classifier 1.3.4 → 1.4.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +5 -5
- data/LICENSE +2 -2
- data/lib/classifier/bayes.rb +132 -124
- data/lib/classifier/extensions/string.rb +1 -1
- data/lib/classifier/extensions/vector.rb +72 -78
- data/lib/classifier/extensions/vector_serialize.rb +8 -10
- data/lib/classifier/extensions/word_hash.rb +114 -120
- data/lib/classifier/lsi/content_node.rb +39 -37
- data/lib/classifier/lsi/summary.rb +24 -24
- data/lib/classifier/lsi/word_list.rb +7 -8
- data/lib/classifier/lsi.rb +174 -151
- data/lib/classifier.rb +2 -1
- data/test/test_helper.rb +3 -2
- metadata +60 -27
- data/Gemfile +0 -5
- data/Gemfile.lock +0 -26
- data/README.markdown +0 -97
- data/Rakefile +0 -84
- data/test/bayes/bayesian_test.rb +0 -33
- data/test/extensions/word_hash_test.rb +0 -35
- data/test/lsi/lsi_test.rb +0 -123
@@ -2,135 +2,129 @@
|
|
2
2
|
# Copyright:: Copyright (c) 2005 Lucas Carlson
|
3
3
|
# License:: LGPL
|
4
4
|
|
5
|
-
|
6
|
-
|
7
|
-
# These are extensions to the String class to provide convenience
|
5
|
+
# These are extensions to the String class to provide convenience
|
8
6
|
# methods for the Classifier package.
|
9
7
|
class String
|
10
|
-
|
11
|
-
# Removes common punctuation symbols, returning a new string.
|
8
|
+
# Removes common punctuation symbols, returning a new string.
|
12
9
|
# E.g.,
|
13
10
|
# "Hello (greeting's), with {braces} < >...?".without_punctuation
|
14
11
|
# => "Hello greetings with braces "
|
15
12
|
def without_punctuation
|
16
|
-
tr(
|
13
|
+
tr(',?.!;:"@#$%^&*()_=+[]{}\|<>/`~', ' ').tr("'\-", '')
|
17
14
|
end
|
18
|
-
|
15
|
+
|
19
16
|
# Return a Hash of strings => ints. Each word in the string is stemmed,
|
20
|
-
# interned, and indexes to its frequency in the document.
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
17
|
+
# interned, and indexes to its frequency in the document.
|
18
|
+
def word_hash
|
19
|
+
word_hash = clean_word_hash
|
20
|
+
symbol_hash = word_hash_for_symbols(gsub(/\w/, ' ').split)
|
21
|
+
word_hash.merge(symbol_hash)
|
22
|
+
end
|
23
|
+
|
24
|
+
# Return a word hash without extra punctuation or short symbols, just stemmed words
|
25
|
+
def clean_word_hash
|
26
|
+
word_hash_for_words gsub(/[^\w\s]/, '').split
|
27
|
+
end
|
28
|
+
|
29
|
+
private
|
26
30
|
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
|
32
|
-
|
33
|
-
|
34
|
-
|
35
|
-
d = Hash.new(0)
|
36
|
-
words.each do |word|
|
37
|
-
word.downcase!
|
38
|
-
if ! CORPUS_SKIP_WORDS.include?(word) && word.length > 2
|
39
|
-
d[word.stem.intern] += 1
|
40
|
-
end
|
41
|
-
end
|
42
|
-
return d
|
43
|
-
end
|
31
|
+
def word_hash_for_words(words)
|
32
|
+
d = Hash.new(0)
|
33
|
+
words.each do |word|
|
34
|
+
word.downcase!
|
35
|
+
d[word.stem.intern] += 1 if !CORPUS_SKIP_WORDS.include?(word) && word.length > 2
|
36
|
+
end
|
37
|
+
d
|
38
|
+
end
|
44
39
|
|
40
|
+
def word_hash_for_symbols(words)
|
41
|
+
d = Hash.new(0)
|
42
|
+
words.each do |word|
|
43
|
+
d[word.intern] += 1
|
44
|
+
end
|
45
|
+
d
|
46
|
+
end
|
45
47
|
|
46
|
-
|
47
|
-
|
48
|
-
|
49
|
-
|
50
|
-
|
51
|
-
|
52
|
-
|
53
|
-
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
59
|
-
|
60
|
-
|
61
|
-
|
62
|
-
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
100
|
-
|
101
|
-
|
102
|
-
|
103
|
-
|
104
|
-
|
105
|
-
|
106
|
-
|
107
|
-
|
108
|
-
|
109
|
-
|
110
|
-
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
"whether",
|
129
|
-
"while",
|
130
|
-
"with",
|
131
|
-
"within",
|
132
|
-
"yes",
|
133
|
-
"you",
|
134
|
-
"youll",
|
135
|
-
])
|
48
|
+
CORPUS_SKIP_WORDS = Set.new(%w[
|
49
|
+
a
|
50
|
+
again
|
51
|
+
all
|
52
|
+
along
|
53
|
+
are
|
54
|
+
also
|
55
|
+
an
|
56
|
+
and
|
57
|
+
as
|
58
|
+
at
|
59
|
+
but
|
60
|
+
by
|
61
|
+
came
|
62
|
+
can
|
63
|
+
cant
|
64
|
+
couldnt
|
65
|
+
did
|
66
|
+
didn
|
67
|
+
didnt
|
68
|
+
do
|
69
|
+
doesnt
|
70
|
+
dont
|
71
|
+
ever
|
72
|
+
first
|
73
|
+
from
|
74
|
+
have
|
75
|
+
her
|
76
|
+
here
|
77
|
+
him
|
78
|
+
how
|
79
|
+
i
|
80
|
+
if
|
81
|
+
in
|
82
|
+
into
|
83
|
+
is
|
84
|
+
isnt
|
85
|
+
it
|
86
|
+
itll
|
87
|
+
just
|
88
|
+
last
|
89
|
+
least
|
90
|
+
like
|
91
|
+
most
|
92
|
+
my
|
93
|
+
new
|
94
|
+
no
|
95
|
+
not
|
96
|
+
now
|
97
|
+
of
|
98
|
+
on
|
99
|
+
or
|
100
|
+
should
|
101
|
+
sinc
|
102
|
+
so
|
103
|
+
some
|
104
|
+
th
|
105
|
+
than
|
106
|
+
this
|
107
|
+
that
|
108
|
+
the
|
109
|
+
their
|
110
|
+
then
|
111
|
+
those
|
112
|
+
to
|
113
|
+
told
|
114
|
+
too
|
115
|
+
true
|
116
|
+
try
|
117
|
+
until
|
118
|
+
url
|
119
|
+
us
|
120
|
+
were
|
121
|
+
when
|
122
|
+
whether
|
123
|
+
while
|
124
|
+
with
|
125
|
+
within
|
126
|
+
yes
|
127
|
+
you
|
128
|
+
youll
|
129
|
+
])
|
136
130
|
end
|
@@ -3,70 +3,72 @@
|
|
3
3
|
# License:: LGPL
|
4
4
|
|
5
5
|
module Classifier
|
6
|
-
|
7
|
-
#
|
8
|
-
#
|
9
|
-
# You should never have to use it directly.
|
6
|
+
# This is an internal data structure class for the LSI node. Save for
|
7
|
+
# raw_vector_with, it should be fairly straightforward to understand.
|
8
|
+
# You should never have to use it directly.
|
10
9
|
class ContentNode
|
11
|
-
attr_accessor :raw_vector, :raw_norm,
|
10
|
+
attr_accessor :raw_vector, :raw_norm,
|
12
11
|
:lsi_vector, :lsi_norm,
|
13
|
-
:categories
|
14
|
-
|
12
|
+
:categories
|
13
|
+
|
15
14
|
attr_reader :word_hash
|
15
|
+
|
16
16
|
# If text_proc is not specified, the source will be duck-typed
|
17
17
|
# via source.to_s
|
18
|
-
def initialize(
|
18
|
+
def initialize(word_frequencies, *categories)
|
19
19
|
@categories = categories || []
|
20
|
-
@word_hash =
|
20
|
+
@word_hash = word_frequencies
|
21
21
|
end
|
22
|
-
|
22
|
+
|
23
23
|
# Use this to fetch the appropriate search vector.
|
24
24
|
def search_vector
|
25
25
|
@lsi_vector || @raw_vector
|
26
26
|
end
|
27
|
-
|
27
|
+
|
28
28
|
# Use this to fetch the appropriate search vector in normalized form.
|
29
29
|
def search_norm
|
30
30
|
@lsi_norm || @raw_norm
|
31
31
|
end
|
32
|
-
|
32
|
+
|
33
33
|
# Creates the raw vector out of word_hash using word_list as the
|
34
34
|
# key for mapping the vector space.
|
35
|
-
def raw_vector_with(
|
36
|
-
if $GSL
|
37
|
-
|
38
|
-
|
39
|
-
|
40
|
-
|
35
|
+
def raw_vector_with(word_list)
|
36
|
+
vec = if $GSL
|
37
|
+
GSL::Vector.alloc(word_list.size)
|
38
|
+
else
|
39
|
+
Array.new(word_list.size, 0)
|
40
|
+
end
|
41
41
|
|
42
42
|
@word_hash.each_key do |word|
|
43
43
|
vec[word_list[word]] = @word_hash[word] if word_list[word]
|
44
44
|
end
|
45
|
-
|
45
|
+
|
46
46
|
# Perform the scaling transform
|
47
|
-
total_words = vec.sum
|
48
|
-
|
47
|
+
total_words = $GSL ? vec.sum : vec.sum_with_identity
|
48
|
+
|
49
49
|
# Perform first-order association transform if this vector has more
|
50
|
-
# than one word in it.
|
51
|
-
if total_words > 1.0
|
50
|
+
# than one word in it.
|
51
|
+
if total_words > 1.0
|
52
52
|
weighted_total = 0.0
|
53
|
+
|
53
54
|
vec.each do |term|
|
54
|
-
|
55
|
-
|
56
|
-
|
57
|
-
|
58
|
-
|
55
|
+
next unless term.positive?
|
56
|
+
next if total_words.zero?
|
57
|
+
|
58
|
+
term_over_total = term / total_words
|
59
|
+
val = term_over_total * Math.log(term_over_total)
|
60
|
+
weighted_total += val unless val.nan?
|
61
|
+
end
|
62
|
+
vec = vec.collect { |val| Math.log(val + 1) / -weighted_total }
|
59
63
|
end
|
60
|
-
|
64
|
+
|
61
65
|
if $GSL
|
62
|
-
|
63
|
-
|
66
|
+
@raw_norm = vec.normalize
|
67
|
+
@raw_vector = vec
|
64
68
|
else
|
65
|
-
|
66
|
-
|
69
|
+
@raw_norm = Vector[*vec].normalize
|
70
|
+
@raw_vector = Vector[*vec]
|
67
71
|
end
|
68
|
-
end
|
69
|
-
|
70
|
-
end
|
71
|
-
|
72
|
+
end
|
73
|
+
end
|
72
74
|
end
|
@@ -3,29 +3,29 @@
|
|
3
3
|
# License:: LGPL
|
4
4
|
|
5
5
|
class String
|
6
|
-
|
7
|
-
|
8
|
-
|
6
|
+
def summary(count = 10, separator = ' [...] ')
|
7
|
+
perform_lsi split_sentences, count, separator
|
8
|
+
end
|
9
9
|
|
10
|
-
|
11
|
-
|
12
|
-
|
10
|
+
def paragraph_summary(count = 1, separator = ' [...] ')
|
11
|
+
perform_lsi split_paragraphs, count, separator
|
12
|
+
end
|
13
13
|
|
14
|
-
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
|
27
|
-
|
28
|
-
|
29
|
-
|
30
|
-
|
31
|
-
end
|
14
|
+
def split_sentences
|
15
|
+
split(/(\.|!|\?)/) # TODO: make this less primitive
|
16
|
+
end
|
17
|
+
|
18
|
+
def split_paragraphs
|
19
|
+
split(/(\n\n|\r\r|\r\n\r\n)/) # TODO: make this less primitive
|
20
|
+
end
|
21
|
+
|
22
|
+
private
|
23
|
+
|
24
|
+
def perform_lsi(chunks, count, separator)
|
25
|
+
lsi = Classifier::LSI.new auto_rebuild: false
|
26
|
+
chunks.each { |chunk| lsi << chunk unless chunk.strip.empty? || chunk.strip.split.size == 1 }
|
27
|
+
lsi.build_index
|
28
|
+
summaries = lsi.highest_relative_content count
|
29
|
+
summaries.select { |chunk| summaries.include?(chunk) }.map(&:strip).join(separator)
|
30
|
+
end
|
31
|
+
end
|
@@ -2,35 +2,34 @@
|
|
2
2
|
# Copyright:: Copyright (c) 2005 David Fayram II
|
3
3
|
# License:: LGPL
|
4
4
|
|
5
|
-
module Classifier
|
5
|
+
module Classifier
|
6
6
|
# This class keeps a word => index mapping. It is used to map stemmed words
|
7
7
|
# to dimensions of a vector.
|
8
|
-
|
8
|
+
|
9
9
|
class WordList
|
10
10
|
def initialize
|
11
|
-
@location_table =
|
11
|
+
@location_table = {}
|
12
12
|
end
|
13
|
-
|
13
|
+
|
14
14
|
# Adds a word (if it is new) and assigns it a unique dimension.
|
15
15
|
def add_word(word)
|
16
16
|
term = word
|
17
17
|
@location_table[term] = @location_table.size unless @location_table[term]
|
18
18
|
end
|
19
|
-
|
19
|
+
|
20
20
|
# Returns the dimension of the word or nil if the word is not in the space.
|
21
21
|
def [](lookup)
|
22
22
|
term = lookup
|
23
23
|
@location_table[term]
|
24
24
|
end
|
25
|
-
|
25
|
+
|
26
26
|
def word_for_index(ind)
|
27
27
|
@location_table.invert[ind]
|
28
28
|
end
|
29
|
-
|
29
|
+
|
30
30
|
# Returns the number of words mapped.
|
31
31
|
def size
|
32
32
|
@location_table.size
|
33
33
|
end
|
34
|
-
|
35
34
|
end
|
36
35
|
end
|