combinatorics 0.3.1 → 0.4.1
Sign up to get free protection for your applications and to get access to all the features.
- data/.gemtest +0 -0
- data/.gitignore +8 -0
- data/Benchmarks.md +257 -26
- data/ChangeLog.md +12 -0
- data/LICENSE.txt +1 -2
- data/README.md +102 -32
- data/Rakefile +13 -2
- data/benchmarks/cartesian_product.rb +18 -0
- data/benchmarks/choose.rb +19 -0
- data/benchmarks/derange.rb +18 -0
- data/benchmarks/list_comprehension.rb +2 -5
- data/benchmarks/permute.rb +18 -0
- data/benchmarks/power_set.rb +18 -0
- data/combinatorics.gemspec +124 -7
- data/gemspec.yml +11 -6
- data/lib/combinatorics.rb +7 -0
- data/lib/combinatorics/cartesian_product.rb +3 -0
- data/lib/combinatorics/cartesian_product/cardinality.rb +45 -0
- data/lib/combinatorics/cartesian_product/extensions.rb +2 -0
- data/lib/combinatorics/cartesian_product/extensions/array.rb +7 -0
- data/lib/combinatorics/cartesian_product/extensions/set.rb +9 -0
- data/lib/combinatorics/cartesian_product/mixin.rb +57 -0
- data/lib/combinatorics/choose.rb +3 -0
- data/lib/combinatorics/choose/cardinality.rb +99 -0
- data/lib/combinatorics/choose/extensions.rb +2 -0
- data/lib/combinatorics/choose/extensions/array.rb +5 -0
- data/lib/combinatorics/choose/extensions/set.rb +6 -0
- data/lib/combinatorics/choose/mixin.rb +53 -0
- data/lib/combinatorics/derange.rb +3 -0
- data/lib/combinatorics/derange/cardinality.rb +23 -0
- data/lib/combinatorics/derange/extensions.rb +1 -0
- data/lib/combinatorics/derange/extensions/array.rb +5 -0
- data/lib/combinatorics/derange/mixin.rb +47 -0
- data/lib/combinatorics/enumerator.rb +2 -0
- data/lib/combinatorics/extensions/math.rb +177 -0
- data/lib/combinatorics/generator.rb +8 -1
- data/lib/combinatorics/permute.rb +3 -0
- data/lib/combinatorics/permute/cardinality.rb +98 -0
- data/lib/combinatorics/permute/extensions.rb +2 -0
- data/lib/combinatorics/permute/extensions/array.rb +7 -0
- data/lib/combinatorics/permute/extensions/set.rb +9 -0
- data/lib/combinatorics/permute/mixin.rb +48 -0
- data/lib/combinatorics/power_set.rb +1 -0
- data/lib/combinatorics/power_set/cardinality.rb +36 -0
- data/lib/combinatorics/power_set/mixin.rb +19 -22
- data/lib/combinatorics/version.rb +2 -2
- data/spec/cartesian_product/array_spec.rb +10 -0
- data/spec/cartesian_product/cardinality_spec.rb +64 -0
- data/spec/cartesian_product/mixin_examples.rb +98 -0
- data/spec/cartesian_product/set_spec.rb +10 -0
- data/spec/choose/array_spec.rb +9 -0
- data/spec/choose/cardinality_spec.rb +132 -0
- data/spec/choose/mixin_examples.rb +48 -0
- data/spec/choose/set_spec.rb +9 -0
- data/spec/derange/array_spec.rb +10 -0
- data/spec/derange/cardinality_spec.rb +14 -0
- data/spec/derange/mixin_examples.rb +52 -0
- data/spec/extensions/math_spec.rb +100 -0
- data/spec/extensions/range_spec.rb +1 -1
- data/spec/permute/array_spec.rb +10 -0
- data/spec/permute/cardinality_spec.rb +146 -0
- data/spec/permute/mixin_examples.rb +42 -0
- data/spec/permute/set_spec.rb +10 -0
- data/spec/power_set/array_spec.rb +3 -2
- data/spec/power_set/cardinality_spec.rb +32 -0
- data/spec/power_set/mixin_examples.rb +17 -8
- data/spec/power_set/set_spec.rb +3 -2
- data/spec/spec_helper.rb +5 -3
- metadata +114 -95
@@ -1,4 +1,9 @@
|
|
1
|
-
require '
|
1
|
+
require 'enumerator'
|
2
|
+
|
3
|
+
begin
|
4
|
+
require 'generator' # 1.8.7
|
5
|
+
rescue LoadError
|
6
|
+
end
|
2
7
|
|
3
8
|
module Combinatorics
|
4
9
|
# auto-detects the `Generator` class.
|
@@ -6,5 +11,7 @@ module Combinatorics
|
|
6
11
|
::Enumerator::Generator
|
7
12
|
elsif defined?(::Generator) # 1.8.7
|
8
13
|
::Generator
|
14
|
+
else
|
15
|
+
raise("unable to find the Generator class")
|
9
16
|
end
|
10
17
|
end
|
@@ -0,0 +1,98 @@
|
|
1
|
+
require 'combinatorics/extensions/math'
|
2
|
+
|
3
|
+
module Combinatorics
|
4
|
+
#
|
5
|
+
# @author duper <super@manson.vistech.net>
|
6
|
+
#
|
7
|
+
# @since 0.4.0
|
8
|
+
#
|
9
|
+
module Permute
|
10
|
+
#
|
11
|
+
# Mathematically determine the number of elements in a r-permutations
|
12
|
+
# set.
|
13
|
+
#
|
14
|
+
# @param [Fixnum] n
|
15
|
+
# The number of elements in the input set.
|
16
|
+
#
|
17
|
+
# @param [Fixnum] r
|
18
|
+
# Cardinality of permuted subsets.
|
19
|
+
#
|
20
|
+
# @raise [RangeError]
|
21
|
+
# `n` must be non-negative.
|
22
|
+
#
|
23
|
+
# @raise [RangeError]
|
24
|
+
# `r` must be non-negative.
|
25
|
+
#
|
26
|
+
# @raise [RangeError]
|
27
|
+
# `r` must be less than or equal to `n`.
|
28
|
+
#
|
29
|
+
# @return [Fixnum]
|
30
|
+
# The product of the first `r` factors of `n`.
|
31
|
+
#
|
32
|
+
# @example Calculate total 4-permutations for a set whose cardinality is 6
|
33
|
+
# cardinality(6, 4)
|
34
|
+
# # => 360
|
35
|
+
#
|
36
|
+
# @see http://en.wikipedia.org/wiki/Permutations
|
37
|
+
#
|
38
|
+
# @note
|
39
|
+
# This function is well-known within fields of academic inquiry such as
|
40
|
+
# discrete mathematics and set theory. It is represented in "chalkboard"
|
41
|
+
# notation by the letter "P."
|
42
|
+
#
|
43
|
+
def self.cardinality(n,r=nil)
|
44
|
+
raise(RangeError,"n must be non-negative") if n < 0
|
45
|
+
|
46
|
+
case r
|
47
|
+
when 0 then 0
|
48
|
+
when nil then Math.factorial(n)
|
49
|
+
else
|
50
|
+
raise(RangeError,"r must be non-negative") if r < 0
|
51
|
+
raise(RangeError,"r must be less than or equal to n") if r > n
|
52
|
+
|
53
|
+
Math.factorial(n) / Math.factorial(n - r)
|
54
|
+
end
|
55
|
+
end
|
56
|
+
|
57
|
+
#
|
58
|
+
# @see cardinality
|
59
|
+
#
|
60
|
+
# @note In the study of set theory, permutations are often referenced by
|
61
|
+
# the name of an associated algorithm called "n-choose-r."
|
62
|
+
#
|
63
|
+
def self.N(n,r=nil); cardinality(n,r); end
|
64
|
+
def self.NR(n,r=nil); cardinality(n,r); end
|
65
|
+
def self.R(n,r=nil); cardinality(n,r); end
|
66
|
+
|
67
|
+
#
|
68
|
+
# Compute cardinality of all r-permutations for a set with cardinality c
|
69
|
+
#
|
70
|
+
# @param [Fixnum] c
|
71
|
+
# Input set cardinality.
|
72
|
+
#
|
73
|
+
# @return [Array]
|
74
|
+
# Elements are cardinalities for each subset `1 .. c`.
|
75
|
+
#
|
76
|
+
# @raise [RangeError]
|
77
|
+
# `c` must be non-negative.
|
78
|
+
#
|
79
|
+
# @example cardinality_all(4)
|
80
|
+
# # => [4, 3, 10, 1]
|
81
|
+
#
|
82
|
+
# @note sum of elements will equal `factorial(c)`
|
83
|
+
#
|
84
|
+
# @see http://en.wikipedia.org/wiki/Permutations
|
85
|
+
#
|
86
|
+
def self.cardinality_all(n,c=(1..n))
|
87
|
+
if n < 0
|
88
|
+
raise(RangeError,"n must be non-negative")
|
89
|
+
end
|
90
|
+
|
91
|
+
c.map { |r| cardinality(n,r) }
|
92
|
+
end
|
93
|
+
|
94
|
+
def self.N_all(c); cardinality_all(c); end
|
95
|
+
def self.NR_all(c); cardinality_all(c); end
|
96
|
+
def self.R_all(c); cardinality_all(c); end
|
97
|
+
end
|
98
|
+
end
|
@@ -0,0 +1,48 @@
|
|
1
|
+
module Combinatorics
|
2
|
+
module Permute
|
3
|
+
#
|
4
|
+
# @author duper <super@manson.vistech.net>
|
5
|
+
#
|
6
|
+
# @since 0.4.0
|
7
|
+
#
|
8
|
+
module Mixin
|
9
|
+
#
|
10
|
+
# Enumerate distinct r-permutations for a particular sequence of
|
11
|
+
# elements.
|
12
|
+
#
|
13
|
+
# @param [Fixnum] r
|
14
|
+
# Length of permuted subsets to return.
|
15
|
+
#
|
16
|
+
# @yield [permutation]
|
17
|
+
# If a block is given, it will be passed each k-permutation.
|
18
|
+
#
|
19
|
+
# @yieldparam [Array] permutation
|
20
|
+
# A k-permutation of the elements from `self`.
|
21
|
+
#
|
22
|
+
# @return [Enumerator]
|
23
|
+
# If no block is given, an Enumerator of the k-permutations of
|
24
|
+
# elements from `self` is returned.
|
25
|
+
#
|
26
|
+
# @raise [TypeError]
|
27
|
+
# `self` must be Enumerable.
|
28
|
+
#
|
29
|
+
# @example
|
30
|
+
# [1, 2, 3].permute(2).to_a
|
31
|
+
# # => [[1, 2], [1, 3],
|
32
|
+
# # [2, 1], [2, 3],
|
33
|
+
# # [3, 1], [3, 2]]
|
34
|
+
#
|
35
|
+
# @see http://rubydoc.info/stdlib/core/Array#permutation-instance_method
|
36
|
+
#
|
37
|
+
def permute(r,&block)
|
38
|
+
return enum_for(:permute,r) unless block
|
39
|
+
|
40
|
+
unless kind_of?(Enumerable)
|
41
|
+
raise(TypeError,"#{inspect} must be Enumerable")
|
42
|
+
end
|
43
|
+
|
44
|
+
self.to_a.permutation(r,&block)
|
45
|
+
end
|
46
|
+
end
|
47
|
+
end
|
48
|
+
end
|
@@ -0,0 +1,36 @@
|
|
1
|
+
require 'combinatorics/extensions/math'
|
2
|
+
|
3
|
+
module Combinatorics
|
4
|
+
module PowerSet
|
5
|
+
#
|
6
|
+
# Get number of elements in power set from number of elements in input
|
7
|
+
# set.
|
8
|
+
#
|
9
|
+
# @param [Fixnum] n
|
10
|
+
# Number of elements input set.
|
11
|
+
#
|
12
|
+
# @return [Fixnum]
|
13
|
+
# Number of elements in power set.
|
14
|
+
#
|
15
|
+
# @see Math::factorial
|
16
|
+
# @see http://en.wikipedia.org/wiki/Cardinality
|
17
|
+
#
|
18
|
+
# @note
|
19
|
+
# Cardinality of power set on an empty set equals `factorial(0)`
|
20
|
+
# equals 1.
|
21
|
+
#
|
22
|
+
def self.cardinality(n)
|
23
|
+
Math.factorial(n)
|
24
|
+
end
|
25
|
+
|
26
|
+
#
|
27
|
+
# Wrapper function for power set cardinality method defined above
|
28
|
+
#
|
29
|
+
# @note The letter `P' stands for the power set function in the context of
|
30
|
+
# statements regarding discrete mathematics.
|
31
|
+
#
|
32
|
+
def self.P(n)
|
33
|
+
cardinality(n)
|
34
|
+
end
|
35
|
+
end
|
36
|
+
end
|
@@ -1,5 +1,8 @@
|
|
1
1
|
module Combinatorics
|
2
2
|
module PowerSet
|
3
|
+
#
|
4
|
+
# @author postmodern <postmodern.mod3@gmail.com>
|
5
|
+
#
|
3
6
|
module Mixin
|
4
7
|
#
|
5
8
|
# Calculates the power-set of an Enumerable object.
|
@@ -11,40 +14,34 @@ module Combinatorics
|
|
11
14
|
# @yieldparam [Array] subset
|
12
15
|
# A sub-set from the power-set.
|
13
16
|
#
|
14
|
-
# @return [
|
17
|
+
# @return [Enumerator]
|
15
18
|
# The power set.
|
16
19
|
#
|
17
|
-
# @example Power-set of an Array.
|
18
|
-
# [1,2,3].powerset
|
19
|
-
# # => [[], [3], [2], [2, 3], [1], [1, 3], [1, 2], [1, 2, 3]]
|
20
|
-
#
|
21
20
|
# @example Power-set on a Set of strings.
|
22
|
-
# Set['abc', 'xyz', '123'].powerset
|
23
|
-
# # => [#<Set: {}>,
|
24
|
-
# #<Set: {"
|
25
|
-
# #<Set: {"
|
21
|
+
# Set['abc', 'xyz', '123'].powerset.to_a
|
22
|
+
# # => [#<Set: {}>,
|
23
|
+
# #<Set: {"123"}>,
|
24
|
+
# #<Set: {"xyz"}>,
|
25
|
+
# #<Set: {"abc"}>,
|
26
|
+
# #<Set: {"xyz", "123"}>,
|
27
|
+
# #<Set: {"abc", "123"}>,
|
28
|
+
# #<Set: {"abc", "xyz"}>,
|
26
29
|
# #<Set: {"abc", "xyz", "123"}>]
|
27
30
|
#
|
28
|
-
# @see http://johncarrino.net/blog/2006/08/11/powerset-in-ruby/
|
29
|
-
#
|
30
31
|
def powerset
|
31
|
-
|
32
|
-
sub_set = []
|
32
|
+
return enum_for(:powerset) unless block_given?
|
33
33
|
|
34
|
-
|
35
|
-
|
36
|
-
yield new_set if block_given?
|
34
|
+
elements = self.to_a
|
35
|
+
elements.uniq!
|
37
36
|
|
38
|
-
|
39
|
-
|
37
|
+
0.upto(elements.length) do |k|
|
38
|
+
elements.combination(k) do |subset|
|
39
|
+
yield Set.new(subset)
|
40
40
|
end
|
41
|
-
|
42
|
-
sub_set
|
43
41
|
end
|
44
42
|
end
|
45
43
|
|
46
|
-
alias
|
47
|
-
|
44
|
+
alias power_set powerset
|
48
45
|
end
|
49
46
|
end
|
50
47
|
end
|
@@ -0,0 +1,64 @@
|
|
1
|
+
require 'spec_helper'
|
2
|
+
require 'combinatorics/cartesian_product'
|
3
|
+
|
4
|
+
describe CartesianProduct do
|
5
|
+
subject { CartesianProduct }
|
6
|
+
|
7
|
+
describe "cardinality" do
|
8
|
+
it "should return 1 for cardinality(1, 1)" do
|
9
|
+
subject.cardinality(1, 1).should == 1
|
10
|
+
end
|
11
|
+
|
12
|
+
it "should return 2 for cardinality(1, 2)" do
|
13
|
+
subject.cardinality(1, 2).should == 2
|
14
|
+
end
|
15
|
+
|
16
|
+
it "should return 2 for cardinality(2, 1)" do
|
17
|
+
subject.cardinality(2, 1).should == 2
|
18
|
+
end
|
19
|
+
|
20
|
+
it "should return 4 for cardinality(2, 2)" do
|
21
|
+
subject.cardinality(2, 2).should == 4
|
22
|
+
end
|
23
|
+
|
24
|
+
it "should return 3 for cardinality(3, 1)" do
|
25
|
+
subject.cardinality(3, 1).should == 3
|
26
|
+
end
|
27
|
+
|
28
|
+
it "should return 3 for cardinality(1, 3)" do
|
29
|
+
subject.cardinality(1, 3).should == 3
|
30
|
+
end
|
31
|
+
|
32
|
+
it "should return 6 for cardinality(2, 3)" do
|
33
|
+
subject.cardinality(2, 3).should == 6
|
34
|
+
end
|
35
|
+
|
36
|
+
it "should return 6 for cardinality(3, 2)" do
|
37
|
+
subject.cardinality(3, 2).should == 6
|
38
|
+
end
|
39
|
+
|
40
|
+
it "should return 9 for cardinality(3, 3)" do
|
41
|
+
subject.cardinality(3, 3).should == 9
|
42
|
+
end
|
43
|
+
|
44
|
+
it "should raise RangeError if c1 is negative" do
|
45
|
+
lambda { subject.cardinality(-1, 1) }.should raise_error(RangeError)
|
46
|
+
end
|
47
|
+
|
48
|
+
it "should raise RangeError if c2 is negative" do
|
49
|
+
lambda { subject.cardinality(1, -1) }.should raise_error(RangeError)
|
50
|
+
end
|
51
|
+
|
52
|
+
it "should raise RangeError if c1 is zero" do
|
53
|
+
lambda { subject.cardinality(0, 1) }.should raise_error(RangeError)
|
54
|
+
end
|
55
|
+
|
56
|
+
it "should raise RangeError if c2 is zero" do
|
57
|
+
lambda { subject.cardinality(1, 0) }.should raise_error(RangeError)
|
58
|
+
end
|
59
|
+
end
|
60
|
+
|
61
|
+
it "should wrap cardinality with CartesianProduct.X" do
|
62
|
+
should respond_to(:X)
|
63
|
+
end
|
64
|
+
end
|
@@ -0,0 +1,98 @@
|
|
1
|
+
require 'spec_helper'
|
2
|
+
|
3
|
+
require 'combinatorics/cartesian_product/mixin'
|
4
|
+
|
5
|
+
shared_examples_for "CartesianProduct::Mixin" do
|
6
|
+
it "the cartprod of any two Set's should return an Enumerator" do
|
7
|
+
set = subject[1]
|
8
|
+
results = set.cartprod(set)
|
9
|
+
|
10
|
+
results.should be_kind_of(Enumerator)
|
11
|
+
end
|
12
|
+
|
13
|
+
it "the cartprod of two empty Set's should return an empty Set" do
|
14
|
+
set = subject[]
|
15
|
+
results = set.cartprod([]).to_a
|
16
|
+
|
17
|
+
results.should be_empty
|
18
|
+
end
|
19
|
+
|
20
|
+
it "the cartprod of a single empty set should return an empty Set" do
|
21
|
+
set = subject[1,2]
|
22
|
+
results = set.cartprod([2,3],[]).to_a
|
23
|
+
|
24
|
+
results.should be_empty
|
25
|
+
end
|
26
|
+
|
27
|
+
it "the cartprod of another empty set should also return an empty Set" do
|
28
|
+
set = subject[]
|
29
|
+
results = set.cartprod([1]).to_a
|
30
|
+
|
31
|
+
results.should be_empty
|
32
|
+
end
|
33
|
+
|
34
|
+
it "the cartprod of [1] and [1] should be [[1, 1]]" do
|
35
|
+
set = subject[1]
|
36
|
+
results = set.cartprod([1]).to_a
|
37
|
+
|
38
|
+
results.should == [[1, 1]]
|
39
|
+
end
|
40
|
+
|
41
|
+
it "the cartprod of [1, 2] and [3] should be [[1, 3], [2, 3]]" do
|
42
|
+
set = subject[1, 2]
|
43
|
+
results = set.cartprod([3]).to_a
|
44
|
+
|
45
|
+
results.should =~ [[1, 3], [2, 3]]
|
46
|
+
end
|
47
|
+
|
48
|
+
it "the cartprod of [1, 2] and [3, 4] should be [[1, 3], [1, 4], [2, 3], [2, 4]]" do
|
49
|
+
set = subject[1, 2]
|
50
|
+
results = set.cartprod([3, 4]).to_a
|
51
|
+
|
52
|
+
results.should =~ [
|
53
|
+
[1, 3], [1, 4],
|
54
|
+
[2, 3], [2, 4]
|
55
|
+
]
|
56
|
+
end
|
57
|
+
|
58
|
+
it "the cartprod of ['a'].cartprod(['b', 'c', 'd']) should be [['a', 'b'], ['a', 'c'], ['a', 'd']]" do
|
59
|
+
set1 = subject['a']
|
60
|
+
set2 = subject['b', 'c', 'd']
|
61
|
+
results = set1.cartprod(set2).to_a
|
62
|
+
|
63
|
+
results.should =~ [['a', 'b'], ['a', 'c'], ['a', 'd']]
|
64
|
+
end
|
65
|
+
|
66
|
+
it "the cartprod of [0, 1] and [[2, 3], [4, 5]] should be [[0, 2, 4], [1, 2, 4], [0, 3, 4], [1, 3, 4], [0, 2, 5], [1, 2, 5], [0, 3, 5], [1, 3, 5]]" do
|
67
|
+
set1 = subject[0, 1]
|
68
|
+
set2 = subject[2, 3]
|
69
|
+
set3 = subject[4, 5]
|
70
|
+
results = set1.cartprod(set2, set3).to_a
|
71
|
+
|
72
|
+
results.should =~ [
|
73
|
+
[0, 2, 4], [0, 2, 5], [0, 3, 4], [0, 3, 5],
|
74
|
+
[1, 2, 4], [1, 2, 5], [1, 3, 4], [1, 3, 5],
|
75
|
+
]
|
76
|
+
end
|
77
|
+
|
78
|
+
it "should take an optional block argument" do
|
79
|
+
set = subject[1]
|
80
|
+
results = []
|
81
|
+
|
82
|
+
set.cartprod(set) { |result| results << result }
|
83
|
+
|
84
|
+
results.should == [[1, 1]]
|
85
|
+
end
|
86
|
+
|
87
|
+
it "should alias cartprod to cartesian_product" do
|
88
|
+
aset = subject[1]
|
89
|
+
|
90
|
+
aset.should respond_to(:cartesian_product)
|
91
|
+
end
|
92
|
+
|
93
|
+
it "should alias cartprod to cartesian" do
|
94
|
+
aset = subject[1]
|
95
|
+
|
96
|
+
aset.should respond_to(:cartesian)
|
97
|
+
end
|
98
|
+
end
|