charty 0.2.3 → 0.2.4
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.github/workflows/ci.yml +56 -23
- data/.github/workflows/nmatrix.yml +67 -0
- data/.github/workflows/pycall.yml +86 -0
- data/Gemfile +18 -0
- data/README.md +123 -4
- data/Rakefile +4 -5
- data/charty.gemspec +1 -3
- data/examples/sample_images/hist_gruff.png +0 -0
- data/images/penguins_body_mass_g_flipper_length_mm_scatter_plot.png +0 -0
- data/images/penguins_body_mass_g_flipper_length_mm_species_scatter_plot.png +0 -0
- data/images/penguins_body_mass_g_flipper_length_mm_species_sex_scatter_plot.png +0 -0
- data/images/penguins_species_body_mass_g_bar_plot_h.png +0 -0
- data/images/penguins_species_body_mass_g_bar_plot_v.png +0 -0
- data/images/penguins_species_body_mass_g_box_plot_h.png +0 -0
- data/images/penguins_species_body_mass_g_box_plot_v.png +0 -0
- data/images/penguins_species_body_mass_g_sex_bar_plot_v.png +0 -0
- data/images/penguins_species_body_mass_g_sex_box_plot_v.png +0 -0
- data/lib/charty.rb +4 -0
- data/lib/charty/backends/gruff.rb +13 -2
- data/lib/charty/backends/plotly.rb +322 -20
- data/lib/charty/backends/pyplot.rb +416 -64
- data/lib/charty/index.rb +213 -0
- data/lib/charty/linspace.rb +1 -1
- data/lib/charty/missing_value_support.rb +14 -0
- data/lib/charty/plot_methods.rb +173 -8
- data/lib/charty/plotters.rb +7 -0
- data/lib/charty/plotters/abstract_plotter.rb +87 -12
- data/lib/charty/plotters/bar_plotter.rb +200 -3
- data/lib/charty/plotters/box_plotter.rb +75 -7
- data/lib/charty/plotters/categorical_plotter.rb +272 -40
- data/lib/charty/plotters/count_plotter.rb +7 -0
- data/lib/charty/plotters/estimation_support.rb +84 -0
- data/lib/charty/plotters/random_support.rb +25 -0
- data/lib/charty/plotters/relational_plotter.rb +518 -0
- data/lib/charty/plotters/scatter_plotter.rb +115 -0
- data/lib/charty/plotters/vector_plotter.rb +6 -0
- data/lib/charty/statistics.rb +87 -2
- data/lib/charty/table.rb +50 -15
- data/lib/charty/table_adapters.rb +2 -0
- data/lib/charty/table_adapters/active_record_adapter.rb +17 -9
- data/lib/charty/table_adapters/base_adapter.rb +69 -0
- data/lib/charty/table_adapters/daru_adapter.rb +37 -3
- data/lib/charty/table_adapters/datasets_adapter.rb +6 -2
- data/lib/charty/table_adapters/hash_adapter.rb +130 -16
- data/lib/charty/table_adapters/narray_adapter.rb +25 -6
- data/lib/charty/table_adapters/nmatrix_adapter.rb +15 -5
- data/lib/charty/table_adapters/pandas_adapter.rb +81 -0
- data/lib/charty/vector.rb +69 -0
- data/lib/charty/vector_adapters.rb +183 -0
- data/lib/charty/vector_adapters/array_adapter.rb +109 -0
- data/lib/charty/vector_adapters/daru_adapter.rb +171 -0
- data/lib/charty/vector_adapters/narray_adapter.rb +187 -0
- data/lib/charty/vector_adapters/nmatrix_adapter.rb +37 -0
- data/lib/charty/vector_adapters/numpy_adapter.rb +168 -0
- data/lib/charty/vector_adapters/pandas_adapter.rb +200 -0
- data/lib/charty/version.rb +1 -1
- metadata +33 -45
@@ -0,0 +1,187 @@
|
|
1
|
+
module Charty
|
2
|
+
module VectorAdapters
|
3
|
+
class NArrayAdapter < BaseAdapter
|
4
|
+
VectorAdapters.register(:narray, self)
|
5
|
+
|
6
|
+
extend Forwardable
|
7
|
+
include Enumerable
|
8
|
+
|
9
|
+
def self.supported?(data)
|
10
|
+
defined?(Numo::NArray) && data.is_a?(Numo::NArray)
|
11
|
+
end
|
12
|
+
|
13
|
+
def initialize(data)
|
14
|
+
@data = check_data(data)
|
15
|
+
self.index = index || RangeIndex.new(0 ... length)
|
16
|
+
end
|
17
|
+
|
18
|
+
def compare_data_equality(other)
|
19
|
+
case other
|
20
|
+
when ArrayAdapter, NArrayAdapter
|
21
|
+
data == other.data
|
22
|
+
when NumpyAdapter, PandasSeriesAdapter
|
23
|
+
other.compare_data_equality(self)
|
24
|
+
else
|
25
|
+
data == other.data.to_a
|
26
|
+
end
|
27
|
+
end
|
28
|
+
|
29
|
+
include NameSupport
|
30
|
+
include IndexSupport
|
31
|
+
|
32
|
+
# TODO: Reconsider the return value type of values_at
|
33
|
+
def values_at(*indices)
|
34
|
+
data[indices].to_a
|
35
|
+
end
|
36
|
+
|
37
|
+
def where(mask)
|
38
|
+
mask = check_mask_vector(mask)
|
39
|
+
case mask.data
|
40
|
+
when Numo::Bit
|
41
|
+
bits = mask.data
|
42
|
+
masked_data = data[bits]
|
43
|
+
masked_index = bits.where.map {|i| index[i] }.to_a
|
44
|
+
else
|
45
|
+
masked_data, masked_index = where_in_array(mask)
|
46
|
+
masked_data = data.class[*masked_data]
|
47
|
+
end
|
48
|
+
Charty::Vector.new(masked_data, index: masked_index, name: name)
|
49
|
+
end
|
50
|
+
|
51
|
+
def boolean?
|
52
|
+
case data
|
53
|
+
when Numo::Bit
|
54
|
+
true
|
55
|
+
when Numo::RObject
|
56
|
+
i, n = 0, data.size
|
57
|
+
while i < n
|
58
|
+
case data[i]
|
59
|
+
when nil, true, false
|
60
|
+
# do nothing
|
61
|
+
else
|
62
|
+
return false
|
63
|
+
end
|
64
|
+
i += 1
|
65
|
+
end
|
66
|
+
true
|
67
|
+
else
|
68
|
+
false
|
69
|
+
end
|
70
|
+
end
|
71
|
+
|
72
|
+
def numeric?
|
73
|
+
case data
|
74
|
+
when Numo::Bit,
|
75
|
+
Numo::RObject
|
76
|
+
false
|
77
|
+
else
|
78
|
+
true
|
79
|
+
end
|
80
|
+
end
|
81
|
+
|
82
|
+
def categorical?
|
83
|
+
false
|
84
|
+
end
|
85
|
+
|
86
|
+
def categories
|
87
|
+
nil
|
88
|
+
end
|
89
|
+
|
90
|
+
def unique_values
|
91
|
+
existence = {}
|
92
|
+
i, n = 0, data.size
|
93
|
+
unique = []
|
94
|
+
while i < n
|
95
|
+
x = data[i]
|
96
|
+
unless existence[x]
|
97
|
+
unique << x
|
98
|
+
existence[x] = true
|
99
|
+
end
|
100
|
+
i += 1
|
101
|
+
end
|
102
|
+
unique
|
103
|
+
end
|
104
|
+
|
105
|
+
def group_by(grouper)
|
106
|
+
case grouper
|
107
|
+
when Charty::Vector
|
108
|
+
# nothing to do
|
109
|
+
else
|
110
|
+
grouper = Charty::Vector.new(grouper)
|
111
|
+
end
|
112
|
+
|
113
|
+
group_keys = grouper.unique_values
|
114
|
+
|
115
|
+
case grouper.data
|
116
|
+
when Numo::NArray
|
117
|
+
grouper = grouper.data
|
118
|
+
else
|
119
|
+
grouper = Numo::NArray[*grouper.to_a]
|
120
|
+
end
|
121
|
+
|
122
|
+
group_keys.map { |g|
|
123
|
+
[g, Charty::Vector.new(data[grouper.eq(g)])]
|
124
|
+
}.to_h
|
125
|
+
end
|
126
|
+
|
127
|
+
def drop_na
|
128
|
+
case data
|
129
|
+
when Numo::DFloat, Numo::SFloat, Numo::DComplex, Numo::SComplex
|
130
|
+
Charty::Vector.new(data[~data.isnan])
|
131
|
+
when Numo::RObject
|
132
|
+
where_is_nan = data.isnan
|
133
|
+
values = []
|
134
|
+
i, n = 0, data.size
|
135
|
+
while i < n
|
136
|
+
x = data[i]
|
137
|
+
unless x.nil? || where_is_nan[i] == 1
|
138
|
+
values << x
|
139
|
+
end
|
140
|
+
i += 1
|
141
|
+
end
|
142
|
+
Charty::Vector.new(Numo::RObject[*values])
|
143
|
+
else
|
144
|
+
self
|
145
|
+
end
|
146
|
+
end
|
147
|
+
|
148
|
+
def eq(val)
|
149
|
+
Charty::Vector.new(data.eq(val),
|
150
|
+
index: index,
|
151
|
+
name: name)
|
152
|
+
end
|
153
|
+
|
154
|
+
def notnull
|
155
|
+
case data
|
156
|
+
when Numo::RObject
|
157
|
+
i, n = 0, length
|
158
|
+
notnull_data = Numo::Bit.zeros(n)
|
159
|
+
while i < n
|
160
|
+
notnull_data[i] = ! missing_value?(data[i])
|
161
|
+
i += 1
|
162
|
+
end
|
163
|
+
when ->(x) { x.respond_to?(:isnan) }
|
164
|
+
notnull_data = ~data.isnan
|
165
|
+
else
|
166
|
+
notnull_data = Numo::Bit.ones(length)
|
167
|
+
end
|
168
|
+
Charty::Vector.new(notnull_data, index: index, name: name)
|
169
|
+
end
|
170
|
+
|
171
|
+
def mean
|
172
|
+
data.mean(nan: true)
|
173
|
+
end
|
174
|
+
|
175
|
+
def stdev(population: false)
|
176
|
+
s = data.stddev(nan: true)
|
177
|
+
if population
|
178
|
+
# Numo::NArray does not support population standard deviation
|
179
|
+
n = data.isnan.sum
|
180
|
+
s * (n - 1) / n
|
181
|
+
else
|
182
|
+
s
|
183
|
+
end
|
184
|
+
end
|
185
|
+
end
|
186
|
+
end
|
187
|
+
end
|
@@ -0,0 +1,37 @@
|
|
1
|
+
module Charty
|
2
|
+
module VectorAdapters
|
3
|
+
class NMatrixAdapter < BaseAdapter
|
4
|
+
VectorAdapters.register(:nmatrix, self)
|
5
|
+
|
6
|
+
extend Forwardable
|
7
|
+
include Enumerable
|
8
|
+
|
9
|
+
def self.supported?(data)
|
10
|
+
defined?(NMatrix) && data.is_a?(NMatrix)
|
11
|
+
end
|
12
|
+
|
13
|
+
def initialize(data)
|
14
|
+
@data = check_data(data)
|
15
|
+
self.index = index || RangeIndex.new(0 ... length)
|
16
|
+
end
|
17
|
+
|
18
|
+
def compare_data_equality(other)
|
19
|
+
case other
|
20
|
+
when NMatrixAdapter
|
21
|
+
data == other.data
|
22
|
+
when ArrayAdapter, DaruVectorAdapter
|
23
|
+
data.to_a == other.data.to_a
|
24
|
+
when NArrayAdapter, NumpyAdapter, PandasSeriesAdapter
|
25
|
+
other.compare_data_equality(self)
|
26
|
+
else
|
27
|
+
data == other.data.to_a
|
28
|
+
end
|
29
|
+
end
|
30
|
+
|
31
|
+
include NameSupport
|
32
|
+
include IndexSupport
|
33
|
+
|
34
|
+
alias length size
|
35
|
+
end
|
36
|
+
end
|
37
|
+
end
|
@@ -0,0 +1,168 @@
|
|
1
|
+
module Charty
|
2
|
+
module VectorAdapters
|
3
|
+
class NumpyAdapter < BaseAdapter
|
4
|
+
VectorAdapters.register(:numpy, self)
|
5
|
+
|
6
|
+
def self.supported?(data)
|
7
|
+
return false unless defined?(Numpy::NDArray)
|
8
|
+
case data
|
9
|
+
when Numpy::NDArray
|
10
|
+
true
|
11
|
+
else
|
12
|
+
false
|
13
|
+
end
|
14
|
+
end
|
15
|
+
|
16
|
+
def initialize(data)
|
17
|
+
@data = check_data(data)
|
18
|
+
self.index = index || RangeIndex.new(0 ... length)
|
19
|
+
end
|
20
|
+
|
21
|
+
attr_reader :data
|
22
|
+
|
23
|
+
def_delegator :data, :size, :length
|
24
|
+
|
25
|
+
def compare_data_equality(other)
|
26
|
+
case other
|
27
|
+
when NumpyAdapter, PandasSeriesAdapter
|
28
|
+
Numpy.all(data == other.data)
|
29
|
+
when BaseAdapter
|
30
|
+
Numpy.all(data == other.data.to_a)
|
31
|
+
else
|
32
|
+
false
|
33
|
+
end
|
34
|
+
end
|
35
|
+
|
36
|
+
include NameSupport
|
37
|
+
include IndexSupport
|
38
|
+
|
39
|
+
def where(mask)
|
40
|
+
mask = check_mask_vector(mask)
|
41
|
+
case mask.data
|
42
|
+
when Numpy::NDArray,
|
43
|
+
->(x) { defined?(Pandas::Series) && x.is_a?(Pandas::Series) }
|
44
|
+
mask_data = Numpy.asarray(mask.data, dtype: :bool)
|
45
|
+
masked_data = data[mask_data]
|
46
|
+
masked_index = mask_data.nonzero()[0].to_a.map {|i| index[i] }
|
47
|
+
else
|
48
|
+
masked_data, masked_index = where_in_array(mask)
|
49
|
+
masked_data = Numpy.asarray(masked_data, dtype: data.dtype)
|
50
|
+
end
|
51
|
+
Charty::Vector.new(masked_data, index: masked_index, name: name)
|
52
|
+
end
|
53
|
+
|
54
|
+
def each
|
55
|
+
return enum_for(__method__) unless block_given?
|
56
|
+
|
57
|
+
i, n = 0, data.size
|
58
|
+
while i < n
|
59
|
+
yield data[i]
|
60
|
+
i += 1
|
61
|
+
end
|
62
|
+
end
|
63
|
+
|
64
|
+
def empty?
|
65
|
+
data.size == 0
|
66
|
+
end
|
67
|
+
|
68
|
+
def boolean?
|
69
|
+
builtins = PyCall.builtins
|
70
|
+
case
|
71
|
+
when builtins.issubclass(data.dtype.type, Numpy.bool_)
|
72
|
+
true
|
73
|
+
when builtins.issubclass(data.dtype.type, Numpy.object_)
|
74
|
+
i, n = 0, data.size
|
75
|
+
while i < n
|
76
|
+
case data[i]
|
77
|
+
when nil, true, false
|
78
|
+
# do nothing
|
79
|
+
else
|
80
|
+
return false
|
81
|
+
end
|
82
|
+
i += 1
|
83
|
+
end
|
84
|
+
true
|
85
|
+
else
|
86
|
+
false
|
87
|
+
end
|
88
|
+
end
|
89
|
+
|
90
|
+
def numeric?
|
91
|
+
# TODO: Handle object array
|
92
|
+
PyCall.builtins.issubclass(data.dtype.type, PyCall.tuple([Numpy.number, Numpy.bool_]))
|
93
|
+
end
|
94
|
+
|
95
|
+
def categorical?
|
96
|
+
false
|
97
|
+
end
|
98
|
+
|
99
|
+
def categories
|
100
|
+
nil
|
101
|
+
end
|
102
|
+
|
103
|
+
def unique_values
|
104
|
+
Numpy.unique(data).to_a
|
105
|
+
end
|
106
|
+
|
107
|
+
def group_by(grouper)
|
108
|
+
case grouper
|
109
|
+
when Numpy::NDArray,
|
110
|
+
->(x) { defined?(Pandas::Series) && x.is_a?(Pandas::Series) }
|
111
|
+
# Nothing todo
|
112
|
+
when Charty::Vector
|
113
|
+
case grouper.data
|
114
|
+
when Numpy::NDArray
|
115
|
+
grouper = grouper.data
|
116
|
+
else
|
117
|
+
grouper = Numpy.asarray(grouper.to_a)
|
118
|
+
end
|
119
|
+
else
|
120
|
+
grouper = Numpy.asarray(Array.try_convert(grouper))
|
121
|
+
end
|
122
|
+
|
123
|
+
group_keys = Numpy.unique(grouper).to_a
|
124
|
+
group_keys.map { |g|
|
125
|
+
[g, Charty::Vector.new(data[grouper == g])]
|
126
|
+
}.to_h
|
127
|
+
end
|
128
|
+
|
129
|
+
def drop_na
|
130
|
+
where_is_na = if numeric?
|
131
|
+
Numpy.isnan(data)
|
132
|
+
else
|
133
|
+
(data == nil)
|
134
|
+
end
|
135
|
+
Charty::Vector.new(data[Numpy.logical_not(where_is_na)])
|
136
|
+
end
|
137
|
+
|
138
|
+
def eq(val)
|
139
|
+
Charty::Vector.new((data == val),
|
140
|
+
index: index,
|
141
|
+
name: name)
|
142
|
+
end
|
143
|
+
|
144
|
+
def notnull
|
145
|
+
case
|
146
|
+
when PyCall.builtins.issubclass(data.dtype.type, Numpy.object_)
|
147
|
+
i, n = 0, length
|
148
|
+
notnull_data = Numpy::NDArray.new(n, dtype: :bool)
|
149
|
+
while i < n
|
150
|
+
notnull_data[i] = ! missing_value?(data[i])
|
151
|
+
i += 1
|
152
|
+
end
|
153
|
+
else
|
154
|
+
notnull_data = Numpy.isnan(data)
|
155
|
+
end
|
156
|
+
Charty::Vector.new(notnull_data, index: index, name: name)
|
157
|
+
end
|
158
|
+
|
159
|
+
def mean
|
160
|
+
Numpy.mean(data)
|
161
|
+
end
|
162
|
+
|
163
|
+
def stdev(population: false)
|
164
|
+
Numpy.std(data, ddof: population ? 0 : 1)
|
165
|
+
end
|
166
|
+
end
|
167
|
+
end
|
168
|
+
end
|
@@ -0,0 +1,200 @@
|
|
1
|
+
module Charty
|
2
|
+
module VectorAdapters
|
3
|
+
class PandasSeriesAdapter < BaseAdapter
|
4
|
+
VectorAdapters.register(:pandas_series, self)
|
5
|
+
|
6
|
+
def self.supported?(data)
|
7
|
+
return false unless defined?(Pandas::Series)
|
8
|
+
case data
|
9
|
+
when Pandas::Series
|
10
|
+
true
|
11
|
+
else
|
12
|
+
false
|
13
|
+
end
|
14
|
+
end
|
15
|
+
|
16
|
+
def initialize(data)
|
17
|
+
@data = check_data(data)
|
18
|
+
end
|
19
|
+
|
20
|
+
attr_reader :data
|
21
|
+
|
22
|
+
def_delegator :data, :size, :length
|
23
|
+
|
24
|
+
def index
|
25
|
+
PandasIndex.new(data.index)
|
26
|
+
end
|
27
|
+
|
28
|
+
def index=(new_index)
|
29
|
+
case new_index
|
30
|
+
when PandasIndex
|
31
|
+
data.index = new_index.values
|
32
|
+
when Index
|
33
|
+
data.index = new_index.to_a
|
34
|
+
else
|
35
|
+
data.index = new_index
|
36
|
+
end
|
37
|
+
end
|
38
|
+
|
39
|
+
def_delegators :data, :name, :name=
|
40
|
+
|
41
|
+
def compare_data_equality(other)
|
42
|
+
case other
|
43
|
+
when PandasSeriesAdapter
|
44
|
+
return data.equals(other.data)
|
45
|
+
when NumpyAdapter
|
46
|
+
other = other.data
|
47
|
+
when NArrayAdapter
|
48
|
+
case other.data
|
49
|
+
when Numo::Bit
|
50
|
+
other = other.data.to_a
|
51
|
+
other.map! {|x| [false, true][x] }
|
52
|
+
else
|
53
|
+
other = other.data.to_a
|
54
|
+
end
|
55
|
+
when BaseAdapter
|
56
|
+
other = other.data.to_a
|
57
|
+
else
|
58
|
+
return false
|
59
|
+
end
|
60
|
+
|
61
|
+
data.equals(Pandas::Series.new(other, index: data.index))
|
62
|
+
end
|
63
|
+
|
64
|
+
def [](key)
|
65
|
+
case key
|
66
|
+
when Charty::Vector
|
67
|
+
where(key)
|
68
|
+
else
|
69
|
+
data[key]
|
70
|
+
end
|
71
|
+
end
|
72
|
+
|
73
|
+
def_delegators :data, :[]=, :to_a
|
74
|
+
|
75
|
+
def each
|
76
|
+
return enum_for(__method__) unless block_given?
|
77
|
+
|
78
|
+
i, n = 0, data.size
|
79
|
+
while i < n
|
80
|
+
yield data.iloc[i]
|
81
|
+
i += 1
|
82
|
+
end
|
83
|
+
end
|
84
|
+
|
85
|
+
def empty?
|
86
|
+
data.size == 0
|
87
|
+
end
|
88
|
+
|
89
|
+
# TODO: Reconsider the return value type of values_at
|
90
|
+
def values_at(*indices)
|
91
|
+
data.take(indices).to_a
|
92
|
+
end
|
93
|
+
|
94
|
+
def where(mask)
|
95
|
+
mask = check_mask_vector(mask)
|
96
|
+
case mask.data
|
97
|
+
when Numpy::NDArray,
|
98
|
+
->(x) { defined?(Pandas::Series) && x.is_a?(Pandas::Series) }
|
99
|
+
mask_data = Numpy.asarray(mask.data, dtype: :bool)
|
100
|
+
masked_data = data[mask_data]
|
101
|
+
masked_index = mask_data.nonzero()[0].to_a.map {|i| index[i] }
|
102
|
+
else
|
103
|
+
masked_data, masked_index = where_in_array(mask)
|
104
|
+
masked_data = Pandas::Series.new(masked_data, dtype: data.dtype)
|
105
|
+
end
|
106
|
+
Charty::Vector.new(masked_data, index: masked_index, name: name)
|
107
|
+
end
|
108
|
+
|
109
|
+
def where_in_array(mask)
|
110
|
+
mask = check_mask_vector(mask)
|
111
|
+
masked_data = []
|
112
|
+
masked_index = []
|
113
|
+
mask.each_with_index do |f, i|
|
114
|
+
case f
|
115
|
+
when true, 1
|
116
|
+
masked_data << data.iloc[i]
|
117
|
+
masked_index << index[i]
|
118
|
+
end
|
119
|
+
end
|
120
|
+
return masked_data, masked_index
|
121
|
+
end
|
122
|
+
|
123
|
+
def boolean?
|
124
|
+
case
|
125
|
+
when Pandas.api.types.is_bool_dtype(data.dtype)
|
126
|
+
true
|
127
|
+
when Pandas.api.types.is_object_dtype(data.dtype)
|
128
|
+
data.isin([nil, false, true]).all()
|
129
|
+
else
|
130
|
+
false
|
131
|
+
end
|
132
|
+
end
|
133
|
+
|
134
|
+
def numeric?
|
135
|
+
Pandas.api.types.is_numeric_dtype(data.dtype)
|
136
|
+
end
|
137
|
+
|
138
|
+
def categorical?
|
139
|
+
Pandas.api.types.is_categorical_dtype(data.dtype)
|
140
|
+
end
|
141
|
+
|
142
|
+
def categories
|
143
|
+
data.cat.categories.to_a if categorical?
|
144
|
+
end
|
145
|
+
|
146
|
+
def unique_values
|
147
|
+
data.unique.to_a
|
148
|
+
end
|
149
|
+
|
150
|
+
def group_by(grouper)
|
151
|
+
case grouper
|
152
|
+
when Pandas::Series
|
153
|
+
group_keys = grouper.unique.to_a
|
154
|
+
groups = data.groupby(grouper)
|
155
|
+
group_keys.map {|g|
|
156
|
+
[g, Charty::Vector.new(groups.get_group(g))]
|
157
|
+
}.to_h
|
158
|
+
when Charty::Vector
|
159
|
+
case grouper.adapter
|
160
|
+
when self.class
|
161
|
+
group_by(grouper.data)
|
162
|
+
else
|
163
|
+
grouper = Pandas::Series.new(grouper.to_a)
|
164
|
+
group_by(grouper)
|
165
|
+
end
|
166
|
+
else
|
167
|
+
grouper = Pandas::Series.new(Array(grouper))
|
168
|
+
group_by(grouper)
|
169
|
+
end
|
170
|
+
end
|
171
|
+
|
172
|
+
def drop_na
|
173
|
+
Charty::Vector.new(data.dropna)
|
174
|
+
end
|
175
|
+
|
176
|
+
def eq(val)
|
177
|
+
Charty::Vector.new((data == val),
|
178
|
+
index: index,
|
179
|
+
name: name)
|
180
|
+
end
|
181
|
+
|
182
|
+
def notnull
|
183
|
+
Charty::Vector.new(data.notnull, index: index, name: name)
|
184
|
+
end
|
185
|
+
|
186
|
+
def mean
|
187
|
+
data.mean()
|
188
|
+
end
|
189
|
+
|
190
|
+
def stdev(population: false)
|
191
|
+
data.std(ddof: population ? 0 : 1)
|
192
|
+
end
|
193
|
+
|
194
|
+
def percentile(q)
|
195
|
+
q = q.map {|x| x / 100.0 }
|
196
|
+
data.quantile(q)
|
197
|
+
end
|
198
|
+
end
|
199
|
+
end
|
200
|
+
end
|