classifier-reborn 2.0.0.rc1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/LICENSE +429 -0
- data/README.markdown +97 -0
- data/bin/bayes.rb +36 -0
- data/bin/summarize.rb +16 -0
- data/lib/classifier-reborn.rb +30 -0
- data/lib/classifier-reborn/bayes.rb +126 -0
- data/lib/classifier-reborn/extensions/string.rb +10 -0
- data/lib/classifier-reborn/extensions/vector.rb +112 -0
- data/lib/classifier-reborn/extensions/vector_serialize.rb +20 -0
- data/lib/classifier-reborn/extensions/word_hash.rb +136 -0
- data/lib/classifier-reborn/lsi.rb +317 -0
- data/lib/classifier-reborn/lsi/content_node.rb +72 -0
- data/lib/classifier-reborn/lsi/summary.rb +31 -0
- data/lib/classifier-reborn/lsi/word_list.rb +36 -0
- data/lib/classifier-reborn/version.rb +3 -0
- metadata +108 -0
@@ -0,0 +1,317 @@
|
|
1
|
+
# Author:: David Fayram (mailto:dfayram@lensmen.net)
|
2
|
+
# Copyright:: Copyright (c) 2005 David Fayram II
|
3
|
+
# License:: LGPL
|
4
|
+
|
5
|
+
begin
|
6
|
+
raise LoadError if ENV['NATIVE_VECTOR'] == "true" # to test the native vector class, try `rake test NATIVE_VECTOR=true`
|
7
|
+
|
8
|
+
require 'gsl' # requires http://rb-gsl.rubyforge.org/
|
9
|
+
require 'classifier-reborn/extensions/vector_serialize'
|
10
|
+
$GSL = true
|
11
|
+
|
12
|
+
rescue LoadError
|
13
|
+
require 'classifier-reborn/extensions/vector'
|
14
|
+
end
|
15
|
+
|
16
|
+
require 'classifier-reborn/lsi/word_list'
|
17
|
+
require 'classifier-reborn/lsi/content_node'
|
18
|
+
require 'classifier-reborn/lsi/summary'
|
19
|
+
|
20
|
+
module ClassifierReborn
|
21
|
+
|
22
|
+
# This class implements a Latent Semantic Indexer, which can search, classify and cluster
|
23
|
+
# data based on underlying semantic relations. For more information on the algorithms used,
|
24
|
+
# please consult Wikipedia[http://en.wikipedia.org/wiki/Latent_Semantic_Indexing].
|
25
|
+
class LSI
|
26
|
+
|
27
|
+
attr_reader :word_list
|
28
|
+
attr_accessor :auto_rebuild
|
29
|
+
|
30
|
+
# Create a fresh index.
|
31
|
+
# If you want to call #build_index manually, use
|
32
|
+
# ClassifierReborn::LSI.new :auto_rebuild => false
|
33
|
+
#
|
34
|
+
def initialize(options = {})
|
35
|
+
@auto_rebuild = true unless options[:auto_rebuild] == false
|
36
|
+
@word_list, @items = WordList.new, {}
|
37
|
+
@version, @built_at_version = 0, -1
|
38
|
+
end
|
39
|
+
|
40
|
+
# Returns true if the index needs to be rebuilt. The index needs
|
41
|
+
# to be built after all informaton is added, but before you start
|
42
|
+
# using it for search, classification and cluster detection.
|
43
|
+
def needs_rebuild?
|
44
|
+
(@items.keys.size > 1) && (@version != @built_at_version)
|
45
|
+
end
|
46
|
+
|
47
|
+
# Adds an item to the index. item is assumed to be a string, but
|
48
|
+
# any item may be indexed so long as it responds to #to_s or if
|
49
|
+
# you provide an optional block explaining how the indexer can
|
50
|
+
# fetch fresh string data. This optional block is passed the item,
|
51
|
+
# so the item may only be a reference to a URL or file name.
|
52
|
+
#
|
53
|
+
# For example:
|
54
|
+
# lsi = ClassifierReborn::LSI.new
|
55
|
+
# lsi.add_item "This is just plain text"
|
56
|
+
# lsi.add_item "/home/me/filename.txt" { |x| File.read x }
|
57
|
+
# ar = ActiveRecordObject.find( :all )
|
58
|
+
# lsi.add_item ar, *ar.categories { |x| ar.content }
|
59
|
+
#
|
60
|
+
def add_item( item, *categories, &block )
|
61
|
+
clean_word_hash = block ? block.call(item).clean_word_hash : item.to_s.clean_word_hash
|
62
|
+
@items[item] = ContentNode.new(clean_word_hash, *categories)
|
63
|
+
@version += 1
|
64
|
+
build_index if @auto_rebuild
|
65
|
+
end
|
66
|
+
|
67
|
+
# A less flexible shorthand for add_item that assumes
|
68
|
+
# you are passing in a string with no categorries. item
|
69
|
+
# will be duck typed via to_s .
|
70
|
+
#
|
71
|
+
def <<( item )
|
72
|
+
add_item item
|
73
|
+
end
|
74
|
+
|
75
|
+
# Returns the categories for a given indexed items. You are free to add and remove
|
76
|
+
# items from this as you see fit. It does not invalide an index to change its categories.
|
77
|
+
def categories_for(item)
|
78
|
+
return [] unless @items[item]
|
79
|
+
return @items[item].categories
|
80
|
+
end
|
81
|
+
|
82
|
+
# Removes an item from the database, if it is indexed.
|
83
|
+
#
|
84
|
+
def remove_item( item )
|
85
|
+
if @items.keys.contain? item
|
86
|
+
@items.remove item
|
87
|
+
@version += 1
|
88
|
+
end
|
89
|
+
end
|
90
|
+
|
91
|
+
# Returns an array of items that are indexed.
|
92
|
+
def items
|
93
|
+
@items.keys
|
94
|
+
end
|
95
|
+
|
96
|
+
# Returns the categories for a given indexed items. You are free to add and remove
|
97
|
+
# items from this as you see fit. It does not invalide an index to change its categories.
|
98
|
+
def categories_for(item)
|
99
|
+
return [] unless @items[item]
|
100
|
+
return @items[item].categories
|
101
|
+
end
|
102
|
+
|
103
|
+
# This function rebuilds the index if needs_rebuild? returns true.
|
104
|
+
# For very large document spaces, this indexing operation may take some
|
105
|
+
# time to complete, so it may be wise to place the operation in another
|
106
|
+
# thread.
|
107
|
+
#
|
108
|
+
# As a rule, indexing will be fairly swift on modern machines until
|
109
|
+
# you have well over 500 documents indexed, or have an incredibly diverse
|
110
|
+
# vocabulary for your documents.
|
111
|
+
#
|
112
|
+
# The optional parameter "cutoff" is a tuning parameter. When the index is
|
113
|
+
# built, a certain number of s-values are discarded from the system. The
|
114
|
+
# cutoff parameter tells the indexer how many of these values to keep.
|
115
|
+
# A value of 1 for cutoff means that no semantic analysis will take place,
|
116
|
+
# turning the LSI class into a simple vector search engine.
|
117
|
+
def build_index( cutoff=0.75 )
|
118
|
+
return unless needs_rebuild?
|
119
|
+
make_word_list
|
120
|
+
|
121
|
+
doc_list = @items.values
|
122
|
+
tda = doc_list.collect { |node| node.raw_vector_with( @word_list ) }
|
123
|
+
|
124
|
+
if $GSL
|
125
|
+
tdm = GSL::Matrix.alloc(*tda).trans
|
126
|
+
ntdm = build_reduced_matrix(tdm, cutoff)
|
127
|
+
|
128
|
+
ntdm.size[1].times do |col|
|
129
|
+
vec = GSL::Vector.alloc( ntdm.column(col) ).row
|
130
|
+
doc_list[col].lsi_vector = vec
|
131
|
+
doc_list[col].lsi_norm = vec.normalize
|
132
|
+
end
|
133
|
+
else
|
134
|
+
tdm = Matrix.rows(tda).trans
|
135
|
+
ntdm = build_reduced_matrix(tdm, cutoff)
|
136
|
+
|
137
|
+
ntdm.row_size.times do |col|
|
138
|
+
doc_list[col].lsi_vector = ntdm.column(col) if doc_list[col]
|
139
|
+
doc_list[col].lsi_norm = ntdm.column(col).normalize if doc_list[col]
|
140
|
+
end
|
141
|
+
end
|
142
|
+
|
143
|
+
@built_at_version = @version
|
144
|
+
end
|
145
|
+
|
146
|
+
# This method returns max_chunks entries, ordered by their average semantic rating.
|
147
|
+
# Essentially, the average distance of each entry from all other entries is calculated,
|
148
|
+
# the highest are returned.
|
149
|
+
#
|
150
|
+
# This can be used to build a summary service, or to provide more information about
|
151
|
+
# your dataset's general content. For example, if you were to use categorize on the
|
152
|
+
# results of this data, you could gather information on what your dataset is generally
|
153
|
+
# about.
|
154
|
+
def highest_relative_content( max_chunks=10 )
|
155
|
+
return [] if needs_rebuild?
|
156
|
+
|
157
|
+
avg_density = Hash.new
|
158
|
+
@items.each_key { |x| avg_density[x] = proximity_array_for_content(x).inject(0.0) { |x,y| x + y[1]} }
|
159
|
+
|
160
|
+
avg_density.keys.sort_by { |x| avg_density[x] }.reverse[0..max_chunks-1].map
|
161
|
+
end
|
162
|
+
|
163
|
+
# This function is the primitive that find_related and classify
|
164
|
+
# build upon. It returns an array of 2-element arrays. The first element
|
165
|
+
# of this array is a document, and the second is its "score", defining
|
166
|
+
# how "close" it is to other indexed items.
|
167
|
+
#
|
168
|
+
# These values are somewhat arbitrary, having to do with the vector space
|
169
|
+
# created by your content, so the magnitude is interpretable but not always
|
170
|
+
# meaningful between indexes.
|
171
|
+
#
|
172
|
+
# The parameter doc is the content to compare. If that content is not
|
173
|
+
# indexed, you can pass an optional block to define how to create the
|
174
|
+
# text data. See add_item for examples of how this works.
|
175
|
+
def proximity_array_for_content( doc, &block )
|
176
|
+
return [] if needs_rebuild?
|
177
|
+
|
178
|
+
content_node = node_for_content( doc, &block )
|
179
|
+
result =
|
180
|
+
@items.keys.collect do |item|
|
181
|
+
if $GSL
|
182
|
+
val = content_node.search_vector * @items[item].search_vector.col
|
183
|
+
else
|
184
|
+
val = (Matrix[content_node.search_vector] * @items[item].search_vector)[0]
|
185
|
+
end
|
186
|
+
[item, val]
|
187
|
+
end
|
188
|
+
result.sort_by { |x| x[1] }.reverse
|
189
|
+
end
|
190
|
+
|
191
|
+
# Similar to proximity_array_for_content, this function takes similar
|
192
|
+
# arguments and returns a similar array. However, it uses the normalized
|
193
|
+
# calculated vectors instead of their full versions. This is useful when
|
194
|
+
# you're trying to perform operations on content that is much smaller than
|
195
|
+
# the text you're working with. search uses this primitive.
|
196
|
+
def proximity_norms_for_content( doc, &block )
|
197
|
+
return [] if needs_rebuild?
|
198
|
+
|
199
|
+
content_node = node_for_content( doc, &block )
|
200
|
+
result =
|
201
|
+
@items.keys.collect do |item|
|
202
|
+
if $GSL
|
203
|
+
val = content_node.search_norm * @items[item].search_norm.col
|
204
|
+
else
|
205
|
+
val = (Matrix[content_node.search_norm] * @items[item].search_norm)[0]
|
206
|
+
end
|
207
|
+
[item, val]
|
208
|
+
end
|
209
|
+
result.sort_by { |x| x[1] }.reverse
|
210
|
+
end
|
211
|
+
|
212
|
+
# This function allows for text-based search of your index. Unlike other functions
|
213
|
+
# like find_related and classify, search only takes short strings. It will also ignore
|
214
|
+
# factors like repeated words. It is best for short, google-like search terms.
|
215
|
+
# A search will first priortize lexical relationships, then semantic ones.
|
216
|
+
#
|
217
|
+
# While this may seem backwards compared to the other functions that LSI supports,
|
218
|
+
# it is actually the same algorithm, just applied on a smaller document.
|
219
|
+
def search( string, max_nearest=3 )
|
220
|
+
return [] if needs_rebuild?
|
221
|
+
carry = proximity_norms_for_content( string )
|
222
|
+
result = carry.collect { |x| x[0] }
|
223
|
+
return result[0..max_nearest-1]
|
224
|
+
end
|
225
|
+
|
226
|
+
# This function takes content and finds other documents
|
227
|
+
# that are semantically "close", returning an array of documents sorted
|
228
|
+
# from most to least relavant.
|
229
|
+
# max_nearest specifies the number of documents to return. A value of
|
230
|
+
# 0 means that it returns all the indexed documents, sorted by relavence.
|
231
|
+
#
|
232
|
+
# This is particularly useful for identifing clusters in your document space.
|
233
|
+
# For example you may want to identify several "What's Related" items for weblog
|
234
|
+
# articles, or find paragraphs that relate to each other in an essay.
|
235
|
+
def find_related( doc, max_nearest=3, &block )
|
236
|
+
carry =
|
237
|
+
proximity_array_for_content( doc, &block ).reject { |pair| pair[0] == doc }
|
238
|
+
result = carry.collect { |x| x[0] }
|
239
|
+
return result[0..max_nearest-1]
|
240
|
+
end
|
241
|
+
|
242
|
+
# This function uses a voting system to categorize documents, based on
|
243
|
+
# the categories of other documents. It uses the same logic as the
|
244
|
+
# find_related function to find related documents, then returns the
|
245
|
+
# most obvious category from this list.
|
246
|
+
#
|
247
|
+
# cutoff signifies the number of documents to consider when clasifying
|
248
|
+
# text. A cutoff of 1 means that every document in the index votes on
|
249
|
+
# what category the document is in. This may not always make sense.
|
250
|
+
#
|
251
|
+
def classify( doc, cutoff=0.30, &block )
|
252
|
+
icutoff = (@items.size * cutoff).round
|
253
|
+
carry = proximity_array_for_content( doc, &block )
|
254
|
+
carry = carry[0..icutoff-1]
|
255
|
+
votes = {}
|
256
|
+
carry.each do |pair|
|
257
|
+
categories = @items[pair[0]].categories
|
258
|
+
categories.each do |category|
|
259
|
+
votes[category] ||= 0.0
|
260
|
+
votes[category] += pair[1]
|
261
|
+
end
|
262
|
+
end
|
263
|
+
|
264
|
+
ranking = votes.keys.sort_by { |x| votes[x] }
|
265
|
+
return ranking[-1]
|
266
|
+
end
|
267
|
+
|
268
|
+
# Prototype, only works on indexed documents.
|
269
|
+
# I have no clue if this is going to work, but in theory
|
270
|
+
# it's supposed to.
|
271
|
+
def highest_ranked_stems( doc, count=3 )
|
272
|
+
raise "Requested stem ranking on non-indexed content!" unless @items[doc]
|
273
|
+
arr = node_for_content(doc).lsi_vector.to_a
|
274
|
+
top_n = arr.sort.reverse[0..count-1]
|
275
|
+
return top_n.collect { |x| @word_list.word_for_index(arr.index(x))}
|
276
|
+
end
|
277
|
+
|
278
|
+
private
|
279
|
+
def build_reduced_matrix( matrix, cutoff=0.75 )
|
280
|
+
# TODO: Check that M>=N on these dimensions! Transpose helps assure this
|
281
|
+
u, v, s = matrix.SV_decomp
|
282
|
+
|
283
|
+
# TODO: Better than 75% term, please. :\
|
284
|
+
s_cutoff = s.sort.reverse[(s.size * cutoff).round - 1]
|
285
|
+
s.size.times do |ord|
|
286
|
+
s[ord] = 0.0 if s[ord] < s_cutoff
|
287
|
+
end
|
288
|
+
# Reconstruct the term document matrix, only with reduced rank
|
289
|
+
u * ($GSL ? GSL::Matrix : ::Matrix).diag( s ) * v.trans
|
290
|
+
end
|
291
|
+
|
292
|
+
def node_for_content(item, &block)
|
293
|
+
if @items[item]
|
294
|
+
return @items[item]
|
295
|
+
else
|
296
|
+
clean_word_hash = block ? block.call(item).clean_word_hash : item.to_s.clean_word_hash
|
297
|
+
|
298
|
+
cn = ContentNode.new(clean_word_hash, &block) # make the node and extract the data
|
299
|
+
|
300
|
+
unless needs_rebuild?
|
301
|
+
cn.raw_vector_with( @word_list ) # make the lsi raw and norm vectors
|
302
|
+
end
|
303
|
+
end
|
304
|
+
|
305
|
+
return cn
|
306
|
+
end
|
307
|
+
|
308
|
+
def make_word_list
|
309
|
+
@word_list = WordList.new
|
310
|
+
@items.each_value do |node|
|
311
|
+
node.word_hash.each_key { |key| @word_list.add_word key }
|
312
|
+
end
|
313
|
+
end
|
314
|
+
|
315
|
+
end
|
316
|
+
end
|
317
|
+
|
@@ -0,0 +1,72 @@
|
|
1
|
+
# Author:: David Fayram (mailto:dfayram@lensmen.net)
|
2
|
+
# Copyright:: Copyright (c) 2005 David Fayram II
|
3
|
+
# License:: LGPL
|
4
|
+
|
5
|
+
module ClassifierReborn
|
6
|
+
|
7
|
+
# This is an internal data structure class for the LSI node. Save for
|
8
|
+
# raw_vector_with, it should be fairly straightforward to understand.
|
9
|
+
# You should never have to use it directly.
|
10
|
+
class ContentNode
|
11
|
+
attr_accessor :raw_vector, :raw_norm,
|
12
|
+
:lsi_vector, :lsi_norm,
|
13
|
+
:categories
|
14
|
+
|
15
|
+
attr_reader :word_hash
|
16
|
+
# If text_proc is not specified, the source will be duck-typed
|
17
|
+
# via source.to_s
|
18
|
+
def initialize( word_hash, *categories )
|
19
|
+
@categories = categories || []
|
20
|
+
@word_hash = word_hash
|
21
|
+
end
|
22
|
+
|
23
|
+
# Use this to fetch the appropriate search vector.
|
24
|
+
def search_vector
|
25
|
+
@lsi_vector || @raw_vector
|
26
|
+
end
|
27
|
+
|
28
|
+
# Use this to fetch the appropriate search vector in normalized form.
|
29
|
+
def search_norm
|
30
|
+
@lsi_norm || @raw_norm
|
31
|
+
end
|
32
|
+
|
33
|
+
# Creates the raw vector out of word_hash using word_list as the
|
34
|
+
# key for mapping the vector space.
|
35
|
+
def raw_vector_with( word_list )
|
36
|
+
if $GSL
|
37
|
+
vec = GSL::Vector.alloc(word_list.size)
|
38
|
+
else
|
39
|
+
vec = Array.new(word_list.size, 0)
|
40
|
+
end
|
41
|
+
|
42
|
+
@word_hash.each_key do |word|
|
43
|
+
vec[word_list[word]] = @word_hash[word] if word_list[word]
|
44
|
+
end
|
45
|
+
|
46
|
+
# Perform the scaling transform
|
47
|
+
total_words = vec.sum
|
48
|
+
|
49
|
+
# Perform first-order association transform if this vector has more
|
50
|
+
# than one word in it.
|
51
|
+
if total_words > 1.0
|
52
|
+
weighted_total = 0.0
|
53
|
+
vec.each do |term|
|
54
|
+
if ( term > 0 )
|
55
|
+
weighted_total += (( term / total_words ) * Math.log( term / total_words ))
|
56
|
+
end
|
57
|
+
end
|
58
|
+
vec = vec.collect { |val| Math.log( val + 1 ) / -weighted_total }
|
59
|
+
end
|
60
|
+
|
61
|
+
if $GSL
|
62
|
+
@raw_norm = vec.normalize
|
63
|
+
@raw_vector = vec
|
64
|
+
else
|
65
|
+
@raw_norm = Vector[*vec].normalize
|
66
|
+
@raw_vector = Vector[*vec]
|
67
|
+
end
|
68
|
+
end
|
69
|
+
|
70
|
+
end
|
71
|
+
|
72
|
+
end
|
@@ -0,0 +1,31 @@
|
|
1
|
+
# Author:: Lucas Carlson (mailto:lucas@rufy.com)
|
2
|
+
# Copyright:: Copyright (c) 2005 Lucas Carlson
|
3
|
+
# License:: LGPL
|
4
|
+
|
5
|
+
class String
|
6
|
+
def summary( count=10, separator=" [...] " )
|
7
|
+
perform_lsi split_sentences, count, separator
|
8
|
+
end
|
9
|
+
|
10
|
+
def paragraph_summary( count=1, separator=" [...] " )
|
11
|
+
perform_lsi split_paragraphs, count, separator
|
12
|
+
end
|
13
|
+
|
14
|
+
def split_sentences
|
15
|
+
split /(\.|\!|\?)/ # TODO: make this less primitive
|
16
|
+
end
|
17
|
+
|
18
|
+
def split_paragraphs
|
19
|
+
split /(\n\n|\r\r|\r\n\r\n)/ # TODO: make this less primitive
|
20
|
+
end
|
21
|
+
|
22
|
+
private
|
23
|
+
|
24
|
+
def perform_lsi(chunks, count, separator)
|
25
|
+
lsi = ClassifierReborn::LSI.new :auto_rebuild => false
|
26
|
+
chunks.each { |chunk| lsi << chunk unless chunk.strip.empty? || chunk.strip.split.size == 1 }
|
27
|
+
lsi.build_index
|
28
|
+
summaries = lsi.highest_relative_content count
|
29
|
+
return summaries.reject { |chunk| !summaries.include? chunk }.map { |x| x.strip }.join(separator)
|
30
|
+
end
|
31
|
+
end
|
@@ -0,0 +1,36 @@
|
|
1
|
+
# Author:: David Fayram (mailto:dfayram@lensmen.net)
|
2
|
+
# Copyright:: Copyright (c) 2005 David Fayram II
|
3
|
+
# License:: LGPL
|
4
|
+
|
5
|
+
module ClassifierReborn
|
6
|
+
# This class keeps a word => index mapping. It is used to map stemmed words
|
7
|
+
# to dimensions of a vector.
|
8
|
+
|
9
|
+
class WordList
|
10
|
+
def initialize
|
11
|
+
@location_table = Hash.new
|
12
|
+
end
|
13
|
+
|
14
|
+
# Adds a word (if it is new) and assigns it a unique dimension.
|
15
|
+
def add_word(word)
|
16
|
+
term = word
|
17
|
+
@location_table[term] = @location_table.size unless @location_table[term]
|
18
|
+
end
|
19
|
+
|
20
|
+
# Returns the dimension of the word or nil if the word is not in the space.
|
21
|
+
def [](lookup)
|
22
|
+
term = lookup
|
23
|
+
@location_table[term]
|
24
|
+
end
|
25
|
+
|
26
|
+
def word_for_index(ind)
|
27
|
+
@location_table.invert[ind]
|
28
|
+
end
|
29
|
+
|
30
|
+
# Returns the number of words mapped.
|
31
|
+
def size
|
32
|
+
@location_table.size
|
33
|
+
end
|
34
|
+
|
35
|
+
end
|
36
|
+
end
|