7
|
+
assert(0, cm.total)
|
|
8
|
+
assert(0, cm.true_positive(:none))
|
|
9
|
+
assert(0, cm.false_negative(:none))
|
|
10
|
+
assert(0, cm.false_positive(:none))
|
|
11
|
+
assert(0, cm.true_negative(:none))
|
|
12
|
+
assert_in_delta(0, cm.true_rate(:none))
|
|
13
|
+
end
|
|
14
|
+
|
|
15
|
+
def test_two_classes
|
|
16
|
+
cm = ConfusionMatrix.new
|
|
17
|
+
10.times { cm.add_for(:pos, :pos) }
|
|
18
|
+
5.times { cm.add_for(:pos, :neg) }
|
|
19
|
+
20.times { cm.add_for(:neg, :neg) }
|
|
20
|
+
5.times { cm.add_for(:neg, :pos) }
|
|
21
|
+
|
|
22
|
+
assert_equal([:neg, :pos], cm.labels)
|
|
23
|
+
assert_equal(10, cm.count_for(:pos, :pos))
|
|
24
|
+
assert_equal(5, cm.count_for(:pos, :neg))
|
|
25
|
+
assert_equal(20, cm.count_for(:neg, :neg))
|
|
26
|
+
assert_equal(5, cm.count_for(:neg, :pos))
|
|
27
|
+
|
|
28
|
+
assert_equal(40, cm.total)
|
|
29
|
+
assert_equal(10, cm.true_positive(:pos))
|
|
30
|
+
assert_equal(5, cm.false_negative(:pos))
|
|
31
|
+
assert_equal(5, cm.false_positive(:pos))
|
|
32
|
+
assert_equal(20, cm.true_negative(:pos))
|
|
33
|
+
assert_equal(20, cm.true_positive(:neg))
|
|
34
|
+
assert_equal(5, cm.false_negative(:neg))
|
|
35
|
+
assert_equal(5, cm.false_positive(:neg))
|
|
36
|
+
assert_equal(10, cm.true_negative(:neg))
|
|
37
|
+
|
|
38
|
+
assert_in_delta(0.6667, cm.true_rate(:pos))
|
|
39
|
+
assert_in_delta(0.8, cm.true_rate(:neg))
|
|
40
|
+
assert_in_delta(0.2, cm.false_rate(:pos))
|
|
41
|
+
assert_in_delta(0.3333, cm.false_rate(:neg))
|
|
42
|
+
assert_in_delta(0.6667, cm.precision(:pos))
|
|
43
|
+
assert_in_delta(0.8, cm.precision(:neg))
|
|
44
|
+
assert_in_delta(0.6667, cm.recall(:pos))
|
|
45
|
+
assert_in_delta(0.8, cm.recall(:neg))
|
|
46
|
+
assert_in_delta(0.6667, cm.sensitivity(:pos))
|
|
47
|
+
assert_in_delta(0.8, cm.sensitivity(:neg))
|
|
48
|
+
assert_in_delta(0.75, cm.overall_accuracy)
|
|
49
|
+
assert_in_delta(0.6667, cm.f_measure(:pos))
|
|
50
|
+
assert_in_delta(0.8, cm.f_measure(:neg))
|
|
51
|
+
assert_in_delta(0.7303, cm.geometric_mean)
|
|
52
|
+
end
|
|
53
|
+
|
|
54
|
+
# Example from:
|
|
55
|
+
# https://www.datatechnotes.com/2019/02/accuracy-metrics-in-classification.html
|
|
56
|
+
def test_two_classes_2
|
|
57
|
+
cm = ConfusionMatrix.new
|
|
58
|
+
5.times { cm.add_for(:pos, :pos) }
|
|
59
|
+
1.times { cm.add_for(:pos, :neg) }
|
|
60
|
+
3.times { cm.add_for(:neg, :neg) }
|
|
61
|
+
2.times { cm.add_for(:neg, :pos) }
|
|
62
|
+
|
|
63
|
+
assert_equal(11, cm.total)
|
|
64
|
+
assert_equal(5, cm.true_positive(:pos))
|
|
65
|
+
assert_equal(1, cm.false_negative(:pos))
|
|
66
|
+
assert_equal(2, cm.false_positive(:pos))
|
|
67
|
+
assert_equal(3, cm.true_negative(:pos))
|
|
68
|
+
|
|
69
|
+
assert_in_delta(0.7142, cm.precision(:pos))
|
|
70
|
+
assert_in_delta(0.8333, cm.recall(:pos))
|
|
71
|
+
assert_in_delta(0.7272, cm.overall_accuracy)
|
|
72
|
+
assert_in_delta(0.7692, cm.f_measure(:pos))
|
|
73
|
+
assert_in_delta(0.8333, cm.sensitivity(:pos))
|
|
74
|
+
assert_in_delta(0.6, cm.specificity(:pos))
|
|
75
|
+
assert_in_delta(0.4407, cm.kappa(:pos))
|
|
76
|
+
assert_in_delta(0.5454, cm.prevalence(:pos))
|
|
77
|
+
end
|
|
78
|
+
|
|
79
|
+
# Examples from:
|
|
80
|
+
# https://standardwisdom.com/softwarejournal/2011/12/matthews-correlation-coefficient-how-well-does-it-do/
|
|
81
|
+
def two_class_case(a,b,c,d,e,f,g,h,i)
|
|
82
|
+
cm = ConfusionMatrix.new
|
|
83
|
+
a.times { cm.add_for(:pos, :pos) }
|
|
84
|
+
b.times { cm.add_for(:pos, :neg) }
|
|
85
|
+
c.times { cm.add_for(:neg, :neg) }
|
|
86
|
+
d.times { cm.add_for(:neg, :pos) }
|
|
87
|
+
|
|
88
|
+
assert_in_delta(e, cm.matthews_correlation(:pos))
|
|
89
|
+
assert_in_delta(f, cm.precision(:pos))
|
|
90
|
+
assert_in_delta(g, cm.recall(:pos))
|
|
91
|
+
assert_in_delta(h, cm.f_measure(:pos))
|
|
92
|
+
assert_in_delta(i, cm.kappa(:pos))
|
|
93
|
+
end
|
|
94
|
+
|
|
95
|
+
def test_two_classes_3
|
|
96
|
+
two_class_case(100, 0, 900, 0, 1.0, 1.0, 1.0, 1.0, 1.0)
|
|
97
|
+
two_class_case(65, 35, 825, 75, 0.490, 0.4643, 0.65, 0.542, 0.4811)
|
|
98
|
+
two_class_case(50, 50, 700, 200, 0.192, 0.2, 0.5, 0.286, 0.1666)
|
|
99
|
+
end
|
|
100
|
+
|
|
101
|
+
def test_three_classes
|
|
102
|
+
cm = ConfusionMatrix.new
|
|
103
|
+
10.times { cm.add_for(:red, :red) }
|
|
104
|
+
7.times { cm.add_for(:red, :blue) }
|
|
105
|
+
5.times { cm.add_for(:red, :green) }
|
|
106
|
+
20.times { cm.add_for(:blue, :red) }
|
|
107
|
+
5.times { cm.add_for(:blue, :blue) }
|
|
108
|
+
15.times { cm.add_for(:blue, :green) }
|
|
109
|
+
30.times { cm.add_for(:green, :red) }
|
|
110
|
+
12.times { cm.add_for(:green, :blue) }
|
|
111
|
+
8.times { cm.add_for(:green, :green) }
|
|
112
|
+
|
|
113
|
+
assert_equal([:blue, :green, :red], cm.labels)
|
|
114
|
+
assert_equal(112, cm.total)
|
|
115
|
+
assert_equal(10, cm.true_positive(:red))
|
|
116
|
+
assert_equal(12, cm.false_negative(:red))
|
|
117
|
+
assert_equal(50, cm.false_positive(:red))
|
|
118
|
+
assert_equal(13, cm.true_negative(:red))
|
|
119
|
+
assert_equal(5, cm.true_positive(:blue))
|
|
120
|
+
assert_equal(35, cm.false_negative(:blue))
|
|
121
|
+
assert_equal(19, cm.false_positive(:blue))
|
|
122
|
+
assert_equal(18, cm.true_negative(:blue))
|
|
123
|
+
assert_equal(8, cm.true_positive(:green))
|
|
124
|
+
assert_equal(42, cm.false_negative(:green))
|
|
125
|
+
assert_equal(20, cm.false_positive(:green))
|
|
126
|
+
assert_equal(15, cm.true_negative(:green))
|
|
127
|
+
end
|
|
128
|
+
|
|
129
|
+
def test_add_for_n
|
|
130
|
+
cm = ConfusionMatrix.new
|
|
131
|
+
cm.add_for(:pos, :pos, 3)
|
|
132
|
+
cm.add_for(:pos, :neg)
|
|
133
|
+
cm.add_for(:neg, :pos, 2)
|
|
134
|
+
cm.add_for(:neg, :neg, 1)
|
|
135
|
+
assert_equal(7, cm.total)
|
|
136
|
+
assert_equal(3, cm.count_for(:pos, :pos))
|
|
137
|
+
# - check errors
|
|
138
|
+
assert_raises(ArgumentError) { cm.add_for(:pos, :pos, 0) }
|
|
139
|
+
assert_raises(ArgumentError) { cm.add_for(:pos, :pos, -3) }
|
|
140
|
+
assert_raises(ArgumentError) { cm.add_for(:pos, :pos, nil) }
|
|
141
|
+
end
|
|
142
|
+
|
|
143
|
+
def test_use_labels
|
|
144
|
+
# - check errors
|
|
145
|
+
assert_raises(ArgumentError) { ConfusionMatrix.new(:pos) }
|
|
146
|
+
assert_raises(ArgumentError) { ConfusionMatrix.new(:pos, :pos) }
|
|
147
|
+
# - check created matrix
|
|
148
|
+
cm = ConfusionMatrix.new(:pos, :neg)
|
|
149
|
+
assert_equal([:pos, :neg], cm.labels)
|
|
150
|
+
assert_raises(ArgumentError) { cm.add_for(:pos, :nothing) }
|
|
151
|
+
cm.add_for(:pos, :neg, 3)
|
|
152
|
+
cm.add_for(:neg, :pos, 2)
|
|
153
|
+
assert_equal(2, cm.false_negative(:neg))
|
|
154
|
+
assert_equal(3, cm.false_negative(:pos))
|
|
155
|
+
assert_equal(3, cm.false_negative())
|
|
156
|
+
assert_raises(ArgumentError) { cm.false_negative(:nothing) }
|
|
157
|
+
assert_raises(ArgumentError) { cm.false_negative(nil) }
|
|
158
|
+
end
|
|
159
|
+
end
|
|
160
|
+
|
metadata
CHANGED
|
@@ -1,34 +1,33 @@
|
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
|
2
2
|
name: confusion_matrix
|
|
3
3
|
version: !ruby/object:Gem::Version
|
|
4
|
-
version: 1.1.
|
|
4
|
+
version: 1.1.1
|
|
5
5
|
platform: ruby
|
|
6
6
|
authors:
|
|
7
7
|
- Peter Lane
|
|
8
|
-
autorequire:
|
|
9
8
|
bindir: bin
|
|
10
9
|
cert_chain: []
|
|
11
|
-
date:
|
|
10
|
+
date: 1980-01-02 00:00:00.000000000 Z
|
|
12
11
|
dependencies: []
|
|
13
|
-
description:
|
|
14
|
-
|
|
15
|
-
|
|
12
|
+
description: A confusion matrix is used to represent predicted vs observed values
|
|
13
|
+
in a classification or recognition task. This library allows the user to incrementally
|
|
14
|
+
add results to a confusion matrix, and then retrieve statistical information.
|
|
16
15
|
email: peterlane@gmx.com
|
|
17
16
|
executables: []
|
|
18
17
|
extensions: []
|
|
19
18
|
extra_rdoc_files:
|
|
20
|
-
- README.rdoc
|
|
21
19
|
- LICENSE.rdoc
|
|
20
|
+
- README.rdoc
|
|
22
21
|
files:
|
|
23
22
|
- LICENSE.rdoc
|
|
24
23
|
- README.rdoc
|
|
25
24
|
- lib/confusion_matrix.rb
|
|
26
25
|
- test/matrix_test.rb
|
|
27
|
-
homepage:
|
|
26
|
+
homepage: https://rubygems.org/gems/confusion_matrix
|
|
28
27
|
licenses:
|
|
29
28
|
- MIT
|
|
30
|
-
metadata:
|
|
31
|
-
|
|
29
|
+
metadata:
|
|
30
|
+
source_code_uri: https://codeberg.org/peterlane/confusion-matrix
|
|
32
31
|
rdoc_options:
|
|
33
32
|
- "-m"
|
|
34
33
|
- README.rdoc
|
|
@@ -39,17 +38,13 @@ required_ruby_version: !ruby/object:Gem::Requirement
|
|
|
39
38
|
- - ">="
|
|
40
39
|
- !ruby/object:Gem::Version
|
|
41
40
|
version: '2.5'
|
|
42
|
-
- - "<"
|
|
43
|
-
- !ruby/object:Gem::Version
|
|
44
|
-
version: '4.0'
|
|
45
41
|
required_rubygems_version: !ruby/object:Gem::Requirement
|
|
46
42
|
requirements:
|
|
47
43
|
- - ">="
|
|
48
44
|
- !ruby/object:Gem::Version
|
|
49
45
|
version: '0'
|
|
50
46
|
requirements: []
|
|
51
|
-
rubygems_version: 3.
|
|
52
|
-
signing_key:
|
|
47
|
+
rubygems_version: 3.6.9
|
|
53
48
|
specification_version: 4
|
|
54
49
|
summary: Construct a confusion matrix and retrieve statistical information from it.
|
|
55
50
|
test_files: []
|