classifier_atsukamoto 0.0.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/Rakefile +97 -0
- data/lib/classifier/bayes.rb +156 -0
- data/lib/classifier/extensions/string.rb +10 -0
- data/lib/classifier/extensions/vector.rb +113 -0
- data/lib/classifier/extensions/vector_serialize.rb +20 -0
- data/lib/classifier/extensions/word_hash.rb +129 -0
- data/lib/classifier/lsi/content_node.rb +72 -0
- data/lib/classifier/lsi/summary.rb +31 -0
- data/lib/classifier/lsi/word_list.rb +36 -0
- data/lib/classifier/lsi.rb +318 -0
- data/lib/classifier/redis_store.rb +125 -0
- data/lib/classifier.rb +31 -0
- data/test/bayes/bayesian_test.rb +33 -0
- metadata +57 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA1:
|
3
|
+
metadata.gz: e6eca98ba96b5157ddcfef0ba3f02e129652c5ce
|
4
|
+
data.tar.gz: bc219f04544083e8a017b548ca2fede7a942fa45
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 1c78965de0ffd493b57ebf013deb1baf92c8e554f21157bb681dca1ae980edcd1d4a7fdafe601983270ecb0bbd86214a6b19ec3a1e9ebebc12789ebdbc1f0131
|
7
|
+
data.tar.gz: a9eb9c3ebac570198f25800f4c02677aea29ad8e9f152b41585242bd8667cf8b6de3812cf28ce68386c1090f5764fbc0c610972a0041342cb58bfb2fddccaf15
|
data/Rakefile
ADDED
@@ -0,0 +1,97 @@
|
|
1
|
+
require 'rubygems'
|
2
|
+
require 'rake'
|
3
|
+
require 'rake/testtask'
|
4
|
+
require 'rake/rdoctask'
|
5
|
+
require 'rake/gempackagetask'
|
6
|
+
require 'rake/contrib/rubyforgepublisher'
|
7
|
+
|
8
|
+
PKG_VERSION = "0.0.1"
|
9
|
+
|
10
|
+
PKG_FILES = FileList[
|
11
|
+
"lib/**/*", "bin/*", "test/**/*", "[A-Z]*", "Rakefile", "html/**/*"
|
12
|
+
]
|
13
|
+
|
14
|
+
desc "Default Task"
|
15
|
+
task :default => [ :test ]
|
16
|
+
|
17
|
+
# Run the unit tests
|
18
|
+
desc "Run all unit tests"
|
19
|
+
Rake::TestTask.new("test") { |t|
|
20
|
+
t.libs << "lib"
|
21
|
+
t.pattern = 'test/*/*_test.rb'
|
22
|
+
t.verbose = true
|
23
|
+
}
|
24
|
+
|
25
|
+
# Make a console, useful when working on tests
|
26
|
+
desc "Generate a test console"
|
27
|
+
task :console do
|
28
|
+
verbose( false ) { sh "irb -I lib/ -r 'classifier'" }
|
29
|
+
end
|
30
|
+
|
31
|
+
# Genereate the RDoc documentation
|
32
|
+
desc "Create documentation"
|
33
|
+
Rake::RDocTask.new("doc") { |rdoc|
|
34
|
+
rdoc.title = "Ruby Classifier Fork by ATsukamoto - Bayesian and LSI classification library with Redis for persistence
|
35
|
+
"
|
36
|
+
rdoc.rdoc_dir = 'html'
|
37
|
+
rdoc.rdoc_files.include('README')
|
38
|
+
rdoc.rdoc_files.include('lib/**/*.rb')
|
39
|
+
}
|
40
|
+
|
41
|
+
# Genereate the package
|
42
|
+
spec = Gem::Specification.new do |s|
|
43
|
+
|
44
|
+
#### Basic information.
|
45
|
+
|
46
|
+
s.name = 'classifier'
|
47
|
+
s.version = PKG_VERSION
|
48
|
+
s.summary = <<-EOF
|
49
|
+
A general classifier module to allow Bayesian and other types of classifications.
|
50
|
+
EOF
|
51
|
+
s.description = <<-EOF
|
52
|
+
A general classifier module to allow Bayesian and other types of classifications.
|
53
|
+
EOF
|
54
|
+
|
55
|
+
#### Which files are to be included in this gem? Everything! (Except CVS directories.)
|
56
|
+
|
57
|
+
s.files = PKG_FILES
|
58
|
+
|
59
|
+
#### Load-time details: library and application (you will need one or both).
|
60
|
+
|
61
|
+
s.require_path = 'lib'
|
62
|
+
s.autorequire = 'classifier'
|
63
|
+
|
64
|
+
#### Documentation and testing.
|
65
|
+
|
66
|
+
s.has_rdoc = true
|
67
|
+
|
68
|
+
#### Dependencies and requirements.
|
69
|
+
|
70
|
+
s.add_dependency('fast-stemmer', '>= 1.0.0')
|
71
|
+
s.requirements << "A porter-stemmer module to split word stems."
|
72
|
+
|
73
|
+
#### Author and project details.
|
74
|
+
s.author = "Lucas Carlson"
|
75
|
+
s.email = "lucas@rufy.com"
|
76
|
+
s.homepage = "http://classifier.rufy.com/"
|
77
|
+
end
|
78
|
+
|
79
|
+
Rake::GemPackageTask.new(spec) do |pkg|
|
80
|
+
pkg.need_zip = true
|
81
|
+
pkg.need_tar = true
|
82
|
+
end
|
83
|
+
|
84
|
+
desc "Report code statistics (KLOCs, etc) from the application"
|
85
|
+
task :stats do
|
86
|
+
require 'code_statistics'
|
87
|
+
CodeStatistics.new(
|
88
|
+
["Library", "lib"],
|
89
|
+
["Units", "test"]
|
90
|
+
).to_s
|
91
|
+
end
|
92
|
+
|
93
|
+
desc "Publish new documentation"
|
94
|
+
task :publish do
|
95
|
+
`ssh rufy update-classifier-doc`
|
96
|
+
Rake::RubyForgePublisher.new('classifier', 'cardmagic').upload
|
97
|
+
end
|
@@ -0,0 +1,156 @@
|
|
1
|
+
# Author:: Lucas Carlson (mailto:lucas@rufy.com)
|
2
|
+
# Copyright:: Copyright (c) 2005 Lucas Carlson
|
3
|
+
# License:: LGPL
|
4
|
+
|
5
|
+
module Classifier
|
6
|
+
|
7
|
+
require 'lingua/stemmer'
|
8
|
+
|
9
|
+
class Bayes
|
10
|
+
# The class can be created with one or more categories, each of which will be
|
11
|
+
# initialized and given a training method. E.g.,
|
12
|
+
# b = Classifier::Bayes.new 'Interesting', 'Uninteresting', 'Spam'
|
13
|
+
def initialize(lang, *categories)
|
14
|
+
#@categories = Hash.new
|
15
|
+
#categories.each { |category| @categories[category.prepare_category_name] = Hash.new }
|
16
|
+
# RedisStore.total_words = 0
|
17
|
+
@categories = RedisStore.new lang, categories
|
18
|
+
@categories.init_total
|
19
|
+
@stemmer = Lingua::Stemmer.new(:language => lang.downcase)
|
20
|
+
end
|
21
|
+
|
22
|
+
#
|
23
|
+
# Provides a general training method for all categories specified in Bayes#new
|
24
|
+
# For example:
|
25
|
+
# b = Classifier::Bayes.new 'This', 'That', 'the_other'
|
26
|
+
# b.train :this, "This text"
|
27
|
+
# b.train "that", "That text"
|
28
|
+
# b.train "The other", "The other text"
|
29
|
+
def train(category, text)
|
30
|
+
category = category.prepare_category_name
|
31
|
+
text.word_hash(@stemmer).each do |word, count|
|
32
|
+
# @categories[category][word] ||= 0
|
33
|
+
@categories.init(category, word)
|
34
|
+
|
35
|
+
# @categories[category][word] += count
|
36
|
+
@categories.incr(category, word, count)
|
37
|
+
|
38
|
+
# @total_words += count
|
39
|
+
@categories.incr_total(count)
|
40
|
+
end
|
41
|
+
end
|
42
|
+
|
43
|
+
#
|
44
|
+
# Provides a untraining method for all categories specified in Bayes#new
|
45
|
+
# Be very careful with this method.
|
46
|
+
#
|
47
|
+
# For example:
|
48
|
+
# b = Classifier::Bayes.new 'This', 'That', 'the_other'
|
49
|
+
# b.train :this, "This text"
|
50
|
+
# b.untrain :this, "This text"
|
51
|
+
def untrain(category, text)
|
52
|
+
category = category.prepare_category_name
|
53
|
+
text.word_hash(@stemmer).each do |word, count|
|
54
|
+
# @total_words >= 0
|
55
|
+
if @categories.total_words >= 0
|
56
|
+
# orig = @categories[category][word]
|
57
|
+
orig = @categories.get(category,word)
|
58
|
+
|
59
|
+
# @categories[category][word] ||= 0
|
60
|
+
@categories.init(category, word)
|
61
|
+
|
62
|
+
# @categories[category][word] -= count
|
63
|
+
@categories.decr(category, word, count)
|
64
|
+
|
65
|
+
|
66
|
+
#if @categories[category][word] <= 0
|
67
|
+
if @categories.get(category,word) <= 0
|
68
|
+
# @categories[category].delete(word)
|
69
|
+
@categories.remove(category,word)
|
70
|
+
count = orig
|
71
|
+
end
|
72
|
+
#@total_words -= count
|
73
|
+
@categories.decr_total(count)
|
74
|
+
end
|
75
|
+
end
|
76
|
+
end
|
77
|
+
|
78
|
+
#
|
79
|
+
# Returns the scores in each category the provided +text+. E.g.,
|
80
|
+
# b.classifications "I hate bad words and you"
|
81
|
+
# => {"Uninteresting"=>-12.6997928013932, "Interesting"=>-18.4206807439524}
|
82
|
+
# The largest of these scores (the one closest to 0) is the one picked out by #classify
|
83
|
+
def classifications(text)
|
84
|
+
score = Hash.new
|
85
|
+
# actual categories saved in the beggining but each do |category|
|
86
|
+
@categories.names.each do |category, category_words|
|
87
|
+
score[category.to_s] = 0
|
88
|
+
|
89
|
+
# total = category_words.values.inject(0) {|sum, element| sum+element}
|
90
|
+
total = category_words.inject(0) { |sum, element| sum + element }
|
91
|
+
|
92
|
+
text.word_hash(@stemmer).each do |word, count|
|
93
|
+
#s = category_words.has_key?(word) ? category_words[word] : 0.1
|
94
|
+
s = @categories.has_word?(category, word) ? @categories.get(category, word) : 0.1
|
95
|
+
|
96
|
+
score[category.to_s] += Math.log(s/total.to_f)
|
97
|
+
end
|
98
|
+
end
|
99
|
+
return score
|
100
|
+
end
|
101
|
+
|
102
|
+
#
|
103
|
+
# Returns the classification of the provided +text+, which is one of the
|
104
|
+
# categories given in the initializer. E.g.,
|
105
|
+
# b.classify "I hate bad words and you"
|
106
|
+
# => 'Uninteresting'
|
107
|
+
def classify(text)
|
108
|
+
(classifications(text).sort_by { |a| -a[1] })[0][0]
|
109
|
+
end
|
110
|
+
|
111
|
+
#
|
112
|
+
# Provides training and untraining methods for the categories specified in Bayes#new
|
113
|
+
# For example:
|
114
|
+
# b = Classifier::Bayes.new 'This', 'That', 'the_other'
|
115
|
+
# b.train_this "This text"
|
116
|
+
# b.train_that "That text"
|
117
|
+
# b.untrain_that "That text"
|
118
|
+
# b.train_the_other "The other text"
|
119
|
+
def method_missing(name, *args)
|
120
|
+
category = name.to_s.gsub(/(un)?train_([\w]+)/, '\2').prepare_category_name
|
121
|
+
# categories.has_key?(key)
|
122
|
+
if @categories.names.include? category
|
123
|
+
args.each { |text| eval("#{$1}train(category, text)") }
|
124
|
+
elsif name.to_s =~ /(un)?train_([\w]+)/
|
125
|
+
raise StandardError, "No such category: #{category}"
|
126
|
+
else
|
127
|
+
super #raise StandardError, "No such method: #{name}"
|
128
|
+
end
|
129
|
+
end
|
130
|
+
|
131
|
+
#
|
132
|
+
# Provides a list of category names
|
133
|
+
# For example:
|
134
|
+
# b.categories
|
135
|
+
# => ['This', 'That', 'the_other']
|
136
|
+
def categories # :nodoc:
|
137
|
+
@categories
|
138
|
+
end
|
139
|
+
|
140
|
+
#
|
141
|
+
# Allows you to add categories to the classifier.
|
142
|
+
# For example:
|
143
|
+
# b.add_category "Not spam"
|
144
|
+
#
|
145
|
+
# WARNING: Adding categories to a trained classifier will
|
146
|
+
# result in an undertrained category that will tend to match
|
147
|
+
# more criteria than the trained selective categories. In short,
|
148
|
+
# try to initialize your categories at initialization.
|
149
|
+
def add_category(category)
|
150
|
+
@categories[category.prepare_category_name] = Hash.new
|
151
|
+
end
|
152
|
+
|
153
|
+
alias append_category add_category
|
154
|
+
end
|
155
|
+
|
156
|
+
end
|
@@ -0,0 +1,10 @@
|
|
1
|
+
# Author:: Lucas Carlson (mailto:lucas@rufy.com)
|
2
|
+
# Copyright:: Copyright (c) 2005 Lucas Carlson
|
3
|
+
# License:: LGPL
|
4
|
+
|
5
|
+
# require 'fast_stemmer'
|
6
|
+
require 'classifier/extensions/word_hash'
|
7
|
+
|
8
|
+
class Object
|
9
|
+
def prepare_category_name; to_s.gsub("_"," ").capitalize.intern end
|
10
|
+
end
|
@@ -0,0 +1,113 @@
|
|
1
|
+
# Author:: Ernest Ellingson
|
2
|
+
# Copyright:: Copyright (c) 2005
|
3
|
+
|
4
|
+
# These are extensions to the std-lib 'matrix' to allow an all ruby SVD
|
5
|
+
|
6
|
+
require 'matrix'
|
7
|
+
require 'mathn'
|
8
|
+
|
9
|
+
class Array
|
10
|
+
# TODO! Change name!
|
11
|
+
def a_sum(identity = 0, &block)
|
12
|
+
return identity unless size > 0
|
13
|
+
|
14
|
+
if block_given?
|
15
|
+
map(&block).sum
|
16
|
+
else
|
17
|
+
inject { |sum, element| sum + element }.to_f
|
18
|
+
end
|
19
|
+
end
|
20
|
+
end
|
21
|
+
|
22
|
+
class Vector
|
23
|
+
def magnitude
|
24
|
+
sumsqs = 0.0
|
25
|
+
self.size.times do |i|
|
26
|
+
sumsqs += self[i] ** 2.0
|
27
|
+
end
|
28
|
+
Math.sqrt(sumsqs)
|
29
|
+
end
|
30
|
+
def normalize
|
31
|
+
nv = []
|
32
|
+
mag = self.magnitude
|
33
|
+
self.size.times do |i|
|
34
|
+
|
35
|
+
nv << (self[i] / mag)
|
36
|
+
|
37
|
+
end
|
38
|
+
Vector[*nv]
|
39
|
+
end
|
40
|
+
end
|
41
|
+
|
42
|
+
class Matrix
|
43
|
+
def Matrix.diag(s)
|
44
|
+
Matrix.diagonal(*s)
|
45
|
+
end
|
46
|
+
|
47
|
+
alias :trans :transpose
|
48
|
+
|
49
|
+
def SV_decomp(maxSweeps = 20)
|
50
|
+
if self.row_size >= self.column_size
|
51
|
+
q = self.trans * self
|
52
|
+
else
|
53
|
+
q = self * self.trans
|
54
|
+
end
|
55
|
+
|
56
|
+
qrot = q.dup
|
57
|
+
v = Matrix.identity(q.row_size)
|
58
|
+
azrot = nil
|
59
|
+
mzrot = nil
|
60
|
+
cnt = 0
|
61
|
+
s_old = nil
|
62
|
+
mu = nil
|
63
|
+
|
64
|
+
while true do
|
65
|
+
cnt += 1
|
66
|
+
for row in (0...qrot.row_size-1) do
|
67
|
+
for col in (1..qrot.row_size-1) do
|
68
|
+
next if row == col
|
69
|
+
h = Math.atan((2 * qrot[row,col])/(qrot[row,row]-qrot[col,col]))/2.0
|
70
|
+
hcos = Math.cos(h)
|
71
|
+
hsin = Math.sin(h)
|
72
|
+
mzrot = Matrix.identity(qrot.row_size)
|
73
|
+
mzrot[row,row] = hcos
|
74
|
+
mzrot[row,col] = -hsin
|
75
|
+
mzrot[col,row] = hsin
|
76
|
+
mzrot[col,col] = hcos
|
77
|
+
qrot = mzrot.trans * qrot * mzrot
|
78
|
+
v = v * mzrot
|
79
|
+
end
|
80
|
+
end
|
81
|
+
s_old = qrot.dup if cnt == 1
|
82
|
+
sum_qrot = 0.0
|
83
|
+
if cnt > 1
|
84
|
+
qrot.row_size.times do |r|
|
85
|
+
sum_qrot += (qrot[r,r]-s_old[r,r]).abs if (qrot[r,r]-s_old[r,r]).abs > 0.001
|
86
|
+
end
|
87
|
+
s_old = qrot.dup
|
88
|
+
end
|
89
|
+
break if (sum_qrot <= 0.001 and cnt > 1) or cnt >= maxSweeps
|
90
|
+
end # of do while true
|
91
|
+
s = []
|
92
|
+
qrot.row_size.times do |r|
|
93
|
+
s << Math.sqrt(qrot[r,r])
|
94
|
+
end
|
95
|
+
#puts "cnt = #{cnt}"
|
96
|
+
if self.row_size >= self.column_size
|
97
|
+
mu = self * v * Matrix.diagonal(*s).inverse
|
98
|
+
return [mu, v, s]
|
99
|
+
else
|
100
|
+
puts v.row_size
|
101
|
+
puts v.column_size
|
102
|
+
puts self.row_size
|
103
|
+
puts self.column_size
|
104
|
+
puts s.size
|
105
|
+
|
106
|
+
mu = (self.trans * v * Matrix.diagonal(*s).inverse)
|
107
|
+
return [mu, v, s]
|
108
|
+
end
|
109
|
+
end
|
110
|
+
def []=(i,j,val)
|
111
|
+
@rows[i][j] = val
|
112
|
+
end
|
113
|
+
end
|
@@ -0,0 +1,20 @@
|
|
1
|
+
module GSL
|
2
|
+
|
3
|
+
class Vector
|
4
|
+
def _dump(v)
|
5
|
+
Marshal.dump( self.to_a )
|
6
|
+
end
|
7
|
+
|
8
|
+
def self._load(arr)
|
9
|
+
arry = Marshal.load(arr)
|
10
|
+
return GSL::Vector.alloc(arry)
|
11
|
+
end
|
12
|
+
|
13
|
+
end
|
14
|
+
|
15
|
+
class Matrix
|
16
|
+
class <<self
|
17
|
+
alias :diag :diagonal
|
18
|
+
end
|
19
|
+
end
|
20
|
+
end
|
@@ -0,0 +1,129 @@
|
|
1
|
+
# Author:: Lucas Carlson (mailto:lucas@rufy.com)
|
2
|
+
# Copyright:: Copyright (c) 2005 Lucas Carlson
|
3
|
+
# License:: LGPL
|
4
|
+
|
5
|
+
# These are extensions to the String class to provide convenience
|
6
|
+
# methods for the Classifier package.
|
7
|
+
require 'lingua/stemmer'
|
8
|
+
|
9
|
+
class String
|
10
|
+
|
11
|
+
# Removes common punctuation symbols, returning a new string.
|
12
|
+
# E.g.,
|
13
|
+
# "Hello (greeting's), with {braces} < >...?".without_punctuation
|
14
|
+
# => "Hello greetings with braces "
|
15
|
+
def without_punctuation
|
16
|
+
tr( ',?.!;:"@#$%^&*()_=+[]{}\|<>/`~', " " ) .tr( "'\-", "")
|
17
|
+
end
|
18
|
+
|
19
|
+
# Return a Hash of strings => ints. Each word in the string is stemmed,
|
20
|
+
# interned, and indexes to its frequency in the document.
|
21
|
+
def word_hash(stemmer)
|
22
|
+
word_hash_for_words(gsub(/[^\w\s]/,"").split + gsub(/[\w]/," ").split, stemmer)
|
23
|
+
end
|
24
|
+
|
25
|
+
# Return a word hash without extra punctuation or short symbols, just stemmed words
|
26
|
+
def clean_word_hash
|
27
|
+
word_hash_for_words gsub(/[^\w\s]/,"").split
|
28
|
+
end
|
29
|
+
|
30
|
+
private
|
31
|
+
|
32
|
+
def word_hash_for_words(words, stemmer)
|
33
|
+
d = Hash.new
|
34
|
+
words.each do |word|
|
35
|
+
word.downcase! if word =~ /[\w]+/
|
36
|
+
#key = word.stem.intern
|
37
|
+
key = stemmer.stem(word).intern
|
38
|
+
if word =~ /[^\w]/ || ! CORPUS_SKIP_WORDS.include?(word) && word.length > 2
|
39
|
+
d[key] ||= 0
|
40
|
+
d[key] += 1
|
41
|
+
end
|
42
|
+
end
|
43
|
+
return d
|
44
|
+
end
|
45
|
+
|
46
|
+
# TODO! Actualize for each language
|
47
|
+
CORPUS_SKIP_WORDS = [
|
48
|
+
"a",
|
49
|
+
"again",
|
50
|
+
"all",
|
51
|
+
"along",
|
52
|
+
"are",
|
53
|
+
"also",
|
54
|
+
"an",
|
55
|
+
"and",
|
56
|
+
"as",
|
57
|
+
"at",
|
58
|
+
"but",
|
59
|
+
"by",
|
60
|
+
"came",
|
61
|
+
"can",
|
62
|
+
"cant",
|
63
|
+
"couldnt",
|
64
|
+
"did",
|
65
|
+
"didn",
|
66
|
+
"didnt",
|
67
|
+
"do",
|
68
|
+
"doesnt",
|
69
|
+
"dont",
|
70
|
+
"ever",
|
71
|
+
"first",
|
72
|
+
"from",
|
73
|
+
"have",
|
74
|
+
"her",
|
75
|
+
"here",
|
76
|
+
"him",
|
77
|
+
"how",
|
78
|
+
"i",
|
79
|
+
"if",
|
80
|
+
"in",
|
81
|
+
"into",
|
82
|
+
"is",
|
83
|
+
"isnt",
|
84
|
+
"it",
|
85
|
+
"itll",
|
86
|
+
"just",
|
87
|
+
"last",
|
88
|
+
"least",
|
89
|
+
"like",
|
90
|
+
"most",
|
91
|
+
"my",
|
92
|
+
"new",
|
93
|
+
"no",
|
94
|
+
"not",
|
95
|
+
"now",
|
96
|
+
"of",
|
97
|
+
"on",
|
98
|
+
"or",
|
99
|
+
"should",
|
100
|
+
"sinc",
|
101
|
+
"so",
|
102
|
+
"some",
|
103
|
+
"th",
|
104
|
+
"than",
|
105
|
+
"this",
|
106
|
+
"that",
|
107
|
+
"the",
|
108
|
+
"their",
|
109
|
+
"then",
|
110
|
+
"those",
|
111
|
+
"to",
|
112
|
+
"told",
|
113
|
+
"too",
|
114
|
+
"true",
|
115
|
+
"try",
|
116
|
+
"until",
|
117
|
+
"url",
|
118
|
+
"us",
|
119
|
+
"were",
|
120
|
+
"when",
|
121
|
+
"whether",
|
122
|
+
"while",
|
123
|
+
"with",
|
124
|
+
"within",
|
125
|
+
"yes",
|
126
|
+
"you",
|
127
|
+
"youll",
|
128
|
+
]
|
129
|
+
end
|
@@ -0,0 +1,72 @@
|
|
1
|
+
# Author:: David Fayram (mailto:dfayram@lensmen.net)
|
2
|
+
# Copyright:: Copyright (c) 2005 David Fayram II
|
3
|
+
# License:: LGPL
|
4
|
+
|
5
|
+
module Classifier
|
6
|
+
|
7
|
+
# This is an internal data structure class for the LSI node. Save for
|
8
|
+
# raw_vector_with, it should be fairly straightforward to understand.
|
9
|
+
# You should never have to use it directly.
|
10
|
+
class ContentNode
|
11
|
+
attr_accessor :raw_vector, :raw_norm,
|
12
|
+
:lsi_vector, :lsi_norm,
|
13
|
+
:categories
|
14
|
+
|
15
|
+
attr_reader :word_hash
|
16
|
+
# If text_proc is not specified, the source will be duck-typed
|
17
|
+
# via source.to_s
|
18
|
+
def initialize( word_hash, *categories )
|
19
|
+
@categories = categories || []
|
20
|
+
@word_hash = word_hash
|
21
|
+
end
|
22
|
+
|
23
|
+
# Use this to fetch the appropriate search vector.
|
24
|
+
def search_vector
|
25
|
+
@lsi_vector || @raw_vector
|
26
|
+
end
|
27
|
+
|
28
|
+
# Use this to fetch the appropriate search vector in normalized form.
|
29
|
+
def search_norm
|
30
|
+
@lsi_norm || @raw_norm
|
31
|
+
end
|
32
|
+
|
33
|
+
# Creates the raw vector out of word_hash using word_list as the
|
34
|
+
# key for mapping the vector space.
|
35
|
+
def raw_vector_with( word_list )
|
36
|
+
if $GSL
|
37
|
+
vec = GSL::Vector.alloc(word_list.size)
|
38
|
+
else
|
39
|
+
vec = Array.new(word_list.size, 0)
|
40
|
+
end
|
41
|
+
|
42
|
+
@word_hash.each_key do |word|
|
43
|
+
vec[word_list[word]] = @word_hash[word] if word_list[word]
|
44
|
+
end
|
45
|
+
|
46
|
+
# Perform the scaling transform
|
47
|
+
total_words = vec.a_sum
|
48
|
+
|
49
|
+
# Perform first-order association transform if this vector has more
|
50
|
+
# than one word in it.
|
51
|
+
if total_words > 1.0
|
52
|
+
weighted_total = 0.0
|
53
|
+
vec.each do |term|
|
54
|
+
if ( term > 0 )
|
55
|
+
weighted_total += (( term / total_words ) * Math.log( term / total_words ))
|
56
|
+
end
|
57
|
+
end
|
58
|
+
vec = vec.collect { |val| Math.log( val + 1 ) / -weighted_total }
|
59
|
+
end
|
60
|
+
|
61
|
+
if $GSL
|
62
|
+
@raw_norm = vec.normalize
|
63
|
+
@raw_vector = vec
|
64
|
+
else
|
65
|
+
@raw_norm = Vector[*vec].normalize
|
66
|
+
@raw_vector = Vector[*vec]
|
67
|
+
end
|
68
|
+
end
|
69
|
+
|
70
|
+
end
|
71
|
+
|
72
|
+
end
|
@@ -0,0 +1,31 @@
|
|
1
|
+
# Author:: Lucas Carlson (mailto:lucas@rufy.com)
|
2
|
+
# Copyright:: Copyright (c) 2005 Lucas Carlson
|
3
|
+
# License:: LGPL
|
4
|
+
|
5
|
+
class String
|
6
|
+
def summary( count=10, separator=" [...] " )
|
7
|
+
perform_lsi split_sentences, count, separator
|
8
|
+
end
|
9
|
+
|
10
|
+
def paragraph_summary( count=1, separator=" [...] " )
|
11
|
+
perform_lsi split_paragraphs, count, separator
|
12
|
+
end
|
13
|
+
|
14
|
+
def split_sentences
|
15
|
+
split /(\.|\!|\?)/ # TODO: make this less primitive
|
16
|
+
end
|
17
|
+
|
18
|
+
def split_paragraphs
|
19
|
+
split /(\n\n|\r\r|\r\n\r\n)/ # TODO: make this less primitive
|
20
|
+
end
|
21
|
+
|
22
|
+
private
|
23
|
+
|
24
|
+
def perform_lsi(chunks, count, separator)
|
25
|
+
lsi = Classifier::LSI.new :auto_rebuild => false
|
26
|
+
chunks.each { |chunk| lsi << chunk unless chunk.strip.empty? || chunk.strip.split.size == 1 }
|
27
|
+
lsi.build_index
|
28
|
+
summaries = lsi.highest_relative_content count
|
29
|
+
return summaries.reject { |chunk| !summaries.include? chunk }.map { |x| x.strip }.join(separator)
|
30
|
+
end
|
31
|
+
end
|
@@ -0,0 +1,36 @@
|
|
1
|
+
# Author:: David Fayram (mailto:dfayram@lensmen.net)
|
2
|
+
# Copyright:: Copyright (c) 2005 David Fayram II
|
3
|
+
# License:: LGPL
|
4
|
+
|
5
|
+
module Classifier
|
6
|
+
# This class keeps a word => index mapping. It is used to map stemmed words
|
7
|
+
# to dimensions of a vector.
|
8
|
+
|
9
|
+
class WordList
|
10
|
+
def initialize
|
11
|
+
@location_table = Hash.new
|
12
|
+
end
|
13
|
+
|
14
|
+
# Adds a word (if it is new) and assigns it a unique dimension.
|
15
|
+
def add_word(word)
|
16
|
+
term = word
|
17
|
+
@location_table[term] = @location_table.size unless @location_table[term]
|
18
|
+
end
|
19
|
+
|
20
|
+
# Returns the dimension of the word or nil if the word is not in the space.
|
21
|
+
def [](lookup)
|
22
|
+
term = lookup
|
23
|
+
@location_table[term]
|
24
|
+
end
|
25
|
+
|
26
|
+
def word_for_index(ind)
|
27
|
+
@location_table.invert[ind]
|
28
|
+
end
|
29
|
+
|
30
|
+
# Returns the number of words mapped.
|
31
|
+
def size
|
32
|
+
@location_table.size
|
33
|
+
end
|
34
|
+
|
35
|
+
end
|
36
|
+
end
|
@@ -0,0 +1,318 @@
|
|
1
|
+
# Author:: David Fayram (mailto:dfayram@lensmen.net)
|
2
|
+
# Copyright:: Copyright (c) 2005 David Fayram II
|
3
|
+
# License:: LGPL
|
4
|
+
|
5
|
+
begin
|
6
|
+
raise LoadError if ENV['NATIVE_VECTOR'] == "true" # to test the native vector class, try `rake test NATIVE_VECTOR=true`
|
7
|
+
|
8
|
+
require 'gsl' # requires http://rb-gsl.rubyforge.org/
|
9
|
+
require 'classifier/extensions/vector_serialize'
|
10
|
+
$GSL = true
|
11
|
+
|
12
|
+
rescue LoadError
|
13
|
+
warn "Notice: for 10x faster LSI support, please install http://rb-gsl.rubyforge.org/"
|
14
|
+
require 'classifier/extensions/vector'
|
15
|
+
end
|
16
|
+
|
17
|
+
require 'classifier/lsi/word_list'
|
18
|
+
require 'classifier/lsi/content_node'
|
19
|
+
require 'classifier/lsi/summary'
|
20
|
+
|
21
|
+
module Classifier
|
22
|
+
|
23
|
+
# This class implements a Latent Semantic Indexer, which can search, classify and cluster
|
24
|
+
# data based on underlying semantic relations. For more information on the algorithms used,
|
25
|
+
# please consult Wikipedia[http://en.wikipedia.org/wiki/Latent_Semantic_Indexing].
|
26
|
+
class LSI
|
27
|
+
|
28
|
+
attr_reader :word_list
|
29
|
+
attr_accessor :auto_rebuild
|
30
|
+
|
31
|
+
# Create a fresh index.
|
32
|
+
# If you want to call #build_index manually, use
|
33
|
+
# Classifier::LSI.new :auto_rebuild => false
|
34
|
+
#
|
35
|
+
def initialize(options = {})
|
36
|
+
@auto_rebuild = true unless options[:auto_rebuild] == false
|
37
|
+
@word_list, @items = WordList.new, {}
|
38
|
+
@version, @built_at_version = 0, -1
|
39
|
+
end
|
40
|
+
|
41
|
+
# Returns true if the index needs to be rebuilt. The index needs
|
42
|
+
# to be built after all informaton is added, but before you start
|
43
|
+
# using it for search, classification and cluster detection.
|
44
|
+
def needs_rebuild?
|
45
|
+
(@items.keys.size > 1) && (@version != @built_at_version)
|
46
|
+
end
|
47
|
+
|
48
|
+
# Adds an item to the index. item is assumed to be a string, but
|
49
|
+
# any item may be indexed so long as it responds to #to_s or if
|
50
|
+
# you provide an optional block explaining how the indexer can
|
51
|
+
# fetch fresh string data. This optional block is passed the item,
|
52
|
+
# so the item may only be a reference to a URL or file name.
|
53
|
+
#
|
54
|
+
# For example:
|
55
|
+
# lsi = Classifier::LSI.new
|
56
|
+
# lsi.add_item "This is just plain text"
|
57
|
+
# lsi.add_item "/home/me/filename.txt" { |x| File.read x }
|
58
|
+
# ar = ActiveRecordObject.find( :all )
|
59
|
+
# lsi.add_item ar, *ar.categories { |x| ar.content }
|
60
|
+
#
|
61
|
+
def add_item( item, *categories, &block )
|
62
|
+
clean_word_hash = block ? block.call(item).clean_word_hash : item.to_s.clean_word_hash
|
63
|
+
@items[item] = ContentNode.new(clean_word_hash, *categories)
|
64
|
+
@version += 1
|
65
|
+
build_index if @auto_rebuild
|
66
|
+
end
|
67
|
+
|
68
|
+
# A less flexible shorthand for add_item that assumes
|
69
|
+
# you are passing in a string with no categorries. item
|
70
|
+
# will be duck typed via to_s .
|
71
|
+
#
|
72
|
+
def <<( item )
|
73
|
+
add_item item
|
74
|
+
end
|
75
|
+
|
76
|
+
# Returns the categories for a given indexed items. You are free to add and remove
|
77
|
+
# items from this as you see fit. It does not invalide an index to change its categories.
|
78
|
+
def categories_for(item)
|
79
|
+
return [] unless @items[item]
|
80
|
+
return @items[item].categories
|
81
|
+
end
|
82
|
+
|
83
|
+
# Removes an item from the database, if it is indexed.
|
84
|
+
#
|
85
|
+
def remove_item( item )
|
86
|
+
if @items.keys.contain? item
|
87
|
+
@items.remove item
|
88
|
+
@version += 1
|
89
|
+
end
|
90
|
+
end
|
91
|
+
|
92
|
+
# Returns an array of items that are indexed.
|
93
|
+
def items
|
94
|
+
@items.keys
|
95
|
+
end
|
96
|
+
|
97
|
+
# Returns the categories for a given indexed items. You are free to add and remove
|
98
|
+
# items from this as you see fit. It does not invalide an index to change its categories.
|
99
|
+
def categories_for(item)
|
100
|
+
return [] unless @items[item]
|
101
|
+
return @items[item].categories
|
102
|
+
end
|
103
|
+
|
104
|
+
# This function rebuilds the index if needs_rebuild? returns true.
|
105
|
+
# For very large document spaces, this indexing operation may take some
|
106
|
+
# time to complete, so it may be wise to place the operation in another
|
107
|
+
# thread.
|
108
|
+
#
|
109
|
+
# As a rule, indexing will be fairly swift on modern machines until
|
110
|
+
# you have well over 500 documents indexed, or have an incredibly diverse
|
111
|
+
# vocabulary for your documents.
|
112
|
+
#
|
113
|
+
# The optional parameter "cutoff" is a tuning parameter. When the index is
|
114
|
+
# built, a certain number of s-values are discarded from the system. The
|
115
|
+
# cutoff parameter tells the indexer how many of these values to keep.
|
116
|
+
# A value of 1 for cutoff means that no semantic analysis will take place,
|
117
|
+
# turning the LSI class into a simple vector search engine.
|
118
|
+
def build_index( cutoff=0.75 )
|
119
|
+
return unless needs_rebuild?
|
120
|
+
make_word_list
|
121
|
+
|
122
|
+
doc_list = @items.values
|
123
|
+
tda = doc_list.collect { |node| node.raw_vector_with( @word_list ) }
|
124
|
+
|
125
|
+
if $GSL
|
126
|
+
tdm = GSL::Matrix.alloc(*tda).trans
|
127
|
+
ntdm = build_reduced_matrix(tdm, cutoff)
|
128
|
+
|
129
|
+
ntdm.size[1].times do |col|
|
130
|
+
vec = GSL::Vector.alloc( ntdm.column(col) ).row
|
131
|
+
doc_list[col].lsi_vector = vec
|
132
|
+
doc_list[col].lsi_norm = vec.normalize
|
133
|
+
end
|
134
|
+
else
|
135
|
+
tdm = Matrix.rows(tda).trans
|
136
|
+
ntdm = build_reduced_matrix(tdm, cutoff)
|
137
|
+
|
138
|
+
ntdm.row_size.times do |col|
|
139
|
+
doc_list[col].lsi_vector = ntdm.column(col) if doc_list[col]
|
140
|
+
doc_list[col].lsi_norm = ntdm.column(col).normalize if doc_list[col]
|
141
|
+
end
|
142
|
+
end
|
143
|
+
|
144
|
+
@built_at_version = @version
|
145
|
+
end
|
146
|
+
|
147
|
+
# This method returns max_chunks entries, ordered by their average semantic rating.
|
148
|
+
# Essentially, the average distance of each entry from all other entries is calculated,
|
149
|
+
# the highest are returned.
|
150
|
+
#
|
151
|
+
# This can be used to build a summary service, or to provide more information about
|
152
|
+
# your dataset's general content. For example, if you were to use categorize on the
|
153
|
+
# results of this data, you could gather information on what your dataset is generally
|
154
|
+
# about.
|
155
|
+
def highest_relative_content( max_chunks=10 )
|
156
|
+
return [] if needs_rebuild?
|
157
|
+
|
158
|
+
avg_density = Hash.new
|
159
|
+
@items.each_key { |x| avg_density[x] = proximity_array_for_content(x).inject(0.0) { |x,y| x + y[1]} }
|
160
|
+
|
161
|
+
avg_density.keys.sort_by { |x| avg_density[x] }.reverse[0..max_chunks-1].map
|
162
|
+
end
|
163
|
+
|
164
|
+
# This function is the primitive that find_related and classify
|
165
|
+
# build upon. It returns an array of 2-element arrays. The first element
|
166
|
+
# of this array is a document, and the second is its "score", defining
|
167
|
+
# how "close" it is to other indexed items.
|
168
|
+
#
|
169
|
+
# These values are somewhat arbitrary, having to do with the vector space
|
170
|
+
# created by your content, so the magnitude is interpretable but not always
|
171
|
+
# meaningful between indexes.
|
172
|
+
#
|
173
|
+
# The parameter doc is the content to compare. If that content is not
|
174
|
+
# indexed, you can pass an optional block to define how to create the
|
175
|
+
# text data. See add_item for examples of how this works.
|
176
|
+
def proximity_array_for_content( doc, &block )
|
177
|
+
return [] if needs_rebuild?
|
178
|
+
|
179
|
+
content_node = node_for_content( doc, &block )
|
180
|
+
result =
|
181
|
+
@items.keys.collect do |item|
|
182
|
+
if $GSL
|
183
|
+
val = content_node.search_vector * @items[item].search_vector.col
|
184
|
+
else
|
185
|
+
val = (Matrix[content_node.search_vector] * @items[item].search_vector)[0]
|
186
|
+
end
|
187
|
+
[item, val]
|
188
|
+
end
|
189
|
+
result.sort_by { |x| x[1] }.reverse
|
190
|
+
end
|
191
|
+
|
192
|
+
# Similar to proximity_array_for_content, this function takes similar
|
193
|
+
# arguments and returns a similar array. However, it uses the normalized
|
194
|
+
# calculated vectors instead of their full versions. This is useful when
|
195
|
+
# you're trying to perform operations on content that is much smaller than
|
196
|
+
# the text you're working with. search uses this primitive.
|
197
|
+
def proximity_norms_for_content( doc, &block )
|
198
|
+
return [] if needs_rebuild?
|
199
|
+
|
200
|
+
content_node = node_for_content( doc, &block )
|
201
|
+
result =
|
202
|
+
@items.keys.collect do |item|
|
203
|
+
if $GSL
|
204
|
+
val = content_node.search_norm * @items[item].search_norm.col
|
205
|
+
else
|
206
|
+
val = (Matrix[content_node.search_norm] * @items[item].search_norm)[0]
|
207
|
+
end
|
208
|
+
[item, val]
|
209
|
+
end
|
210
|
+
result.sort_by { |x| x[1] }.reverse
|
211
|
+
end
|
212
|
+
|
213
|
+
# This function allows for text-based search of your index. Unlike other functions
|
214
|
+
# like find_related and classify, search only takes short strings. It will also ignore
|
215
|
+
# factors like repeated words. It is best for short, google-like search terms.
|
216
|
+
# A search will first priortize lexical relationships, then semantic ones.
|
217
|
+
#
|
218
|
+
# While this may seem backwards compared to the other functions that LSI supports,
|
219
|
+
# it is actually the same algorithm, just applied on a smaller document.
|
220
|
+
def search( string, max_nearest=3 )
|
221
|
+
return [] if needs_rebuild?
|
222
|
+
carry = proximity_norms_for_content( string )
|
223
|
+
result = carry.collect { |x| x[0] }
|
224
|
+
return result[0..max_nearest-1]
|
225
|
+
end
|
226
|
+
|
227
|
+
# This function takes content and finds other documents
|
228
|
+
# that are semantically "close", returning an array of documents sorted
|
229
|
+
# from most to least relavant.
|
230
|
+
# max_nearest specifies the number of documents to return. A value of
|
231
|
+
# 0 means that it returns all the indexed documents, sorted by relavence.
|
232
|
+
#
|
233
|
+
# This is particularly useful for identifing clusters in your document space.
|
234
|
+
# For example you may want to identify several "What's Related" items for weblog
|
235
|
+
# articles, or find paragraphs that relate to each other in an essay.
|
236
|
+
def find_related( doc, max_nearest=3, &block )
|
237
|
+
carry =
|
238
|
+
proximity_array_for_content( doc, &block ).reject { |pair| pair[0] == doc }
|
239
|
+
result = carry.collect { |x| x[0] }
|
240
|
+
return result[0..max_nearest-1]
|
241
|
+
end
|
242
|
+
|
243
|
+
# This function uses a voting system to categorize documents, based on
|
244
|
+
# the categories of other documents. It uses the same logic as the
|
245
|
+
# find_related function to find related documents, then returns the
|
246
|
+
# most obvious category from this list.
|
247
|
+
#
|
248
|
+
# cutoff signifies the number of documents to consider when clasifying
|
249
|
+
# text. A cutoff of 1 means that every document in the index votes on
|
250
|
+
# what category the document is in. This may not always make sense.
|
251
|
+
#
|
252
|
+
def classify( doc, cutoff=0.30, &block )
|
253
|
+
icutoff = (@items.size * cutoff).round
|
254
|
+
carry = proximity_array_for_content( doc, &block )
|
255
|
+
carry = carry[0..icutoff-1]
|
256
|
+
votes = {}
|
257
|
+
carry.each do |pair|
|
258
|
+
categories = @items[pair[0]].categories
|
259
|
+
categories.each do |category|
|
260
|
+
votes[category] ||= 0.0
|
261
|
+
votes[category] += pair[1]
|
262
|
+
end
|
263
|
+
end
|
264
|
+
|
265
|
+
ranking = votes.keys.sort_by { |x| votes[x] }
|
266
|
+
return ranking[-1]
|
267
|
+
end
|
268
|
+
|
269
|
+
# Prototype, only works on indexed documents.
|
270
|
+
# I have no clue if this is going to work, but in theory
|
271
|
+
# it's supposed to.
|
272
|
+
def highest_ranked_stems( doc, count=3 )
|
273
|
+
raise "Requested stem ranking on non-indexed content!" unless @items[doc]
|
274
|
+
arr = node_for_content(doc).lsi_vector.to_a
|
275
|
+
top_n = arr.sort.reverse[0..count-1]
|
276
|
+
return top_n.collect { |x| @word_list.word_for_index(arr.index(x))}
|
277
|
+
end
|
278
|
+
|
279
|
+
private
|
280
|
+
def build_reduced_matrix( matrix, cutoff=0.75 )
|
281
|
+
# TODO: Check that M>=N on these dimensions! Transpose helps assure this
|
282
|
+
u, v, s = matrix.SV_decomp
|
283
|
+
|
284
|
+
# TODO: Better than 75% term, please. :\
|
285
|
+
s_cutoff = s.sort.reverse[(s.size * cutoff).round - 1]
|
286
|
+
s.size.times do |ord|
|
287
|
+
s[ord] = 0.0 if s[ord] < s_cutoff
|
288
|
+
end
|
289
|
+
# Reconstruct the term document matrix, only with reduced rank
|
290
|
+
u * ($GSL ? GSL::Matrix : ::Matrix).diag( s ) * v.trans
|
291
|
+
end
|
292
|
+
|
293
|
+
def node_for_content(item, &block)
|
294
|
+
if @items[item]
|
295
|
+
return @items[item]
|
296
|
+
else
|
297
|
+
clean_word_hash = block ? block.call(item).clean_word_hash : item.to_s.clean_word_hash
|
298
|
+
|
299
|
+
cn = ContentNode.new(clean_word_hash, &block) # make the node and extract the data
|
300
|
+
|
301
|
+
unless needs_rebuild?
|
302
|
+
cn.raw_vector_with( @word_list ) # make the lsi raw and norm vectors
|
303
|
+
end
|
304
|
+
end
|
305
|
+
|
306
|
+
return cn
|
307
|
+
end
|
308
|
+
|
309
|
+
def make_word_list
|
310
|
+
@word_list = WordList.new
|
311
|
+
@items.each_value do |node|
|
312
|
+
node.word_hash.each_key { |key| @word_list.add_word key }
|
313
|
+
end
|
314
|
+
end
|
315
|
+
|
316
|
+
end
|
317
|
+
end
|
318
|
+
|
@@ -0,0 +1,125 @@
|
|
1
|
+
module Classifier
|
2
|
+
require 'redis'
|
3
|
+
|
4
|
+
#if !String.instance_methods.include?(:underscore)
|
5
|
+
class String
|
6
|
+
def underscore
|
7
|
+
self.gsub(/::/, '/').
|
8
|
+
gsub(/([A-Z]+)([A-Z][a-z])/,'\1_\2').
|
9
|
+
gsub(/([a-z\d])([A-Z])/,'\1_\2').
|
10
|
+
tr("-", "_").
|
11
|
+
downcase
|
12
|
+
end
|
13
|
+
end
|
14
|
+
#end
|
15
|
+
|
16
|
+
class RedisStore
|
17
|
+
include Enumerable
|
18
|
+
|
19
|
+
attr_accessor :names
|
20
|
+
|
21
|
+
def initialize(lang, categories)
|
22
|
+
$redis = Redis.new
|
23
|
+
@names = []
|
24
|
+
@lang = lang
|
25
|
+
categories.each_with_index do |category, index|
|
26
|
+
@names << category.prepare_category_name
|
27
|
+
end
|
28
|
+
end
|
29
|
+
|
30
|
+
def init(category, word)
|
31
|
+
if !key_for?(category, word)
|
32
|
+
insert(category, word, 0)
|
33
|
+
end
|
34
|
+
end
|
35
|
+
|
36
|
+
def init_total
|
37
|
+
$redis.set redis_total_key, 0
|
38
|
+
end
|
39
|
+
|
40
|
+
def total_words
|
41
|
+
$redis.get(redis_total_key).to_i
|
42
|
+
end
|
43
|
+
|
44
|
+
def key_for?(category, word)
|
45
|
+
$redis.exists(redis_key(category, word))
|
46
|
+
end
|
47
|
+
|
48
|
+
alias :has_word? :key_for?
|
49
|
+
|
50
|
+
def insert(category, word, val)
|
51
|
+
$redis.set(redis_key(category, word), "#{val}")
|
52
|
+
end
|
53
|
+
|
54
|
+
def get(category, word)
|
55
|
+
val = $redis.get redis_key(category, word)
|
56
|
+
val.nil? ? nil : val.to_i
|
57
|
+
end
|
58
|
+
|
59
|
+
def remove(category, word)
|
60
|
+
$redis.del redis_key(category, word)
|
61
|
+
end
|
62
|
+
|
63
|
+
def incr(category, word, count)
|
64
|
+
$redis.incrby redis_key(category, word), count.to_i
|
65
|
+
end
|
66
|
+
|
67
|
+
def incr_total(count)
|
68
|
+
$redis.incrby redis_total_key, count.to_i
|
69
|
+
end
|
70
|
+
|
71
|
+
def decr
|
72
|
+
$redis.decrby redis_key(category, word), count.to_i
|
73
|
+
end
|
74
|
+
|
75
|
+
def decr_total(count)
|
76
|
+
$redis.decrby redis_total_key, count.to_i
|
77
|
+
end
|
78
|
+
|
79
|
+
def each(&block)
|
80
|
+
#return enum_for(__method__) if block.nil?
|
81
|
+
@names.each do |category|
|
82
|
+
if block_given?
|
83
|
+
block.call(category, get_by_wild_keys(category))
|
84
|
+
else
|
85
|
+
yield category
|
86
|
+
end
|
87
|
+
end
|
88
|
+
end
|
89
|
+
|
90
|
+
#protected
|
91
|
+
|
92
|
+
def redis_key(category, word)
|
93
|
+
"#{escape_lang}:#{escape_category(category)}:#{escape_word(word)}"
|
94
|
+
end
|
95
|
+
|
96
|
+
def redis_total_key
|
97
|
+
"redis_bayes_store_#{@lang}"
|
98
|
+
end
|
99
|
+
|
100
|
+
def escape_category(category)
|
101
|
+
category.to_s.gsub(" ", "_").downcase
|
102
|
+
end
|
103
|
+
|
104
|
+
def escape_word(word)
|
105
|
+
word.to_s.force_encoding('UTF-8')
|
106
|
+
end
|
107
|
+
|
108
|
+
def escape_lang
|
109
|
+
@lang.to_s.downcase
|
110
|
+
end
|
111
|
+
|
112
|
+
def get_by_wild_keys(category)
|
113
|
+
wildlings = []
|
114
|
+
$redis.keys("#{escape_category(category)}:*").each do |key|
|
115
|
+
wildlings << get_by_key(key).to_i
|
116
|
+
end
|
117
|
+
wildlings
|
118
|
+
end
|
119
|
+
|
120
|
+
def get_by_key(key)
|
121
|
+
val = $redis.get(key)
|
122
|
+
val.is_a?(String) ? eval(val) : val
|
123
|
+
end
|
124
|
+
end
|
125
|
+
end
|
data/lib/classifier.rb
ADDED
@@ -0,0 +1,31 @@
|
|
1
|
+
#--
|
2
|
+
# Copyright (c) 2005 Lucas Carlson
|
3
|
+
#
|
4
|
+
# Permission is hereby granted, free of charge, to any person obtaining
|
5
|
+
# a copy of this software and associated documentation files (the
|
6
|
+
# "Software"), to deal in the Software without restriction, including
|
7
|
+
# without limitation the rights to use, copy, modify, merge, publish,
|
8
|
+
# distribute, sublicense, and/or sell copies of the Software, and to
|
9
|
+
# permit persons to whom the Software is furnished to do so, subject to
|
10
|
+
# the following conditions:
|
11
|
+
#
|
12
|
+
# The above copyright notice and this permission notice shall be
|
13
|
+
# included in all copies or substantial portions of the Software.
|
14
|
+
#
|
15
|
+
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
16
|
+
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
17
|
+
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
18
|
+
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
19
|
+
# LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
|
20
|
+
# OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
|
21
|
+
# WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
22
|
+
#++
|
23
|
+
# Author:: Lucas Carlson (mailto:lucas@rufy.com)
|
24
|
+
# Copyright:: Copyright (c) 2005 Lucas Carlson
|
25
|
+
# License:: LGPL
|
26
|
+
|
27
|
+
require 'rubygems'
|
28
|
+
require 'classifier/extensions/string'
|
29
|
+
require 'classifier/bayes'
|
30
|
+
require 'classifier/lsi'
|
31
|
+
require 'classifier/redis_store'
|
@@ -0,0 +1,33 @@
|
|
1
|
+
require File.dirname(__FILE__) + '/../test_helper'
|
2
|
+
class BayesianTest < Test::Unit::TestCase
|
3
|
+
def setup
|
4
|
+
@classifier = Classifier::Bayes.new 'Interesting', 'Uninteresting'
|
5
|
+
end
|
6
|
+
|
7
|
+
def test_good_training
|
8
|
+
assert_nothing_raised { @classifier.train_interesting "love" }
|
9
|
+
end
|
10
|
+
|
11
|
+
def test_bad_training
|
12
|
+
assert_raise(StandardError) { @classifier.train_no_category "words" }
|
13
|
+
end
|
14
|
+
|
15
|
+
def test_bad_method
|
16
|
+
assert_raise(NoMethodError) { @classifier.forget_everything_you_know "" }
|
17
|
+
end
|
18
|
+
|
19
|
+
def test_categories
|
20
|
+
assert_equal ['Interesting', 'Uninteresting'].sort, @classifier.categories.sort
|
21
|
+
end
|
22
|
+
|
23
|
+
def test_add_category
|
24
|
+
@classifier.add_category 'Test'
|
25
|
+
assert_equal ['Test', 'Interesting', 'Uninteresting'].sort, @classifier.categories.sort
|
26
|
+
end
|
27
|
+
|
28
|
+
def test_classification
|
29
|
+
@classifier.train_interesting "here are some good words. I hope you love them"
|
30
|
+
@classifier.train_uninteresting "here are some bad words, I hate you"
|
31
|
+
assert_equal 'Uninteresting', @classifier.classify("I hate bad words and you")
|
32
|
+
end
|
33
|
+
end
|
metadata
ADDED
@@ -0,0 +1,57 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: classifier_atsukamoto
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.0.1
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- Lucas Carlson
|
8
|
+
- Afonso Tsukamoto
|
9
|
+
autorequire:
|
10
|
+
bindir: bin
|
11
|
+
cert_chain: []
|
12
|
+
date: 2013-12-13 00:00:00.000000000 Z
|
13
|
+
dependencies: []
|
14
|
+
description: Classifier with redis
|
15
|
+
email: atsukamoto@faber-ventures.com
|
16
|
+
executables: []
|
17
|
+
extensions: []
|
18
|
+
extra_rdoc_files: []
|
19
|
+
files:
|
20
|
+
- Rakefile
|
21
|
+
- lib/classifier/extensions/string.rb
|
22
|
+
- lib/classifier/extensions/vector.rb
|
23
|
+
- lib/classifier/extensions/vector_serialize.rb
|
24
|
+
- lib/classifier/extensions/word_hash.rb
|
25
|
+
- lib/classifier/lsi/content_node.rb
|
26
|
+
- lib/classifier/lsi/summary.rb
|
27
|
+
- lib/classifier/lsi/word_list.rb
|
28
|
+
- lib/classifier/bayes.rb
|
29
|
+
- lib/classifier/lsi.rb
|
30
|
+
- lib/classifier/redis_store.rb
|
31
|
+
- lib/classifier.rb
|
32
|
+
- test/bayes/bayesian_test.rb
|
33
|
+
homepage: http://rubygems.org/gems/classifier_atsukamoto
|
34
|
+
licenses:
|
35
|
+
- GNU
|
36
|
+
metadata: {}
|
37
|
+
post_install_message:
|
38
|
+
rdoc_options: []
|
39
|
+
require_paths:
|
40
|
+
- lib
|
41
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
42
|
+
requirements:
|
43
|
+
- - '>='
|
44
|
+
- !ruby/object:Gem::Version
|
45
|
+
version: '0'
|
46
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
47
|
+
requirements:
|
48
|
+
- - '>='
|
49
|
+
- !ruby/object:Gem::Version
|
50
|
+
version: '0'
|
51
|
+
requirements: []
|
52
|
+
rubyforge_project:
|
53
|
+
rubygems_version: 2.1.11
|
54
|
+
signing_key:
|
55
|
+
specification_version: 4
|
56
|
+
summary: Classifier with Redis
|
57
|
+
test_files: []
|