charty 0.1.5.dev → 0.2.5
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.github/workflows/ci.yml +71 -0
- data/.github/workflows/nmatrix.yml +67 -0
- data/.github/workflows/pycall.yml +86 -0
- data/Dockerfile.dev +9 -1
- data/Gemfile +18 -0
- data/README.md +176 -9
- data/Rakefile +4 -5
- data/charty.gemspec +10 -1
- data/examples/Gemfile +1 -0
- data/examples/active_record.ipynb +1 -1
- data/examples/daru.ipynb +1 -1
- data/examples/iris_dataset.ipynb +1 -1
- data/examples/nmatrix.ipynb +1 -1
- data/examples/{numo-narray.ipynb → numo_narray.ipynb} +1 -1
- data/examples/palette.rb +71 -0
- data/examples/sample.png +0 -0
- data/examples/sample_bokeh.ipynb +156 -0
- data/examples/sample_google_chart.ipynb +229 -68
- data/examples/sample_images/bar_bokeh.html +85 -0
- data/examples/sample_images/barh_bokeh.html +85 -0
- data/examples/sample_images/box_plot_bokeh.html +85 -0
- data/examples/sample_images/curve_bokeh.html +85 -0
- data/examples/sample_images/curve_with_function_bokeh.html +85 -0
- data/examples/sample_images/hist_gruff.png +0 -0
- data/examples/sample_images/scatter_bokeh.html +85 -0
- data/examples/sample_pyplot.ipynb +40 -38
- data/images/penguins_body_mass_g_flipper_length_mm_scatter_plot.png +0 -0
- data/images/penguins_body_mass_g_flipper_length_mm_species_scatter_plot.png +0 -0
- data/images/penguins_body_mass_g_flipper_length_mm_species_sex_scatter_plot.png +0 -0
- data/images/penguins_species_body_mass_g_bar_plot_h.png +0 -0
- data/images/penguins_species_body_mass_g_bar_plot_v.png +0 -0
- data/images/penguins_species_body_mass_g_box_plot_h.png +0 -0
- data/images/penguins_species_body_mass_g_box_plot_v.png +0 -0
- data/images/penguins_species_body_mass_g_sex_bar_plot_v.png +0 -0
- data/images/penguins_species_body_mass_g_sex_box_plot_v.png +0 -0
- data/lib/charty.rb +14 -1
- data/lib/charty/backend_methods.rb +8 -0
- data/lib/charty/backends.rb +80 -0
- data/lib/charty/backends/bokeh.rb +32 -26
- data/lib/charty/backends/google_charts.rb +267 -0
- data/lib/charty/backends/gruff.rb +102 -83
- data/lib/charty/backends/plotly.rb +685 -0
- data/lib/charty/backends/pyplot.rb +586 -92
- data/lib/charty/backends/rubyplot.rb +82 -74
- data/lib/charty/backends/unicode_plot.rb +79 -0
- data/lib/charty/index.rb +213 -0
- data/lib/charty/linspace.rb +1 -1
- data/lib/charty/missing_value_support.rb +14 -0
- data/lib/charty/plot_methods.rb +184 -0
- data/lib/charty/plotter.rb +48 -40
- data/lib/charty/plotters.rb +11 -0
- data/lib/charty/plotters/abstract_plotter.rb +183 -0
- data/lib/charty/plotters/bar_plotter.rb +201 -0
- data/lib/charty/plotters/box_plotter.rb +79 -0
- data/lib/charty/plotters/categorical_plotter.rb +380 -0
- data/lib/charty/plotters/count_plotter.rb +7 -0
- data/lib/charty/plotters/estimation_support.rb +84 -0
- data/lib/charty/plotters/random_support.rb +25 -0
- data/lib/charty/plotters/relational_plotter.rb +518 -0
- data/lib/charty/plotters/scatter_plotter.rb +104 -0
- data/lib/charty/plotters/vector_plotter.rb +6 -0
- data/lib/charty/statistics.rb +114 -0
- data/lib/charty/table.rb +80 -3
- data/lib/charty/table_adapters.rb +25 -0
- data/lib/charty/table_adapters/active_record_adapter.rb +63 -0
- data/lib/charty/table_adapters/base_adapter.rb +69 -0
- data/lib/charty/table_adapters/daru_adapter.rb +70 -0
- data/lib/charty/table_adapters/datasets_adapter.rb +49 -0
- data/lib/charty/table_adapters/hash_adapter.rb +224 -0
- data/lib/charty/table_adapters/narray_adapter.rb +76 -0
- data/lib/charty/table_adapters/nmatrix_adapter.rb +67 -0
- data/lib/charty/table_adapters/pandas_adapter.rb +81 -0
- data/lib/charty/util.rb +20 -0
- data/lib/charty/vector.rb +69 -0
- data/lib/charty/vector_adapters.rb +183 -0
- data/lib/charty/vector_adapters/array_adapter.rb +109 -0
- data/lib/charty/vector_adapters/daru_adapter.rb +171 -0
- data/lib/charty/vector_adapters/narray_adapter.rb +187 -0
- data/lib/charty/vector_adapters/nmatrix_adapter.rb +37 -0
- data/lib/charty/vector_adapters/numpy_adapter.rb +168 -0
- data/lib/charty/vector_adapters/pandas_adapter.rb +200 -0
- data/lib/charty/version.rb +1 -1
- metadata +179 -10
- data/.travis.yml +0 -11
- data/lib/charty/backends/google_chart.rb +0 -167
- data/lib/charty/plotter_adapter.rb +0 -17
@@ -0,0 +1,171 @@
|
|
1
|
+
module Charty
|
2
|
+
module VectorAdapters
|
3
|
+
class DaruVectorAdapter < BaseAdapter
|
4
|
+
VectorAdapters.register(:daru_vector, self)
|
5
|
+
|
6
|
+
def self.supported?(data)
|
7
|
+
defined?(Daru::Vector) && data.is_a?(Daru::Vector)
|
8
|
+
end
|
9
|
+
|
10
|
+
def initialize(data)
|
11
|
+
@data = check_data(data)
|
12
|
+
end
|
13
|
+
|
14
|
+
def_delegator :data, :size, :length
|
15
|
+
|
16
|
+
def index
|
17
|
+
DaruIndex.new(data.index)
|
18
|
+
end
|
19
|
+
|
20
|
+
def index=(new_index)
|
21
|
+
case new_index
|
22
|
+
when DaruIndex
|
23
|
+
data.index = new_index.values
|
24
|
+
when Index
|
25
|
+
data.index = new_index.to_a
|
26
|
+
else
|
27
|
+
data.index = new_index
|
28
|
+
end
|
29
|
+
end
|
30
|
+
|
31
|
+
def_delegators :data, :name, :name=
|
32
|
+
|
33
|
+
def compare_data_equality(other)
|
34
|
+
case other
|
35
|
+
when DaruVectorAdapter
|
36
|
+
data == other.data
|
37
|
+
when ArrayAdapter
|
38
|
+
data.to_a == other.data
|
39
|
+
when NArrayAdapter, NMatrixAdapter, NumpyAdapter, PandasSeriesAdapter
|
40
|
+
other.compare_data_equality(self)
|
41
|
+
else
|
42
|
+
data == other.data.to_a
|
43
|
+
end
|
44
|
+
end
|
45
|
+
|
46
|
+
def [](key)
|
47
|
+
case key
|
48
|
+
when Charty::Vector
|
49
|
+
where(key)
|
50
|
+
else
|
51
|
+
data[key]
|
52
|
+
end
|
53
|
+
end
|
54
|
+
|
55
|
+
def_delegators :data, :[]=, :to_a
|
56
|
+
|
57
|
+
def values_at(*indices)
|
58
|
+
indices.map {|i| data[i] }
|
59
|
+
end
|
60
|
+
|
61
|
+
def where(mask)
|
62
|
+
masked_data, masked_index = where_in_array(mask)
|
63
|
+
Charty::Vector.new(Daru::Vector.new(masked_data, index: masked_index), name: name)
|
64
|
+
end
|
65
|
+
|
66
|
+
def where_in_array(mask)
|
67
|
+
mask = check_mask_vector(mask)
|
68
|
+
masked_data = []
|
69
|
+
masked_index = []
|
70
|
+
mask.each_with_index do |f, i|
|
71
|
+
case f
|
72
|
+
when true, 1
|
73
|
+
masked_data << data[i]
|
74
|
+
masked_index << data.index.key(i)
|
75
|
+
end
|
76
|
+
end
|
77
|
+
return masked_data, masked_index
|
78
|
+
end
|
79
|
+
|
80
|
+
def first_nonnil
|
81
|
+
data.drop_while(&:nil?).first
|
82
|
+
end
|
83
|
+
|
84
|
+
def boolean?
|
85
|
+
case
|
86
|
+
when numeric?, categorical?
|
87
|
+
false
|
88
|
+
else
|
89
|
+
case first_nonnil
|
90
|
+
when true, false
|
91
|
+
true
|
92
|
+
else
|
93
|
+
false
|
94
|
+
end
|
95
|
+
end
|
96
|
+
end
|
97
|
+
|
98
|
+
def_delegators :data, :numeric?
|
99
|
+
def_delegator :data, :category?, :categorical?
|
100
|
+
|
101
|
+
def categories
|
102
|
+
data.categories.compact if categorical?
|
103
|
+
end
|
104
|
+
|
105
|
+
def unique_values
|
106
|
+
data.uniq.to_a
|
107
|
+
end
|
108
|
+
|
109
|
+
def group_by(grouper)
|
110
|
+
case grouper
|
111
|
+
when Daru::Vector
|
112
|
+
if grouper.category?
|
113
|
+
# TODO: A categorical Daru::Vector cannot perform group_by well
|
114
|
+
grouper = Daru::Vector.new(grouper.to_a)
|
115
|
+
end
|
116
|
+
groups = grouper.group_by.groups
|
117
|
+
groups.map { |g, indices|
|
118
|
+
[g.first, Charty::Vector.new(data[*indices])]
|
119
|
+
}.to_h
|
120
|
+
when Charty::Vector
|
121
|
+
case grouper.data
|
122
|
+
when Daru::Vector
|
123
|
+
return group_by(grouper.data)
|
124
|
+
else
|
125
|
+
return group_by(Daru::Vector.new(grouper.to_a))
|
126
|
+
end
|
127
|
+
else
|
128
|
+
return group_by(Charty::Vector.new(grouper))
|
129
|
+
end
|
130
|
+
end
|
131
|
+
|
132
|
+
def drop_na
|
133
|
+
values = data.reject do |x|
|
134
|
+
case
|
135
|
+
when x.nil?,
|
136
|
+
x.respond_to?(:nan?) && x.nan?
|
137
|
+
true
|
138
|
+
else
|
139
|
+
false
|
140
|
+
end
|
141
|
+
end
|
142
|
+
Charty::Vector.new(Daru::Vector.new(values))
|
143
|
+
end
|
144
|
+
|
145
|
+
def eq(val)
|
146
|
+
Charty::Vector.new(data.eq(val).to_a,
|
147
|
+
index: data.index.to_a,
|
148
|
+
name: name)
|
149
|
+
end
|
150
|
+
|
151
|
+
def notnull
|
152
|
+
notnull_data = data.map {|x| ! missing_value?(x) }
|
153
|
+
Charty::Vector.new(notnull_data, index: data.index.to_a, name: name)
|
154
|
+
end
|
155
|
+
|
156
|
+
def_delegator :data, :mean
|
157
|
+
|
158
|
+
def stdev(population: false)
|
159
|
+
if population
|
160
|
+
data.standard_deviation_sample
|
161
|
+
else
|
162
|
+
data.standard_deviation_population
|
163
|
+
end
|
164
|
+
end
|
165
|
+
|
166
|
+
def percentile(q)
|
167
|
+
data.linear_percentile(q)
|
168
|
+
end
|
169
|
+
end
|
170
|
+
end
|
171
|
+
end
|
@@ -0,0 +1,187 @@
|
|
1
|
+
module Charty
|
2
|
+
module VectorAdapters
|
3
|
+
class NArrayAdapter < BaseAdapter
|
4
|
+
VectorAdapters.register(:narray, self)
|
5
|
+
|
6
|
+
extend Forwardable
|
7
|
+
include Enumerable
|
8
|
+
|
9
|
+
def self.supported?(data)
|
10
|
+
defined?(Numo::NArray) && data.is_a?(Numo::NArray)
|
11
|
+
end
|
12
|
+
|
13
|
+
def initialize(data)
|
14
|
+
@data = check_data(data)
|
15
|
+
self.index = index || RangeIndex.new(0 ... length)
|
16
|
+
end
|
17
|
+
|
18
|
+
def compare_data_equality(other)
|
19
|
+
case other
|
20
|
+
when ArrayAdapter, NArrayAdapter
|
21
|
+
data == other.data
|
22
|
+
when NumpyAdapter, PandasSeriesAdapter
|
23
|
+
other.compare_data_equality(self)
|
24
|
+
else
|
25
|
+
data == other.data.to_a
|
26
|
+
end
|
27
|
+
end
|
28
|
+
|
29
|
+
include NameSupport
|
30
|
+
include IndexSupport
|
31
|
+
|
32
|
+
# TODO: Reconsider the return value type of values_at
|
33
|
+
def values_at(*indices)
|
34
|
+
data[indices].to_a
|
35
|
+
end
|
36
|
+
|
37
|
+
def where(mask)
|
38
|
+
mask = check_mask_vector(mask)
|
39
|
+
case mask.data
|
40
|
+
when Numo::Bit
|
41
|
+
bits = mask.data
|
42
|
+
masked_data = data[bits]
|
43
|
+
masked_index = bits.where.map {|i| index[i] }.to_a
|
44
|
+
else
|
45
|
+
masked_data, masked_index = where_in_array(mask)
|
46
|
+
masked_data = data.class[*masked_data]
|
47
|
+
end
|
48
|
+
Charty::Vector.new(masked_data, index: masked_index, name: name)
|
49
|
+
end
|
50
|
+
|
51
|
+
def boolean?
|
52
|
+
case data
|
53
|
+
when Numo::Bit
|
54
|
+
true
|
55
|
+
when Numo::RObject
|
56
|
+
i, n = 0, data.size
|
57
|
+
while i < n
|
58
|
+
case data[i]
|
59
|
+
when nil, true, false
|
60
|
+
# do nothing
|
61
|
+
else
|
62
|
+
return false
|
63
|
+
end
|
64
|
+
i += 1
|
65
|
+
end
|
66
|
+
true
|
67
|
+
else
|
68
|
+
false
|
69
|
+
end
|
70
|
+
end
|
71
|
+
|
72
|
+
def numeric?
|
73
|
+
case data
|
74
|
+
when Numo::Bit,
|
75
|
+
Numo::RObject
|
76
|
+
false
|
77
|
+
else
|
78
|
+
true
|
79
|
+
end
|
80
|
+
end
|
81
|
+
|
82
|
+
def categorical?
|
83
|
+
false
|
84
|
+
end
|
85
|
+
|
86
|
+
def categories
|
87
|
+
nil
|
88
|
+
end
|
89
|
+
|
90
|
+
def unique_values
|
91
|
+
existence = {}
|
92
|
+
i, n = 0, data.size
|
93
|
+
unique = []
|
94
|
+
while i < n
|
95
|
+
x = data[i]
|
96
|
+
unless existence[x]
|
97
|
+
unique << x
|
98
|
+
existence[x] = true
|
99
|
+
end
|
100
|
+
i += 1
|
101
|
+
end
|
102
|
+
unique
|
103
|
+
end
|
104
|
+
|
105
|
+
def group_by(grouper)
|
106
|
+
case grouper
|
107
|
+
when Charty::Vector
|
108
|
+
# nothing to do
|
109
|
+
else
|
110
|
+
grouper = Charty::Vector.new(grouper)
|
111
|
+
end
|
112
|
+
|
113
|
+
group_keys = grouper.unique_values
|
114
|
+
|
115
|
+
case grouper.data
|
116
|
+
when Numo::NArray
|
117
|
+
grouper = grouper.data
|
118
|
+
else
|
119
|
+
grouper = Numo::NArray[*grouper.to_a]
|
120
|
+
end
|
121
|
+
|
122
|
+
group_keys.map { |g|
|
123
|
+
[g, Charty::Vector.new(data[grouper.eq(g)])]
|
124
|
+
}.to_h
|
125
|
+
end
|
126
|
+
|
127
|
+
def drop_na
|
128
|
+
case data
|
129
|
+
when Numo::DFloat, Numo::SFloat, Numo::DComplex, Numo::SComplex
|
130
|
+
Charty::Vector.new(data[~data.isnan])
|
131
|
+
when Numo::RObject
|
132
|
+
where_is_nan = data.isnan
|
133
|
+
values = []
|
134
|
+
i, n = 0, data.size
|
135
|
+
while i < n
|
136
|
+
x = data[i]
|
137
|
+
unless x.nil? || where_is_nan[i] == 1
|
138
|
+
values << x
|
139
|
+
end
|
140
|
+
i += 1
|
141
|
+
end
|
142
|
+
Charty::Vector.new(Numo::RObject[*values])
|
143
|
+
else
|
144
|
+
self
|
145
|
+
end
|
146
|
+
end
|
147
|
+
|
148
|
+
def eq(val)
|
149
|
+
Charty::Vector.new(data.eq(val),
|
150
|
+
index: index,
|
151
|
+
name: name)
|
152
|
+
end
|
153
|
+
|
154
|
+
def notnull
|
155
|
+
case data
|
156
|
+
when Numo::RObject
|
157
|
+
i, n = 0, length
|
158
|
+
notnull_data = Numo::Bit.zeros(n)
|
159
|
+
while i < n
|
160
|
+
notnull_data[i] = ! missing_value?(data[i])
|
161
|
+
i += 1
|
162
|
+
end
|
163
|
+
when ->(x) { x.respond_to?(:isnan) }
|
164
|
+
notnull_data = ~data.isnan
|
165
|
+
else
|
166
|
+
notnull_data = Numo::Bit.ones(length)
|
167
|
+
end
|
168
|
+
Charty::Vector.new(notnull_data, index: index, name: name)
|
169
|
+
end
|
170
|
+
|
171
|
+
def mean
|
172
|
+
data.mean(nan: true)
|
173
|
+
end
|
174
|
+
|
175
|
+
def stdev(population: false)
|
176
|
+
s = data.stddev(nan: true)
|
177
|
+
if population
|
178
|
+
# Numo::NArray does not support population standard deviation
|
179
|
+
n = data.isnan.sum
|
180
|
+
s * (n - 1) / n
|
181
|
+
else
|
182
|
+
s
|
183
|
+
end
|
184
|
+
end
|
185
|
+
end
|
186
|
+
end
|
187
|
+
end
|
@@ -0,0 +1,37 @@
|
|
1
|
+
module Charty
|
2
|
+
module VectorAdapters
|
3
|
+
class NMatrixAdapter < BaseAdapter
|
4
|
+
VectorAdapters.register(:nmatrix, self)
|
5
|
+
|
6
|
+
extend Forwardable
|
7
|
+
include Enumerable
|
8
|
+
|
9
|
+
def self.supported?(data)
|
10
|
+
defined?(NMatrix) && data.is_a?(NMatrix)
|
11
|
+
end
|
12
|
+
|
13
|
+
def initialize(data)
|
14
|
+
@data = check_data(data)
|
15
|
+
self.index = index || RangeIndex.new(0 ... length)
|
16
|
+
end
|
17
|
+
|
18
|
+
def compare_data_equality(other)
|
19
|
+
case other
|
20
|
+
when NMatrixAdapter
|
21
|
+
data == other.data
|
22
|
+
when ArrayAdapter, DaruVectorAdapter
|
23
|
+
data.to_a == other.data.to_a
|
24
|
+
when NArrayAdapter, NumpyAdapter, PandasSeriesAdapter
|
25
|
+
other.compare_data_equality(self)
|
26
|
+
else
|
27
|
+
data == other.data.to_a
|
28
|
+
end
|
29
|
+
end
|
30
|
+
|
31
|
+
include NameSupport
|
32
|
+
include IndexSupport
|
33
|
+
|
34
|
+
alias length size
|
35
|
+
end
|
36
|
+
end
|
37
|
+
end
|
@@ -0,0 +1,168 @@
|
|
1
|
+
module Charty
|
2
|
+
module VectorAdapters
|
3
|
+
class NumpyAdapter < BaseAdapter
|
4
|
+
VectorAdapters.register(:numpy, self)
|
5
|
+
|
6
|
+
def self.supported?(data)
|
7
|
+
return false unless defined?(Numpy::NDArray)
|
8
|
+
case data
|
9
|
+
when Numpy::NDArray
|
10
|
+
true
|
11
|
+
else
|
12
|
+
false
|
13
|
+
end
|
14
|
+
end
|
15
|
+
|
16
|
+
def initialize(data)
|
17
|
+
@data = check_data(data)
|
18
|
+
self.index = index || RangeIndex.new(0 ... length)
|
19
|
+
end
|
20
|
+
|
21
|
+
attr_reader :data
|
22
|
+
|
23
|
+
def_delegator :data, :size, :length
|
24
|
+
|
25
|
+
def compare_data_equality(other)
|
26
|
+
case other
|
27
|
+
when NumpyAdapter, PandasSeriesAdapter
|
28
|
+
Numpy.all(data == other.data)
|
29
|
+
when BaseAdapter
|
30
|
+
Numpy.all(data == other.data.to_a)
|
31
|
+
else
|
32
|
+
false
|
33
|
+
end
|
34
|
+
end
|
35
|
+
|
36
|
+
include NameSupport
|
37
|
+
include IndexSupport
|
38
|
+
|
39
|
+
def where(mask)
|
40
|
+
mask = check_mask_vector(mask)
|
41
|
+
case mask.data
|
42
|
+
when Numpy::NDArray,
|
43
|
+
->(x) { defined?(Pandas::Series) && x.is_a?(Pandas::Series) }
|
44
|
+
mask_data = Numpy.asarray(mask.data, dtype: :bool)
|
45
|
+
masked_data = data[mask_data]
|
46
|
+
masked_index = mask_data.nonzero()[0].to_a.map {|i| index[i] }
|
47
|
+
else
|
48
|
+
masked_data, masked_index = where_in_array(mask)
|
49
|
+
masked_data = Numpy.asarray(masked_data, dtype: data.dtype)
|
50
|
+
end
|
51
|
+
Charty::Vector.new(masked_data, index: masked_index, name: name)
|
52
|
+
end
|
53
|
+
|
54
|
+
def each
|
55
|
+
return enum_for(__method__) unless block_given?
|
56
|
+
|
57
|
+
i, n = 0, data.size
|
58
|
+
while i < n
|
59
|
+
yield data[i]
|
60
|
+
i += 1
|
61
|
+
end
|
62
|
+
end
|
63
|
+
|
64
|
+
def empty?
|
65
|
+
data.size == 0
|
66
|
+
end
|
67
|
+
|
68
|
+
def boolean?
|
69
|
+
builtins = PyCall.builtins
|
70
|
+
case
|
71
|
+
when builtins.issubclass(data.dtype.type, Numpy.bool_)
|
72
|
+
true
|
73
|
+
when builtins.issubclass(data.dtype.type, Numpy.object_)
|
74
|
+
i, n = 0, data.size
|
75
|
+
while i < n
|
76
|
+
case data[i]
|
77
|
+
when nil, true, false
|
78
|
+
# do nothing
|
79
|
+
else
|
80
|
+
return false
|
81
|
+
end
|
82
|
+
i += 1
|
83
|
+
end
|
84
|
+
true
|
85
|
+
else
|
86
|
+
false
|
87
|
+
end
|
88
|
+
end
|
89
|
+
|
90
|
+
def numeric?
|
91
|
+
# TODO: Handle object array
|
92
|
+
PyCall.builtins.issubclass(data.dtype.type, PyCall.tuple([Numpy.number, Numpy.bool_]))
|
93
|
+
end
|
94
|
+
|
95
|
+
def categorical?
|
96
|
+
false
|
97
|
+
end
|
98
|
+
|
99
|
+
def categories
|
100
|
+
nil
|
101
|
+
end
|
102
|
+
|
103
|
+
def unique_values
|
104
|
+
Numpy.unique(data).to_a
|
105
|
+
end
|
106
|
+
|
107
|
+
def group_by(grouper)
|
108
|
+
case grouper
|
109
|
+
when Numpy::NDArray,
|
110
|
+
->(x) { defined?(Pandas::Series) && x.is_a?(Pandas::Series) }
|
111
|
+
# Nothing todo
|
112
|
+
when Charty::Vector
|
113
|
+
case grouper.data
|
114
|
+
when Numpy::NDArray
|
115
|
+
grouper = grouper.data
|
116
|
+
else
|
117
|
+
grouper = Numpy.asarray(grouper.to_a)
|
118
|
+
end
|
119
|
+
else
|
120
|
+
grouper = Numpy.asarray(Array.try_convert(grouper))
|
121
|
+
end
|
122
|
+
|
123
|
+
group_keys = Numpy.unique(grouper).to_a
|
124
|
+
group_keys.map { |g|
|
125
|
+
[g, Charty::Vector.new(data[grouper == g])]
|
126
|
+
}.to_h
|
127
|
+
end
|
128
|
+
|
129
|
+
def drop_na
|
130
|
+
where_is_na = if numeric?
|
131
|
+
Numpy.isnan(data)
|
132
|
+
else
|
133
|
+
(data == nil)
|
134
|
+
end
|
135
|
+
Charty::Vector.new(data[Numpy.logical_not(where_is_na)])
|
136
|
+
end
|
137
|
+
|
138
|
+
def eq(val)
|
139
|
+
Charty::Vector.new((data == val),
|
140
|
+
index: index,
|
141
|
+
name: name)
|
142
|
+
end
|
143
|
+
|
144
|
+
def notnull
|
145
|
+
case
|
146
|
+
when PyCall.builtins.issubclass(data.dtype.type, Numpy.object_)
|
147
|
+
i, n = 0, length
|
148
|
+
notnull_data = Numpy::NDArray.new(n, dtype: :bool)
|
149
|
+
while i < n
|
150
|
+
notnull_data[i] = ! missing_value?(data[i])
|
151
|
+
i += 1
|
152
|
+
end
|
153
|
+
else
|
154
|
+
notnull_data = Numpy.isnan(data)
|
155
|
+
end
|
156
|
+
Charty::Vector.new(notnull_data, index: index, name: name)
|
157
|
+
end
|
158
|
+
|
159
|
+
def mean
|
160
|
+
Numpy.mean(data)
|
161
|
+
end
|
162
|
+
|
163
|
+
def stdev(population: false)
|
164
|
+
Numpy.std(data, ddof: population ? 0 : 1)
|
165
|
+
end
|
166
|
+
end
|
167
|
+
end
|
168
|
+
end
|