cloudmersive-nlp-api-client 2.0.5 → 2.0.6

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: 7c8e2b872f0162f9be0edb73d8d5698f89bed94c68fc004568c9e8f9bfc8105f
4
- data.tar.gz: a021b359dd6a834419c20b818c93383768ea1e9a51ec9f94003b567efb552290
3
+ metadata.gz: 246a67c5ed5ac6e1f87cb9c909ab67fd333d403e29f586337e4b3811f4d50a39
4
+ data.tar.gz: 9c5b93723080d6dbd283652d2bdd95bdf01a87e54227f0def19443df75756fcd
5
5
  SHA512:
6
- metadata.gz: e3b5bd017e0c6b346c78e8a1382d1134663942a3560197e9b5ae7343285c78f499d8e4ce2d0fe97ab8846576d5996c99a976dce3c053f8037ad1bd13d959044b
7
- data.tar.gz: ac5ae096258d34ca10839290c3d0e4b3866241988005baf2f5b2fac2b6fac804158359dfd9e3a5e08728006a7e512aee53f42207866bd6d1d1d55cf9c0beaf59
6
+ metadata.gz: 4e58d407f9668bef355e4dff7b1355e0452a7816beae84b3f6b2cb8c181e655b9604de63f1f6ad9b82e7c1d1ab4c686cd654dfa4f636485da1c58d035cb16c11
7
+ data.tar.gz: ba3d52454818d717e9fb163df9bb49fe613f1cbe29397575330e0f313711bc52ebe0c863362ea092cbe7da1379df4217d301b7a2758ca41d2c9c3e94109c173a
data/README.md CHANGED
@@ -7,7 +7,7 @@ The powerful Natural Language Processing APIs (v2) let you perform part of speec
7
7
  This SDK is automatically generated by the [Swagger Codegen](https://github.com/swagger-api/swagger-codegen) project:
8
8
 
9
9
  - API version: v1
10
- - Package version: 2.0.5
10
+ - Package version: 2.0.6
11
11
  - Build package: io.swagger.codegen.languages.RubyClientCodegen
12
12
 
13
13
  ## Installation
@@ -23,15 +23,15 @@ gem build cloudmersive-nlp-api-client.gemspec
23
23
  Then either install the gem locally:
24
24
 
25
25
  ```shell
26
- gem install ./cloudmersive-nlp-api-client-2.0.5.gem
26
+ gem install ./cloudmersive-nlp-api-client-2.0.6.gem
27
27
  ```
28
- (for development, run `gem install --dev ./cloudmersive-nlp-api-client-2.0.5.gem` to install the development dependencies)
28
+ (for development, run `gem install --dev ./cloudmersive-nlp-api-client-2.0.6.gem` to install the development dependencies)
29
29
 
30
30
  or publish the gem to a gem hosting service, e.g. [RubyGems](https://rubygems.org/).
31
31
 
32
32
  Finally add this to the Gemfile:
33
33
 
34
- gem 'cloudmersive-nlp-api-client', '~> 2.0.5'
34
+ gem 'cloudmersive-nlp-api-client', '~> 2.0.6'
35
35
 
36
36
  ### Install from Git
37
37
 
@@ -64,15 +64,15 @@ end
64
64
 
65
65
  api_instance = CloudmersiveNlpApiClient::AnalyticsApi.new
66
66
 
67
- input = CloudmersiveNlpApiClient::SentimentAnalysisRequest.new # SentimentAnalysisRequest | Input sentiment analysis request
67
+ input = CloudmersiveNlpApiClient::ProfanityAnalysisRequest.new # ProfanityAnalysisRequest | Input profanity analysis request
68
68
 
69
69
 
70
70
  begin
71
- #Perform Sentiment Analysis and Classification on Text
72
- result = api_instance.analytics_sentiment(input)
71
+ #Perform Profanity and Obscene Language Analysis and Detection on Text
72
+ result = api_instance.analytics_profanity(input)
73
73
  p result
74
74
  rescue CloudmersiveNlpApiClient::ApiError => e
75
- puts "Exception when calling AnalyticsApi->analytics_sentiment: #{e}"
75
+ puts "Exception when calling AnalyticsApi->analytics_profanity: #{e}"
76
76
  end
77
77
 
78
78
  ```
@@ -83,6 +83,7 @@ All URIs are relative to *https://api.cloudmersive.com*
83
83
 
84
84
  Class | Method | HTTP request | Description
85
85
  ------------ | ------------- | ------------- | -------------
86
+ *CloudmersiveNlpApiClient::AnalyticsApi* | [**analytics_profanity**](docs/AnalyticsApi.md#analytics_profanity) | **POST** /nlp-v2/analytics/profanity | Perform Profanity and Obscene Language Analysis and Detection on Text
86
87
  *CloudmersiveNlpApiClient::AnalyticsApi* | [**analytics_sentiment**](docs/AnalyticsApi.md#analytics_sentiment) | **POST** /nlp-v2/analytics/sentiment | Perform Sentiment Analysis and Classification on Text
87
88
  *CloudmersiveNlpApiClient::ExtractEntitiesApi* | [**extract_entities_post**](docs/ExtractEntitiesApi.md#extract_entities_post) | **POST** /nlp-v2/extract-entities | Extract entities from string
88
89
  *CloudmersiveNlpApiClient::LanguageDetectionApi* | [**language_detection_get_language**](docs/LanguageDetectionApi.md#language_detection_get_language) | **POST** /nlp-v2/language/detect | Detect language of text
@@ -126,6 +127,8 @@ Class | Method | HTTP request | Description
126
127
  - [CloudmersiveNlpApiClient::PosResponse](docs/PosResponse.md)
127
128
  - [CloudmersiveNlpApiClient::PosSentence](docs/PosSentence.md)
128
129
  - [CloudmersiveNlpApiClient::PosTaggedWord](docs/PosTaggedWord.md)
130
+ - [CloudmersiveNlpApiClient::ProfanityAnalysisRequest](docs/ProfanityAnalysisRequest.md)
131
+ - [CloudmersiveNlpApiClient::ProfanityAnalysisResponse](docs/ProfanityAnalysisResponse.md)
129
132
  - [CloudmersiveNlpApiClient::RephraseRequest](docs/RephraseRequest.md)
130
133
  - [CloudmersiveNlpApiClient::RephraseResponse](docs/RephraseResponse.md)
131
134
  - [CloudmersiveNlpApiClient::RephrasedSentence](docs/RephrasedSentence.md)
@@ -4,9 +4,64 @@ All URIs are relative to *https://api.cloudmersive.com*
4
4
 
5
5
  Method | HTTP request | Description
6
6
  ------------- | ------------- | -------------
7
+ [**analytics_profanity**](AnalyticsApi.md#analytics_profanity) | **POST** /nlp-v2/analytics/profanity | Perform Profanity and Obscene Language Analysis and Detection on Text
7
8
  [**analytics_sentiment**](AnalyticsApi.md#analytics_sentiment) | **POST** /nlp-v2/analytics/sentiment | Perform Sentiment Analysis and Classification on Text
8
9
 
9
10
 
11
+ # **analytics_profanity**
12
+ > ProfanityAnalysisResponse analytics_profanity(input)
13
+
14
+ Perform Profanity and Obscene Language Analysis and Detection on Text
15
+
16
+ Analyze input text using advanced Profanity and Obscene Language Analysis to determine if the input contains profane language. Supports English language input. Consumes 1-2 API calls per sentence.
17
+
18
+ ### Example
19
+ ```ruby
20
+ # load the gem
21
+ require 'cloudmersive-nlp-api-client'
22
+ # setup authorization
23
+ CloudmersiveNlpApiClient.configure do |config|
24
+ # Configure API key authorization: Apikey
25
+ config.api_key['Apikey'] = 'YOUR API KEY'
26
+ # Uncomment the following line to set a prefix for the API key, e.g. 'Bearer' (defaults to nil)
27
+ #config.api_key_prefix['Apikey'] = 'Bearer'
28
+ end
29
+
30
+ api_instance = CloudmersiveNlpApiClient::AnalyticsApi.new
31
+
32
+ input = CloudmersiveNlpApiClient::ProfanityAnalysisRequest.new # ProfanityAnalysisRequest | Input profanity analysis request
33
+
34
+
35
+ begin
36
+ #Perform Profanity and Obscene Language Analysis and Detection on Text
37
+ result = api_instance.analytics_profanity(input)
38
+ p result
39
+ rescue CloudmersiveNlpApiClient::ApiError => e
40
+ puts "Exception when calling AnalyticsApi->analytics_profanity: #{e}"
41
+ end
42
+ ```
43
+
44
+ ### Parameters
45
+
46
+ Name | Type | Description | Notes
47
+ ------------- | ------------- | ------------- | -------------
48
+ **input** | [**ProfanityAnalysisRequest**](ProfanityAnalysisRequest.md)| Input profanity analysis request |
49
+
50
+ ### Return type
51
+
52
+ [**ProfanityAnalysisResponse**](ProfanityAnalysisResponse.md)
53
+
54
+ ### Authorization
55
+
56
+ [Apikey](../README.md#Apikey)
57
+
58
+ ### HTTP request headers
59
+
60
+ - **Content-Type**: application/json, text/json, application/xml, text/xml, application/x-www-form-urlencoded
61
+ - **Accept**: application/json, text/json, application/xml, text/xml
62
+
63
+
64
+
10
65
  # **analytics_sentiment**
11
66
  > SentimentAnalysisResponse analytics_sentiment(input)
12
67
 
@@ -0,0 +1,8 @@
1
+ # CloudmersiveNlpApiClient::ProfanityAnalysisRequest
2
+
3
+ ## Properties
4
+ Name | Type | Description | Notes
5
+ ------------ | ------------- | ------------- | -------------
6
+ **text_to_analyze** | **String** | Text to analyze | [optional]
7
+
8
+
@@ -0,0 +1,10 @@
1
+ # CloudmersiveNlpApiClient::ProfanityAnalysisResponse
2
+
3
+ ## Properties
4
+ Name | Type | Description | Notes
5
+ ------------ | ------------- | ------------- | -------------
6
+ **successful** | **BOOLEAN** | True if the profanity detection operation was successful, false otherwise | [optional]
7
+ **profanity_score_result** | **Float** | Profanity classification score between 0.0 and 1.0 where scores closer to zero have a low probability of being profane or contain obscene language, while scores close to 1.0 have a high probability of being profane or containing obscene language. Values above 0.8 have a very high probability of being profane. | [optional]
8
+ **sentence_count** | **Integer** | Number of sentences in input text | [optional]
9
+
10
+
@@ -3,7 +3,7 @@
3
3
  ## Properties
4
4
  Name | Type | Description | Notes
5
5
  ------------ | ------------- | ------------- | -------------
6
- **successful** | **BOOLEAN** | True if the language detection operation was successful, false otherwise | [optional]
6
+ **successful** | **BOOLEAN** | True if the sentiment analysis operation was successful, false otherwise | [optional]
7
7
  **sentiment_classification_result** | **String** | Classification of input text into a sentiment classification; possible values are \"Positive\", \"Negative\" or \"Neutral\" | [optional]
8
8
  **sentiment_score_result** | **Float** | Sentiment classification score between -1.0 and +1.0 where scores less than 0 are negative sentiment, scores greater than 0 are positive sentiment and scores close to 0 are neutral. The greater the value deviates from 0.0 the stronger the sentiment, with +1.0 and -1.0 being maximum positive and negative sentiment, respectively. | [optional]
9
9
  **sentence_count** | **Integer** | Number of sentences in input text | [optional]
@@ -37,6 +37,8 @@ require 'cloudmersive-nlp-api-client/models/pos_request'
37
37
  require 'cloudmersive-nlp-api-client/models/pos_response'
38
38
  require 'cloudmersive-nlp-api-client/models/pos_sentence'
39
39
  require 'cloudmersive-nlp-api-client/models/pos_tagged_word'
40
+ require 'cloudmersive-nlp-api-client/models/profanity_analysis_request'
41
+ require 'cloudmersive-nlp-api-client/models/profanity_analysis_response'
40
42
  require 'cloudmersive-nlp-api-client/models/rephrase_request'
41
43
  require 'cloudmersive-nlp-api-client/models/rephrase_response'
42
44
  require 'cloudmersive-nlp-api-client/models/rephrased_sentence'
@@ -20,6 +20,61 @@ module CloudmersiveNlpApiClient
20
20
  @api_client = api_client
21
21
  end
22
22
 
23
+ # Perform Profanity and Obscene Language Analysis and Detection on Text
24
+ # Analyze input text using advanced Profanity and Obscene Language Analysis to determine if the input contains profane language. Supports English language input. Consumes 1-2 API calls per sentence.
25
+ # @param input Input profanity analysis request
26
+ # @param [Hash] opts the optional parameters
27
+ # @return [ProfanityAnalysisResponse]
28
+ def analytics_profanity(input, opts = {})
29
+ data, _status_code, _headers = analytics_profanity_with_http_info(input, opts)
30
+ return data
31
+ end
32
+
33
+ # Perform Profanity and Obscene Language Analysis and Detection on Text
34
+ # Analyze input text using advanced Profanity and Obscene Language Analysis to determine if the input contains profane language. Supports English language input. Consumes 1-2 API calls per sentence.
35
+ # @param input Input profanity analysis request
36
+ # @param [Hash] opts the optional parameters
37
+ # @return [Array<(ProfanityAnalysisResponse, Fixnum, Hash)>] ProfanityAnalysisResponse data, response status code and response headers
38
+ def analytics_profanity_with_http_info(input, opts = {})
39
+ if @api_client.config.debugging
40
+ @api_client.config.logger.debug "Calling API: AnalyticsApi.analytics_profanity ..."
41
+ end
42
+ # verify the required parameter 'input' is set
43
+ if @api_client.config.client_side_validation && input.nil?
44
+ fail ArgumentError, "Missing the required parameter 'input' when calling AnalyticsApi.analytics_profanity"
45
+ end
46
+ # resource path
47
+ local_var_path = "/nlp-v2/analytics/profanity"
48
+
49
+ # query parameters
50
+ query_params = {}
51
+
52
+ # header parameters
53
+ header_params = {}
54
+ # HTTP header 'Accept' (if needed)
55
+ header_params['Accept'] = @api_client.select_header_accept(['application/json', 'text/json', 'application/xml', 'text/xml'])
56
+ # HTTP header 'Content-Type'
57
+ header_params['Content-Type'] = @api_client.select_header_content_type(['application/json', 'text/json', 'application/xml', 'text/xml', 'application/x-www-form-urlencoded'])
58
+
59
+ # form parameters
60
+ form_params = {}
61
+
62
+ # http body (model)
63
+ post_body = @api_client.object_to_http_body(input)
64
+ auth_names = ['Apikey']
65
+ data, status_code, headers = @api_client.call_api(:POST, local_var_path,
66
+ :header_params => header_params,
67
+ :query_params => query_params,
68
+ :form_params => form_params,
69
+ :body => post_body,
70
+ :auth_names => auth_names,
71
+ :return_type => 'ProfanityAnalysisResponse')
72
+ if @api_client.config.debugging
73
+ @api_client.config.logger.debug "API called: AnalyticsApi#analytics_profanity\nData: #{data.inspect}\nStatus code: #{status_code}\nHeaders: #{headers}"
74
+ end
75
+ return data, status_code, headers
76
+ end
77
+
23
78
  # Perform Sentiment Analysis and Classification on Text
24
79
  # Analyze input text using advanced Sentiment Analysis to determine if the input is positive, negative, or neutral. Supports English language input. Consumes 1-2 API calls per sentence.
25
80
  # @param input Input sentiment analysis request
@@ -0,0 +1,189 @@
1
+ =begin
2
+ #nlpapiv2
3
+
4
+ #The powerful Natural Language Processing APIs (v2) let you perform part of speech tagging, entity identification, sentence parsing, and much more to help you understand the meaning of unstructured text.
5
+
6
+ OpenAPI spec version: v1
7
+
8
+ Generated by: https://github.com/swagger-api/swagger-codegen.git
9
+ Swagger Codegen version: 2.3.1
10
+
11
+ =end
12
+
13
+ require 'date'
14
+
15
+ module CloudmersiveNlpApiClient
16
+ # Input to a profanity analysis operation
17
+ class ProfanityAnalysisRequest
18
+ # Text to analyze
19
+ attr_accessor :text_to_analyze
20
+
21
+
22
+ # Attribute mapping from ruby-style variable name to JSON key.
23
+ def self.attribute_map
24
+ {
25
+ :'text_to_analyze' => :'TextToAnalyze'
26
+ }
27
+ end
28
+
29
+ # Attribute type mapping.
30
+ def self.swagger_types
31
+ {
32
+ :'text_to_analyze' => :'String'
33
+ }
34
+ end
35
+
36
+ # Initializes the object
37
+ # @param [Hash] attributes Model attributes in the form of hash
38
+ def initialize(attributes = {})
39
+ return unless attributes.is_a?(Hash)
40
+
41
+ # convert string to symbol for hash key
42
+ attributes = attributes.each_with_object({}){|(k,v), h| h[k.to_sym] = v}
43
+
44
+ if attributes.has_key?(:'TextToAnalyze')
45
+ self.text_to_analyze = attributes[:'TextToAnalyze']
46
+ end
47
+
48
+ end
49
+
50
+ # Show invalid properties with the reasons. Usually used together with valid?
51
+ # @return Array for valid properties with the reasons
52
+ def list_invalid_properties
53
+ invalid_properties = Array.new
54
+ return invalid_properties
55
+ end
56
+
57
+ # Check to see if the all the properties in the model are valid
58
+ # @return true if the model is valid
59
+ def valid?
60
+ return true
61
+ end
62
+
63
+ # Checks equality by comparing each attribute.
64
+ # @param [Object] Object to be compared
65
+ def ==(o)
66
+ return true if self.equal?(o)
67
+ self.class == o.class &&
68
+ text_to_analyze == o.text_to_analyze
69
+ end
70
+
71
+ # @see the `==` method
72
+ # @param [Object] Object to be compared
73
+ def eql?(o)
74
+ self == o
75
+ end
76
+
77
+ # Calculates hash code according to all attributes.
78
+ # @return [Fixnum] Hash code
79
+ def hash
80
+ [text_to_analyze].hash
81
+ end
82
+
83
+ # Builds the object from hash
84
+ # @param [Hash] attributes Model attributes in the form of hash
85
+ # @return [Object] Returns the model itself
86
+ def build_from_hash(attributes)
87
+ return nil unless attributes.is_a?(Hash)
88
+ self.class.swagger_types.each_pair do |key, type|
89
+ if type =~ /\AArray<(.*)>/i
90
+ # check to ensure the input is an array given that the the attribute
91
+ # is documented as an array but the input is not
92
+ if attributes[self.class.attribute_map[key]].is_a?(Array)
93
+ self.send("#{key}=", attributes[self.class.attribute_map[key]].map{ |v| _deserialize($1, v) } )
94
+ end
95
+ elsif !attributes[self.class.attribute_map[key]].nil?
96
+ self.send("#{key}=", _deserialize(type, attributes[self.class.attribute_map[key]]))
97
+ end # or else data not found in attributes(hash), not an issue as the data can be optional
98
+ end
99
+
100
+ self
101
+ end
102
+
103
+ # Deserializes the data based on type
104
+ # @param string type Data type
105
+ # @param string value Value to be deserialized
106
+ # @return [Object] Deserialized data
107
+ def _deserialize(type, value)
108
+ case type.to_sym
109
+ when :DateTime
110
+ DateTime.parse(value)
111
+ when :Date
112
+ Date.parse(value)
113
+ when :String
114
+ value.to_s
115
+ when :Integer
116
+ value.to_i
117
+ when :Float
118
+ value.to_f
119
+ when :BOOLEAN
120
+ if value.to_s =~ /\A(true|t|yes|y|1)\z/i
121
+ true
122
+ else
123
+ false
124
+ end
125
+ when :Object
126
+ # generic object (usually a Hash), return directly
127
+ value
128
+ when /\AArray<(?<inner_type>.+)>\z/
129
+ inner_type = Regexp.last_match[:inner_type]
130
+ value.map { |v| _deserialize(inner_type, v) }
131
+ when /\AHash<(?<k_type>.+?), (?<v_type>.+)>\z/
132
+ k_type = Regexp.last_match[:k_type]
133
+ v_type = Regexp.last_match[:v_type]
134
+ {}.tap do |hash|
135
+ value.each do |k, v|
136
+ hash[_deserialize(k_type, k)] = _deserialize(v_type, v)
137
+ end
138
+ end
139
+ else # model
140
+ temp_model = CloudmersiveNlpApiClient.const_get(type).new
141
+ temp_model.build_from_hash(value)
142
+ end
143
+ end
144
+
145
+ # Returns the string representation of the object
146
+ # @return [String] String presentation of the object
147
+ def to_s
148
+ to_hash.to_s
149
+ end
150
+
151
+ # to_body is an alias to to_hash (backward compatibility)
152
+ # @return [Hash] Returns the object in the form of hash
153
+ def to_body
154
+ to_hash
155
+ end
156
+
157
+ # Returns the object in the form of hash
158
+ # @return [Hash] Returns the object in the form of hash
159
+ def to_hash
160
+ hash = {}
161
+ self.class.attribute_map.each_pair do |attr, param|
162
+ value = self.send(attr)
163
+ next if value.nil?
164
+ hash[param] = _to_hash(value)
165
+ end
166
+ hash
167
+ end
168
+
169
+ # Outputs non-array value in the form of hash
170
+ # For object, use to_hash. Otherwise, just return the value
171
+ # @param [Object] value Any valid value
172
+ # @return [Hash] Returns the value in the form of hash
173
+ def _to_hash(value)
174
+ if value.is_a?(Array)
175
+ value.compact.map{ |v| _to_hash(v) }
176
+ elsif value.is_a?(Hash)
177
+ {}.tap do |hash|
178
+ value.each { |k, v| hash[k] = _to_hash(v) }
179
+ end
180
+ elsif value.respond_to? :to_hash
181
+ value.to_hash
182
+ else
183
+ value
184
+ end
185
+ end
186
+
187
+ end
188
+
189
+ end
@@ -0,0 +1,209 @@
1
+ =begin
2
+ #nlpapiv2
3
+
4
+ #The powerful Natural Language Processing APIs (v2) let you perform part of speech tagging, entity identification, sentence parsing, and much more to help you understand the meaning of unstructured text.
5
+
6
+ OpenAPI spec version: v1
7
+
8
+ Generated by: https://github.com/swagger-api/swagger-codegen.git
9
+ Swagger Codegen version: 2.3.1
10
+
11
+ =end
12
+
13
+ require 'date'
14
+
15
+ module CloudmersiveNlpApiClient
16
+ # Output of a profanity analysis operation
17
+ class ProfanityAnalysisResponse
18
+ # True if the profanity detection operation was successful, false otherwise
19
+ attr_accessor :successful
20
+
21
+ # Profanity classification score between 0.0 and 1.0 where scores closer to zero have a low probability of being profane or contain obscene language, while scores close to 1.0 have a high probability of being profane or containing obscene language. Values above 0.8 have a very high probability of being profane.
22
+ attr_accessor :profanity_score_result
23
+
24
+ # Number of sentences in input text
25
+ attr_accessor :sentence_count
26
+
27
+
28
+ # Attribute mapping from ruby-style variable name to JSON key.
29
+ def self.attribute_map
30
+ {
31
+ :'successful' => :'Successful',
32
+ :'profanity_score_result' => :'ProfanityScoreResult',
33
+ :'sentence_count' => :'SentenceCount'
34
+ }
35
+ end
36
+
37
+ # Attribute type mapping.
38
+ def self.swagger_types
39
+ {
40
+ :'successful' => :'BOOLEAN',
41
+ :'profanity_score_result' => :'Float',
42
+ :'sentence_count' => :'Integer'
43
+ }
44
+ end
45
+
46
+ # Initializes the object
47
+ # @param [Hash] attributes Model attributes in the form of hash
48
+ def initialize(attributes = {})
49
+ return unless attributes.is_a?(Hash)
50
+
51
+ # convert string to symbol for hash key
52
+ attributes = attributes.each_with_object({}){|(k,v), h| h[k.to_sym] = v}
53
+
54
+ if attributes.has_key?(:'Successful')
55
+ self.successful = attributes[:'Successful']
56
+ end
57
+
58
+ if attributes.has_key?(:'ProfanityScoreResult')
59
+ self.profanity_score_result = attributes[:'ProfanityScoreResult']
60
+ end
61
+
62
+ if attributes.has_key?(:'SentenceCount')
63
+ self.sentence_count = attributes[:'SentenceCount']
64
+ end
65
+
66
+ end
67
+
68
+ # Show invalid properties with the reasons. Usually used together with valid?
69
+ # @return Array for valid properties with the reasons
70
+ def list_invalid_properties
71
+ invalid_properties = Array.new
72
+ return invalid_properties
73
+ end
74
+
75
+ # Check to see if the all the properties in the model are valid
76
+ # @return true if the model is valid
77
+ def valid?
78
+ return true
79
+ end
80
+
81
+ # Checks equality by comparing each attribute.
82
+ # @param [Object] Object to be compared
83
+ def ==(o)
84
+ return true if self.equal?(o)
85
+ self.class == o.class &&
86
+ successful == o.successful &&
87
+ profanity_score_result == o.profanity_score_result &&
88
+ sentence_count == o.sentence_count
89
+ end
90
+
91
+ # @see the `==` method
92
+ # @param [Object] Object to be compared
93
+ def eql?(o)
94
+ self == o
95
+ end
96
+
97
+ # Calculates hash code according to all attributes.
98
+ # @return [Fixnum] Hash code
99
+ def hash
100
+ [successful, profanity_score_result, sentence_count].hash
101
+ end
102
+
103
+ # Builds the object from hash
104
+ # @param [Hash] attributes Model attributes in the form of hash
105
+ # @return [Object] Returns the model itself
106
+ def build_from_hash(attributes)
107
+ return nil unless attributes.is_a?(Hash)
108
+ self.class.swagger_types.each_pair do |key, type|
109
+ if type =~ /\AArray<(.*)>/i
110
+ # check to ensure the input is an array given that the the attribute
111
+ # is documented as an array but the input is not
112
+ if attributes[self.class.attribute_map[key]].is_a?(Array)
113
+ self.send("#{key}=", attributes[self.class.attribute_map[key]].map{ |v| _deserialize($1, v) } )
114
+ end
115
+ elsif !attributes[self.class.attribute_map[key]].nil?
116
+ self.send("#{key}=", _deserialize(type, attributes[self.class.attribute_map[key]]))
117
+ end # or else data not found in attributes(hash), not an issue as the data can be optional
118
+ end
119
+
120
+ self
121
+ end
122
+
123
+ # Deserializes the data based on type
124
+ # @param string type Data type
125
+ # @param string value Value to be deserialized
126
+ # @return [Object] Deserialized data
127
+ def _deserialize(type, value)
128
+ case type.to_sym
129
+ when :DateTime
130
+ DateTime.parse(value)
131
+ when :Date
132
+ Date.parse(value)
133
+ when :String
134
+ value.to_s
135
+ when :Integer
136
+ value.to_i
137
+ when :Float
138
+ value.to_f
139
+ when :BOOLEAN
140
+ if value.to_s =~ /\A(true|t|yes|y|1)\z/i
141
+ true
142
+ else
143
+ false
144
+ end
145
+ when :Object
146
+ # generic object (usually a Hash), return directly
147
+ value
148
+ when /\AArray<(?<inner_type>.+)>\z/
149
+ inner_type = Regexp.last_match[:inner_type]
150
+ value.map { |v| _deserialize(inner_type, v) }
151
+ when /\AHash<(?<k_type>.+?), (?<v_type>.+)>\z/
152
+ k_type = Regexp.last_match[:k_type]
153
+ v_type = Regexp.last_match[:v_type]
154
+ {}.tap do |hash|
155
+ value.each do |k, v|
156
+ hash[_deserialize(k_type, k)] = _deserialize(v_type, v)
157
+ end
158
+ end
159
+ else # model
160
+ temp_model = CloudmersiveNlpApiClient.const_get(type).new
161
+ temp_model.build_from_hash(value)
162
+ end
163
+ end
164
+
165
+ # Returns the string representation of the object
166
+ # @return [String] String presentation of the object
167
+ def to_s
168
+ to_hash.to_s
169
+ end
170
+
171
+ # to_body is an alias to to_hash (backward compatibility)
172
+ # @return [Hash] Returns the object in the form of hash
173
+ def to_body
174
+ to_hash
175
+ end
176
+
177
+ # Returns the object in the form of hash
178
+ # @return [Hash] Returns the object in the form of hash
179
+ def to_hash
180
+ hash = {}
181
+ self.class.attribute_map.each_pair do |attr, param|
182
+ value = self.send(attr)
183
+ next if value.nil?
184
+ hash[param] = _to_hash(value)
185
+ end
186
+ hash
187
+ end
188
+
189
+ # Outputs non-array value in the form of hash
190
+ # For object, use to_hash. Otherwise, just return the value
191
+ # @param [Object] value Any valid value
192
+ # @return [Hash] Returns the value in the form of hash
193
+ def _to_hash(value)
194
+ if value.is_a?(Array)
195
+ value.compact.map{ |v| _to_hash(v) }
196
+ elsif value.is_a?(Hash)
197
+ {}.tap do |hash|
198
+ value.each { |k, v| hash[k] = _to_hash(v) }
199
+ end
200
+ elsif value.respond_to? :to_hash
201
+ value.to_hash
202
+ else
203
+ value
204
+ end
205
+ end
206
+
207
+ end
208
+
209
+ end
@@ -15,7 +15,7 @@ require 'date'
15
15
  module CloudmersiveNlpApiClient
16
16
  # Output of a sentiment analysis operation
17
17
  class SentimentAnalysisResponse
18
- # True if the language detection operation was successful, false otherwise
18
+ # True if the sentiment analysis operation was successful, false otherwise
19
19
  attr_accessor :successful
20
20
 
21
21
  # Classification of input text into a sentiment classification; possible values are \"Positive\", \"Negative\" or \"Neutral\"
@@ -11,5 +11,5 @@ Swagger Codegen version: 2.3.1
11
11
  =end
12
12
 
13
13
  module CloudmersiveNlpApiClient
14
- VERSION = "2.0.5"
14
+ VERSION = "2.0.6"
15
15
  end
@@ -32,6 +32,18 @@ describe 'AnalyticsApi' do
32
32
  end
33
33
  end
34
34
 
35
+ # unit tests for analytics_profanity
36
+ # Perform Profanity and Obscene Language Analysis and Detection on Text
37
+ # Analyze input text using advanced Profanity and Obscene Language Analysis to determine if the input contains profane language. Supports English language input. Consumes 1-2 API calls per sentence.
38
+ # @param input Input profanity analysis request
39
+ # @param [Hash] opts the optional parameters
40
+ # @return [ProfanityAnalysisResponse]
41
+ describe 'analytics_profanity test' do
42
+ it "should work" do
43
+ # assertion here. ref: https://www.relishapp.com/rspec/rspec-expectations/docs/built-in-matchers
44
+ end
45
+ end
46
+
35
47
  # unit tests for analytics_sentiment
36
48
  # Perform Sentiment Analysis and Classification on Text
37
49
  # Analyze input text using advanced Sentiment Analysis to determine if the input is positive, negative, or neutral. Supports English language input. Consumes 1-2 API calls per sentence.
@@ -0,0 +1,42 @@
1
+ =begin
2
+ #nlpapiv2
3
+
4
+ #The powerful Natural Language Processing APIs (v2) let you perform part of speech tagging, entity identification, sentence parsing, and much more to help you understand the meaning of unstructured text.
5
+
6
+ OpenAPI spec version: v1
7
+
8
+ Generated by: https://github.com/swagger-api/swagger-codegen.git
9
+ Swagger Codegen version: 2.3.1
10
+
11
+ =end
12
+
13
+ require 'spec_helper'
14
+ require 'json'
15
+ require 'date'
16
+
17
+ # Unit tests for CloudmersiveNlpApiClient::ProfanityAnalysisRequest
18
+ # Automatically generated by swagger-codegen (github.com/swagger-api/swagger-codegen)
19
+ # Please update as you see appropriate
20
+ describe 'ProfanityAnalysisRequest' do
21
+ before do
22
+ # run before each test
23
+ @instance = CloudmersiveNlpApiClient::ProfanityAnalysisRequest.new
24
+ end
25
+
26
+ after do
27
+ # run after each test
28
+ end
29
+
30
+ describe 'test an instance of ProfanityAnalysisRequest' do
31
+ it 'should create an instance of ProfanityAnalysisRequest' do
32
+ expect(@instance).to be_instance_of(CloudmersiveNlpApiClient::ProfanityAnalysisRequest)
33
+ end
34
+ end
35
+ describe 'test attribute "text_to_analyze"' do
36
+ it 'should work' do
37
+ # assertion here. ref: https://www.relishapp.com/rspec/rspec-expectations/docs/built-in-matchers
38
+ end
39
+ end
40
+
41
+ end
42
+
@@ -0,0 +1,54 @@
1
+ =begin
2
+ #nlpapiv2
3
+
4
+ #The powerful Natural Language Processing APIs (v2) let you perform part of speech tagging, entity identification, sentence parsing, and much more to help you understand the meaning of unstructured text.
5
+
6
+ OpenAPI spec version: v1
7
+
8
+ Generated by: https://github.com/swagger-api/swagger-codegen.git
9
+ Swagger Codegen version: 2.3.1
10
+
11
+ =end
12
+
13
+ require 'spec_helper'
14
+ require 'json'
15
+ require 'date'
16
+
17
+ # Unit tests for CloudmersiveNlpApiClient::ProfanityAnalysisResponse
18
+ # Automatically generated by swagger-codegen (github.com/swagger-api/swagger-codegen)
19
+ # Please update as you see appropriate
20
+ describe 'ProfanityAnalysisResponse' do
21
+ before do
22
+ # run before each test
23
+ @instance = CloudmersiveNlpApiClient::ProfanityAnalysisResponse.new
24
+ end
25
+
26
+ after do
27
+ # run after each test
28
+ end
29
+
30
+ describe 'test an instance of ProfanityAnalysisResponse' do
31
+ it 'should create an instance of ProfanityAnalysisResponse' do
32
+ expect(@instance).to be_instance_of(CloudmersiveNlpApiClient::ProfanityAnalysisResponse)
33
+ end
34
+ end
35
+ describe 'test attribute "successful"' do
36
+ it 'should work' do
37
+ # assertion here. ref: https://www.relishapp.com/rspec/rspec-expectations/docs/built-in-matchers
38
+ end
39
+ end
40
+
41
+ describe 'test attribute "profanity_score_result"' do
42
+ it 'should work' do
43
+ # assertion here. ref: https://www.relishapp.com/rspec/rspec-expectations/docs/built-in-matchers
44
+ end
45
+ end
46
+
47
+ describe 'test attribute "sentence_count"' do
48
+ it 'should work' do
49
+ # assertion here. ref: https://www.relishapp.com/rspec/rspec-expectations/docs/built-in-matchers
50
+ end
51
+ end
52
+
53
+ end
54
+
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: cloudmersive-nlp-api-client
3
3
  version: !ruby/object:Gem::Version
4
- version: 2.0.5
4
+ version: 2.0.6
5
5
  platform: ruby
6
6
  authors:
7
7
  - Cloudmersive
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2020-05-03 00:00:00.000000000 Z
11
+ date: 2020-05-07 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: typhoeus
@@ -229,6 +229,8 @@ files:
229
229
  - "./docs/PosSentence.md"
230
230
  - "./docs/PosTaggedWord.md"
231
231
  - "./docs/PosTaggerApi.md"
232
+ - "./docs/ProfanityAnalysisRequest.md"
233
+ - "./docs/ProfanityAnalysisResponse.md"
232
234
  - "./docs/RephraseApi.md"
233
235
  - "./docs/RephraseRequest.md"
234
236
  - "./docs/RephraseResponse.md"
@@ -275,6 +277,8 @@ files:
275
277
  - "./lib/cloudmersive-nlp-api-client/models/pos_response.rb"
276
278
  - "./lib/cloudmersive-nlp-api-client/models/pos_sentence.rb"
277
279
  - "./lib/cloudmersive-nlp-api-client/models/pos_tagged_word.rb"
280
+ - "./lib/cloudmersive-nlp-api-client/models/profanity_analysis_request.rb"
281
+ - "./lib/cloudmersive-nlp-api-client/models/profanity_analysis_response.rb"
278
282
  - "./lib/cloudmersive-nlp-api-client/models/rephrase_request.rb"
279
283
  - "./lib/cloudmersive-nlp-api-client/models/rephrase_response.rb"
280
284
  - "./lib/cloudmersive-nlp-api-client/models/rephrased_sentence.rb"
@@ -316,6 +320,8 @@ files:
316
320
  - "./spec/models/pos_response_spec.rb"
317
321
  - "./spec/models/pos_sentence_spec.rb"
318
322
  - "./spec/models/pos_tagged_word_spec.rb"
323
+ - "./spec/models/profanity_analysis_request_spec.rb"
324
+ - "./spec/models/profanity_analysis_response_spec.rb"
319
325
  - "./spec/models/rephrase_request_spec.rb"
320
326
  - "./spec/models/rephrase_response_spec.rb"
321
327
  - "./spec/models/rephrased_sentence_option_spec.rb"