cloudmersive-nlp-api-client 2.0.5 → 2.0.6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +11 -8
- data/docs/AnalyticsApi.md +55 -0
- data/docs/ProfanityAnalysisRequest.md +8 -0
- data/docs/ProfanityAnalysisResponse.md +10 -0
- data/docs/SentimentAnalysisResponse.md +1 -1
- data/lib/cloudmersive-nlp-api-client.rb +2 -0
- data/lib/cloudmersive-nlp-api-client/api/analytics_api.rb +55 -0
- data/lib/cloudmersive-nlp-api-client/models/profanity_analysis_request.rb +189 -0
- data/lib/cloudmersive-nlp-api-client/models/profanity_analysis_response.rb +209 -0
- data/lib/cloudmersive-nlp-api-client/models/sentiment_analysis_response.rb +1 -1
- data/lib/cloudmersive-nlp-api-client/version.rb +1 -1
- data/spec/api/analytics_api_spec.rb +12 -0
- data/spec/models/profanity_analysis_request_spec.rb +42 -0
- data/spec/models/profanity_analysis_response_spec.rb +54 -0
- metadata +8 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 246a67c5ed5ac6e1f87cb9c909ab67fd333d403e29f586337e4b3811f4d50a39
|
4
|
+
data.tar.gz: 9c5b93723080d6dbd283652d2bdd95bdf01a87e54227f0def19443df75756fcd
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 4e58d407f9668bef355e4dff7b1355e0452a7816beae84b3f6b2cb8c181e655b9604de63f1f6ad9b82e7c1d1ab4c686cd654dfa4f636485da1c58d035cb16c11
|
7
|
+
data.tar.gz: ba3d52454818d717e9fb163df9bb49fe613f1cbe29397575330e0f313711bc52ebe0c863362ea092cbe7da1379df4217d301b7a2758ca41d2c9c3e94109c173a
|
data/README.md
CHANGED
@@ -7,7 +7,7 @@ The powerful Natural Language Processing APIs (v2) let you perform part of speec
|
|
7
7
|
This SDK is automatically generated by the [Swagger Codegen](https://github.com/swagger-api/swagger-codegen) project:
|
8
8
|
|
9
9
|
- API version: v1
|
10
|
-
- Package version: 2.0.
|
10
|
+
- Package version: 2.0.6
|
11
11
|
- Build package: io.swagger.codegen.languages.RubyClientCodegen
|
12
12
|
|
13
13
|
## Installation
|
@@ -23,15 +23,15 @@ gem build cloudmersive-nlp-api-client.gemspec
|
|
23
23
|
Then either install the gem locally:
|
24
24
|
|
25
25
|
```shell
|
26
|
-
gem install ./cloudmersive-nlp-api-client-2.0.
|
26
|
+
gem install ./cloudmersive-nlp-api-client-2.0.6.gem
|
27
27
|
```
|
28
|
-
(for development, run `gem install --dev ./cloudmersive-nlp-api-client-2.0.
|
28
|
+
(for development, run `gem install --dev ./cloudmersive-nlp-api-client-2.0.6.gem` to install the development dependencies)
|
29
29
|
|
30
30
|
or publish the gem to a gem hosting service, e.g. [RubyGems](https://rubygems.org/).
|
31
31
|
|
32
32
|
Finally add this to the Gemfile:
|
33
33
|
|
34
|
-
gem 'cloudmersive-nlp-api-client', '~> 2.0.
|
34
|
+
gem 'cloudmersive-nlp-api-client', '~> 2.0.6'
|
35
35
|
|
36
36
|
### Install from Git
|
37
37
|
|
@@ -64,15 +64,15 @@ end
|
|
64
64
|
|
65
65
|
api_instance = CloudmersiveNlpApiClient::AnalyticsApi.new
|
66
66
|
|
67
|
-
input = CloudmersiveNlpApiClient::
|
67
|
+
input = CloudmersiveNlpApiClient::ProfanityAnalysisRequest.new # ProfanityAnalysisRequest | Input profanity analysis request
|
68
68
|
|
69
69
|
|
70
70
|
begin
|
71
|
-
#Perform
|
72
|
-
result = api_instance.
|
71
|
+
#Perform Profanity and Obscene Language Analysis and Detection on Text
|
72
|
+
result = api_instance.analytics_profanity(input)
|
73
73
|
p result
|
74
74
|
rescue CloudmersiveNlpApiClient::ApiError => e
|
75
|
-
puts "Exception when calling AnalyticsApi->
|
75
|
+
puts "Exception when calling AnalyticsApi->analytics_profanity: #{e}"
|
76
76
|
end
|
77
77
|
|
78
78
|
```
|
@@ -83,6 +83,7 @@ All URIs are relative to *https://api.cloudmersive.com*
|
|
83
83
|
|
84
84
|
Class | Method | HTTP request | Description
|
85
85
|
------------ | ------------- | ------------- | -------------
|
86
|
+
*CloudmersiveNlpApiClient::AnalyticsApi* | [**analytics_profanity**](docs/AnalyticsApi.md#analytics_profanity) | **POST** /nlp-v2/analytics/profanity | Perform Profanity and Obscene Language Analysis and Detection on Text
|
86
87
|
*CloudmersiveNlpApiClient::AnalyticsApi* | [**analytics_sentiment**](docs/AnalyticsApi.md#analytics_sentiment) | **POST** /nlp-v2/analytics/sentiment | Perform Sentiment Analysis and Classification on Text
|
87
88
|
*CloudmersiveNlpApiClient::ExtractEntitiesApi* | [**extract_entities_post**](docs/ExtractEntitiesApi.md#extract_entities_post) | **POST** /nlp-v2/extract-entities | Extract entities from string
|
88
89
|
*CloudmersiveNlpApiClient::LanguageDetectionApi* | [**language_detection_get_language**](docs/LanguageDetectionApi.md#language_detection_get_language) | **POST** /nlp-v2/language/detect | Detect language of text
|
@@ -126,6 +127,8 @@ Class | Method | HTTP request | Description
|
|
126
127
|
- [CloudmersiveNlpApiClient::PosResponse](docs/PosResponse.md)
|
127
128
|
- [CloudmersiveNlpApiClient::PosSentence](docs/PosSentence.md)
|
128
129
|
- [CloudmersiveNlpApiClient::PosTaggedWord](docs/PosTaggedWord.md)
|
130
|
+
- [CloudmersiveNlpApiClient::ProfanityAnalysisRequest](docs/ProfanityAnalysisRequest.md)
|
131
|
+
- [CloudmersiveNlpApiClient::ProfanityAnalysisResponse](docs/ProfanityAnalysisResponse.md)
|
129
132
|
- [CloudmersiveNlpApiClient::RephraseRequest](docs/RephraseRequest.md)
|
130
133
|
- [CloudmersiveNlpApiClient::RephraseResponse](docs/RephraseResponse.md)
|
131
134
|
- [CloudmersiveNlpApiClient::RephrasedSentence](docs/RephrasedSentence.md)
|
data/docs/AnalyticsApi.md
CHANGED
@@ -4,9 +4,64 @@ All URIs are relative to *https://api.cloudmersive.com*
|
|
4
4
|
|
5
5
|
Method | HTTP request | Description
|
6
6
|
------------- | ------------- | -------------
|
7
|
+
[**analytics_profanity**](AnalyticsApi.md#analytics_profanity) | **POST** /nlp-v2/analytics/profanity | Perform Profanity and Obscene Language Analysis and Detection on Text
|
7
8
|
[**analytics_sentiment**](AnalyticsApi.md#analytics_sentiment) | **POST** /nlp-v2/analytics/sentiment | Perform Sentiment Analysis and Classification on Text
|
8
9
|
|
9
10
|
|
11
|
+
# **analytics_profanity**
|
12
|
+
> ProfanityAnalysisResponse analytics_profanity(input)
|
13
|
+
|
14
|
+
Perform Profanity and Obscene Language Analysis and Detection on Text
|
15
|
+
|
16
|
+
Analyze input text using advanced Profanity and Obscene Language Analysis to determine if the input contains profane language. Supports English language input. Consumes 1-2 API calls per sentence.
|
17
|
+
|
18
|
+
### Example
|
19
|
+
```ruby
|
20
|
+
# load the gem
|
21
|
+
require 'cloudmersive-nlp-api-client'
|
22
|
+
# setup authorization
|
23
|
+
CloudmersiveNlpApiClient.configure do |config|
|
24
|
+
# Configure API key authorization: Apikey
|
25
|
+
config.api_key['Apikey'] = 'YOUR API KEY'
|
26
|
+
# Uncomment the following line to set a prefix for the API key, e.g. 'Bearer' (defaults to nil)
|
27
|
+
#config.api_key_prefix['Apikey'] = 'Bearer'
|
28
|
+
end
|
29
|
+
|
30
|
+
api_instance = CloudmersiveNlpApiClient::AnalyticsApi.new
|
31
|
+
|
32
|
+
input = CloudmersiveNlpApiClient::ProfanityAnalysisRequest.new # ProfanityAnalysisRequest | Input profanity analysis request
|
33
|
+
|
34
|
+
|
35
|
+
begin
|
36
|
+
#Perform Profanity and Obscene Language Analysis and Detection on Text
|
37
|
+
result = api_instance.analytics_profanity(input)
|
38
|
+
p result
|
39
|
+
rescue CloudmersiveNlpApiClient::ApiError => e
|
40
|
+
puts "Exception when calling AnalyticsApi->analytics_profanity: #{e}"
|
41
|
+
end
|
42
|
+
```
|
43
|
+
|
44
|
+
### Parameters
|
45
|
+
|
46
|
+
Name | Type | Description | Notes
|
47
|
+
------------- | ------------- | ------------- | -------------
|
48
|
+
**input** | [**ProfanityAnalysisRequest**](ProfanityAnalysisRequest.md)| Input profanity analysis request |
|
49
|
+
|
50
|
+
### Return type
|
51
|
+
|
52
|
+
[**ProfanityAnalysisResponse**](ProfanityAnalysisResponse.md)
|
53
|
+
|
54
|
+
### Authorization
|
55
|
+
|
56
|
+
[Apikey](../README.md#Apikey)
|
57
|
+
|
58
|
+
### HTTP request headers
|
59
|
+
|
60
|
+
- **Content-Type**: application/json, text/json, application/xml, text/xml, application/x-www-form-urlencoded
|
61
|
+
- **Accept**: application/json, text/json, application/xml, text/xml
|
62
|
+
|
63
|
+
|
64
|
+
|
10
65
|
# **analytics_sentiment**
|
11
66
|
> SentimentAnalysisResponse analytics_sentiment(input)
|
12
67
|
|
@@ -0,0 +1,10 @@
|
|
1
|
+
# CloudmersiveNlpApiClient::ProfanityAnalysisResponse
|
2
|
+
|
3
|
+
## Properties
|
4
|
+
Name | Type | Description | Notes
|
5
|
+
------------ | ------------- | ------------- | -------------
|
6
|
+
**successful** | **BOOLEAN** | True if the profanity detection operation was successful, false otherwise | [optional]
|
7
|
+
**profanity_score_result** | **Float** | Profanity classification score between 0.0 and 1.0 where scores closer to zero have a low probability of being profane or contain obscene language, while scores close to 1.0 have a high probability of being profane or containing obscene language. Values above 0.8 have a very high probability of being profane. | [optional]
|
8
|
+
**sentence_count** | **Integer** | Number of sentences in input text | [optional]
|
9
|
+
|
10
|
+
|
@@ -3,7 +3,7 @@
|
|
3
3
|
## Properties
|
4
4
|
Name | Type | Description | Notes
|
5
5
|
------------ | ------------- | ------------- | -------------
|
6
|
-
**successful** | **BOOLEAN** | True if the
|
6
|
+
**successful** | **BOOLEAN** | True if the sentiment analysis operation was successful, false otherwise | [optional]
|
7
7
|
**sentiment_classification_result** | **String** | Classification of input text into a sentiment classification; possible values are \"Positive\", \"Negative\" or \"Neutral\" | [optional]
|
8
8
|
**sentiment_score_result** | **Float** | Sentiment classification score between -1.0 and +1.0 where scores less than 0 are negative sentiment, scores greater than 0 are positive sentiment and scores close to 0 are neutral. The greater the value deviates from 0.0 the stronger the sentiment, with +1.0 and -1.0 being maximum positive and negative sentiment, respectively. | [optional]
|
9
9
|
**sentence_count** | **Integer** | Number of sentences in input text | [optional]
|
@@ -37,6 +37,8 @@ require 'cloudmersive-nlp-api-client/models/pos_request'
|
|
37
37
|
require 'cloudmersive-nlp-api-client/models/pos_response'
|
38
38
|
require 'cloudmersive-nlp-api-client/models/pos_sentence'
|
39
39
|
require 'cloudmersive-nlp-api-client/models/pos_tagged_word'
|
40
|
+
require 'cloudmersive-nlp-api-client/models/profanity_analysis_request'
|
41
|
+
require 'cloudmersive-nlp-api-client/models/profanity_analysis_response'
|
40
42
|
require 'cloudmersive-nlp-api-client/models/rephrase_request'
|
41
43
|
require 'cloudmersive-nlp-api-client/models/rephrase_response'
|
42
44
|
require 'cloudmersive-nlp-api-client/models/rephrased_sentence'
|
@@ -20,6 +20,61 @@ module CloudmersiveNlpApiClient
|
|
20
20
|
@api_client = api_client
|
21
21
|
end
|
22
22
|
|
23
|
+
# Perform Profanity and Obscene Language Analysis and Detection on Text
|
24
|
+
# Analyze input text using advanced Profanity and Obscene Language Analysis to determine if the input contains profane language. Supports English language input. Consumes 1-2 API calls per sentence.
|
25
|
+
# @param input Input profanity analysis request
|
26
|
+
# @param [Hash] opts the optional parameters
|
27
|
+
# @return [ProfanityAnalysisResponse]
|
28
|
+
def analytics_profanity(input, opts = {})
|
29
|
+
data, _status_code, _headers = analytics_profanity_with_http_info(input, opts)
|
30
|
+
return data
|
31
|
+
end
|
32
|
+
|
33
|
+
# Perform Profanity and Obscene Language Analysis and Detection on Text
|
34
|
+
# Analyze input text using advanced Profanity and Obscene Language Analysis to determine if the input contains profane language. Supports English language input. Consumes 1-2 API calls per sentence.
|
35
|
+
# @param input Input profanity analysis request
|
36
|
+
# @param [Hash] opts the optional parameters
|
37
|
+
# @return [Array<(ProfanityAnalysisResponse, Fixnum, Hash)>] ProfanityAnalysisResponse data, response status code and response headers
|
38
|
+
def analytics_profanity_with_http_info(input, opts = {})
|
39
|
+
if @api_client.config.debugging
|
40
|
+
@api_client.config.logger.debug "Calling API: AnalyticsApi.analytics_profanity ..."
|
41
|
+
end
|
42
|
+
# verify the required parameter 'input' is set
|
43
|
+
if @api_client.config.client_side_validation && input.nil?
|
44
|
+
fail ArgumentError, "Missing the required parameter 'input' when calling AnalyticsApi.analytics_profanity"
|
45
|
+
end
|
46
|
+
# resource path
|
47
|
+
local_var_path = "/nlp-v2/analytics/profanity"
|
48
|
+
|
49
|
+
# query parameters
|
50
|
+
query_params = {}
|
51
|
+
|
52
|
+
# header parameters
|
53
|
+
header_params = {}
|
54
|
+
# HTTP header 'Accept' (if needed)
|
55
|
+
header_params['Accept'] = @api_client.select_header_accept(['application/json', 'text/json', 'application/xml', 'text/xml'])
|
56
|
+
# HTTP header 'Content-Type'
|
57
|
+
header_params['Content-Type'] = @api_client.select_header_content_type(['application/json', 'text/json', 'application/xml', 'text/xml', 'application/x-www-form-urlencoded'])
|
58
|
+
|
59
|
+
# form parameters
|
60
|
+
form_params = {}
|
61
|
+
|
62
|
+
# http body (model)
|
63
|
+
post_body = @api_client.object_to_http_body(input)
|
64
|
+
auth_names = ['Apikey']
|
65
|
+
data, status_code, headers = @api_client.call_api(:POST, local_var_path,
|
66
|
+
:header_params => header_params,
|
67
|
+
:query_params => query_params,
|
68
|
+
:form_params => form_params,
|
69
|
+
:body => post_body,
|
70
|
+
:auth_names => auth_names,
|
71
|
+
:return_type => 'ProfanityAnalysisResponse')
|
72
|
+
if @api_client.config.debugging
|
73
|
+
@api_client.config.logger.debug "API called: AnalyticsApi#analytics_profanity\nData: #{data.inspect}\nStatus code: #{status_code}\nHeaders: #{headers}"
|
74
|
+
end
|
75
|
+
return data, status_code, headers
|
76
|
+
end
|
77
|
+
|
23
78
|
# Perform Sentiment Analysis and Classification on Text
|
24
79
|
# Analyze input text using advanced Sentiment Analysis to determine if the input is positive, negative, or neutral. Supports English language input. Consumes 1-2 API calls per sentence.
|
25
80
|
# @param input Input sentiment analysis request
|
@@ -0,0 +1,189 @@
|
|
1
|
+
=begin
|
2
|
+
#nlpapiv2
|
3
|
+
|
4
|
+
#The powerful Natural Language Processing APIs (v2) let you perform part of speech tagging, entity identification, sentence parsing, and much more to help you understand the meaning of unstructured text.
|
5
|
+
|
6
|
+
OpenAPI spec version: v1
|
7
|
+
|
8
|
+
Generated by: https://github.com/swagger-api/swagger-codegen.git
|
9
|
+
Swagger Codegen version: 2.3.1
|
10
|
+
|
11
|
+
=end
|
12
|
+
|
13
|
+
require 'date'
|
14
|
+
|
15
|
+
module CloudmersiveNlpApiClient
|
16
|
+
# Input to a profanity analysis operation
|
17
|
+
class ProfanityAnalysisRequest
|
18
|
+
# Text to analyze
|
19
|
+
attr_accessor :text_to_analyze
|
20
|
+
|
21
|
+
|
22
|
+
# Attribute mapping from ruby-style variable name to JSON key.
|
23
|
+
def self.attribute_map
|
24
|
+
{
|
25
|
+
:'text_to_analyze' => :'TextToAnalyze'
|
26
|
+
}
|
27
|
+
end
|
28
|
+
|
29
|
+
# Attribute type mapping.
|
30
|
+
def self.swagger_types
|
31
|
+
{
|
32
|
+
:'text_to_analyze' => :'String'
|
33
|
+
}
|
34
|
+
end
|
35
|
+
|
36
|
+
# Initializes the object
|
37
|
+
# @param [Hash] attributes Model attributes in the form of hash
|
38
|
+
def initialize(attributes = {})
|
39
|
+
return unless attributes.is_a?(Hash)
|
40
|
+
|
41
|
+
# convert string to symbol for hash key
|
42
|
+
attributes = attributes.each_with_object({}){|(k,v), h| h[k.to_sym] = v}
|
43
|
+
|
44
|
+
if attributes.has_key?(:'TextToAnalyze')
|
45
|
+
self.text_to_analyze = attributes[:'TextToAnalyze']
|
46
|
+
end
|
47
|
+
|
48
|
+
end
|
49
|
+
|
50
|
+
# Show invalid properties with the reasons. Usually used together with valid?
|
51
|
+
# @return Array for valid properties with the reasons
|
52
|
+
def list_invalid_properties
|
53
|
+
invalid_properties = Array.new
|
54
|
+
return invalid_properties
|
55
|
+
end
|
56
|
+
|
57
|
+
# Check to see if the all the properties in the model are valid
|
58
|
+
# @return true if the model is valid
|
59
|
+
def valid?
|
60
|
+
return true
|
61
|
+
end
|
62
|
+
|
63
|
+
# Checks equality by comparing each attribute.
|
64
|
+
# @param [Object] Object to be compared
|
65
|
+
def ==(o)
|
66
|
+
return true if self.equal?(o)
|
67
|
+
self.class == o.class &&
|
68
|
+
text_to_analyze == o.text_to_analyze
|
69
|
+
end
|
70
|
+
|
71
|
+
# @see the `==` method
|
72
|
+
# @param [Object] Object to be compared
|
73
|
+
def eql?(o)
|
74
|
+
self == o
|
75
|
+
end
|
76
|
+
|
77
|
+
# Calculates hash code according to all attributes.
|
78
|
+
# @return [Fixnum] Hash code
|
79
|
+
def hash
|
80
|
+
[text_to_analyze].hash
|
81
|
+
end
|
82
|
+
|
83
|
+
# Builds the object from hash
|
84
|
+
# @param [Hash] attributes Model attributes in the form of hash
|
85
|
+
# @return [Object] Returns the model itself
|
86
|
+
def build_from_hash(attributes)
|
87
|
+
return nil unless attributes.is_a?(Hash)
|
88
|
+
self.class.swagger_types.each_pair do |key, type|
|
89
|
+
if type =~ /\AArray<(.*)>/i
|
90
|
+
# check to ensure the input is an array given that the the attribute
|
91
|
+
# is documented as an array but the input is not
|
92
|
+
if attributes[self.class.attribute_map[key]].is_a?(Array)
|
93
|
+
self.send("#{key}=", attributes[self.class.attribute_map[key]].map{ |v| _deserialize($1, v) } )
|
94
|
+
end
|
95
|
+
elsif !attributes[self.class.attribute_map[key]].nil?
|
96
|
+
self.send("#{key}=", _deserialize(type, attributes[self.class.attribute_map[key]]))
|
97
|
+
end # or else data not found in attributes(hash), not an issue as the data can be optional
|
98
|
+
end
|
99
|
+
|
100
|
+
self
|
101
|
+
end
|
102
|
+
|
103
|
+
# Deserializes the data based on type
|
104
|
+
# @param string type Data type
|
105
|
+
# @param string value Value to be deserialized
|
106
|
+
# @return [Object] Deserialized data
|
107
|
+
def _deserialize(type, value)
|
108
|
+
case type.to_sym
|
109
|
+
when :DateTime
|
110
|
+
DateTime.parse(value)
|
111
|
+
when :Date
|
112
|
+
Date.parse(value)
|
113
|
+
when :String
|
114
|
+
value.to_s
|
115
|
+
when :Integer
|
116
|
+
value.to_i
|
117
|
+
when :Float
|
118
|
+
value.to_f
|
119
|
+
when :BOOLEAN
|
120
|
+
if value.to_s =~ /\A(true|t|yes|y|1)\z/i
|
121
|
+
true
|
122
|
+
else
|
123
|
+
false
|
124
|
+
end
|
125
|
+
when :Object
|
126
|
+
# generic object (usually a Hash), return directly
|
127
|
+
value
|
128
|
+
when /\AArray<(?<inner_type>.+)>\z/
|
129
|
+
inner_type = Regexp.last_match[:inner_type]
|
130
|
+
value.map { |v| _deserialize(inner_type, v) }
|
131
|
+
when /\AHash<(?<k_type>.+?), (?<v_type>.+)>\z/
|
132
|
+
k_type = Regexp.last_match[:k_type]
|
133
|
+
v_type = Regexp.last_match[:v_type]
|
134
|
+
{}.tap do |hash|
|
135
|
+
value.each do |k, v|
|
136
|
+
hash[_deserialize(k_type, k)] = _deserialize(v_type, v)
|
137
|
+
end
|
138
|
+
end
|
139
|
+
else # model
|
140
|
+
temp_model = CloudmersiveNlpApiClient.const_get(type).new
|
141
|
+
temp_model.build_from_hash(value)
|
142
|
+
end
|
143
|
+
end
|
144
|
+
|
145
|
+
# Returns the string representation of the object
|
146
|
+
# @return [String] String presentation of the object
|
147
|
+
def to_s
|
148
|
+
to_hash.to_s
|
149
|
+
end
|
150
|
+
|
151
|
+
# to_body is an alias to to_hash (backward compatibility)
|
152
|
+
# @return [Hash] Returns the object in the form of hash
|
153
|
+
def to_body
|
154
|
+
to_hash
|
155
|
+
end
|
156
|
+
|
157
|
+
# Returns the object in the form of hash
|
158
|
+
# @return [Hash] Returns the object in the form of hash
|
159
|
+
def to_hash
|
160
|
+
hash = {}
|
161
|
+
self.class.attribute_map.each_pair do |attr, param|
|
162
|
+
value = self.send(attr)
|
163
|
+
next if value.nil?
|
164
|
+
hash[param] = _to_hash(value)
|
165
|
+
end
|
166
|
+
hash
|
167
|
+
end
|
168
|
+
|
169
|
+
# Outputs non-array value in the form of hash
|
170
|
+
# For object, use to_hash. Otherwise, just return the value
|
171
|
+
# @param [Object] value Any valid value
|
172
|
+
# @return [Hash] Returns the value in the form of hash
|
173
|
+
def _to_hash(value)
|
174
|
+
if value.is_a?(Array)
|
175
|
+
value.compact.map{ |v| _to_hash(v) }
|
176
|
+
elsif value.is_a?(Hash)
|
177
|
+
{}.tap do |hash|
|
178
|
+
value.each { |k, v| hash[k] = _to_hash(v) }
|
179
|
+
end
|
180
|
+
elsif value.respond_to? :to_hash
|
181
|
+
value.to_hash
|
182
|
+
else
|
183
|
+
value
|
184
|
+
end
|
185
|
+
end
|
186
|
+
|
187
|
+
end
|
188
|
+
|
189
|
+
end
|
@@ -0,0 +1,209 @@
|
|
1
|
+
=begin
|
2
|
+
#nlpapiv2
|
3
|
+
|
4
|
+
#The powerful Natural Language Processing APIs (v2) let you perform part of speech tagging, entity identification, sentence parsing, and much more to help you understand the meaning of unstructured text.
|
5
|
+
|
6
|
+
OpenAPI spec version: v1
|
7
|
+
|
8
|
+
Generated by: https://github.com/swagger-api/swagger-codegen.git
|
9
|
+
Swagger Codegen version: 2.3.1
|
10
|
+
|
11
|
+
=end
|
12
|
+
|
13
|
+
require 'date'
|
14
|
+
|
15
|
+
module CloudmersiveNlpApiClient
|
16
|
+
# Output of a profanity analysis operation
|
17
|
+
class ProfanityAnalysisResponse
|
18
|
+
# True if the profanity detection operation was successful, false otherwise
|
19
|
+
attr_accessor :successful
|
20
|
+
|
21
|
+
# Profanity classification score between 0.0 and 1.0 where scores closer to zero have a low probability of being profane or contain obscene language, while scores close to 1.0 have a high probability of being profane or containing obscene language. Values above 0.8 have a very high probability of being profane.
|
22
|
+
attr_accessor :profanity_score_result
|
23
|
+
|
24
|
+
# Number of sentences in input text
|
25
|
+
attr_accessor :sentence_count
|
26
|
+
|
27
|
+
|
28
|
+
# Attribute mapping from ruby-style variable name to JSON key.
|
29
|
+
def self.attribute_map
|
30
|
+
{
|
31
|
+
:'successful' => :'Successful',
|
32
|
+
:'profanity_score_result' => :'ProfanityScoreResult',
|
33
|
+
:'sentence_count' => :'SentenceCount'
|
34
|
+
}
|
35
|
+
end
|
36
|
+
|
37
|
+
# Attribute type mapping.
|
38
|
+
def self.swagger_types
|
39
|
+
{
|
40
|
+
:'successful' => :'BOOLEAN',
|
41
|
+
:'profanity_score_result' => :'Float',
|
42
|
+
:'sentence_count' => :'Integer'
|
43
|
+
}
|
44
|
+
end
|
45
|
+
|
46
|
+
# Initializes the object
|
47
|
+
# @param [Hash] attributes Model attributes in the form of hash
|
48
|
+
def initialize(attributes = {})
|
49
|
+
return unless attributes.is_a?(Hash)
|
50
|
+
|
51
|
+
# convert string to symbol for hash key
|
52
|
+
attributes = attributes.each_with_object({}){|(k,v), h| h[k.to_sym] = v}
|
53
|
+
|
54
|
+
if attributes.has_key?(:'Successful')
|
55
|
+
self.successful = attributes[:'Successful']
|
56
|
+
end
|
57
|
+
|
58
|
+
if attributes.has_key?(:'ProfanityScoreResult')
|
59
|
+
self.profanity_score_result = attributes[:'ProfanityScoreResult']
|
60
|
+
end
|
61
|
+
|
62
|
+
if attributes.has_key?(:'SentenceCount')
|
63
|
+
self.sentence_count = attributes[:'SentenceCount']
|
64
|
+
end
|
65
|
+
|
66
|
+
end
|
67
|
+
|
68
|
+
# Show invalid properties with the reasons. Usually used together with valid?
|
69
|
+
# @return Array for valid properties with the reasons
|
70
|
+
def list_invalid_properties
|
71
|
+
invalid_properties = Array.new
|
72
|
+
return invalid_properties
|
73
|
+
end
|
74
|
+
|
75
|
+
# Check to see if the all the properties in the model are valid
|
76
|
+
# @return true if the model is valid
|
77
|
+
def valid?
|
78
|
+
return true
|
79
|
+
end
|
80
|
+
|
81
|
+
# Checks equality by comparing each attribute.
|
82
|
+
# @param [Object] Object to be compared
|
83
|
+
def ==(o)
|
84
|
+
return true if self.equal?(o)
|
85
|
+
self.class == o.class &&
|
86
|
+
successful == o.successful &&
|
87
|
+
profanity_score_result == o.profanity_score_result &&
|
88
|
+
sentence_count == o.sentence_count
|
89
|
+
end
|
90
|
+
|
91
|
+
# @see the `==` method
|
92
|
+
# @param [Object] Object to be compared
|
93
|
+
def eql?(o)
|
94
|
+
self == o
|
95
|
+
end
|
96
|
+
|
97
|
+
# Calculates hash code according to all attributes.
|
98
|
+
# @return [Fixnum] Hash code
|
99
|
+
def hash
|
100
|
+
[successful, profanity_score_result, sentence_count].hash
|
101
|
+
end
|
102
|
+
|
103
|
+
# Builds the object from hash
|
104
|
+
# @param [Hash] attributes Model attributes in the form of hash
|
105
|
+
# @return [Object] Returns the model itself
|
106
|
+
def build_from_hash(attributes)
|
107
|
+
return nil unless attributes.is_a?(Hash)
|
108
|
+
self.class.swagger_types.each_pair do |key, type|
|
109
|
+
if type =~ /\AArray<(.*)>/i
|
110
|
+
# check to ensure the input is an array given that the the attribute
|
111
|
+
# is documented as an array but the input is not
|
112
|
+
if attributes[self.class.attribute_map[key]].is_a?(Array)
|
113
|
+
self.send("#{key}=", attributes[self.class.attribute_map[key]].map{ |v| _deserialize($1, v) } )
|
114
|
+
end
|
115
|
+
elsif !attributes[self.class.attribute_map[key]].nil?
|
116
|
+
self.send("#{key}=", _deserialize(type, attributes[self.class.attribute_map[key]]))
|
117
|
+
end # or else data not found in attributes(hash), not an issue as the data can be optional
|
118
|
+
end
|
119
|
+
|
120
|
+
self
|
121
|
+
end
|
122
|
+
|
123
|
+
# Deserializes the data based on type
|
124
|
+
# @param string type Data type
|
125
|
+
# @param string value Value to be deserialized
|
126
|
+
# @return [Object] Deserialized data
|
127
|
+
def _deserialize(type, value)
|
128
|
+
case type.to_sym
|
129
|
+
when :DateTime
|
130
|
+
DateTime.parse(value)
|
131
|
+
when :Date
|
132
|
+
Date.parse(value)
|
133
|
+
when :String
|
134
|
+
value.to_s
|
135
|
+
when :Integer
|
136
|
+
value.to_i
|
137
|
+
when :Float
|
138
|
+
value.to_f
|
139
|
+
when :BOOLEAN
|
140
|
+
if value.to_s =~ /\A(true|t|yes|y|1)\z/i
|
141
|
+
true
|
142
|
+
else
|
143
|
+
false
|
144
|
+
end
|
145
|
+
when :Object
|
146
|
+
# generic object (usually a Hash), return directly
|
147
|
+
value
|
148
|
+
when /\AArray<(?<inner_type>.+)>\z/
|
149
|
+
inner_type = Regexp.last_match[:inner_type]
|
150
|
+
value.map { |v| _deserialize(inner_type, v) }
|
151
|
+
when /\AHash<(?<k_type>.+?), (?<v_type>.+)>\z/
|
152
|
+
k_type = Regexp.last_match[:k_type]
|
153
|
+
v_type = Regexp.last_match[:v_type]
|
154
|
+
{}.tap do |hash|
|
155
|
+
value.each do |k, v|
|
156
|
+
hash[_deserialize(k_type, k)] = _deserialize(v_type, v)
|
157
|
+
end
|
158
|
+
end
|
159
|
+
else # model
|
160
|
+
temp_model = CloudmersiveNlpApiClient.const_get(type).new
|
161
|
+
temp_model.build_from_hash(value)
|
162
|
+
end
|
163
|
+
end
|
164
|
+
|
165
|
+
# Returns the string representation of the object
|
166
|
+
# @return [String] String presentation of the object
|
167
|
+
def to_s
|
168
|
+
to_hash.to_s
|
169
|
+
end
|
170
|
+
|
171
|
+
# to_body is an alias to to_hash (backward compatibility)
|
172
|
+
# @return [Hash] Returns the object in the form of hash
|
173
|
+
def to_body
|
174
|
+
to_hash
|
175
|
+
end
|
176
|
+
|
177
|
+
# Returns the object in the form of hash
|
178
|
+
# @return [Hash] Returns the object in the form of hash
|
179
|
+
def to_hash
|
180
|
+
hash = {}
|
181
|
+
self.class.attribute_map.each_pair do |attr, param|
|
182
|
+
value = self.send(attr)
|
183
|
+
next if value.nil?
|
184
|
+
hash[param] = _to_hash(value)
|
185
|
+
end
|
186
|
+
hash
|
187
|
+
end
|
188
|
+
|
189
|
+
# Outputs non-array value in the form of hash
|
190
|
+
# For object, use to_hash. Otherwise, just return the value
|
191
|
+
# @param [Object] value Any valid value
|
192
|
+
# @return [Hash] Returns the value in the form of hash
|
193
|
+
def _to_hash(value)
|
194
|
+
if value.is_a?(Array)
|
195
|
+
value.compact.map{ |v| _to_hash(v) }
|
196
|
+
elsif value.is_a?(Hash)
|
197
|
+
{}.tap do |hash|
|
198
|
+
value.each { |k, v| hash[k] = _to_hash(v) }
|
199
|
+
end
|
200
|
+
elsif value.respond_to? :to_hash
|
201
|
+
value.to_hash
|
202
|
+
else
|
203
|
+
value
|
204
|
+
end
|
205
|
+
end
|
206
|
+
|
207
|
+
end
|
208
|
+
|
209
|
+
end
|
@@ -15,7 +15,7 @@ require 'date'
|
|
15
15
|
module CloudmersiveNlpApiClient
|
16
16
|
# Output of a sentiment analysis operation
|
17
17
|
class SentimentAnalysisResponse
|
18
|
-
# True if the
|
18
|
+
# True if the sentiment analysis operation was successful, false otherwise
|
19
19
|
attr_accessor :successful
|
20
20
|
|
21
21
|
# Classification of input text into a sentiment classification; possible values are \"Positive\", \"Negative\" or \"Neutral\"
|
@@ -32,6 +32,18 @@ describe 'AnalyticsApi' do
|
|
32
32
|
end
|
33
33
|
end
|
34
34
|
|
35
|
+
# unit tests for analytics_profanity
|
36
|
+
# Perform Profanity and Obscene Language Analysis and Detection on Text
|
37
|
+
# Analyze input text using advanced Profanity and Obscene Language Analysis to determine if the input contains profane language. Supports English language input. Consumes 1-2 API calls per sentence.
|
38
|
+
# @param input Input profanity analysis request
|
39
|
+
# @param [Hash] opts the optional parameters
|
40
|
+
# @return [ProfanityAnalysisResponse]
|
41
|
+
describe 'analytics_profanity test' do
|
42
|
+
it "should work" do
|
43
|
+
# assertion here. ref: https://www.relishapp.com/rspec/rspec-expectations/docs/built-in-matchers
|
44
|
+
end
|
45
|
+
end
|
46
|
+
|
35
47
|
# unit tests for analytics_sentiment
|
36
48
|
# Perform Sentiment Analysis and Classification on Text
|
37
49
|
# Analyze input text using advanced Sentiment Analysis to determine if the input is positive, negative, or neutral. Supports English language input. Consumes 1-2 API calls per sentence.
|
@@ -0,0 +1,42 @@
|
|
1
|
+
=begin
|
2
|
+
#nlpapiv2
|
3
|
+
|
4
|
+
#The powerful Natural Language Processing APIs (v2) let you perform part of speech tagging, entity identification, sentence parsing, and much more to help you understand the meaning of unstructured text.
|
5
|
+
|
6
|
+
OpenAPI spec version: v1
|
7
|
+
|
8
|
+
Generated by: https://github.com/swagger-api/swagger-codegen.git
|
9
|
+
Swagger Codegen version: 2.3.1
|
10
|
+
|
11
|
+
=end
|
12
|
+
|
13
|
+
require 'spec_helper'
|
14
|
+
require 'json'
|
15
|
+
require 'date'
|
16
|
+
|
17
|
+
# Unit tests for CloudmersiveNlpApiClient::ProfanityAnalysisRequest
|
18
|
+
# Automatically generated by swagger-codegen (github.com/swagger-api/swagger-codegen)
|
19
|
+
# Please update as you see appropriate
|
20
|
+
describe 'ProfanityAnalysisRequest' do
|
21
|
+
before do
|
22
|
+
# run before each test
|
23
|
+
@instance = CloudmersiveNlpApiClient::ProfanityAnalysisRequest.new
|
24
|
+
end
|
25
|
+
|
26
|
+
after do
|
27
|
+
# run after each test
|
28
|
+
end
|
29
|
+
|
30
|
+
describe 'test an instance of ProfanityAnalysisRequest' do
|
31
|
+
it 'should create an instance of ProfanityAnalysisRequest' do
|
32
|
+
expect(@instance).to be_instance_of(CloudmersiveNlpApiClient::ProfanityAnalysisRequest)
|
33
|
+
end
|
34
|
+
end
|
35
|
+
describe 'test attribute "text_to_analyze"' do
|
36
|
+
it 'should work' do
|
37
|
+
# assertion here. ref: https://www.relishapp.com/rspec/rspec-expectations/docs/built-in-matchers
|
38
|
+
end
|
39
|
+
end
|
40
|
+
|
41
|
+
end
|
42
|
+
|
@@ -0,0 +1,54 @@
|
|
1
|
+
=begin
|
2
|
+
#nlpapiv2
|
3
|
+
|
4
|
+
#The powerful Natural Language Processing APIs (v2) let you perform part of speech tagging, entity identification, sentence parsing, and much more to help you understand the meaning of unstructured text.
|
5
|
+
|
6
|
+
OpenAPI spec version: v1
|
7
|
+
|
8
|
+
Generated by: https://github.com/swagger-api/swagger-codegen.git
|
9
|
+
Swagger Codegen version: 2.3.1
|
10
|
+
|
11
|
+
=end
|
12
|
+
|
13
|
+
require 'spec_helper'
|
14
|
+
require 'json'
|
15
|
+
require 'date'
|
16
|
+
|
17
|
+
# Unit tests for CloudmersiveNlpApiClient::ProfanityAnalysisResponse
|
18
|
+
# Automatically generated by swagger-codegen (github.com/swagger-api/swagger-codegen)
|
19
|
+
# Please update as you see appropriate
|
20
|
+
describe 'ProfanityAnalysisResponse' do
|
21
|
+
before do
|
22
|
+
# run before each test
|
23
|
+
@instance = CloudmersiveNlpApiClient::ProfanityAnalysisResponse.new
|
24
|
+
end
|
25
|
+
|
26
|
+
after do
|
27
|
+
# run after each test
|
28
|
+
end
|
29
|
+
|
30
|
+
describe 'test an instance of ProfanityAnalysisResponse' do
|
31
|
+
it 'should create an instance of ProfanityAnalysisResponse' do
|
32
|
+
expect(@instance).to be_instance_of(CloudmersiveNlpApiClient::ProfanityAnalysisResponse)
|
33
|
+
end
|
34
|
+
end
|
35
|
+
describe 'test attribute "successful"' do
|
36
|
+
it 'should work' do
|
37
|
+
# assertion here. ref: https://www.relishapp.com/rspec/rspec-expectations/docs/built-in-matchers
|
38
|
+
end
|
39
|
+
end
|
40
|
+
|
41
|
+
describe 'test attribute "profanity_score_result"' do
|
42
|
+
it 'should work' do
|
43
|
+
# assertion here. ref: https://www.relishapp.com/rspec/rspec-expectations/docs/built-in-matchers
|
44
|
+
end
|
45
|
+
end
|
46
|
+
|
47
|
+
describe 'test attribute "sentence_count"' do
|
48
|
+
it 'should work' do
|
49
|
+
# assertion here. ref: https://www.relishapp.com/rspec/rspec-expectations/docs/built-in-matchers
|
50
|
+
end
|
51
|
+
end
|
52
|
+
|
53
|
+
end
|
54
|
+
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: cloudmersive-nlp-api-client
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 2.0.
|
4
|
+
version: 2.0.6
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Cloudmersive
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2020-05-
|
11
|
+
date: 2020-05-07 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: typhoeus
|
@@ -229,6 +229,8 @@ files:
|
|
229
229
|
- "./docs/PosSentence.md"
|
230
230
|
- "./docs/PosTaggedWord.md"
|
231
231
|
- "./docs/PosTaggerApi.md"
|
232
|
+
- "./docs/ProfanityAnalysisRequest.md"
|
233
|
+
- "./docs/ProfanityAnalysisResponse.md"
|
232
234
|
- "./docs/RephraseApi.md"
|
233
235
|
- "./docs/RephraseRequest.md"
|
234
236
|
- "./docs/RephraseResponse.md"
|
@@ -275,6 +277,8 @@ files:
|
|
275
277
|
- "./lib/cloudmersive-nlp-api-client/models/pos_response.rb"
|
276
278
|
- "./lib/cloudmersive-nlp-api-client/models/pos_sentence.rb"
|
277
279
|
- "./lib/cloudmersive-nlp-api-client/models/pos_tagged_word.rb"
|
280
|
+
- "./lib/cloudmersive-nlp-api-client/models/profanity_analysis_request.rb"
|
281
|
+
- "./lib/cloudmersive-nlp-api-client/models/profanity_analysis_response.rb"
|
278
282
|
- "./lib/cloudmersive-nlp-api-client/models/rephrase_request.rb"
|
279
283
|
- "./lib/cloudmersive-nlp-api-client/models/rephrase_response.rb"
|
280
284
|
- "./lib/cloudmersive-nlp-api-client/models/rephrased_sentence.rb"
|
@@ -316,6 +320,8 @@ files:
|
|
316
320
|
- "./spec/models/pos_response_spec.rb"
|
317
321
|
- "./spec/models/pos_sentence_spec.rb"
|
318
322
|
- "./spec/models/pos_tagged_word_spec.rb"
|
323
|
+
- "./spec/models/profanity_analysis_request_spec.rb"
|
324
|
+
- "./spec/models/profanity_analysis_response_spec.rb"
|
319
325
|
- "./spec/models/rephrase_request_spec.rb"
|
320
326
|
- "./spec/models/rephrase_response_spec.rb"
|
321
327
|
- "./spec/models/rephrased_sentence_option_spec.rb"
|