charty 0.1.4.dev → 0.2.4
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.github/workflows/ci.yml +71 -0
- data/.github/workflows/nmatrix.yml +67 -0
- data/.github/workflows/pycall.yml +86 -0
- data/Dockerfile.dev +9 -1
- data/Gemfile +18 -0
- data/README.md +128 -9
- data/Rakefile +4 -5
- data/charty.gemspec +7 -2
- data/examples/Gemfile +1 -0
- data/examples/active_record.ipynb +34 -34
- data/examples/daru.ipynb +71 -29
- data/examples/iris_dataset.ipynb +12 -5
- data/examples/nmatrix.ipynb +30 -30
- data/examples/numo_narray.ipynb +245 -0
- data/examples/palette.rb +71 -0
- data/examples/sample.png +0 -0
- data/examples/sample_bokeh.ipynb +156 -0
- data/examples/sample_google_chart.ipynb +229 -68
- data/examples/sample_gruff.ipynb +148 -133
- data/examples/sample_images/bar_bokeh.html +85 -0
- data/examples/sample_images/barh_bokeh.html +85 -0
- data/examples/sample_images/barh_gruff.png +0 -0
- data/examples/sample_images/box_plot_bokeh.html +85 -0
- data/examples/sample_images/{boxplot_pyplot.png → box_plot_pyplot.png} +0 -0
- data/examples/sample_images/curve_bokeh.html +85 -0
- data/examples/sample_images/curve_with_function_bokeh.html +85 -0
- data/examples/sample_images/{errorbar_pyplot.png → error_bar_pyplot.png} +0 -0
- data/examples/sample_images/hist_gruff.png +0 -0
- data/examples/sample_images/scatter_bokeh.html +85 -0
- data/examples/sample_pyplot.ipynb +37 -35
- data/images/penguins_body_mass_g_flipper_length_mm_scatter_plot.png +0 -0
- data/images/penguins_body_mass_g_flipper_length_mm_species_scatter_plot.png +0 -0
- data/images/penguins_body_mass_g_flipper_length_mm_species_sex_scatter_plot.png +0 -0
- data/images/penguins_species_body_mass_g_bar_plot_h.png +0 -0
- data/images/penguins_species_body_mass_g_bar_plot_v.png +0 -0
- data/images/penguins_species_body_mass_g_box_plot_h.png +0 -0
- data/images/penguins_species_body_mass_g_box_plot_v.png +0 -0
- data/images/penguins_species_body_mass_g_sex_bar_plot_v.png +0 -0
- data/images/penguins_species_body_mass_g_sex_box_plot_v.png +0 -0
- data/lib/charty.rb +13 -7
- data/lib/charty/backend_methods.rb +8 -0
- data/lib/charty/backends.rb +80 -0
- data/lib/charty/backends/bokeh.rb +80 -0
- data/lib/charty/backends/google_charts.rb +267 -0
- data/lib/charty/backends/gruff.rb +104 -67
- data/lib/charty/backends/plotly.rb +549 -0
- data/lib/charty/backends/pyplot.rb +584 -86
- data/lib/charty/backends/rubyplot.rb +82 -74
- data/lib/charty/backends/unicode_plot.rb +79 -0
- data/lib/charty/index.rb +213 -0
- data/lib/charty/linspace.rb +1 -1
- data/lib/charty/missing_value_support.rb +14 -0
- data/lib/charty/plot_methods.rb +184 -0
- data/lib/charty/plotter.rb +57 -41
- data/lib/charty/plotters.rb +11 -0
- data/lib/charty/plotters/abstract_plotter.rb +156 -0
- data/lib/charty/plotters/bar_plotter.rb +216 -0
- data/lib/charty/plotters/box_plotter.rb +94 -0
- data/lib/charty/plotters/categorical_plotter.rb +380 -0
- data/lib/charty/plotters/count_plotter.rb +7 -0
- data/lib/charty/plotters/estimation_support.rb +84 -0
- data/lib/charty/plotters/random_support.rb +25 -0
- data/lib/charty/plotters/relational_plotter.rb +518 -0
- data/lib/charty/plotters/scatter_plotter.rb +115 -0
- data/lib/charty/plotters/vector_plotter.rb +6 -0
- data/lib/charty/statistics.rb +114 -0
- data/lib/charty/table.rb +82 -3
- data/lib/charty/table_adapters.rb +25 -0
- data/lib/charty/table_adapters/active_record_adapter.rb +63 -0
- data/lib/charty/table_adapters/base_adapter.rb +69 -0
- data/lib/charty/table_adapters/daru_adapter.rb +70 -0
- data/lib/charty/table_adapters/datasets_adapter.rb +49 -0
- data/lib/charty/table_adapters/hash_adapter.rb +224 -0
- data/lib/charty/table_adapters/narray_adapter.rb +76 -0
- data/lib/charty/table_adapters/nmatrix_adapter.rb +67 -0
- data/lib/charty/table_adapters/pandas_adapter.rb +81 -0
- data/lib/charty/vector.rb +69 -0
- data/lib/charty/vector_adapters.rb +183 -0
- data/lib/charty/vector_adapters/array_adapter.rb +109 -0
- data/lib/charty/vector_adapters/daru_adapter.rb +171 -0
- data/lib/charty/vector_adapters/narray_adapter.rb +187 -0
- data/lib/charty/vector_adapters/nmatrix_adapter.rb +37 -0
- data/lib/charty/vector_adapters/numpy_adapter.rb +168 -0
- data/lib/charty/vector_adapters/pandas_adapter.rb +200 -0
- data/lib/charty/version.rb +1 -1
- metadata +127 -13
- data/.travis.yml +0 -11
- data/examples/numo-narray.ipynb +0 -234
- data/lib/charty/backends/google_chart.rb +0 -167
- data/lib/charty/plotter_adapter.rb +0 -17
data/lib/charty/version.rb
CHANGED
metadata
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: charty
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.2.4
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- youchan
|
@@ -10,8 +10,36 @@ authors:
|
|
10
10
|
autorequire:
|
11
11
|
bindir: exe
|
12
12
|
cert_chain: []
|
13
|
-
date:
|
13
|
+
date: 2021-05-19 00:00:00.000000000 Z
|
14
14
|
dependencies:
|
15
|
+
- !ruby/object:Gem::Dependency
|
16
|
+
name: red-colors
|
17
|
+
requirement: !ruby/object:Gem::Requirement
|
18
|
+
requirements:
|
19
|
+
- - ">="
|
20
|
+
- !ruby/object:Gem::Version
|
21
|
+
version: '0'
|
22
|
+
type: :runtime
|
23
|
+
prerelease: false
|
24
|
+
version_requirements: !ruby/object:Gem::Requirement
|
25
|
+
requirements:
|
26
|
+
- - ">="
|
27
|
+
- !ruby/object:Gem::Version
|
28
|
+
version: '0'
|
29
|
+
- !ruby/object:Gem::Dependency
|
30
|
+
name: red-palette
|
31
|
+
requirement: !ruby/object:Gem::Requirement
|
32
|
+
requirements:
|
33
|
+
- - ">="
|
34
|
+
- !ruby/object:Gem::Version
|
35
|
+
version: 0.2.0
|
36
|
+
type: :runtime
|
37
|
+
prerelease: false
|
38
|
+
version_requirements: !ruby/object:Gem::Requirement
|
39
|
+
requirements:
|
40
|
+
- - ">="
|
41
|
+
- !ruby/object:Gem::Version
|
42
|
+
version: 0.2.0
|
15
43
|
- !ruby/object:Gem::Dependency
|
16
44
|
name: bundler
|
17
45
|
requirement: !ruby/object:Gem::Requirement
|
@@ -55,7 +83,35 @@ dependencies:
|
|
55
83
|
- !ruby/object:Gem::Version
|
56
84
|
version: '0'
|
57
85
|
- !ruby/object:Gem::Dependency
|
58
|
-
name:
|
86
|
+
name: red-datasets
|
87
|
+
requirement: !ruby/object:Gem::Requirement
|
88
|
+
requirements:
|
89
|
+
- - ">="
|
90
|
+
- !ruby/object:Gem::Version
|
91
|
+
version: 0.0.9
|
92
|
+
type: :development
|
93
|
+
prerelease: false
|
94
|
+
version_requirements: !ruby/object:Gem::Requirement
|
95
|
+
requirements:
|
96
|
+
- - ">="
|
97
|
+
- !ruby/object:Gem::Version
|
98
|
+
version: 0.0.9
|
99
|
+
- !ruby/object:Gem::Dependency
|
100
|
+
name: daru
|
101
|
+
requirement: !ruby/object:Gem::Requirement
|
102
|
+
requirements:
|
103
|
+
- - ">="
|
104
|
+
- !ruby/object:Gem::Version
|
105
|
+
version: '0'
|
106
|
+
type: :development
|
107
|
+
prerelease: false
|
108
|
+
version_requirements: !ruby/object:Gem::Requirement
|
109
|
+
requirements:
|
110
|
+
- - ">="
|
111
|
+
- !ruby/object:Gem::Version
|
112
|
+
version: '0'
|
113
|
+
- !ruby/object:Gem::Dependency
|
114
|
+
name: activerecord
|
59
115
|
requirement: !ruby/object:Gem::Requirement
|
60
116
|
requirements:
|
61
117
|
- - ">="
|
@@ -69,7 +125,7 @@ dependencies:
|
|
69
125
|
- !ruby/object:Gem::Version
|
70
126
|
version: '0'
|
71
127
|
- !ruby/object:Gem::Dependency
|
72
|
-
name:
|
128
|
+
name: sqlite3
|
73
129
|
requirement: !ruby/object:Gem::Requirement
|
74
130
|
requirements:
|
75
131
|
- - ">="
|
@@ -91,8 +147,10 @@ executables: []
|
|
91
147
|
extensions: []
|
92
148
|
extra_rdoc_files: []
|
93
149
|
files:
|
150
|
+
- ".github/workflows/ci.yml"
|
151
|
+
- ".github/workflows/nmatrix.yml"
|
152
|
+
- ".github/workflows/pycall.yml"
|
94
153
|
- ".gitignore"
|
95
|
-
- ".travis.yml"
|
96
154
|
- Dockerfile.dev
|
97
155
|
- Gemfile
|
98
156
|
- LICENSE
|
@@ -107,23 +165,34 @@ files:
|
|
107
165
|
- examples/daru.ipynb
|
108
166
|
- examples/iris_dataset.ipynb
|
109
167
|
- examples/nmatrix.ipynb
|
110
|
-
- examples/
|
168
|
+
- examples/numo_narray.ipynb
|
169
|
+
- examples/palette.rb
|
170
|
+
- examples/sample.png
|
171
|
+
- examples/sample_bokeh.ipynb
|
111
172
|
- examples/sample_google_chart.ipynb
|
112
173
|
- examples/sample_gruff.ipynb
|
174
|
+
- examples/sample_images/bar_bokeh.html
|
113
175
|
- examples/sample_images/bar_gruff.png
|
114
176
|
- examples/sample_images/bar_pyplot.png
|
115
177
|
- examples/sample_images/bar_rubyplot.png
|
178
|
+
- examples/sample_images/barh_bokeh.html
|
179
|
+
- examples/sample_images/barh_gruff.png
|
116
180
|
- examples/sample_images/barh_pyplot.png
|
117
|
-
- examples/sample_images/
|
181
|
+
- examples/sample_images/box_plot_bokeh.html
|
182
|
+
- examples/sample_images/box_plot_pyplot.png
|
118
183
|
- examples/sample_images/bubble_pyplot.png
|
119
184
|
- examples/sample_images/bubble_rubyplot.png
|
185
|
+
- examples/sample_images/curve_bokeh.html
|
120
186
|
- examples/sample_images/curve_gruff.png
|
121
187
|
- examples/sample_images/curve_pyplot.png
|
122
188
|
- examples/sample_images/curve_rubyplot.png
|
189
|
+
- examples/sample_images/curve_with_function_bokeh.html
|
123
190
|
- examples/sample_images/curve_with_function_pyplot.png
|
124
191
|
- examples/sample_images/curve_with_function_rubyplot.png
|
125
|
-
- examples/sample_images/
|
192
|
+
- examples/sample_images/error_bar_pyplot.png
|
193
|
+
- examples/sample_images/hist_gruff.png
|
126
194
|
- examples/sample_images/hist_pyplot.png
|
195
|
+
- examples/sample_images/scatter_bokeh.html
|
127
196
|
- examples/sample_images/scatter_gruff.png
|
128
197
|
- examples/sample_images/scatter_pyplot.png
|
129
198
|
- examples/sample_images/scatter_rubyplot.png
|
@@ -132,16 +201,61 @@ files:
|
|
132
201
|
- examples/sample_pyplot.ipynb
|
133
202
|
- examples/sample_rubyplot.ipynb
|
134
203
|
- images/design_concept.png
|
204
|
+
- images/penguins_body_mass_g_flipper_length_mm_scatter_plot.png
|
205
|
+
- images/penguins_body_mass_g_flipper_length_mm_species_scatter_plot.png
|
206
|
+
- images/penguins_body_mass_g_flipper_length_mm_species_sex_scatter_plot.png
|
207
|
+
- images/penguins_species_body_mass_g_bar_plot_h.png
|
208
|
+
- images/penguins_species_body_mass_g_bar_plot_v.png
|
209
|
+
- images/penguins_species_body_mass_g_box_plot_h.png
|
210
|
+
- images/penguins_species_body_mass_g_box_plot_v.png
|
211
|
+
- images/penguins_species_body_mass_g_sex_bar_plot_v.png
|
212
|
+
- images/penguins_species_body_mass_g_sex_box_plot_v.png
|
135
213
|
- lib/charty.rb
|
136
|
-
- lib/charty/
|
214
|
+
- lib/charty/backend_methods.rb
|
215
|
+
- lib/charty/backends.rb
|
216
|
+
- lib/charty/backends/bokeh.rb
|
217
|
+
- lib/charty/backends/google_charts.rb
|
137
218
|
- lib/charty/backends/gruff.rb
|
219
|
+
- lib/charty/backends/plotly.rb
|
138
220
|
- lib/charty/backends/pyplot.rb
|
139
221
|
- lib/charty/backends/rubyplot.rb
|
222
|
+
- lib/charty/backends/unicode_plot.rb
|
223
|
+
- lib/charty/index.rb
|
140
224
|
- lib/charty/layout.rb
|
141
225
|
- lib/charty/linspace.rb
|
226
|
+
- lib/charty/missing_value_support.rb
|
227
|
+
- lib/charty/plot_methods.rb
|
142
228
|
- lib/charty/plotter.rb
|
143
|
-
- lib/charty/
|
229
|
+
- lib/charty/plotters.rb
|
230
|
+
- lib/charty/plotters/abstract_plotter.rb
|
231
|
+
- lib/charty/plotters/bar_plotter.rb
|
232
|
+
- lib/charty/plotters/box_plotter.rb
|
233
|
+
- lib/charty/plotters/categorical_plotter.rb
|
234
|
+
- lib/charty/plotters/count_plotter.rb
|
235
|
+
- lib/charty/plotters/estimation_support.rb
|
236
|
+
- lib/charty/plotters/random_support.rb
|
237
|
+
- lib/charty/plotters/relational_plotter.rb
|
238
|
+
- lib/charty/plotters/scatter_plotter.rb
|
239
|
+
- lib/charty/plotters/vector_plotter.rb
|
240
|
+
- lib/charty/statistics.rb
|
144
241
|
- lib/charty/table.rb
|
242
|
+
- lib/charty/table_adapters.rb
|
243
|
+
- lib/charty/table_adapters/active_record_adapter.rb
|
244
|
+
- lib/charty/table_adapters/base_adapter.rb
|
245
|
+
- lib/charty/table_adapters/daru_adapter.rb
|
246
|
+
- lib/charty/table_adapters/datasets_adapter.rb
|
247
|
+
- lib/charty/table_adapters/hash_adapter.rb
|
248
|
+
- lib/charty/table_adapters/narray_adapter.rb
|
249
|
+
- lib/charty/table_adapters/nmatrix_adapter.rb
|
250
|
+
- lib/charty/table_adapters/pandas_adapter.rb
|
251
|
+
- lib/charty/vector.rb
|
252
|
+
- lib/charty/vector_adapters.rb
|
253
|
+
- lib/charty/vector_adapters/array_adapter.rb
|
254
|
+
- lib/charty/vector_adapters/daru_adapter.rb
|
255
|
+
- lib/charty/vector_adapters/narray_adapter.rb
|
256
|
+
- lib/charty/vector_adapters/nmatrix_adapter.rb
|
257
|
+
- lib/charty/vector_adapters/numpy_adapter.rb
|
258
|
+
- lib/charty/vector_adapters/pandas_adapter.rb
|
145
259
|
- lib/charty/version.rb
|
146
260
|
homepage: https://github.com/red-data-tools/charty
|
147
261
|
licenses:
|
@@ -158,11 +272,11 @@ required_ruby_version: !ruby/object:Gem::Requirement
|
|
158
272
|
version: '0'
|
159
273
|
required_rubygems_version: !ruby/object:Gem::Requirement
|
160
274
|
requirements:
|
161
|
-
- - "
|
275
|
+
- - ">="
|
162
276
|
- !ruby/object:Gem::Version
|
163
|
-
version:
|
277
|
+
version: '0'
|
164
278
|
requirements: []
|
165
|
-
rubygems_version: 3.
|
279
|
+
rubygems_version: 3.2.3
|
166
280
|
signing_key:
|
167
281
|
specification_version: 4
|
168
282
|
summary: Visualizing your data in a simple way.
|
data/.travis.yml
DELETED
data/examples/numo-narray.ipynb
DELETED
@@ -1,234 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"cells": [
|
3
|
-
{
|
4
|
-
"cell_type": "code",
|
5
|
-
"execution_count": null,
|
6
|
-
"metadata": {},
|
7
|
-
"outputs": [],
|
8
|
-
"source": [
|
9
|
-
"require 'charty'\n",
|
10
|
-
"\n",
|
11
|
-
"charty = Charty::Plotter.new(:pyplot)\n",
|
12
|
-
"Charty::Matplot.activate_iruby_integration"
|
13
|
-
]
|
14
|
-
},
|
15
|
-
{
|
16
|
-
"cell_type": "code",
|
17
|
-
"execution_count": 11,
|
18
|
-
"metadata": {},
|
19
|
-
"outputs": [
|
20
|
-
{
|
21
|
-
"data": {
|
22
|
-
"text/latex": [
|
23
|
-
"$$\\left(\\begin{array}{ccccc}\n",
|
24
|
-
" 0.0&1.0&2.0&3.0&4.0\\\\\n",
|
25
|
-
" 5.0&6.0&7.0&8.0&9.0\\\\\n",
|
26
|
-
" 10.0&11.0&12.0&13.0&14.0\\\\\n",
|
27
|
-
"\\end{array}\\right)$$"
|
28
|
-
],
|
29
|
-
"text/plain": [
|
30
|
-
"Numo::DFloat#shape=[3,5]\n",
|
31
|
-
"[[0, 1, 2, 3, 4], \n",
|
32
|
-
" [5, 6, 7, 8, 9], \n",
|
33
|
-
" [10, 11, 12, 13, 14]]"
|
34
|
-
]
|
35
|
-
},
|
36
|
-
"execution_count": 11,
|
37
|
-
"metadata": {},
|
38
|
-
"output_type": "execute_result"
|
39
|
-
}
|
40
|
-
],
|
41
|
-
"source": [
|
42
|
-
"require \"numo/narray\"\n",
|
43
|
-
"narray = Numo::DFloat.new(3,5).seq\n",
|
44
|
-
"charty.table = narray"
|
45
|
-
]
|
46
|
-
},
|
47
|
-
{
|
48
|
-
"cell_type": "code",
|
49
|
-
"execution_count": 12,
|
50
|
-
"metadata": {},
|
51
|
-
"outputs": [
|
52
|
-
{
|
53
|
-
"data": {
|
54
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAi0AAAG0CAYAAAD+aBdkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAGrRJREFUeJzt3X2QVfVh//HPsoQFyS5RKCgDFqZmYhB5UAQp1ZD41AStpNNOk5CRUiudFiKE1inYEUNRFxvr0EQDxE6VZEDMZIbESZpYixGbGsqTpGonaJIKG5+QacoCNqvd3d8fqfsLhaS42eXcL7xeM/ePPdzLfvYkE9455+5uXWdnZ2cAAGpcn6oHAAAcD9ECABRBtAAARRAtAEARRAsAUATRAgAUQbQAAEUQLQBAEUQLAFAE0QIAFEG0AABF6Fv1gF9GR0dHXnrppTQ2Nqaurq7qOQDAcejs7MzBgwczfPjw9Olz/NdPio6Wl156KSNHjqx6BgDQDS0tLRkxYsRxP7/oaGlsbEzy0y+6qamp4jUAwPFobW3NyJEju/4dP15FR8tbt4SamppECwAU5u2+tcMbcQGAIogWAKAIogUAKIJoAQCKIFoAgCKIFgCgCKIFACiCaAEAiiBaAIAiiBYAoAiiBQAogmgBAIogWgCAIogWAKAIogUAKELfqgcAwIk0avHXq55QlBdWzKh6QhdXWgCAIogWAKAIogUAKIJoAQCKIFoAgCKIFgCgCKIFACiCaAEAiiBaAIAiiBYAoAiiBQAogmgBAIogWgCAIogWAKAIogUAKIJoAQCKIFoAgCKIFgCgCKIFACiCaAEAiiBaAIAiiBYAoAiiBQAogmgBAIogWgCAIogWAKAIogUAKIJoAQCKIFoAgCKIFgCgCKIFACiCaAEAiiBaAIAiiBYAoAiVRkt7e3tuueWWjB49OgMGDMiv/dqvZfny5ens7KxyFgBQg/pW+cnvvPPOrFq1KmvXrs15552X7du3Z86cORk0aFBuvPHGKqcBADWm0mh58sknc+2112bGjBlJklGjRuXBBx/M1q1bq5wFANSgSm8P/fqv/3o2bdqU5557Lkny3e9+N9/+9rfzwQ9+8JjPb2trS2tr6xEPAODUUOmVlsWLF6e1tTXnnntu6uvr097enttvvz2zZs065vObm5uzbNmyE7wSoPeMWvz1qicU44UVM6qeQMUqvdLypS99KevWrcv69euzc+fOrF27NnfddVfWrl17zOcvWbIkBw4c6Hq0tLSc4MUAQFUqvdJy0003ZfHixfnIRz6SJDn//POzZ8+eNDc3Z/bs2Uc9v6GhIQ0NDSd6JgBQAyq90vL666+nT58jJ9TX16ejo6OiRQBArar0Sss111yT22+/PWeffXbOO++8PPXUU7n77rvzB3/wB1XOAgBqUKXR8tnPfja33HJL/uRP/iT79u3L8OHD80d/9EdZunRplbMAgBpUabQ0NjZm5cqVWblyZZUzAIAC+N1DAEARRAsAUATRAgAUQbQAAEUQLQBAEUQLAFAE0QIAFEG0AABFEC0AQBFECwBQBNECABRBtAAARRAtAEARRAsAUATRAgAUQbQAAEUQLQBAEUQLAFAE0QIAFEG0AABFEC0AQBFECwBQBNECABRBtAAARRAtAEARRAsAUATRAgAUQbQAAEUQLQBAEUQLAFAE0QIAFEG0AABF6Fv1AKA2jFr89aonFOOFFTOqngCnJFdaAIAiiBYAoAiiBQAogmgBAIogWgCAIogWAKAIogUAKIJoAQCKIFoAgCKIFgCgCKIFACiCaAEAiiBaAIAiiBYAoAiiBQAogmgBAIogWgCAIogWAKAIogUAKIJoAQCKIFoAgCKIFgCgCKIFACiCaAEAiiBaAIAiiBYAoAiiBQAogmgBAIogWgCAIogWAKAIogUAKIJoAQCKIFoAgCKIFgCgCJVHy4svvpiPf/zjGTx4cAYMGJDzzz8/27dvr3oWAFBj+lb5yX/84x9n2rRpef/7359vfOMb+ZVf+ZU8//zzOf3006ucBQDUoEqj5c4778zIkSNz//33dx0bPXp0hYsAgFpV6e2hhx9+OJMmTcrv/u7vZujQoZk4cWLuu+++n/v8tra2tLa2HvEAAE4NlV5p+eEPf5hVq1Zl0aJFufnmm7Nt27bceOON6devX2bPnn3U85ubm7Ns2bIKlnIijVr89aonFOOFFTOqngBwwlR6paWjoyMXXHBB7rjjjkycODFz587NDTfckNWrVx/z+UuWLMmBAwe6Hi0tLSd4MQBQlUqj5ayzzsqYMWOOOPbe9743e/fuPebzGxoa0tTUdMQDADg1VBot06ZNy+7du4849txzz+VXf/VXK1oEANSqSqPlk5/8ZLZs2ZI77rgj3//+97N+/fp8/vOfz7x586qcBQDUoEqj5aKLLsrGjRvz4IMPZuzYsVm+fHlWrlyZWbNmVTkLAKhBlX73UJJcffXVufrqq6ueAQDUuMp/jD8AwPEQLQBAEUQLAFAE0QIAFEG0AABFEC0AQBFECwBQBNECABRBtAAARRAtAEARRAsAUATRAgAUQbQAAEUQLQBAEUQLAFAE0QIAFEG0AABFEC0AQBFECwBQBNECABRBtAAARRAtAEARRAsAUATRAgAUQbQAAEUQLQBAEUQLAFAE0QIAFKFb0dLS0pIf/ehHXR9v3bo1CxcuzOc///keGwYA8LO6FS0f+9jH8q1vfStJ8sorr+SKK67I1q1b8xd/8Rf5y7/8yx4dCACQdDNannnmmUyePDlJ8qUvfSljx47Nk08+mXXr1uWBBx7oyX0AAEm6GS1vvvlmGhoakiT/+I//mN/6rd9Kkpx77rl5+eWXe24dAMD/6NudF5133nlZvXp1ZsyYkUcffTTLly9Pkrz00ksZPHhwjw6s0qjFX696QjFeWDGj6gkAnOS6daXlzjvvzJo1azJ9+vR89KMfzfjx45MkDz/8cNdtIwCAntStKy3Tp0/P/v3709ramtNPP73r+Ny5c3Paaaf12DgAgLd0++e0dHZ2ZseOHVmzZk0OHjyYJOnXr59oAQB6RbeutOzZsye/+Zu/mb1796atrS1XXHFFGhsbc+edd6atrS2rV6/u6Z0AwCmuW1daFixYkEmTJuXHP/5xBgwY0HX8wx/+cDZt2tRj4wAA3tKtKy3/9E//lCeffDL9+vU74vioUaPy4osv9sgwAICf1a0rLR0dHWlvbz/q+I9+9KM0Njb+0qMAAP63bkXLlVdemZUrV3Z9XFdXl0OHDuXWW2/Nhz70oR4bBwDwlm7dHvrrv/7rXHXVVRkzZkx+8pOf5GMf+1ief/75DBkyJA8++GBPbwQA6F60jBgxIt/97nezYcOG/Ou//msOHTqU66+/PrNmzTrijbkAAD2lW9GSJH379s3HP/7xntwCAPBzHXe0PPzww8f9l771CxQBAHrKcUfLzJkzj+t5dXV1x/zOIgCAX8ZxR0tHR0dv7gAA+IW6/buHAABOpG6/Effw4cPZvHlz9u7dmzfeeOOIP7vxxht/6WEAAD+rW9Hy1FNP5UMf+lBef/31HD58OGeccUb279+f0047LUOHDhUtAECP69btoU9+8pO55pprun5h4pYtW7Jnz55ceOGFueuuu3p6IwBA96Jl165d+dM//dP06dMn9fX1aWtry8iRI/NXf/VXufnmm3t6IwBA96LlHe94R/r0+elLhw4dmr179yZJBg0alJaWlp5bBwDwP7r1npaJEydm27Ztefe73533ve99Wbp0afbv358vfvGLGTt2bE9vBADo3pWWO+64I2eddVaS5Pbbb8/pp5+eP/7jP87+/fuzZs2aHh0IAJB080rLeeedl87OziQ/vT20evXqbNy4MWPGjMmECRN6dCAAQNLNKy3XXnttvvCFLyRJ/vM//zMXX3xx7r777sycOTOrVq3q0YEAAEk3o2Xnzp255JJLkiRf/vKXM2zYsOzZsydf+MIX8pnPfKZHBwIAJN2Mltdffz2NjY1Jkn/4h3/Ib//2b6dPnz65+OKLs2fPnh4dCACQdDNazjnnnHzlK19JS0tLHnnkkVx55ZVJkn379qWpqalHBwIAJN2MlqVLl+bP/uzPMmrUqEyZMiVTp05N8tOrLhMnTuzRgQAASTe/e+h3fud38hu/8Rt5+eWXM378+K7jl112WT784Q/32DgAgLd0+7c8n3nmmTnzzDOPODZ58uRfehAAwLF06/YQAMCJJloAgCKIFgCgCKIFAChCzUTLihUrUldXl4ULF1Y9BQCoQTURLdu2bcuaNWsybty4qqcAADWq8mg5dOhQZs2alfvuuy+nn3561XMAgBpVebTMmzcvM2bMyOWXX/5/PretrS2tra1HPACAU0O3f7hcT9iwYUN27tyZbdu2Hdfzm5ubs2zZsl5eBQDUosqutLS0tGTBggVZt25d+vfvf1yvWbJkSQ4cOND1aGlp6eWVAECtqOxKy44dO7Jv375ccMEFXcfa29vzxBNP5J577klbW1vq6+uPeE1DQ0MaGhpO9FQAoAZUFi2XXXZZnn766SOOzZkzJ+eee27+/M///KhgAQBObZVFS2NjY8aOHXvEsYEDB2bw4MFHHQcAqPy7hwAAjkel3z30vz3++ONVTwAAapQrLQBAEUQLAFAE0QIAFEG0AABFEC0AQBFECwBQBNECABRBtAAARRAtAEARRAsAUATRAgAUQbQAAEUQLQBAEUQLAFAE0QIAFEG0AABFEC0AQBFECwBQBNECABRBtAAARRAtAEARRAsAUATRAgAUQbQAAEUQLQBAEUQLAFAE0QIAFEG0AABFEC0AQBFECwBQBNECABRBtAAARRAtAEARRAsAUATRAgAUQbQAAEUQLQBAEUQLAFAE0QIAFEG0AABFEC0AQBFECwBQBNECABRBtAAARRAtAEARRAsAUATRAgAUQbQAAEUQLQBAEUQLAFAE0QIAFEG0AABFEC0AQBFECwBQBNECABRBtAAARRAtAEARRAsAUATRAgAUQbQAAEUQLQBAEUQLAFAE0QIAFEG0AABFEC0AQBFECwBQBNECABSh0mhpbm7ORRddlMbGxgwdOjQzZ87M7t27q5wEANSoSqNl8+bNmTdvXrZs2ZJHH300b775Zq688socPny4ylkAQA3qW+Un/+Y3v3nExw888ECGDh2aHTt25NJLL61oFQBQi2rqPS0HDhxIkpxxxhkVLwEAak2lV1p+VkdHRxYuXJhp06Zl7Nixx3xOW1tb2trauj5ubW09UfMAgIrVzJWWefPm5ZlnnsmGDRt+7nOam5szaNCgrsfIkSNP4EIAoEo1ES3z58/P1772tXzrW9/KiBEjfu7zlixZkgMHDnQ9WlpaTuBKAKBKld4e6uzszCc+8Yls3Lgxjz/+eEaPHv0Ln9/Q0JCGhoYTtA4AqCWVRsu8efOyfv36fPWrX01jY2NeeeWVJMmgQYMyYMCAKqcBADWm0ttDq1atyoEDBzJ9+vScddZZXY+HHnqoylkAQA2q/PYQAMDxqIk34gIA/F9ECwBQBNECABRBtAAARRAtAEARRAsAUATRAgAUQbQAAEUQLQBAEUQLAFAE0QIAFEG0AABFEC0AQBFECwBQBNECABRBtAAARRAtAEARRAsAUATRAgAUQbQAAEUQLQBAEUQLAFAE0QIAFEG0AABFEC0AQBFECwBQBNECABRBtAAARRAtAEARRAsAUATRAgAUQbQAAEUQLQBAEUQLAFAE0QIAFEG0AABFEC0AQBFECwBQBNECABRBtAAARRAtAEARRAsAUATRAgAUQbQAAEUQLQBAEUQLAFAE0QIAFEG0AABFEC0AQBFECwBQBNECABRBtAAARRAtAEARRAsAUATRAgAUQbQAAEUQLQBAEUQLAFAE0QIAFEG0AABFEC0AQBFECwBQBNECABRBtAAARRAtAEARRAsAUATRAgAUQbQAAEWoiWi59957M2rUqPTv3z9TpkzJ1q1bq54EANSYyqPloYceyqJFi3Lrrbdm586dGT9+fK666qrs27ev6mkAQA2pPFruvvvu3HDDDZkzZ07GjBmT1atX57TTTsvf/d3fVT0NAKghfav85G+88UZ27NiRJUuWdB3r06dPLr/88nznO9856vltbW1pa2vr+vjAgQNJktbW1l7Z19H2eq/8vSejnvzPwHk/fs57NZz3avTUeXfO357e+Df2rb+zs7Pzbb2u0mjZv39/2tvbM2zYsCOODxs2LN/73veOen5zc3OWLVt21PGRI0f22kaOz6CVVS84NTnv1XDeq+G8V6M3z/vBgwczaNCg435+pdHydi1ZsiSLFi3q+rijoyP/8R//kcGDB6eurq7CZSdGa2trRo4cmZaWljQ1NVU955ThvFfDea+G816NU+28d3Z25uDBgxk+fPjbel2l0TJkyJDU19fn1VdfPeL4q6++mjPPPPOo5zc0NKShoeGIY+9617t6dWMtampqOiX+S11rnPdqOO/VcN6rcSqd97dzheUtlb4Rt1+/frnwwguzadOmrmMdHR3ZtGlTpk6dWuEyAKDWVH57aNGiRZk9e3YmTZqUyZMnZ+XKlTl8+HDmzJlT9TQAoIbUf+pTn/pUlQPGjh2bd73rXbn99ttz1113JUnWrVuX97znPVXOqln19fWZPn16+vatvDdPKc57NZz3ajjv1XDe/291nW/3+40AACpQ+Q+XAwA4HqIFACiCaAEAiiBaAIAiiJaC3HvvvRk1alT69++fKVOmZOvWrVVPOqk98cQTueaaazJ8+PDU1dXlK1/5StWTTgnNzc256KKL0tjYmKFDh2bmzJnZvXt31bNOeqtWrcq4ceO6frjZ1KlT841vfKPqWaeUFStWpK6uLgsXLqx6Ss0SLYV46KGHsmjRotx6663ZuXNnxo8fn6uuuir79u2retpJ6/Dhwxk/fnzuvffeqqecUjZv3px58+Zly5YtefTRR/Pmm2/myiuvzOHDh6uedlIbMWJEVqxYkR07dmT79u35wAc+kGuvvTbPPvts1dNOCdu2bcuaNWsybty4qqfUNN/yXIgpU6bkoosuyj333JPkpz85eOTIkfnEJz6RxYsXV7zu5FdXV5eNGzdm5syZVU855bz22msZOnRoNm/enEsvvbTqOaeUM844I5/+9Kdz/fXXVz3lpHbo0KFccMEF+dznPpfbbrstEyZMyMqVfjvksbjSUoA33ngjO3bsyOWXX951rE+fPrn88svzne98p8Jl0PsOHDiQ5Kf/gHJitLe3Z8OGDTl8+LBfqXICzJs3LzNmzDjif+M5Nj92rwD79+9Pe3t7hg0bdsTxYcOG5Xvf+15Fq6D3dXR0ZOHChZk2bVrGjh1b9ZyT3tNPP52pU6fmJz/5Sd75zndm48aNGTNmTNWzTmobNmzIzp07s23btqqnFEG0ADVr3rx5eeaZZ/Ltb3+76imnhPe85z3ZtWtXDhw4kC9/+cuZPXt2Nm/eLFx6SUtLSxYsWJBHH300/fv3r3pOEURLAYYMGZL6+vq8+uqrRxx/9dVXc+aZZ1a0CnrX/Pnz87WvfS1PPPFERowYUfWcU0K/fv1yzjnnJEkuvPDCbNu2LX/zN3+TNWvWVLzs5LRjx47s27cvF1xwQdex9vb2PPHEE7nnnnvS1taW+vr6ChfWHu9pKUC/fv1y4YUXZtOmTV3HOjo6smnTJvebOel0dnZm/vz52bhxYx577LGMHj266kmnrI6OjrS1tVU946R12WWX5emnn86uXbu6HpMmTcqsWbOya9cuwXIMrrQUYtGiRZk9e3YmTZqUyZMnZ+XKlTl8+HDmzJlT9bST1qFDh/L973+/6+N///d/z65du3LGGWfk7LPPrnDZyW3evHlZv359vvrVr6axsTGvvPJKkmTQoEEZMGBAxetOXkuWLMkHP/jBnH322Tl48GDWr1+fxx9/PI888kjV005ajY2NR71Xa+DAgRk8eLD3cP0coqUQv/d7v5fXXnstS5cuzSuvvJIJEybkm9/85lFvzqXnbN++Pe9///u7Pl60aFGSZPbs2XnggQcqWnXyW7VqVZJk+vTpRxy///778/u///snftApYt++fbnuuuvy8ssvZ9CgQRk3blweeeSRXHHFFVVPgy5+TgsAUATvaQEAiiBaAIAiiBYAoAiiBQAogmgBAIogWgCAIogWAKAIogWoKS+88ELq6uqya9euqqcANcYPlwNqSnt7e1577bUMGTIkffv6od3A/ydagJrxxhtvpF+/flXPAGqU20NAr5k+fXrmz5+f+fPnZ9CgQRkyZEhuueWWvPX/lUaNGpXly5fnuuuuS1NTU+bOnXvM20PPPvtsrr766jQ1NaWxsTGXXHJJfvCDH3T9+d/+7d/mve99b/r3759zzz03n/vc50741wr0PtdegV61du3aXH/99dm6dWu2b9+euXPn5uyzz84NN9yQJLnrrruydOnS3Hrrrcd8/YsvvphLL70006dPz2OPPZampqb88z//c/77v/87SbJu3bosXbo099xzTyZOnJinnnoqN9xwQwYOHJjZs2efsK8T6H1uDwG9Zvr06dm3b1+effbZ1NXVJUkWL16chx9+OP/2b/+WUaNGZeLEidm4cWPXa1544YWMHj06Tz31VCZMmJCbb745GzZsyO7du/OOd7zjqM9xzjnnZPny5fnoRz/adey2227L3//93+fJJ5/s/S8SOGHcHgJ61cUXX9wVLEkyderUPP/882lvb0+STJo06Re+fteuXbnkkkuOGSyHDx/OD37wg1x//fV55zvf2fW47bbbjrh9BJwc3B4CKjVw4MBf+OcDBgz4uX926NChJMl9992XKVOmHPFn9fX1v/w4oKaIFqBX/cu//MsRH2/ZsiXvfve7jzsqxo0bl7Vr1+bNN9886mrLsGHDMnz48Pzwhz/MrFmzemwzUJvcHgJ61d69e7No0aLs3r07Dz74YD772c9mwYIFx/36+fPnp7W1NR/5yEeyffv2PP/88/niF7+Y3bt3J0mWLVuW5ubmfOYzn8lzzz2Xp59+Ovfff3/uvvvu3vqSgIq40gL0quuuuy7/9V//lcmTJ6e+vj4LFizI3Llzj/v1gwcPzmOPPZabbrop73vf+1JfX58JEyZk2rRpSZI//MM/zGmnnZZPf/rTuemmmzJw4MCcf/75WbhwYW99SUBFfPcQ0GumT5+eCRMmZOXKlVVPAU4Cbg8BAEUQLQBAEdweAgCK4EoLAFAE0QIAFEG0AABFEC0AQBFECwBQBNECABRBtAAARRAtAEARRAsAUIT/Bx1eDM0MWnxrAAAAAElFTkSuQmCC",
|
55
|
-
"text/plain": [
|
56
|
-
"<Figure size 640x480 with 1 Axes>"
|
57
|
-
]
|
58
|
-
},
|
59
|
-
"execution_count": 12,
|
60
|
-
"metadata": {},
|
61
|
-
"output_type": "execute_result"
|
62
|
-
}
|
63
|
-
],
|
64
|
-
"source": [
|
65
|
-
"bar = charty.to_bar(:price, :sales)\n",
|
66
|
-
"bar.render('sample')"
|
67
|
-
]
|
68
|
-
},
|
69
|
-
{
|
70
|
-
"cell_type": "code",
|
71
|
-
"execution_count": 13,
|
72
|
-
"metadata": {},
|
73
|
-
"outputs": [
|
74
|
-
{
|
75
|
-
"data": {
|
76
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAG0CAYAAAAhJm17AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3X10k/X9//FX2kpJIO0Exk1Hu3BmMQEUaBVlna5sKKIy2c5udEQ7huA2EFk3p3UD7dR1TMfpVAa4G1ELulsYx7PpGArVIQIp3dQlUDYKTKzIObPpHRHbfP/wR36nCpjEJteVT5+Pczw915Xryufdne70yZWriSMajUYFAABggCyrBwAAAOgrhA0AADAGYQMAAIxB2AAAAGMQNgAAwBiEDQAAMAZhAwAAjEHYAAAAYxA2AADAGIQNAAAwBmEDAACMkWP1AKnW09OjI0eOyO12y+FwWD0OAACIQzQaVVtbmwoKCpSVFf91GOPD5siRIyosLLR6DAAAkITDhw9r9OjRcR9vfNi43W5J7/4Pk5eXZ/E0AAAgHuFwWIWFhbHf4/EyPmxOvvyUl5dH2AAAkGESvY2Em4cBAIAxCBsAAGAMwgYAABiDsAEAAMYgbAAAgDEIGwAAYAzCBgAAGIOwAQAAxiBsAACAMQgbAABgDEvDpr6+XrNmzVJBQYEcDoc2btx42mO/8Y1vyOFwqLa2No0TAgCATGJp2HR0dGjixIlauXLlGY/bsGGDduzYoYKCgjRNBgAAMpGlH4I5c+ZMzZw584zHvPbaa7r55pv1zDPP6KqrrkrTZAAAIBPZ+tO9e3p6dP311+vWW2/V+PHj4zonEokoEonEtsPhcKrGAwAYrrOzU6FQKO7ju7q61NzcLI/HI6fTmdBaXq9XLpcr0RHxHrYOm+XLlysnJ0eLFy+O+5yamhpVV1encCoAQH8RCoVUWlqalrUCgYBKSkrSspbJbBs2gUBAP/vZz9TQ0CCHwxH3eVVVVaqsrIxth8NhFRYWpmJEAIDhvF6vAoFA3McHg0H5/X7V1dXJ5/MlvBY+PNuGzfPPP6+jR4+qqKgotq+7u1vf+c53VFtbq+bm5lOel5ubq9zc3DRNCQAwmcvlSuoqis/n4+qLRWwbNtdff72mT5/ea9+MGTN0/fXXa+7cuRZNBQAA7MzSsGlvb9f+/ftj2wcOHFBjY6OGDBmioqIiDR06tNfxZ511lkaOHKlzzz033aMCAIAMYGnY7N69W9OmTYttn7w3pqKiQmvXrrVoKgAAkKksDZvy8nJFo9G4jz/dfTUAAAASnxUFAAAMQtgAAABjEDYAAMAYhA0AADAGYQMAAIxB2AAAAGMQNgAAwBiEDQAAMAZhAwAAjEHYAAAAYxA2AADAGIQNAAAwBmEDAACMQdgAAABjEDYAAMAYhA0AADBGjtUDAACQLk1NTWpra0vZ8weDwV5fU8Xtdqu4uDila2QqwgYA0C80NTVp7NixaVnL7/enfI19+/YRN6dA2AAA+oWTV2rq6urk8/lSskZXV5eam5vl8XjkdDpTskYwGJTf70/pladMRtgAAPoVn8+nkpKSlD1/WVlZyp4bH4ybhwEAgDEIGwAAYAzCBgAAGIOwAQAAxiBsAACAMQgbAABgDMIGAAAYg7ABAADGIGwAAIAxCBsAAGAMwgYAABiDsAEAAMYgbAAAgDEIGwAAYAzCBgAAGIOwAQAAxiBsAACAMSwNm/r6es2aNUsFBQVyOBzauHFj7LETJ07otttu03nnnadBgwapoKBAN9xwg44cOWLhxAAAwM4sDZuOjg5NnDhRK1eufN9jnZ2damho0NKlS9XQ0KA//vGP2rt3rz73uc9ZMCkAAMgEOVYuPnPmTM2cOfOUj+Xn52vz5s299j300EOaMmWKDh06pKKionSMCAAAMoilYZOo1tZWORwOfeQjHzntMZFIRJFIJLYdDofTMRoAwOYc7xzX5JFZcr61TzqSubeYOt/ap8kjs+R457jVo9hSxoTN8ePHddttt+m6665TXl7eaY+rqalRdXV1GicDAGSCge2H1HDTYKn+Jqne6mmS55PUcNNgBdsPSfqk1ePYTkaEzYkTJ/TlL39Z0WhUq1atOuOxVVVVqqysjG2Hw2EVFhamekQAgM0dH1ykkjXtWrdunXxer9XjJC0YCmnOnDn61ZXcknEqtg+bk1Fz8OBBPfvss2e8WiNJubm5ys3NTdN0AIBMEc0ZqD0tPer6yFipYJLV4yStq6VHe1p6FM0ZaPUotmTrsDkZNU1NTXruuec0dOhQq0cCAAA2ZmnYtLe3a//+/bHtAwcOqLGxUUOGDNGoUaP0xS9+UQ0NDXrqqafU3d2tlpYWSdKQIUM0YMAAq8YGAAA2ZWnY7N69W9OmTYttn7w3pqKiQnfddZc2bdokSZo0qfclw+eee07l5eVpmxMAAGQGS8OmvLxc0Wj0tI+f6TEAAID3ytw/5AcAAHgPwgYAABiDsAEAAMYgbAAAgDEIGwAAYAzCBgAAGIOwAQAAxiBsAACAMQgbAABgDMIGAAAYg7ABAADGIGwAAIAxCBsAAGAMwgYAABiDsAEAAMYgbAAAgDFyrB4AAIB06OzslCQ1NDSkbI2uri41NzfL4/HI6XSmZI1gMJiS5zUFYQMA6BdCoZAkaf78+RZP0jfcbrfVI9gSYQMA6Bdmz54tSfJ6vXK5XClZIxgMyu/3q66uTj6fLyVrSO9GTXFxccqeP5MRNgCAfmHYsGG68cYb07KWz+dTSUlJWtZCb9w8DAAAjEHYAAAAYxA2AADAGIQNAAAwBmEDAACMQdgAAABjEDYAAMAYhA0AADAGYQMAAIxB2AAAAGMQNgAAwBiEDQAAMAZhAwAAjEHYAAAAYxA2AADAGIQNAAAwBmEDAACMYWnY1NfXa9asWSooKJDD4dDGjRt7PR6NRrVs2TKNGjVKTqdT06dPV1NTk0XTAgAAu7M0bDo6OjRx4kStXLnylI//5Cc/0QMPPKDVq1frpZde0qBBgzRjxgwdP348zZMCAIBMkGPl4jNnztTMmTNP+Vg0GlVtba1+8IMf6JprrpEkPfbYYxoxYoQ2btyoa6+9Np2jAgCADGBp2JzJgQMH1NLSounTp8f25efn66KLLtKLL7542rCJRCKKRCKx7XA4nPJZAQBm6uzsVCgUivv4YDDY62sivF6vXC5XwuehN9uGTUtLiyRpxIgRvfaPGDEi9tip1NTUqLq6OqWzAQD6h1AopNLS0oTP8/v9CZ8TCARUUlKS8HnozbZhk6yqqipVVlbGtsPhsAoLCy2cCACQqbxerwKBQNzHd3V1qbm5WR6PR06nM+G18OHZNmxGjhwpSXrjjTc0atSo2P433nhDkyZNOu15ubm5ys3NTfl8AADzuVyuhK+ilJWVpWgaxMO272MzZswYjRw5Ulu2bIntC4fDeumllzR16lQLJwMAAHZl6RWb9vZ27d+/P7Z94MABNTY2asiQISoqKtKSJUt0zz33qLi4WGPGjNHSpUtVUFCg2bNnWzg1AACwK0vDZvfu3Zo2bVps++S9MRUVFVq7dq2+973vqaOjQwsWLNBbb72lT33qU3r66ac1cOBAq0YGAAA25ohGo1Grh0ilcDis/Px8tba2Ki8vz+pxAABAHJL9/W3be2wAAAASRdgAAABjEDYAAMAYhA0AADAGYQMAAIxB2AAAAGMQNgAAwBiEDQAAMAZhAwAAjEHYAAAAYxA2AADAGIQNAAAwBmEDAACMQdgAAABjEDYAAMAYhA0AADBGjtUDAMBJnZ2dCoVCcR/f1dWl5uZmeTweOZ3OuM/zer1yuVzJjAjA5ggbALYRCoVUWlqa8nUCgYBKSkpSvg6A9CNsANiG1+tVIBCI+/hgMCi/36+6ujr5fL6E1gFgJsIGgG24XK6krqT4fD6uwACQxM3DAADAIIQNAAAwBmEDAACMQdgAAABjEDYAAMAYhA0AADAGYQMAAIxB2AAAAGMQNgAAwBiEDQAAMAZhAwAAjEHYAAAAYxA2AADAGIQNAAAwBmEDAACMQdgAAABjEDYAAMAYtg6b7u5uLV26VGPGjJHT6dQnPvEJ3X333YpGo1aPBgAAbCjH6gHOZPny5Vq1apUeffRRjR8/Xrt379bcuXOVn5+vxYsXWz0eAACwGVuHzfbt23XNNdfoqquukiR5PB498cQT2rlzp8WTAQAAO7J12Hzyk5/Uww8/rH379mns2LH6xz/+oRdeeEErVqw47TmRSESRSCS2HQ6H0zEqgFNoampSW1tbyp4/GAz2+poqbrdbxcXFKV0DQN+wddjcfvvtCofD8nq9ys7OVnd3t+69917NmTPntOfU1NSouro6jVMCOJWmpiaNHTs2LWv5/f6Ur7Fv3z7iBsgAtg6b3/72t1q3bp3Wr1+v8ePHq7GxUUuWLFFBQYEqKipOeU5VVZUqKytj2+FwWIWFhekaGcD/c/JKTV1dnXw+X0rW6OrqUnNzszwej5xOZ0rWCAaD8vv9Kb3yBKDv2Dpsbr31Vt1+++269tprJUnnnXeeDh48qJqamtOGTW5urnJzc9M5JoAz8Pl8KikpSdnzl5WVpey5AWQeW/+5d2dnp7Kyeo+YnZ2tnp4eiyYCAAB2ZusrNrNmzdK9996roqIijR8/Xnv27NGKFSv09a9/3erRAACADdk6bB588EEtXbpU3/rWt3T06FEVFBTopptu0rJly6weDQAA2JCtw8btdqu2tla1tbVWjwIAADKAre+xAQAASARhAwAAjJFU2Bw+fFj//e9/Y9s7d+7UkiVL9PDDD/fZYAAAAIlKKmy++tWv6rnnnpMktbS06LLLLtPOnTv1/e9/Xz/84Q/7dEAAAIB4JRU2r7zyiqZMmSLp3XcHnjBhgrZv365169Zp7dq1fTkfAABA3JIKmxMnTsTe3fdvf/ubPve5z0mSvF6vXn/99b6bDgAAIAFJhc348eO1evVqPf/889q8ebOuuOIKSdKRI0c0dOjQPh0QAAAgXkmFzfLly7VmzRqVl5fruuuu08SJEyVJmzZtir1EBQAAkG5JvUFfeXm5jh07pnA4rLPPPju2f8GCBXK5XH02HAAAQCKSfh+baDSqQCCgNWvWqK2tTZI0YMAAwgYAAFgmqSs2Bw8e1BVXXKFDhw4pEonosssuk9vt1vLlyxWJRLR69eq+nhMAAOADJXXF5pZbbtEFF1yg//3vf3I6nbH9n//857Vly5Y+Gw4AACARSV2xef7557V9+3YNGDCg136Px6PXXnutTwYDAABIVFJXbHp6etTd3f2+/f/973/ldrs/9FAAAADJSCpsLr/8ctXW1sa2HQ6H2tvbdeedd+rKK6/ss+EAAAASkdRLUT/96U81Y8YMjRs3TsePH9dXv/pVNTU1adiwYXriiSf6ekYAAIC4JBU2o0eP1j/+8Q89+eST+uc//6n29nbNmzdPc+bM6XUzMYD+y/HOcU0emSXnW/ukI0m/s4TlnG/t0+SRWXK8c9zqUQDEIamwkaScnBz5/f6+nAWAQQa2H1LDTYOl+pukequnSZ5PUsNNgxVsPyTpk1aPA+ADxB02mzZtivtJT34oJoD+6/jgIpWsade6devk83qtHidpwVBIc+bM0a+uLLJ6FABxiDtsZs+eHddxDofjlH8xBaB/ieYM1J6WHnV9ZKxUMMnqcZLW1dKjPS09iuYMtHoUAHGIO2x6enpSOQcAAMCHlrl39AEAALxH0jcPd3R0aNu2bTp06JDefvvtXo8tXrz4Qw8GAACQqKTCZs+ePbryyivV2dmpjo4ODRkyRMeOHZPL5dLw4cMJGwAAYImkXor69re/rVmzZsU+BHPHjh06ePCgSktLdf/99/f1jAAAAHFJKmwaGxv1ne98R1lZWcrOzlYkElFhYaF+8pOf6I477ujrGQEAAOKSVNicddZZysp699Thw4fr0KFDkqT8/HwdPny476YDAABIQFL32EyePFm7du1ScXGxPv3pT2vZsmU6duyYHn/8cU2YMKGvZwQAAIhLUldsfvSjH2nUqFGSpHvvvVdnn322vvnNb+rYsWNas2ZNnw4IAAAQr6Su2IwfP17RaFTSuy9FrV69Whs2bNC4ceM0aVLmvsMoAADIbEldsbnmmmv02GOPSZLeeustXXzxxVqxYoVmz56tVatW9emAAAAA8UoqbBoaGnTJJZdIkn7/+99rxIgROnjwoB577DE98MADfTogAABAvJIKm87OTrndbknSX//6V33hC19QVlaWLr74Yh08eLBPBwQAAIhXUmFzzjnnaOPGjTp8+LCeeeYZXX755ZKko0ePKi8vr08HBAAAiFdSYbNs2TJ997vflcfj0UUXXaSpU6dKevfqzeTJk/t0QAAAgHgl9VdRX/ziF/WpT31Kr7/+uiZOnBjb/9nPflaf//zn+2w4AACARCT96d4jR47UyJEje+2bMmXKhx4IAAAgWUm9FJVOr732mvx+v4YOHSqn06nzzjtPu3fvtnosAABgQ0lfsUmH//3vfyorK9O0adP0l7/8RR/96EfV1NSks88+2+rRAACADdk6bJYvX67CwkI98sgjsX1jxoyxcCIAAGBntg6bTZs2acaMGfrSl76kbdu26WMf+5i+9a1vaf78+ac9JxKJKBKJxLbD4XA6RgXwHp2dnZLefUPPVOnq6lJzc7M8Ho+cTmdK1ggGgyl5XgCpYeuw+c9//qNVq1apsrJSd9xxh3bt2qXFixdrwIABqqioOOU5NTU1qq6uTvOkAN4rFApJ0hn/IZJJTr4pKQB7c0RPfpqlDQ0YMEAXXHCBtm/fHtu3ePFi7dq1Sy+++OIpzznVFZvCwkK1trby5oFAGh07dkwbN26U1+uVy+VKyRrBYFB+v191dXXy+XwpWUN6N2qKi4tT9vwA3i8cDis/Pz/h39+2vmIzatQojRs3rtc+n8+nP/zhD6c9Jzc3V7m5uakeDcAHGDZsmG688ca0rOXz+VRSUpKWtQDYm63/3LusrEx79+7ttW/fvn36+Mc/btFEAADAzmwdNt/+9re1Y8cO/ehHP9L+/fu1fv16Pfzww1q4cKHVowEAABuyddhceOGF2rBhg5544glNmDBBd999t2prazVnzhyrRwMAADZk63tsJOnqq6/W1VdfbfUYAAAgA9j6ig0AAEAiCBsAAGAMwgYAABiDsAEAAMYgbAAAgDEIGwAAYAzCBgAAGIOwAQAAxiBsAACAMQgbAABgDMIGAAAYg7ABAADGIGwAAIAxCBsAAGAMwgYAABiDsAEAAMbIsXoAADips7NToVAo7uODwWCvr/Hyer1yuVwJnQMgMxA2AGwjFAqptLQ04fP8fn9CxwcCAZWUlCS8DgD7I2wA2IbX61UgEIj7+K6uLjU3N8vj8cjpdCa0DgAzOaLRaNTqIVIpHA4rPz9fra2tysvLs3ocAAAQh2R/f3PzMAAAMAZhAwAAjEHYAAAAYxA2AADAGIQNAAAwBmEDAACMQdgAAABjEDYAAMAYhA0AADAGYQMAAIxB2AAAAGMQNgAAwBiEDQAAMAZhAwAAjEHYAAAAYxA2AADAGIQNAAAwRkaFzY9//GM5HA4tWbLE6lEAAIANZUzY7Nq1S2vWrNH5559v9SgAAMCmMiJs2tvbNWfOHP3iF7/Q2WefbfU4AADApnKsHiAeCxcu1FVXXaXp06frnnvuOeOxkUhEkUgkth0Oh1M9Xkbq7OxUKBRK6Jyuri41NzfL4/HI6XTGfZ7X65XL5Up0RAAAEmb7sHnyySfV0NCgXbt2xXV8TU2NqqurUzxV5guFQiotLU3LWoFAQCUlJWlZCwDQv9k6bA4fPqxbbrlFmzdv1sCBA+M6p6qqSpWVlbHtcDiswsLCVI2YsbxerwKBQELnBINB+f1+1dXVyefzJbQWAADpYOuwCQQCOnr0aK9/7Xd3d6u+vl4PPfSQIpGIsrOze52Tm5ur3NzcdI+acVwuV9JXUXw+H1dgAAC2ZOuw+exnP6uXX3651765c+fK6/Xqtttue1/UAACA/s3WYeN2uzVhwoRe+wYNGqShQ4e+bz8AAEBG/Lk3AABAPGx9xeZUtm7davUIAADAprhiAwAAjEHYAAAAYxA2AADAGIQNAAAwBmEDAACMQdgAAABjEDYAAMAYhA0AADAGYQMAAIxB2AAAAGMQNgAAwBiEDQAAMAZhAwAAjEHYAAAAYxA2AADAGIQNAAAwRo7VA6DvNDU1qa2tLWXPHwwGe31NBbfbreLi4pQ9PwDAbISNIZqamjR27Ni0rOX3+1P6/Pv27SNuAABJIWwMcfJKTV1dnXw+X0rW6OrqUnNzszwej5xOZ58/fzAYlN/vT+lVJwCA2Qgbw/h8PpWUlKTs+cvKylL23AAAfFjcPAwAAIxB2AAAAGMQNgAAwBiEDQAAMAZhAwAAjEHYAAAAYxA2AADAGIQNAAAwBmEDAACMQdgAAABjEDYAAMAYhA0AADAGYQMAAIxB2AAAAGMQNgAAwBiEDQAAMAZhAwAAjGHrsKmpqdGFF14ot9ut4cOHa/bs2dq7d6/VYwEAAJuyddhs27ZNCxcu1I4dO7R582adOHFCl19+uTo6OqweDQAA2FCO1QOcydNPP91re+3atRo+fLgCgYAuvfRSi6YCAAB2Zeuwea/W1lZJ0pAhQ057TCQSUSQSiW2Hw+GUz2UHjneOa/LILDnf2icdsfWFuNNyvrVPk0dmyfHOcatHAQBkqIwJm56eHi1ZskRlZWWaMGHCaY+rqalRdXV1Giezh4Hth9Rw02Cp/iap3uppkuOT1HDTYAXbD0n6pNXjAAAyUMaEzcKFC/XKK6/ohRdeOONxVVVVqqysjG2Hw2EVFhamejzLHR9cpJI17Vq3bp18Xq/V4yQlGAppzpw5+tWVRVaPAgDIUBkRNosWLdJTTz2l+vp6jR49+ozH5ubmKjc3N02T2Uc0Z6D2tPSo6yNjpYJJVo+TlK6WHu1p6VE0Z6DVowAAMpStwyYajermm2/Whg0btHXrVo0ZM8bqkQAAgI3ZOmwWLlyo9evX609/+pPcbrdaWlokSfn5+XI6nRZPBwAA7MbWfz6zatUqtba2qry8XKNGjYr995vf/Mbq0QAAgA3Z+opNNBq1egQAAJBBbH3FBgAAIBGEDQAAMAZhAwAAjEHYAAAAYxA2AADAGIQNAAAwBmEDAACMQdgAAABjEDYAAMAYhA0AADAGYQMAAIxB2AAAAGMQNgAAwBiEDQAAMAZhAwAAjEHYAAAAY+RYPQD6RmdnpySpoaEhZWt0dXWpublZHo9HTqezz58/GAz2+XMCAPoXwsYQoVBIkjR//nyLJ/nw3G631SMAADIUYWOI2bNnS5K8Xq9cLldK1ggGg/L7/aqrq5PP50vJGm63W8XFxSl5bgCA+QgbQwwbNkw33nhjWtby+XwqKSlJy1oAACSCm4cBAIAxCBsAAGAMwgYAABiDsAEAAMYgbAAAgDEIGwAAYAzCBgAAGIOwAQAAxiBsAACAMQgbAABgDMIGAAAYg7ABAADGIGwAAIAxCBsAAGAMwgYAABiDsAEAAMYgbAAAgDEyImxWrlwpj8ejgQMH6qKLLtLOnTutHgkAANiQ7cPmN7/5jSorK3XnnXeqoaFBEydO1IwZM3T06FGrRwMAADZj+7BZsWKF5s+fr7lz52rcuHFavXq1XC6Xfv3rX1s9GgAAsJkcqwc4k7fffluBQEBVVVWxfVlZWZo+fbpefPHFU54TiUQUiURi2+FwOOVzZqLOzk6FQqGEzgkGg72+xsvr9crlciV0DgAAybB12Bw7dkzd3d0aMWJEr/0jRow47S/lmpoaVVdXp2O8jBYKhVRaWprUuX6/P6HjA4GASkpKkloLAIBE2DpsklFVVaXKysrYdjgcVmFhoYUT2ZPX61UgEEjonK6uLjU3N8vj8cjpdCa0FgAA6WDrsBk2bJiys7P1xhtv9Nr/xhtvaOTIkac8Jzc3V7m5uekYL6O5XK6krqKUlZWlYBoAAPqGrW8eHjBggEpLS7Vly5bYvp6eHm3ZskVTp061cDIAAGBHtr5iI0mVlZWqqKjQBRdcoClTpqi2tlYdHR2aO3eu1aMBAACbsX3YfOUrX9Gbb76pZcuWqaWlRZMmTdLTTz/9vhuKAQAAHNFoNGr1EKkUDoeVn5+v1tZW5eXlWT0OAACIQ7K/v219jw0AAEAiCBsAAGAMwgYAABiDsAEAAMYgbAAAgDEIGwAAYAzCBgAAGIOwAQAAxiBsAACAMWz/kQof1sk3Vg6HwxZPAgAA4nXy93aiH5BgfNi0tbVJkgoLCy2eBAAAJKqtrU35+flxH2/8Z0X19PToyJEjcrvdcjgcVo+T0cLhsAoLC3X48GE+dwu2wM8k7Iafyb4TjUbV1tamgoICZWXFf+eM8VdssrKyNHr0aKvHMEpeXh7/h4Wt8DMJu+Fnsm8kcqXmJG4eBgAAxiBsAACAMbLvuuuuu6weApkjOztb5eXlyskx/lVMZAh+JmE3/Exay/ibhwEAQP/BS1EAAMAYhA0AADAGYQMAAIxB2AAAAGMQNvhA9fX1mjVrlgoKCuRwOLRx40arR0I/V1NTowsvvFBut1vDhw/X7NmztXfvXqvHQj+2atUqnX/++bE35ps6dar+8pe/WD1Wv0TY4AN1dHRo4sSJWrlypdWjAJKkbdu2aeHChdqxY4c2b96sEydO6PLLL1dHR4fVo6GfGj16tH784x8rEAho9+7d+sxnPqNrrrlGr776qtWj9Tv8uTcS4nA4tGHDBs2ePdvqUYCYN998U8OHD9e2bdt06aWXWj0OIEkaMmSI7rvvPs2bN8/qUfoV3j0IQMZrbW2V9O4vEsBq3d3d+t3vfqeOjg5NnTrV6nH6HcIGQEbr6enRkiVLVFZWpgkTJlg9Dvqxl19+WVOnTtXx48c1ePBgbdiwQePGjbN6rH6HsAGQ0RYuXKhXXnlFL7zwgtWjoJ8799xz1djYqNbWVv3+979XRUWFtm3bRtykGWEDIGMtWrRITz31lOrr6zV69Girx0E/N2DAAJ1zzjmSpNLSUu3atUs/+9nPtGbNGosn618IGwAZJxqN6uabb9aGDRu0detWjRkzxupwW4TIAAAEGUlEQVSRgPfp6elRJBKxeox+h7DBB2pvb9f+/ftj2wcOHFBjY6OGDBmioqIiCydDf7Vw4UKtX79ef/rTn+R2u9XS0iJJys/Pl9PptHg69EdVVVWaOXOmioqK1NbWpvXr12vr1q165plnrB6t3+HPvfGBtm7dqmnTpr1vf0VFhdauXZv+gdDvORyOU+5/5JFH9LWvfS29wwCS5s2bpy1btuj1119Xfn6+zj//fN1222267LLLrB6t3yFsAACAMXjnYQAAYAzCBgAAGIOwAQAAxiBsAACAMQgbAABgDMIGAAAYg7ABAADGIGwAZJzm5mY5HA41NjZaPQoAm+EN+gBknO7ubr355psaNmyYcnL4ZBgA/x9hAyCjvP322xowYIDVYwCwKV6KAmCp8vJyLVq0SIsWLVJ+fr6GDRumpUuX6uS/uTwej+6++27dcMMNysvL04IFC075UtSrr76qq6++Wnl5eXK73brkkkv073//O/b4L3/5S/l8Pg0cOFBer1c///nP0/69Akg9ruECsNyjjz6qefPmaefOndq9e7cWLFigoqIizZ8/X5J0//33a9myZbrzzjtPef5rr72mSy+9VOXl5Xr22WeVl5env//973rnnXckSevWrdOyZcv00EMPafLkydqzZ4/mz5+vQYMGqaKiIm3fJ4DU46UoAJYqLy/X0aNH9eqrr8Y+tfv222/Xpk2b9K9//Usej0eTJ0/Whg0bYuc0NzdrzJgx2rNnjyZNmqQ77rhDTz75pPbu3auzzjrrfWucc845uvvuu3XdddfF9t1zzz3685//rO3bt6f+mwSQNrwUBcByF198cSxqJGnq1KlqampSd3e3JOmCCy444/mNjY265JJLThk1HR0d+ve//6158+Zp8ODBsf/uueeeXi9VATADL0UBsL1Bgwad8XGn03nax9rb2yVJv/jFL3TRRRf1eiw7O/vDDwfAVggbAJZ76aWXem3v2LFDxcXFcYfH+eefr0cffVQnTpx431WbESNGqKCgQP/5z380Z86cPpsZgD3xUhQAyx06dEiVlZXau3evnnjiCT344IO65ZZb4j5/0aJFCofDuvbaa7V79241NTXp8ccf1969eyVJ1dXVqqmp0QMPPKB9+/bp5Zdf1iOPPKIVK1ak6lsCYBGu2ACw3A033KCuri5NmTJF2dnZuuWWW7RgwYK4zx86dKieffZZ3Xrrrfr0pz+t7OxsTZo0SWVlZZKkG2+8US6XS/fdd59uvfVWDRo0SOedd56WLFmSqm8JgEX4qygAliovL9ekSZNUW1tr9SgADMBLUQAAwBiEDQAAMAYvRQEAAGNwxQYAABiDsAEAAMYgbAAAgDEIGwAAYAzCBgAAGIOwAQAAxiBsAACAMQgbAABgDMIGAAAY4/8An8PN7rBni6oAAAAASUVORK5CYII=",
|
77
|
-
"text/plain": [
|
78
|
-
"<Figure size 640x480 with 1 Axes>"
|
79
|
-
]
|
80
|
-
},
|
81
|
-
"execution_count": 13,
|
82
|
-
"metadata": {},
|
83
|
-
"output_type": "execute_result"
|
84
|
-
}
|
85
|
-
],
|
86
|
-
"source": [
|
87
|
-
"box_plot = charty.to_box_plot(:price, :sales)\n",
|
88
|
-
"box_plot.render('sample')"
|
89
|
-
]
|
90
|
-
},
|
91
|
-
{
|
92
|
-
"cell_type": "code",
|
93
|
-
"execution_count": 14,
|
94
|
-
"metadata": {},
|
95
|
-
"outputs": [
|
96
|
-
{
|
97
|
-
"data": {
|
98
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG0CAYAAAA7Go31AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xt8FPW9//H35rYJmA0I5EIJEAG5hDsIBvQALRiVesRzfrbkoNAC3goPiBeUeCqCqJFWKd4KKJWrysFa0CMIBCgoJAgIsYA1XE1CSEL1QDbhssBmfn/4cNtIgsmSZLJfXs/HY/6Y736/M5+v47LvzMzOOizLsgQAAGCgILsLAAAAqCsEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwVojdBdS38vJyHT9+XJGRkXI4HHaXAwAAqsGyLJWWlqply5YKCqr+eZqrLugcP35c8fHxdpcBAAD8kJ+fr1atWlW7/1UXdCIjIyV99x/K5XLZXA0AAKgOt9ut+Ph43+d4dV11Qef7y1Uul4ugAwBAgKnpbSfcjAwAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxrI16JSWlio1NVVt2rRRRESEBgwYoJ07d152zObNm9W7d285nU61b99eixYtqp9iAQBAwLE16IwfP14ZGRlaunSp9u7dq1tuuUVDhw5VQUFBpf2PHj2q4cOHa8iQIcrOzlZqaqrGjx+vdevW1XPlAADgXx06Uaq/7D6mdz7L1a6v/08XveV2lyRJcliWZdmx47NnzyoyMlIffPCBhg8f7mvv06ePbrvtNj377LOXjHniiSe0evVq7du3z9c2cuRInTp1SmvXrq3Wft1ut6KiolRSUsKPegIAUAt2553Uu5/lqfTcRTkcUrDDoUEdW+j/9WlV4x/hrIq/n9+2ndG5ePGivF6vwsPDK7RHRERo69atlY7JysrS0KFDK7QlJycrKyurzuoEAABVu+gt14Yvi+W5WK6OsZG6PiZS1zYO0/Yj3+rYybN2l2df0ImMjFRSUpJmzpyp48ePy+v1atmyZcrKylJhYWGlY4qKihQTE1OhLSYmRm63W2fPVv4f0+PxyO12V1gAAEDtKPNc1DdlHjVtFOpra9IoVGWei/r29HkbK/uOrffoLF26VJZl6Sc/+YmcTqdeeeUVpaSkKCio9spKT09XVFSUb4mPj6+1bQMAcLVr7AzRtY3DdOrMBV/bqbMX1NgZomaNw2ys7Du2Bp127dppy5YtKisrU35+vnbs2KELFy7ouuuuq7R/bGysiouLK7QVFxfL5XIpIiKi0jFpaWkqKSnxLfn5+bU+DwAArlahwUEa1iVGocEO5RS5dfBEqb4tO69+ba9Vq6aVfzbXpxC7C5Ckxo0bq3Hjxjp58qTWrVun3/3ud5X2S0pK0po1ayq0ZWRkKCkpqcptO51OOZ3OWq0XAAD8U+/WTRUZHqov8k/Jc7Fc18dEqlfrJrV2I/KVsO1bV5K0bt06WZaljh076tChQ5oyZYrCw8P16aefKjQ0VGlpaSooKNCSJUskfff18q5du2rChAkaO3asNm3apEmTJmn16tVKTk6u1j751hUAAIEn4L51JUklJSWaMGGCOnXqpNGjR+umm27SunXrFBr63Q1NhYWFysvL8/VPSEjQ6tWrlZGRoR49euill17SggULqh1yAADA1cXWMzp24IwOAACBJyDP6AAAANQlgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLFsDTper1dPPfWUEhISFBERoXbt2mnmzJmyLKvKMZs3b5bD4bhkKSoqqsfKAQBAIAixc+ezZs3S3LlztXjxYiUmJmrXrl369a9/raioKE2aNOmyY3NycuRyuXzr0dHRdV0uAAAIMLYGnczMTN15550aPny4JKlt27Z69913tWPHjh8dGx0drSZNmtR1iQAAIIDZeulqwIAB2rhxow4cOCBJ+uKLL7R161bddtttPzq2Z8+eiouL07Bhw7Rt27Yq+3k8Hrnd7goLAAC4Oth6Rmfq1Klyu93q1KmTgoOD5fV69dxzz2nUqFFVjomLi9O8efPUt29feTweLViwQIMHD9Znn32m3r17X9I/PT1dM2bMqMtpAACABsphXe7O3zq2fPlyTZkyRb///e+VmJio7Oxspaamavbs2RozZky1tzNo0CC1bt1aS5cuveQ1j8cjj8fjW3e73YqPj1dJSUmFe3wAAEDD5Xa7FRUVVePPb1vP6EyZMkVTp07VyJEjJUndunVTbm6u0tPTaxR0+vXrp61bt1b6mtPplNPprJV6AQBAYLH1Hp0zZ84oKKhiCcHBwSovL6/RdrKzsxUXF1ebpQEAAAPYekbnjjvu0HPPPafWrVsrMTFRe/bs0ezZszV27Fhfn7S0NBUUFGjJkiWSpDlz5ighIUGJiYk6d+6cFixYoE2bNmn9+vV2TQMAADRQtgadV199VU899ZR+85vf6MSJE2rZsqUeeOABTZs2zdensLBQeXl5vvXz58/r0UcfVUFBgRo1aqTu3btrw4YNGjJkiB1TAAAADZitNyPbwd+bmQAAgH38/fzmt64AAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMayNeh4vV499dRTSkhIUEREhNq1a6eZM2fKsqzLjtu8ebN69+4tp9Op9u3ba9GiRfVTMAAACCghdu581qxZmjt3rhYvXqzExETt2rVLv/71rxUVFaVJkyZVOubo0aMaPny4HnzwQb399tvauHGjxo8fr7i4OCUnJ9fzDAAAteH/Tp/X5pwTyikqVbNrwjSwfXMltoyyuywYwGH92OmTOvTzn/9cMTEx+tOf/uRr+8///E9FRERo2bJllY554okntHr1au3bt8/XNnLkSJ06dUpr16790X263W5FRUWppKRELpfryicBALgi5y54NXfzIf29sFSu8FCdOe/VNeHBGnfTdeoYG2l3eWgg/P38tvXS1YABA7Rx40YdOHBAkvTFF19o69atuu2226ock5WVpaFDh1ZoS05OVlZWVqX9PR6P3G53hQUA0HAcKC7VoRNluq5FY/2kaYTaRzdW6bmL2nH0W7tLgwFsvXQ1depUud1uderUScHBwfJ6vXruuec0atSoKscUFRUpJiamQltMTIzcbrfOnj2riIiICq+lp6drxowZdVI/AODKnTnvlbdcCgv+7m9vh8OhsJAglZy9aHNlMIGtZ3RWrFiht99+W++88452796txYsX68UXX9TixYtrbR9paWkqKSnxLfn5+bW2bQDAlWvTrJFcESE6fuqcyi1Lpz0Xde6CV53juGyFK2frGZ0pU6Zo6tSpGjlypCSpW7duys3NVXp6usaMGVPpmNjYWBUXF1doKy4ulsvluuRsjiQ5nU45nc7aLx4AUCvioiI0vFucPt5XpIMnSuUMCdYNba9VUrtmdpcGA9gadM6cOaOgoIonlYKDg1VeXl7lmKSkJK1Zs6ZCW0ZGhpKSkuqkRgBA3RvUMVpdWkap4NRZXeMMUULzxgoOcthdFgxga9C544479Nxzz6l169ZKTEzUnj17NHv2bI0dO9bXJy0tTQUFBVqyZIkk6cEHH9Rrr72mxx9/XGPHjtWmTZu0YsUKrV692q5pAABqQYtIp1pEcgYetcvWoPPqq6/qqaee0m9+8xudOHFCLVu21AMPPKBp06b5+hQWFiovL8+3npCQoNWrV+vhhx/Wyy+/rFatWmnBggU8QwcAAFzC1ufo2IHn6AAAEHgC8jk6AAAAdYmgAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLFuDTtu2beVwOC5ZJkyYUGn/RYsWXdI3PDy8nqsGAACBIsTOne/cuVNer9e3vm/fPg0bNkx33313lWNcLpdycnJ86w6Ho05rBAAAgcvWoNOiRYsK6y+88ILatWunQYMGVTnG4XAoNja2rksDAAAGaDD36Jw/f17Lli3T2LFjL3uWpqysTG3atFF8fLzuvPNO7d+//7Lb9Xg8crvdFRYAAHB1aDBBZ9WqVTp16pR+9atfVdmnY8eOeuutt/TBBx9o2bJlKi8v14ABA3Ts2LEqx6SnpysqKsq3xMfH10H1AACgIXJYlmXZXYQkJScnKywsTP/7v/9b7TEXLlxQ586dlZKSopkzZ1bax+PxyOPx+Nbdbrfi4+NVUlIil8t1xXUDAIC653a7FRUVVePPb1vv0flebm6uNmzYoL/85S81GhcaGqpevXrp0KFDVfZxOp1yOp1XWiIAAAhADeLS1cKFCxUdHa3hw4fXaJzX69XevXsVFxdXR5UBAIBAZnvQKS8v18KFCzVmzBiFhFQ8wTR69GilpaX51p955hmtX79eR44c0e7du3XPPfcoNzdX48ePr++yAQBAALD90tWGDRuUl5ensWPHXvJaXl6egoL+mcVOnjyp++67T0VFRWratKn69OmjzMxMdenSpT5LBgAAAaLB3IxcX/y9mQkAANjH389v2y9dAQAA1BWCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIzlV9DJz8/XsWPHfOs7duxQamqq3njjjVorDAAA4Er5FXT+67/+S3/9618lSUVFRRo2bJh27Nih//7v/9YzzzxTqwUCAAD4y6+gs2/fPvXr10+StGLFCnXt2lWZmZl6++23tWjRotqsDwAAwG9+BZ0LFy7I6XRKkjZs2KB///d/lyR16tRJhYWFtVcdAADAFfAr6CQmJmrevHn69NNPlZGRoVtvvVWSdPz4cTVr1qxWCwQAAPCXX0Fn1qxZmj9/vgYPHqyUlBT16NFDkvThhx/6LmkBAADYzWFZluXPQK/XK7fbraZNm/ravv76azVq1EjR0dG1VmBtc7vdioqKUklJiVwul93lAACAavD389vv5+hYlqXPP/9c8+fPV2lpqSQpLCxMjRo18neTAAAAtSrEn0G5ubm69dZblZeXJ4/Ho2HDhikyMlKzZs2Sx+PRvHnzartOAACAGvPrjM7kyZPVt29fnTx5UhEREb72u+66Sxs3bqy14gAAAK6EX2d0Pv30U2VmZiosLKxCe9u2bVVQUFArhQEAAFwpv87olJeXy+v1XtJ+7NgxRUZGVns7bdu2lcPhuGSZMGFClWPee+89derUSeHh4erWrZvWrFnjzxQAGOj8xXKVeS7Kz+9YADCQX0Hnlltu0Zw5c3zrDodDZWVlevrpp3X77bdXezs7d+5UYWGhb8nIyJAk3X333ZX2z8zMVEpKisaNG6c9e/ZoxIgRGjFihPbt2+fPNAAYorzc0sa/F2vmR1/quY++1Nwth3XCfc7usgA0AH59vfzYsWNKTk6WZVk6ePCg+vbtq4MHD6p58+b65JNP/P56eWpqqj766CMdPHhQDofjktd/+ctf6vTp0/roo498bTfeeKN69uxZ7Rug+Xo5YJ6sw9/qnc9yFR4arPDQYJ1wn1OXli49MKidwkOD7S4PQC3w9/Pbr3t0WrVqpS+++ELLly/X3/72N5WVlWncuHEaNWpUhZuTa+L8+fNatmyZHnnkkUpDjiRlZWXpkUceqdCWnJysVatWVbldj8cjj8fjW3e73X7VB6Dh+vJ4iSxJLZt89+9PRGiwjvzjtIrd59SmWWN7iwNgK7+CjiSFhITonnvuqbVCVq1apVOnTulXv/pVlX2KiooUExNToS0mJkZFRUVVjklPT9eMGTNqq0wADZDD4dC/npsutyzJITlU+R9NAK4e1Q46H374YbU3+v2PfNbEn/70J912221q2bJljcdeTlpaWoWzQG63W/Hx8bW6DwD26hEfpS+OnVLe/51RRGiwvinzqEd8E8VGhdtdGgCbVTvojBgxolr9HA5Hpd/Iupzc3Fxt2LBBf/nLXy7bLzY2VsXFxRXaiouLFRsbW+UYp9Pp+6V1AGbq3bqpPBfKtemrE/Jc9CqpXTPd2fMnCgvx++HvAAxR7aBTXl5eZ0UsXLhQ0dHRGj58+GX7JSUlaePGjUpNTfW1ZWRkKCkpqc5qA9DwORwODWjfXEntmuliuaXQYAIOgO/Y/q9BeXm5Fi5cqDFjxigkpGLuGj16tNLS0nzrkydP1tq1a/XSSy/pq6++0vTp07Vr1y5NnDixvssG0AA5HA5CDoAK/L4Z+fTp09qyZYvy8vJ0/vz5Cq9NmjSp2tvZsGGD8vLyNHbs2Etey8vLU1DQP//RGjBggN555x399re/1ZNPPqkOHTpo1apV6tq1q7/TAAAABvPrOTp79uzR7bffrjNnzuj06dO69tpr9c0336hRo0aKjo7WkSNH6qLWWsFzdAAACDz+fn77dY734Ycf1h133OH7Uc/t27crNzdXffr00YsvvujPJgEAAGqdX0EnOztbjz76qIKCghQcHCyPx6P4+Hj97ne/05NPPlnbNQIAAPjFr6ATGhrqu3cmOjpaeXl5kqSoqCjl5+fXXnUAAABXwK+bkXv16qWdO3eqQ4cOGjRokKZNm6ZvvvlGS5cu5cZgAADQYPh1Ruf5559XXFycJOm5555T06ZN9dBDD+mbb77R/Pnza7VAAAAAf/l1RicxMVHff1krOjpa8+bN08qVK9WlSxf17NmzVgsEAADwl19ndO68804tWbJEknTq1CndeOONmj17tkaMGKG5c+fWaoEAAAD+8ivo7N69WzfffLMk6c9//rNiYmKUm5urJUuW6JVXXqnVAgEAAPzlV9A5c+aMIiMjJUnr16/Xf/zHfygoKEg33nijcnNza7VAAAAAf/kVdNq3b69Vq1YpPz9f69at0y233CJJOnHiBE8bBgAADYZfQWfatGl67LHH1LZtW/Xv39/36+Hr169Xr169arVAAAAAf/n1W1eSVFRUpMLCQvXo0cP38MAdO3bI5XKpU6dOtVpkbeK3rgAACDz+fn77/evlsbGxio2NrdDWr18/fzcHAABQ6/y6dAUAABAICDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWLYHnYKCAt1zzz1q1qyZIiIi1K1bN+3atavK/ps3b5bD4bhkKSoqqseqAQBAIAixc+cnT57UwIEDNWTIEH388cdq0aKFDh48qKZNm/7o2JycHLlcLt96dHR0XZYKAAACkK1BZ9asWYqPj9fChQt9bQkJCdUaGx0drSZNmtRVaQAAwAC2Xrr68MMP1bdvX919992Kjo5Wr1699Oabb1ZrbM+ePRUXF6dhw4Zp27ZtVfbzeDxyu90VFgAAcHWwNegcOXJEc+fOVYcOHbRu3To99NBDmjRpkhYvXlzlmLi4OM2bN0/vv/++3n//fcXHx2vw4MHavXt3pf3T09MVFRXlW+Lj4+tqOgAAoIFxWJZl2bXzsLAw9e3bV5mZmb62SZMmaefOncrKyqr2dgYNGqTWrVtr6dKll7zm8Xjk8Xh86263W/Hx8SopKalwjw8AAGi43G63oqKiavz5besZnbi4OHXp0qVCW+fOnZWXl1ej7fTr10+HDh2q9DWn0ymXy1VhAQAAVwdbg87AgQOVk5NToe3AgQNq06ZNjbaTnZ2tuLi42iwNAAAYwNZvXT388MMaMGCAnn/+ef3iF7/Qjh079MYbb+iNN97w9UlLS1NBQYGWLFkiSZozZ44SEhKUmJioc+fOacGCBdq0aZPWr19v1zQAAEADZWvQueGGG7Ry5UqlpaXpmWeeUUJCgubMmaNRo0b5+hQWFla4lHX+/Hk9+uijKigoUKNGjdS9e3dt2LBBQ4YMsWMKAACgAbP1ZmQ7+HszEwAAsE9A3owMAABQlwg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGsj3oFBQU6J577lGzZs0UERGhbt26adeuXZcds3nzZvXu3VtOp1Pt27fXokWL6qdYGO3M+YvK+/aMikrOybIsu8sBANSCEDt3fvLkSQ0cOFBDhgzRxx9/rBYtWujgwYNq2rRplWOOHj2q4cOH68EHH9Tbb7+tjRs3avz48YqLi1NycnI9Vg+T5H17Ru/syFVhyTmFBgepf8K1GtHrJwoNtv1vAQDAFXBYNv7pOnXqVG3btk2ffvpptcc88cQTWr16tfbt2+drGzlypE6dOqW1a9f+6Hi3262oqCiVlJTI5XL5VTfMcv5iuV7eeECHT5xW62aNdO68V/8o82hU/za6qUNzu8sDAMj/z29b/1z98MMP1bdvX919992Kjo5Wr1699Oabb152TFZWloYOHVqhLTk5WVlZWZX293g8crvdFRbgX506c15FJefUskm4IkKD1bRxmBySCk6dsbs0AMAVsjXoHDlyRHPnzlWHDh20bt06PfTQQ5o0aZIWL15c5ZiioiLFxMRUaIuJiZHb7dbZs2cv6Z+enq6oqCjfEh8fX+vzQGCLCAuWMyRYZZ6LkiRvuaUL5ZYaO229sgsAqAW2Bp3y8nL17t1bzz//vHr16qX7779f9913n+bNm1dr+0hLS1NJSYlvyc/Pr7VtwwyR4aH6WedonbvgVU5xqQ4UlyqheWP1S7jW7tIAAFfI1j9Z4+Li1KVLlwptnTt31vvvv1/lmNjYWBUXF1doKy4ulsvlUkRExCX9nU6nnE5n7RQMY/20U7SaX+NUwamzCgsOUs/WTdT8Gv6/AYBAZ2vQGThwoHJyciq0HThwQG3atKlyTFJSktasWVOhLSMjQ0lJSXVSI64ODodDPeKbqEd8E7tLAQDUIlsvXT388MPavn27nn/+eR06dEjvvPOO3njjDU2YMMHXJy0tTaNHj/atP/jggzpy5Igef/xxffXVV/rjH/+oFStW6OGHH7ZjCgAAoAGzNejccMMNWrlypd5991117dpVM2fO1Jw5czRq1Chfn8LCQuXl5fnWExIStHr1amVkZKhHjx566aWXtGDBAp6hAwAALmHrc3TswHN0AAAIPAH5HB0AAIC6RNABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsW4PO9OnT5XA4KiydOnWqsv+iRYsu6R8eHl6PFQMAgEASYncBiYmJ2rBhg289JOTyJblcLuXk5PjWHQ5HndUGAAACm+1BJyQkRLGxsdXu73A4atQfAABcvWy/R+fgwYNq2bKlrrvuOo0aNUp5eXmX7V9WVqY2bdooPj5ed955p/bv319PlQIAgEBja9Dp37+/Fi1apLVr12ru3Lk6evSobr75ZpWWllbav2PHjnrrrbf0wQcfaNmyZSovL9eAAQN07NixKvfh8XjkdrsrLAAA4OrgsCzLsruI7506dUpt2rTR7NmzNW7cuB/tf+HCBXXu3FkpKSmaOXNmpX2mT5+uGTNmXNJeUlIil8t1xTUDAIC653a7FRUVVePPb9svXf2rJk2a6Prrr9ehQ4eq1T80NFS9evW6bP+0tDSVlJT4lvz8/NoqFwAANHANKuiUlZXp8OHDiouLq1Z/r9ervXv3Xra/0+mUy+WqsAAAgKuDrUHnscce05YtW/T1118rMzNTd911l4KDg5WSkiJJGj16tNLS0nz9n3nmGa1fv15HjhzR7t27dc899yg3N1fjx4+3awoAAKABs/Xr5ceOHVNKSoq+/fZbtWjRQjfddJO2b9+uFi1aSJLy8vIUFPTPLHby5Endd999KioqUtOmTdWnTx9lZmaqS5cudk0BAAA0YA3qZuT64O/NTAAAwD5G3IwMAABQmwg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiKlNza9AAAPPklEQVToAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGsjXoTJ8+XQ6Ho8LSqVOny45577331KlTJ4WHh6tbt25as2ZNPVULAAACje1ndBITE1VYWOhbtm7dWmXfzMxMpaSkaNy4cdqzZ49GjBihESNGaN++ffVYceW85ZZyikq1O++kCkvO2l0OAACQFGJ7ASEhio2NrVbfl19+WbfeequmTJkiSZo5c6YyMjL02muvad68eXVZ5mVd9JZrxa58bT/yrc5ftNS0UajuviFevVs3ta0mAADQAM7oHDx4UC1bttR1112nUaNGKS8vr8q+WVlZGjp0aIW25ORkZWVlVTnG4/HI7XZXWGrbvuNuZR7+Vs2ucer6mGt05oJXH2YX6Ox5b63vCwAAVJ+tQad///5atGiR1q5dq7lz5+ro0aO6+eabVVpaWmn/oqIixcTEVGiLiYlRUVFRlftIT09XVFSUb4mPj6/VOUiS++wFecstucJD5XA41KxxmMrOXVSp50Kt7wsAAFSfrUHntttu0913363u3bsrOTlZa9as0alTp7RixYpa20daWppKSkp8S35+fq1t+3vNr3EqLCRIJ0rPyXPBq6ISj5pd41RURGit7wsAAFSf7ffo/KsmTZro+uuv16FDhyp9PTY2VsXFxRXaiouLL3uPj9PplNPprNU6f6hzXKRuTYzVX3NOqLDknH7SNFx3942XMyS4TvcLAAAur0EFnbKyMh0+fFj33ntvpa8nJSVp48aNSk1N9bVlZGQoKSmpvkqslMPh0K1dY9WnTVOdOe9V80inrnE2qP+0AABclWy9dPXYY49py5Yt+vrrr5WZmam77rpLwcHBSklJkSSNHj1aaWlpvv6TJ0/W2rVr9dJLL+mrr77S9OnTtWvXLk2cONGuKfg4HA5Fu8LVtnljQg4AAA2ErZ/Ix44dU0pKir799lu1aNFCN910k7Zv364WLVpIkvLy8hQU9M8sNmDAAL3zzjv67W9/qyeffFIdOnTQqlWr1LVrV7umAAAAGjCHZVmW3UXUJ7fbraioKJWUlMjlctldDgAAqAZ/P79tf44OAABAXSHoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjXXW/Pvn9L1643W6bKwEAANX1/ed2TX+56qoLOqWlpZKk+Ph4mysBAAA1VVpaqqioqGr3v+p+1LO8vFzHjx9XZGSkHA5HrW7b7XYrPj5e+fn5xv5gqOlzZH6BjfkFPtPnyPz8Z1mWSktL1bJlSwUFVf/Om6vujE5QUJBatWpVp/twuVxG/g/8r0yfI/MLbMwv8Jk+R+bnn5qcyfkeNyMDAABjEXQAAICxgqdPnz7d7iJMEhwcrMGDByskxNyrgqbPkfkFNuYX+EyfI/OrX1fdzcgAAODqwaUrAABgLIIOAAAwFkEHAAAYi6ADAACMRdCpoddff11t27ZVeHi4+vfvrx07dly2/3vvvadOnTopPDxc3bp105o1a+qpUv/UZH6LFi2Sw+GosISHh9djtTXzySef6I477lDLli3lcDi0atWqHx2zefNm9e7dW06nU+3bt9eiRYvqvtArUNM5bt68+ZJj6HA4VFRUVE8VV196erpuuOEGRUZGKjo6WiNGjFBOTs6Pjguk96A/cwyk9+HcuXPVvXt338PkkpKS9PHHH192TCAdv5rOL5COXWVeeOEFORwOpaamXraf3ceQoFMD//M//6NHHnlETz/9tHbv3q0ePXooOTlZJ06cqLR/ZmamUlJSNG7cOO3Zs0cjRozQiBEjtG/fvnquvHpqOj/pu6dfFhYW+pbc3Nx6rLhmTp8+rR49euj111+vVv+jR49q+PDhGjJkiLKzs5Wamqrx48dr3bp1dVyp/2o6x+/l5ORUOI7R0dF1VKH/tmzZogkTJmj79u3KyMjQhQsXdMstt+j06dNVjgm096A/c5QC533YqlUrvfDCC/r888+1a9cu/fSnP9Wdd96p/fv3V9o/0I5fTecnBc6x+6GdO3dq/vz56t69+2X7NYhjaKHa+vXrZ02YMMG37vV6rZYtW1rp6emV9v/FL35hDR8+vEJb//79rQceeKBO6/RXTee3cOFCKyoqqr7Kq1WSrJUrV162z+OPP24lJiZWaPvlL39pJScn12VptaY6c/zrX/9qSbJOnjxZT1XVnhMnTliSrC1btlTZJ9Degz9UnTkG8vvQsiyradOm1oIFCyp9LdCPn2Vdfn6BeuxKS0utDh06WBkZGdagQYOsyZMnV9m3IRxDzuhU0/nz5/X5559r6NChvragoCANHTpUWVlZlY7Jysqq0F+SkpOTq+xvJ3/mJ0llZWVq06aN4uPjf/Qvl0ATSMfvSvXs2VNxcXEaNmyYtm3bZnc51VJSUiJJuvbaa6vsE+jHsDpzlALzfej1erV8+XKdPn1aSUlJlfYJ5ONXnflJgXnsJkyYoOHDh19ybCrTEI4hQaeavvnmG3m9XsXExFRoj4mJqfJ+hqKiohr1t5M/8+vYsaPeeustffDBB1q2bJnKy8s1YMAAHTt2rD5KrnNVHT+3262zZ8/aVFXtiouL07x58/T+++/r/fffV3x8vAYPHqzdu3fbXdpllZeXKzU1VQMHDlTXrl2r7BdI78Efqu4cA+19uHfvXl1zzTVyOp168MEHtXLlSnXp0qXSvoF4/Goyv0A7dpK0fPly7d69W+np6dXq3xCOYcN4PjMCUlJSUoW/VAYMGKDOnTtr/vz5mjlzpo2Vobo6duyojh07+tYHDBigw4cP6w9/+IOWLl1qY2WXN2HCBO3bt09bt261u5Q6U905Btr7sGPHjsrOzlZJSYn+/Oc/a8yYMdqyZUuVYSDQ1GR+gXbs8vPzNXnyZGVkZATUTdMEnWpq3ry5goODVVxcXKG9uLhYsbGxlY6JjY2tUX87+TO/HwoNDVWvXr106NChuiix3lV1/FwulyIiImyqqu7169evQQeIiRMn6qOPPtInn3yiVq1aXbZvIL0H/1VN5vhDDf19GBYWpvbt20uS+vTpo507d+rll1/W/PnzL+kbiMevJvP7oYZ+7D7//HOdOHFCvXv39rV5vV598skneu211+TxeBQcHFxhTEM4hly6qqawsDD16dNHGzdu9LWVl5dr48aNVV5/TUpKqtBfkjIyMi57vdYu/szvh7xer/bu3au4uLi6KrNeBdLxq03Z2dkN8hhalqWJEydq5cqV2rRpkxISEn50TKAdQ3/m+EOB9j4sLy+Xx+Op9LVAO36Vudz8fqihH7uf/exn2rt3r7Kzs31L3759NWrUKGVnZ18ScqQGcgzr7bZnAyxfvtxyOp3WokWLrC+//NK6//77rSZNmlhFRUWWZVnWvffea02dOtXXf9u2bVZISIj14osvWn//+9+tp59+2goNDbX27t1r1xQuq6bzmzFjhrVu3Trr8OHD1ueff26NHDnSCg8Pt/bv32/XFC6rtLTU2rNnj7Vnzx5LkjV79mxrz549Vm5urmVZljV16lTr3nvv9fU/cuSI1ahRI2vKlCnW3//+d+v111+3goODrbVr19o1hR9V0zn+4Q9/sFatWmUdPHjQ2rt3rzV58mQrKCjI2rBhg11TqNJDDz1kRUVFWZs3b7YKCwt9y5kzZ3x9Av096M8cA+l9OHXqVGvLli3W0aNHrb/97W/W1KlTLYfDYa1fv96yrMA/fjWdXyAdu6r88FtXDfEYEnRq6NVXX7Vat25thYWFWf369bO2b9/ue23QoEHWmDFjKvRfsWKFdf3111thYWFWYmKitXr16nquuGZqMr/U1FRf35iYGOv222+3du/ebUPV1fP9V6l/uHw/pzFjxliDBg26ZEzPnj2tsLAw67rrrrMWLlxY73XXRE3nOGvWLKtdu3ZWeHi4de2111qDBw+2Nm3aZE/xP6KyeUmqcEwC/T3ozxwD6X04duxYq02bNlZYWJjVokUL62c/+5kvBFhW4B+/ms4vkI5dVX4YdBriMXRYlmXV3/kjAACA+sM9OgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AAS8r7/+Wg6HQ9nZ2XaXAqCB4YGBAAKe1+vVP/7xDzVv3lwhIfxWMYB/IugACGjnz59XWFiY3WUAaKC4dAWgQRk8eLAmTpyoiRMnKioqSs2bN9dTTz2l7/8ma9u2rWbOnKnRo0fL5XLp/vvvr/TS1f79+/Xzn/9cLpdLkZGRuvnmm3X48GHf6wsWLFDnzp0VHh6uTp066Y9//GO9zxVA3eMcL4AGZ/HixRo3bpx27NihXbt26f7771fr1q113333SZJefPFFTZs2TU8//XSl4wsKCvRv//ZvGjx4sDZt2iSXy6Vt27bp4sWLkqS3335b06ZN02uvvaZevXppz549uu+++9S4cWONGTOm3uYJoO5x6QpAgzJ48GCdOHFC+/fvl8PhkCRNnTpVH374ob788ku1bdtWvXr10sqVK31jvv76ayUkJGjPnj3q2bOnnnzySS1fvlw5OTkKDQ29ZB/t27fXzJkzlZKS4mt79tlntWbNGmVmZtb9JAHUGy5dAWhwbrzxRl/IkaSkpCQdPHhQXq9XktS3b9/Ljs/OztbNN99cacg5ffq0Dh8+rHHjxumaa67xLc8++2yFS1sAzMClKwABp3Hjxpd9PSIiosrXysrKJElvvvmm+vfvX+G14ODgKy8OQINC0AHQ4Hz22WcV1rdv364OHTpUO4h0795dixcv1oULFy45qxMTE6OWLVvqyJEjGjVqVK3VDKBh4tIVgAYnLy9PjzzyiHJycvTuu+/q1Vdf1eTJk6s9fuLEiXK73Ro5cqR27dqlgwcPaunSpcrJyZEkzZgxQ+np6XrllVd04MAB7d27VwsXLtTs2bPrakoAbMIZHQANzujRo3X27Fn169dPwcHBmjx5su6///5qj2/WrJk2bdqkKVOmaNCgQQoODlbPnj01cOBASdL48ePVqFEj/f73v9eUKVPUuHFjdevWTampqXU1JQA24VtXABqUwYMHq2fPnpozZ47dpQAwAJeuAACAsQg6AADAWFy6AgAAxuKMDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAw1v8Hu/cgx7JN0UAAAAAASUVORK5CYII=",
|
99
|
-
"text/plain": [
|
100
|
-
"<Figure size 640x480 with 1 Axes>"
|
101
|
-
]
|
102
|
-
},
|
103
|
-
"execution_count": 14,
|
104
|
-
"metadata": {},
|
105
|
-
"output_type": "execute_result"
|
106
|
-
}
|
107
|
-
],
|
108
|
-
"source": [
|
109
|
-
"bubble = charty.to_bubble(:price, :sales, :id)\n",
|
110
|
-
"bubble.render('sample')"
|
111
|
-
]
|
112
|
-
},
|
113
|
-
{
|
114
|
-
"cell_type": "code",
|
115
|
-
"execution_count": 15,
|
116
|
-
"metadata": {},
|
117
|
-
"outputs": [
|
118
|
-
{
|
119
|
-
"data": {
|
120
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG0CAYAAAA7Go31AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XlclXXe//HXYTssAq4sCu4LisqimVqNNZOZmi2WC9idjTX3VG5pWdpkTTlKZVlubVPTKpqVmaVpatloWmqAirngBoKAKxwQOMA51++P7pvf7bikCFxweD8fj/PHufhe57zPjHHeXJ/rXMdiGIaBiIiIiAtyMzuAiIiISHVR0RERERGXpaIjIiIiLktFR0RERFyWio6IiIi4LBUdERERcVkqOiIiIuKyVHRERETEZanoiIiIiMtS0RERERGXpaIjIiIiLsvD7AA1zel0cuzYMfz9/bFYLGbHERERkctgGAYFBQU0b94cN7fLP05T74rOsWPHCA8PNzuGiIiIVMLRo0cJCwu77PX1ruj4+/sDv/0PFRAQYHIaERERuRw2m43w8PCK9/HLVe+Kzv+OqwICAlR0RERE6pgrPe1EJyOLiIiIy1LREREREZeloiMiIiIuS0VHREREXJaKjoiIiLgsFR0RERFxWSo6IiIi4rJUdERERMRlqeiIiIiIy1LREREREZdlatEpKCjg0UcfpVWrVvj4+NC3b1+2bdt2yX02bNhAbGwsVquV9u3b8/7779dMWBEREalzTC06Dz74IGvXruWjjz5i165d3HLLLdx8881kZWVdcP3hw4cZPHgwN910EykpKTz66KM8+OCDrFmzpoaTi4iISF1gMQzDMOOJi4uL8ff358svv2Tw4MEV23v06MHAgQP5xz/+cd4+Tz75JCtXriQ1NbVi28iRI8nLy2P16tWX9bw2m43AwEDy8/P1pZ4iIiJV7Jf0M7Ru4kuTBtYqfdzKvn+bdkSnvLwch8OBt7f3Odt9fHzYtGnTBffZsmULN9988znbBgwYwJYtWy76PHa7HZvNds5NREREqpbTafDmDwcZ/tYWHvt0B06nKcdRzmNa0fH396dPnz7MmDGDY8eO4XA4+Pjjj9myZQvZ2dkX3CcnJ4fg4OBztgUHB2Oz2SguLr7gPgkJCQQGBlbcwsPDq/y1iIiI1GenCu2M+WAbL3yzF4fTwN/bk1KH0+xYgMnn6Hz00UcYhkGLFi2wWq3MmzePuLg43NyqLta0adPIz8+vuB09erTKHltERKS++/nQKQbN28iGfSeweriRMLQb80ZG4+3pbnY0ADzMfPJ27drxww8/cPbsWWw2G6GhoYwYMYK2bdtecH1ISAi5ubnnbMvNzSUgIAAfH58L7mO1WrFaq3ZOKCIiUt85nAavf3+AV9ftx2lA22Z+LIyPpXNo7Tr/1dSi87/8/Pzw8/PjzJkzrFmzhpdeeumC6/r06cOqVavO2bZ27Vr69OlTEzFFREQEOFFgZ9InKWw6cBKAoTEtmHFnV/ystaJWnMPURGvWrMEwDDp16sSBAweYMmUKERER/PnPfwZ+GztlZWXx4YcfAvDQQw+xYMECnnjiCcaMGcN3333H0qVLWblypZkvQ0REpN7YfOAkEz9J4USBHW9PN2bc0ZVhPWvv+a+mFp38/HymTZtGZmYmjRs35u6772bmzJl4enoCkJ2dTUZGRsX6Nm3asHLlSiZNmsTcuXMJCwvjnXfeYcCAAWa9BBERkXrB4TSYuz6N+d+lYRjQMbgBC+Nj6RDsb3a0SzLtOjpm0XV0RERErkyurYSJS5L56dBpAIb3DOO527vi41VzJxxX9v279g3TREREpNb49/4TTPokhVNnS/H1cmfmXV25KybM7FiXTUVHREREzlPucPLquv28vuEghgERIf4sHBVLu2YNzI52RVR0RERE5BzZ+cVMWJzMtiNnABh1bUum39al1lwb50qo6IiIiEiF7/ceZ/LSFM4UldHA6kHC0G4MiWpudqxKU9ERERERyhxOXl6zj7f+fQiAri0CWBAXS+umfiYnuzoqOiIiIvVc5pkixi9OJjkjD4D7+7Zm2qAIrB51b1T1n1R0RERE6rFvd+cw5bOd5BeX4e/twex7unNr11CzY1UZFR0REZF6qLTcScI3e3jvxyMARIUFsiA+lvDGvuYGq2IqOiIiIvVMxqkixi1OYmdmPgAPXN+GJ2+NwMvDzeRkVU9FR0REpB75Zlc2T3y2kwJ7OYE+nrw8LIr+XYLNjlVtVHRERETqgZIyB7NW7eHDLekAxLZsyPz4WFo09DE5WfVS0REREXFxh0+eZVxiEruP2QD4a7+2PH5LJzzdXW9U9Z9UdERERFzYih3HeGrZLgrt5TT28+KV4VHc1CnI7Fg1RkVHRETEBZWUOXjuq19ZvDUDgF6tGzMvLoaQQG+Tk9UsFR0REREXc+B4IeMSk9ibU4DFAuNuas/EP3XAox6Mqv6Tio6IiIgLWZaUydPLUykqddC0gRevjojmhg7NzI5lGhUdERERF1BUWs6zX+7m018yAejTtglzR0YTFFC/RlX/SUVHRESkjtufW8DYRUmkHS/EYoGJf+rA+D92wN3NYnY006noiIiI1FGGYfDp9kyeWZFKSZmTZv5W5o6Mpm+7pmZHqzVUdEREROqgs/Zynl6eyhfJWQDc0KEpr46IpmkDq8nJahcVHRERkTpmT7aNsYuSOHTyLG4WeOyWTjzcrx1uGlWdR0VHRESkjjAMg8StGTz31a+UljsJCfBmXlwMvdo0NjtaraWiIyIiUgcUlJQxbdkuvt6ZDcBNnZrxyvBoGvt5mZysdlPRERERqeVSs/IZm5hE+qkiPNwsTBnQib/c0FajqsugoiMiIlJLGYbBh1vSmblyD6UOJy0a+jAvLoYerRqZHa3OUNERERGphfKLy3jys52s3p0DwM2dg3l5WHca+mpUdSVUdERERGqZlKN5jEtMIvNMMZ7uFqYO7MyY61pjsWhUdaVUdERERGoJwzB4d9NhXly9lzKHQXhjHxbExRIV3tDsaHWWio6IiEgtkFdUyuOf7mTdnlwABnYN4YW7uxPo42lysrpNRUdERMRkv6SfYXxiEsfyS/Byd+Pp2zrzX71baVRVBVR0RERETOJ0Gry98RCz1+zD4TRo3cSXBfGxdG0RaHY0l+Fm5pM7HA6mT59OmzZt8PHxoV27dsyYMQPDMC66z4YNG7BYLOfdcnJyajC5iIjI1TlVaGfMB9t44Zu9OJwGQ6Ka89X461VyqpipR3RefPFF3njjDT744AMiIyPZvn07f/7znwkMDGTChAmX3Hffvn0EBARU3A8KCqruuCIiIlVi6+HTjF+cRK7NjtXDjWeHRBLXK1yjqmpgatHZvHkzd9xxB4MHDwagdevWLF68mK1bt/7uvkFBQTRsqLPQRUSk7nA6DV7fcIA5a/fjNKBtMz8WxsfSOTTg93eWSjF1dNW3b1/Wr1/P/v37AdixYwebNm1i4MCBv7tvdHQ0oaGh9O/fnx9//PGi6+x2Ozab7ZybiIhITTtRYGf0e1t5+dvfSs7QmBZ8Ne56lZxqZuoRnalTp2Kz2YiIiMDd3R2Hw8HMmTMZNWrURfcJDQ3lzTffpGfPntjtdt555x1uvPFGfv75Z2JjY89bn5CQwHPPPVedL0NEROSSNh84ycRPUjhRYMfb043n7+jKsB5hGlXVAItxqTN/q9mSJUuYMmUKs2fPJjIykpSUFB599FHmzJnD6NGjL/tx+vXrR8uWLfnoo4/O+5ndbsdut1fct9lshIeHk5+ff845PiIiIlXN4TSYtz6Ned+lYRjQIagBC0fF0jHY3+xodY7NZiMwMPCK379NPaIzZcoUpk6dysiRIwHo1q0b6enpJCQkXFHR6dWrF5s2bbrgz6xWK1artUryioiIXK7jthImLklhy6FTAAzvGcZzt3fFx8vd5GT1i6lFp6ioCDe3c08Tcnd3x+l0XtHjpKSkEBoaWpXRREREKm1j2gkmfZLCycJSfL3cmXlXV+6KCTM7Vr1katEZMmQIM2fOpGXLlkRGRpKcnMycOXMYM2ZMxZpp06aRlZXFhx9+CMBrr71GmzZtiIyMpKSkhHfeeYfvvvuOb7/91qyXISIiAkC5w8lr69JYuOEAhgERIf4siI+lfVADs6PVW6YWnfnz5zN9+nQeeeQRjh8/TvPmzfnrX//KM888U7EmOzubjIyMivulpaU89thjZGVl4evrS/fu3Vm3bh033XSTGS9BREQEgOz8YiYuTmHrkdMAxF/bkmdu64K3p0ZVZjL1ZGQzVPZkJhERkYv5fu9xJi9N4UxRGQ2sHswa2o3bo5qbHcul1MmTkUVEROqyMoeTl9fs461/HwIgsnkAC+Njad3Uz+Rk8r9UdERERCohK6+Y8YlJJGXkATC6TyumDeqsUVUto6IjIiJyhdb+msvjn+4gv7gMf28PXrq7OwO76dO/tZGKjoiIyGUqLXfywjd7+dePhwGICgtkflwsLZv4mpxMLkZFR0RE5DIcPV3EuMQkdmTmAzDmujZMHRiBl4epXxspv0NFR0RE5HesTs1mymc7KSgpJ9DHk5eHRdG/S7DZseQyqOiIiIhcREmZg4RVe/hgSzoAsS0bMi8uhrBGGlXVFSo6IiIiF3Dk5FnGJiax+5gNgL/2a8vjt3TC012jqrpERUdEROQ/rNhxjKeW7aLQXk4jX0/mDI/mpoggs2NJJajoiIiI/I+SMgfPffUri7f+9tVD17RuxLy4GEIDfUxOJpWloiMiIgIcPFHI2EVJ7M0pwGKBsTe259GbO+ChUVWdpqIjIiL13hfJmfzti1SKSh008fPitZHR3NChmdmxpAqo6IiISL1VXOrgmS9T+fSXTAD6tG3C3JHRBAV4m5xMqoqKjoiI1Ev7cwsYuyiJtOOFWCww4Y8dmPCnDri7WcyOJlVIRUdEROoVwzD49JdMnvkylZIyJ838rcwdEU3f9k3NjibVQEVHRETqjbP2cqYvT2VZchYAN3Roypzh0TTzt5qcTKqLio6IiNQLe7JtjE1M4tCJs7hZ4LFbOvFwv3a4aVTl0lR0RETEpRmGweKtR/n7V7spLXcSEuDNvLgYerVpbHY0qQEqOiIi4rIKSsp46otUvtpxDIAbOzVjzvBoGvt5mZxMaoqKjoiIuKTUrHzGJSZx5FQR7m4WnhjQib/c0FajqnpGRUdERFyKYRh89FM6//h6D6UOJ80DvZkfH0uPVo3MjiYmUNERERGXkV9cxtTPd/JNag4AN3cO5uVh3Wnoq1FVfaWiIyIiLmHH0TzGLU7i6OliPN0tPHlrBA9c3waLRaOq+kxFR0RE6jTDMPjXj0d44Zs9lDkMwhr5sCA+lujwhmZHk1pARUdEROqsvKJSHv90J+v25AJwa2QIL97TnUAfT5OTSW2hoiMiInXSL+lnmLA4may8Yrzc3Xj6ts78V+9WGlXJOVR0RESkTnE6Df658RCz1+yj3GnQqokvC+Nj6doi0OxoUgup6IiISJ1x+mwpjy1N4ft9JwC4rXsoCUO74e+tUZVcmIqOiIjUCVsPn2bC4mRybCV4ebjx9yGRxPUK16hKLklFR0REajWn0+CNHw4yZ+1+HE6Dtk39WDgqls6hAWZHkzpARUdERGqtk4V2Jn2Swsa0kwDcFdOCf9zZFT+r3r7k8riZ+eQOh4Pp06fTpk0bfHx8aNeuHTNmzMAwjEvut2HDBmJjY7FarbRv357333+/ZgKLiEiN2XzwJAPnbmRj2km8Pd146e7uzBkepZIjV8TUfy0vvvgib7zxBh988AGRkZFs376dP//5zwQGBjJhwoQL7nP48GEGDx7MQw89xKJFi1i/fj0PPvggoaGhDBgwoIZfgYiIVDWH02D+d2nMW5+G04AOQQ1YOCqWjsH+ZkeTOshi/N7hk2p02223ERwczLvvvlux7e6778bHx4ePP/74gvs8+eSTrFy5ktTU1IptI0eOJC8vj9WrV//uc9psNgIDA8nPzycgQPNdEZHa5LithEc/SWHzwVMADOsRxnN3ROLrpaM49V1l379NHV317duX9evXs3//fgB27NjBpk2bGDhw4EX32bJlCzfffPM52wYMGMCWLVsuuN5ut2Oz2c65iYhI7bMx7QSD5m1k88FT+Hq5M2d4FLOHRankyFUx9V/P1KlTsdlsRERE4O7ujsPhYObMmYwaNeqi++Tk5BAcHHzOtuDgYGw2G8XFxfj4+Jzzs4SEBJ577rlqyS8iIlev3OHktXVpLNxwAMOAiBB/FsTH0j6ogdnRxAWYWnSWLl3KokWLSExMJDIykpSUFB599FGaN2/O6NGjq+Q5pk2bxuTJkyvu22w2wsPDq+SxRUTk6mTnFzNxcQpbj5wGIK5XS54d0gVvT3eTk4mrMLXoTJkyhalTpzJy5EgAunXrRnp6OgkJCRctOiEhIeTm5p6zLTc3l4CAgPOO5gBYrVasVmvVhxcRkavy/b7jTP4khTNFZfh5uZNwd3duj2pudixxMaYWnaKiItzczj1NyN3dHafTedF9+vTpw6pVq87ZtnbtWvr06VMtGUVEpGqVOZy8/O0+3vrhEACRzQNYEB9Lm6Z+JicTV2Rq0RkyZAgzZ86kZcuWREZGkpyczJw5cxgzZkzFmmnTppGVlcWHH34IwEMPPcSCBQt44oknGDNmDN999x1Lly5l5cqVZr0MERG5TFl5xYxPTCIpIw+A+/q04qlBnTWqkmpjatGZP38+06dP55FHHuH48eM0b96cv/71rzzzzDMVa7Kzs8nIyKi436ZNG1auXMmkSZOYO3cuYWFhvPPOO7qGjohILbf211we/3QH+cVl+Ht78NLd3RnYLdTsWOLiTL2Ojhl0HR0RkZpVWu7kxdV7eXfTYQCiwgKZHxdLyya+JieTuqSy79+6OIGIiFSbo6eLGLc4mR1HfxtVjbmuDVMHRuDlYepl3KQeUdEREZFqsTo1mymf7aSgpJwAbw9eHhbFLZEhZseSekZFR0REqpS93MGslXv4YEs6ADEtGzI/LoawRhpVSc1T0RERkSpz5ORZxi1OIjXrt6/b+esf2vL4gE54umtUJeZQ0RERkSrx1Y5jTFu2i0J7OY18PXlleBR/jAj+/R1FqpGKjoiIXJWSMgfPf/0riT//dimQa1o3Yl5cDKGB51+tXqSmqeiIiEilHTxRyNhFSezNKcBigUdubMekmzvioVGV1BIqOiIiUilfJGfyty9SKSp10MTPi1dHRPOHjs3MjiVyDhUdERG5IsWlDp5dkcrS7ZkA9G7bmHkjYwgK8DY5mcj5VHREROSypeUWMDYxif25hVgsMOGPHZjwpw64u1nMjiZyQSo6IiJyWT7dfpTpX6ZSUuakmb+VuSOi6du+qdmxRC5JRUdERC7prL2c6V+msiwpC4Dr2zfl1RHRNPO3mpxM5Pep6IiIyEXtzbExdlESB0+cxc0Ck/t35JEb2+OmUZXUESo6IiJyHsMwWLLtKH9fsRt7uZPgACvzRsZwbdsmZkcTuSIqOiIico6CkjKe+iKVr3YcA6Bfx2bMGR5FkwYaVUndo6IjIiIVUrPyGZeYxJFTRbi7WZgyoBP/fUNbjaqkzlLRERERDMPg45/SmfH1HkodTpoHejM/PoYerRqbHU3kqqjoiIjUc7aSMqZ+vpNVu3IAuLlzEC8Pi6Khr5fJyUSunoqOiEg9tuNoHuMWJ3H0dDGe7haevDWCB65vg8WiUZW4BhUdEZF6yDAM3vvxCAnf7KHMYRDWyIcF8bFEhzc0O5pIlVLRERGpZ/KKSpny2U7W/poLwK2RIbx4T3cCfTxNTiZS9VR0RETqkaSMM4xPTCYrrxgvdzf+Nrgz9/VppVGVuCwVHRGResDpNHhn0yFeWr2PcqdBqya+LIiLpVtYoNnRRKqVio6IiIs7fbaUxz/dwXd7jwMwuHsoLwzthr+3RlXi+lR0RERc2LYjpxmfmEyOrQQvDzeeHdKF+F4tNaqSekNFR0TEBTmdBm/8cJA5a/fjcBq0berHgvhYujQPMDuaSI1S0RERcTEnC+1M+iSFjWknAbgrpgX/uLMrflb9ypf6R//qRURcyJaDp5i4JJnjBXa8Pd14/vauDOsZplGV1FsqOiIiLsDhNFjw3QHmrt+P04D2QQ14fVQsHYP9zY4mYioVHRGROu54QQmPLklh88FTAAzrEcZzd0Ti66Vf8SL6r0BEpA7blHaSRz9J5mRhKT6e7sy8qytDY8PMjiVSa7iZ+eStW7fGYrGcdxs7duwF17///vvnrfX29q7h1CIi5it3OHnl2338179+5mRhKREh/nw1/nqVHJH/YOoRnW3btuFwOCrup6am0r9/f4YNG3bRfQICAti3b1/FfZ1gJyL1TU5+CROWJLP18GkA4nq15NkhXfD2dDc5mUjtY2rRadas2Tn3X3jhBdq1a0e/fv0uuo/FYiEkJKS6o4mI1Eob9h1n8tIdnD5bip+XOwl3d+f2qOZmxxKptWrNOTqlpaV8/PHHTJ48+ZJHaQoLC2nVqhVOp5PY2FhmzZpFZGTkRdfb7XbsdnvFfZvNVqW5RURqQpnDySvf7ufNHw4C0CU0gIWjYmnT1M/kZCK1m6nn6Pxfy5cvJy8vj/vvv/+iazp16sS//vUvvvzySz7++GOcTid9+/YlMzPzovskJCQQGBhYcQsPD6+G9CIi1Scrr5iRb/9UUXLu69OKZY/0VckRuQwWwzAMs0MADBgwAC8vL7766qvL3qesrIzOnTsTFxfHjBkzLrjmQkd0wsPDyc/PJyBAl0IXkdpt3a+5PP7ZDvKKyvC3evDiPd0Z1C3U7FgiNc5msxEYGHjF79+1YnSVnp7OunXrWLZs2RXt5+npSUxMDAcOHLjoGqvVitVqvdqIIiI1qrTcyUur9/LOpsMAdA8LZEFcLC2b+JqcTKRuqRVF57333iMoKIjBgwdf0X4Oh4Ndu3YxaNCgakomIlLzjp4uYtziZHYczQNgzHVteHJgJ6we+lSVyJUyveg4nU7ee+89Ro8ejYfHuXHuu+8+WrRoQUJCAgDPP/88vXv3pn379uTl5TF79mzS09N58MEHzYguIlLlVqfmMOWzHRSUlBPg7cHLw6K4JVKfNBWpLNOLzrp168jIyGDMmDHn/SwjIwM3t/9/vvSZM2f4y1/+Qk5ODo0aNaJHjx5s3ryZLl261GRkEZEqZy93kLBqL+9vPgJATMuGzI+LIayRRlUiV6PWnIxcUyp7MpOISHVJP3WWcYnJ7MrKB+Cvf2jL4wM64eleaz4YK2K6On0ysohIffX1zmNM/XwXhfZyGvl68srwKP4YEWx2LBGXoaIjImKCkjIHM77+lUU/ZwBwTetGzIuLITTQx+RkIq5FRUdEpIYdOlHI2MRk9mT/dqX2R25sx+T+HfHQqEqkyqnoiIjUoOXJWTz1xS6KSh008fNizoho+nVs9vs7ikilqOiIiNSA4lIHf1+xm0+2HwWgd9vGzB0ZQ3CAt8nJRFybio6ISDVLyy1gbGIS+3MLsVhg/B87MPFPHXB3u/gXGItI1VDRERGpRp9uP8ozX+6muMxB0wZW5o2Mpm/7pmbHEqk3VHRERKrBWXs5079MZVlSFgDXt2/KqyOiaeav794TqUkqOiIiVWxvjo2xi5I4eOIsbhaY3L8jD9/YXqMqEROo6IiIVBHDMPhk21GeXbEbe7mT4AAr80bGcG3bJmZHE6m3VHRERKpAob2cp5btYsWOYwD069iMOcOjaNJAoyoRM6noiIhcpd3H8hmXmMzhk2dxd7Pw+C2d+Osf2uKmUZWI6VR0REQqyTAMPv45gxlf/0ppuZPmgd7Mj4+hR6vGZkcTkf+hoiMiUgm2kjKmfb6LlbuyAbi5cxCz74mikZ+XyclE5P9S0RERuUI7M/MYl5hMxukiPNwsTB0YwQPXt8Fi0ahKpLZR0RERuUyGYfDej0dI+GYPZQ6DsEY+LIiPJTq8odnRROQiVHRERC5DflEZUz7bwbe/5gIwIDKYl+6JItDH0+RkInIpKjoiIr8jOeMM4xKTycorxsvdjb8N7sx9fVppVCVSB6joiIhchNNp8O6mw7y4ei/lToNWTXxZEBdLt7BAs6OJyGVS0RERuYAzZ0t57NMdfLf3OACDu4eSMLQbAd4aVYnUJZUqOkePHsVisRAWFgbA1q1bSUxMpEuXLvz3f/93lQYUEalp24+cZvziZLLzS/DycOOZ27ow6tqWGlWJ1EFuldkpPj6e77//HoCcnBz69+/P1q1b+dvf/sbzzz9fpQFFRGqK02nw+oYDjHj7J7LzS2jb1I/lj1zHvb11Po5IXVWpopOamkqvXr0AWLp0KV27dmXz5s0sWrSI999/vyrziYjUiJOFdu5/fxsvrd6Hw2lwZ3RzVoy/ni7NA8yOJiJXoVKjq7KyMqzW376obt26ddx+++0AREREkJ2dXXXpRERqwE+HTjFhcTLHC+x4e7rx3O2RDO8ZrqM4Ii6gUkd0IiMjefPNN9m4cSNr167l1ltvBeDYsWM0adKkSgOKiFQXh9Ng7ro04v/5E8cL7LQPasCXY69nxDU6H0fEVVTqiM6LL77IXXfdxezZsxk9ejRRUVEArFixomKkJSJSmx0vKGHSJyn8eOAUAPf0COP5OyLx9dKHUUVcicUwDKMyOzocDmw2G40aNarYduTIEXx9fQkKCqqygFXNZrMRGBhIfn4+AQGavYvURz8eOMnEJSmcLLTj4+nOP+7syt09wsyOJSKXUNn370r/6WIYBr/88gsHDx4kPj4ef39/vLy88PX1rexDiohUq3KHk3nr05j//QEMAzoF+7NwVCztgxqYHU1Eqkmlik56ejq33norGRkZ2O12+vfvj7+/Py+++CJ2u50333yzqnOKiFyVXFsJ4xcns/XwaQDieoXz7JBIvD3dTU4mItWpUicjT5w4kZ49e3LmzBl8fHwqtt91112sX7++ysKJiFSFDfuOM3DuRrYePo2flztzR0aTMLS7So5IPVCpIzobN25k8+bNeHl5nbO9devWZGVlVUkwEZGrVe5w8sra/byx4SAAXUIDWBAfQ9tmGlWJ1BeVOqK8YN0LAAAgAElEQVTjdDpxOBznbc/MzMTf3/+yH6d169ZYLJbzbmPHjr3oPp9++ikRERF4e3vTrVs3Vq1aVZmXICIu7lheMSPf/qmi5PxX71Yse6SvSo5IPVOponPLLbfw2muvVdy3WCwUFhby7LPPMmjQoMt+nG3btpGdnV1xW7t2LQDDhg274PrNmzcTFxfHAw88QHJyMnfeeSd33nknqamplXkZIuKi1u/JZdC8jWxPP4O/1YOF8bHMuLOrRlUi9VClPl6emZnJgAEDMAyDtLQ0evbsSVpaGk2bNuXf//53pT9e/uijj/L111+TlpZ2wYt1jRgxgrNnz/L1119XbOvduzfR0dGXfQK0Pl4u4rpKy53MXrOXf248DED3sEAWxMXSsok+DSpS19Xox8vDwsLYsWMHS5YsYefOnRQWFvLAAw8watSoc05OvhKlpaV8/PHHTJ48+aJXJN2yZQuTJ08+Z9uAAQNYvnz5RR/Xbrdjt9sr7ttstkrlE5Ha7ejpIsYvTiblaB4Af76uNVMHRmD10FEckfqs0tfR8fDw4N57762yIMuXLycvL4/777//omtycnIIDg4+Z1twcDA5OTkX3SchIYHnnnuuqmKKSC20ZncOUz7dga2knABvD2YPi2JAZIjZsUSkFrjsorNixYrLftD//ZLPK/Huu+8ycOBAmjdvfsX7Xsq0adPOOQpks9kIDw+v0ucQEXPYyx0krNrL+5uPABAd3pAF8TGENdKoSkR+c9lF584777ysdRaL5YKfyLqU9PR01q1bx7Jlyy65LiQkhNzc3HO25ebmEhJy8b/crFZrxTeti4jrSD91lnGJyezKygfgv//QlikDOuHpXqnPWIiIi7rs3whOp/OybldacgDee+89goKCGDx48CXX9enT57wLEq5du5Y+ffpc8XOKSN21cmc2t83bxK6sfBr6evKv+3vy1KDOKjkich7Tv6bX6XTy3nvvMXr0aDw8zo1z33330aJFCxISEoDfrsjcr18/XnnlFQYPHsySJUvYvn07b7/9thnRRaSGlZQ5+MfKX/n4pwwAerZqxLy4GJo3rNyHIETE9VW66Jw9e5YffviBjIwMSktLz/nZhAkTLvtx1q1bR0ZGBmPGjDnvZxkZGbi5/f+/0Pr27UtiYiJPP/00Tz31FB06dGD58uV07dq1si9DROqIQycKGZuYzJ7s3z45+ciN7ZjcvyMeOoojIpdQqevoJCcnM2jQIIqKijh79iyNGzfm5MmT+Pr6EhQUxKFDh6oja5XQdXRE6p4vU7J4atkuzpY6aOLnxZwR0fTr2MzsWCJSgyr7/l2pP4UmTZrEkCFDKr7U86effiI9PZ0ePXrw8ssvV+YhRUTOU1zqYOrnO5m4JIWzpQ56t23Mqok3qOSIyGWr1OgqJSWFt956Czc3N9zd3bHb7bRt25aXXnqJ0aNHM3To0KrOKSL1zIHjBYxdlMy+3AIsFhj/xw5M/FMH3N0ufEFREZELqVTR8fT0rDh3JigoiIyMDDp37kxgYCBHjx6t0oAiUv989ksm05enUlzmoGkDK3NHRnNd+6ZmxxKROqhSRScmJoZt27bRoUMH+vXrxzPPPMPJkyf56KOPdGKwiFRaUWk505fv5vOkTACua9+EV0dEE+TvbXIyEamrKnWOzqxZswgNDQVg5syZNGrUiIcffpiTJ0/y1ltvVWlAEakf9uUUMGT+Jj5PysTNAo/178iHY65VyRGRq1KpIzqRkZH874e1goKCePPNN/niiy/o0qUL0dHRVRpQRFybYRh8su0oz67Yjb3cSXCAlbkjY+jdtonZ0UTEBVSq6Nxxxx0MHTqUhx56iLy8PHr37o2npycnT55kzpw5PPzww1WdU0RcUKG9nL99sYsvU44B0K9jM+YMj6JJA31ti4hUjUqNrpKSkrjhhhsA+OyzzwgODiY9PZ0PP/yQefPmVWlAEXFNu4/lc/v8TXyZcgx3NwtP3hrBe/dfo5IjIlWqUkd0ioqK8Pf3B+Dbb79l6NChuLm50bt3b9LT06s0oIi4FsMw+PjnDGZ8/Sul5U5CA72ZHxdDz9aNzY4mIi6oUkd02rdvz/Llyzl69Chr1qzhlltuAeD48eO62rCIXJStpIxxi5OZvjyV0nInf4oIYtWEG1RyRKTaVKroPPPMMzz++OO0bt2aa6+9tuLbw7/99ltiYmKqNKCIuIZdmfncNm8TK3dm4+Fm4enBnXlndE8a+XmZHU1EXFilvusKICcnh+zsbKKioiouHrh161YCAgKIiIio0pBVSd91JVKzDMPgg81HmLVqL6UOJy0a+rAgPoaYlo3MjiYidUhl378r/e3lISEhhISEnLOtV69elX04EXFB+UVlPPH5DtbszgXgli7BzL4nikBfT5OTiUh9UemiIyJyKckZZxi/OJnMM8V4ubvx1KAIRvdtjcWi76oSkZqjoiMiVcowDN7ZeJgXV++l3GnQsrEvC+Nj6RYWaHY0EamHVHREpMqcOVvK45/uYP3e4wAM7hZKwt3dCPDWqEpEzKGiIyJVYvuR00xYnMyx/BK8PNx45rYujLq2pUZVImIqFR0RuSpOp8Gb/z7IK9/ux+E0aNPUjwXxMUQ216hKRMynoiMilXaq0M7kpTv4Yf8JAO6Ibs7Mu7rRwKpfLSJSO+i3kYhUys+HTjFhSTK5NjtWDzeevyOS4T3DNaoSkVpFRUdErojDafD69wd4dd1+nAa0a+bH66N60CnE3+xoIiLnUdERkct2osDOo58k8+OBUwDcHRvGjDsj8fXSrxIRqZ3020lELsuPB04ycUkKJwvt+Hi6M+POrtzTI8zsWCIil6SiIyKX5HAazF2fxvzv0jAM6BTsz8JRMbQP0qhKRGo/FR0RuahcWwkTFifz8+HTAIy8Jpxnh0Ti4+VucjIRkcujoiMiF/TD/hNM/iSFU2dL8fNyZ9bQbtwR3cLsWCIiV0RFR0TOUe5w8sra/byx4SAAnUMDWBgfQ9tmDUxOJiJy5VR0RKTCsbxiJixOZnv6GQDu7d2Spwd3wdtToyoRqZtUdEQEgO/25jJ56Q7yisrwt3qQcHc3buve3OxYIiJXRUVHpJ4rcziZvWYfb//7EADdWgSyID6GVk38TE4mInL1VHRE6rHMM0WMS0wm5WgeAPf3bc20QRFYPTSqEhHX4GZ2gKysLO69916aNGmCj48P3bp1Y/v27Rddv2HDBiwWy3m3nJycGkwtUvet2Z3DoLkbSTmaR4C3B2/9Vw/+fnukSo6IuBRTj+icOXOG6667jptuuolvvvmGZs2akZaWRqNGjX5333379hEQEFBxPygoqDqjiriM0nInCd/s4b0fjwAQHd6Q+XExhDf2NTeYiEg1MLXovPjii4SHh/Pee+9VbGvTps1l7RsUFETDhg2rK5qIS8o4VcS4xUnszMwH4C83tGHKgAi8PEw/uCsiUi1M/e22YsUKevbsybBhwwgKCiImJoZ//vOfl7VvdHQ0oaGh9O/fnx9//PGi6+x2Ozab7ZybSH20alc2g+dtZGdmPg19PXl3dE/+NriLSo6IuDRTf8MdOnSIN954gw4dOrBmzRoefvhhJkyYwAcffHDRfUJDQ3nzzTf5/PPP+fzzzwkPD+fGG28kKSnpgusTEhIIDAysuIWHh1fXyxGplUrKHExfnsoji5IosJfTs1UjVk24gT91DjY7mohItbMYhmGY9eReXl707NmTzZs3V2ybMGEC27ZtY8uWLZf9OP369aNly5Z89NFH5/3Mbrdjt9sr7ttsNsLDw8nPzz/nHB8RV3T45FnGLkri1+zfjmQ+fGM7JvfviKe7juKISN1is9kIDAy84vdvU8/RCQ0NpUuXLuds69y5M59//vkVPU6vXr3YtGnTBX9mtVqxWq2VzihSV32ZksVTy3ZxttRBYz8v5gyP4sZOOmlfROoXU4vOddddx759+87Ztn//flq1anVFj5OSkkJoaGhVRhOps0rKHDz31W4Wbz0KQK82jZk3MoaQQG+Tk4mI1DxTi86kSZPo27cvs2bNYvjw4WzdupW3336bt99+u2LNtGnTyMrK4sMPPwTgtddeo02bNkRGRlJSUsI777zDd999x7fffmvWyxCpNQ4cL2TsoiT25RZgscD4m9oz4U8d8NCoSkTqKVOLzjXXXMMXX3zBtGnTeP7552nTpg2vvfYao0aNqliTnZ1NRkZGxf3S0lIee+wxsrKy8PX1pXv37qxbt46bbrrJjJcgUmt8/ksmTy9PpbjMQdMGVl4bEc31HZqaHUtExFSmnoxshsqezCRSWxWVlvPMl7v57JdMAPq2a8JrI6MJ8teoSkRcR508GVlErs7+3ALGLkoi7XghbhZ49OaOjL2pPe5uFrOjiYjUCio6InWQYRgs3X6UZ1fspqTMSZC/lXlxMfRu28TsaCIitYqKjkgdU2gv5+kvdrE85RgAf+jYjDnDo2jaQJdREBH5Tyo6InXIr8dsjEtM4tDJs7i7WXjslo489Id2uGlUJSJyQSo6InWAYRgs+jmD57/+ldJyJ6GB3syLi+Ga1o3NjiYiUqup6IjUcgUlZUxdtouVO7MB+GNEEK8Mi6KRn5fJyUREaj8VHZFabFdmPuMWJ5F+qggPNwtP3hrBA9e30ahKROQyqeiI1EKGYfDB5iPMWrWXUoeTFg19mB8fQ2zLRmZHExGpU1R0RGqZ/OIynvxsJ6t35wBwS5dgZt8TRaCvp8nJRETqHhUdkVok5Wge4xKTyDxTjKe7hacGdeb+vq2xWDSqEhGpDBUdkVrAMAze3XSYF77ZS7nToGVjXxbEx9A9rKHZ0URE6jQVHRGT5RWV8vinO1i35zgAg7qF8MLd3Qnw1qhKRORqqeiImOiX9NOMT0zmWH4JXh5uTL+tC/de21KjKhGRKqKiI2ICp9Pg7Y2HmL1mHw6nQZumfiyIjyGyeaDZ0UREXIqKjkgNO1Vo57FPd7Bh3wkAbo9qzqyh3Whg1X+OIiJVTb9ZRWrQz4dOMWFJMrk2O1YPN567PZIR14RrVCUiUk1UdERqgMNp8Pr3B3h13X6cBrRr5sfCUbFEhASYHU1ExKWp6IhUsxMFdiZ9ksKmAycBGBrbghl3dMVPoyoRkWqn37Qi1WjzgZNM/CSFEwV2fDzdef6OSIb1DDc7lohIvaGiI1INHE6DuevTmP9dGoYBHYMbsDA+lg7B/mZHExGpV1R0RKpYrq2EiUuS+enQaQBG9Azn77dH4uPlbnIyEZH6R0VHpAr9e/8JJn2Swqmzpfh6uTPrrm7cGdPC7FgiIvWWio5IFSh3OHl13X5e33AQw4DOoQEsjI+hbbMGZkcTEanXVHRErlJ2fjETFiez7cgZAEZd25Lpt3XB21OjKhERs6noiFyF7/ceZ/LSFM4UldHA6sELd3fjtu7NzY4lIiL/Q0VHpBLKHE5eXrOPt/59CICuLQJYGB9LqyZ+JicTEZH/S0VH5Aplnili/OJkkjPyALi/b2umDYrA6qFRlYhIbaOiI3IFvt2dw5TPdpJfXIa/twez7+nOrV1DzY4lIiIXoaIjchlKy50kfLOH9348AkBUeEMWxMUQ3tjX3GAiInJJKjoivyPjVBHjFiexMzMfgAevb8MTt0bg5eFmcjIREfk9Kjoil/DNrmye+GwnBfZyAn08eWVYFDd3CTY7loiIXCbT/yTNysri3nvvpUmTJvj4+NCtWze2b99+yX02bNhAbGwsVquV9u3b8/7779dMWKk3SsocPPNlKg8vSqLAXk6PVo1YNfEGlRwRkTrG1CM6Z86c4brrruOmm27im2++oVmzZqSlpdGoUaOL7nP48GEGDx7MQw89xKJFi1i/fj0PPvggoaGhDBgwoAbTi6s6fPIs4xKT2H3MBsBD/drx2C0d8XQ3/e8CERG5QhbDMAyznnzq1Kn8+OOPbNy48bL3efLJJ1m5ciWpqakV20aOHEleXh6rV6/+3f1tNhuBgYHk5+cTEBBQqdziulbsOMZTy3ZRaC+nsZ8Xc4ZHcWOnILNjiYjUe5V9/zb1T9QVK1bQs2dPhg0bRlBQEDExMfzzn/+85D5btmzh5ptvPmfbgAED2LJlywXX2+12bDbbOTeR/1RS5mDasl1MWJxMob2cXm0as2rCDSo5IiJ1nKlF59ChQ7zxxht06NCBNWvW8PDDDzNhwgQ++OCDi+6Tk5NDcPC550kEBwdjs9koLi4+b31CQgKBgYEVt/Dw8Cp/HVK3HTheyJ0Lf2Tx1gwsFhj/x/YkPngtIYHeZkcTEZGrZOo5Ok6nk549ezJr1iwAYmJiSE1N5c0332T06NFV8hzTpk1j8uTJFfdtNpvKjlRYlpTJ08tTKSp10LSBF6+NiOH6Dk3NjiUiIlXE1KITGhpKly5dztnWuXNnPv/884vuExISQm5u7jnbcnNzCQgIwMfH57z1VqsVq9VaNYHFZRSVlvPsl7v59JdMAPq2a8JrI6IJCtBRHBERV2Jq0bnuuuvYt2/fOdv2799Pq1atLrpPnz59WLVq1Tnb1q5dS58+faolo7ie/bkFjF2URNrxQtwsMPFPHRn3x/a4u1nMjiYiIlXM1HN0Jk2axE8//cSsWbM4cOAAiYmJvP3224wdO7ZizbRp07jvvvsq7j/00EMcOnSIJ554gr179/L666+zdOlSJk2aZMZLkDrEMAyWbjvK7Qs2kXa8kCB/K4se7M3Emzuo5IiIuChTj+hcc801fPHFF0ybNo3nn3+eNm3a8NprrzFq1KiKNdnZ2WRkZFTcb9OmDStXrmTSpEnMnTuXsLAw3nnnHV1DRy7prL2cp5en8kVyFgA3dGjKqyOiadpAY00REVdm6nV0zKDr6NQ/e7JtjF2UxKGTZ3F3szC5f0ce7tcONx3FERGpMyr7/q3vuhKXZRgGiVszeO6rXyktdxIS4M38+Biuad3Y7GgiIlJDVHTEJRWUlDFt2S6+3pkNwB8jgnh5WBSN/bxMTiYiIjVJRUdcTmpWPuMSkzhyqggPNwtP3NqJB69vq1GViEg9pKIjLsMwDD7cks7MlXsodThp0dCH+fExxLa8+JfEioiIa1PREZeQX1zG1M938k1qDgD9uwQz+57uNPTVqEpEpD5T0ZE6L+VoHuMSk8g8U4ynu4VpAzvz5+taY7FoVCUiUt+p6EidZRgG7246zIur91LmMAhv7MOCuFiiwhuaHU1ERGoJFR2pk/KKSnn8052s2/Pb954N7BrCC3d3J9DH0+RkIiJSm6joSJ3zS/oZxicmcSy/BC93N6bf1pl7e7fSqEpERM6joiN1htNp8PbGQ8xesw+H06B1E18WxMfStUWg2dFERKSWUtGROuH02VImL01hw74TANwe1ZxZQ7vRwKp/wiIicnF6l5Bab+vh00xYnEyOrQSrhxt/vz2SkdeEa1QlIiK/S0VHai2n0+D1DQeYs3Y/TgPaNvNjYXwsnUP1ZawiInJ5VHSkVjpRYGfy0hQ2pp0EYGhMC2bc2RU/japEROQK6F1Dap3NB08ycUkKJwrseHu6MeOOrgzrGW52LBERqYNUdKTWcDgN5n+Xxrz1aTgN6BjcgIXxsXQI9jc7moiI1FEqOlIrHLeVMHFJClsOnQJgeM8wnru9Kz5e7iYnExGRukxFR0y3Me0Ekz5J4WRhKb5e7sy8qyt3xYSZHUtERFyAio6Yptzh5LV1aSzccADDgIgQfxaOiqVdswZmRxMRERehoiOmyM4vZuLiFLYeOQ3AqGtbMv22Lnh7alQlIiJVR0VHatz3e48zeWkKZ4rKaGD1IGFoN4ZENTc7loiIuCAVHakxZQ4nL6/Zx1v/PgRA1xYBLIiLpXVTP5OTiYiIq1LRkRqRlVfM+MQkkjLyALi/b2umDYrA6qFRlYiIVB8VHal2a3/N5fFPd5BfXIa/twez7+nOrV1DzY4lIiL1gIqOVJvScicvrt7Lu5sOAxAVFsiC+FjCG/uanExEROoLFR2pFkdPFzEuMYkdmfkAPHB9G568NQIvDzeTk4mISH2ioiNVbnVqNlM+20lBSTmBPp68PCyK/l2CzY4lIiL1kIqOVBl7uYNZK/fwwZZ0AGJbNmR+fCwtGvqYnExEROorFR2pEkdOnmXc4iRSs2wA/LVfWx6/pROe7hpViYiIeVR05Kp9teMY05btotBeTmM/L14ZHsVNnYLMjiUiIqKiI5VXUubg+a9/JfHnDAB6tW7MvLgYQgK9TU4mIiLyG1PnCn//+9+xWCzn3CIiIi66/v333z9vvbe33lTNcPBEIXcu/JHEnzOwWGD8H9uT+JdrVXJERKRWMf2ITmRkJOvWrau47+Fx6UgBAQHs27ev4r7FYqm2bHJhXyRn8rcvUikqddC0gRevjojmhg7NzI4lIiJyHtOLjoeHByEhIZe93mKxXNF6qTrFpQ6eXZHK0u2ZAPRp24S5I6MJCtBRHBERqZ1M/0hMWloazZs3p23btowaNYqMjIxLri8sLKRVq1aEh4dzxx13sHv37kuut9vt2Gy2c25y5dJyC7h9wSaWbs/EYoFHb+7Axw9eq5IjIiK1mqlF59prr+X9999n9erVvPHGGxw+fJgbbriBgoKCC67v1KkT//rXv/jyyy/5+OOPcTqd9O3bl8zMzIs+R0JCAoGBgRW38PDw6no5LskwDJZuP8qQBZtIO15IM38rix68lkdv7oi7m8aGIiJSu1kMwzDMDvG/8vLyaNWqFXPmzOGBBx743fVlZWV07tyZuLg4ZsyYccE1drsdu91ecd9msxEeHk5+fj4BAQFVlt0VnbWXM315KsuSswC4oUNTXh0RTdMGVpOTiYhIfWOz2QgMDLzi92/Tz9H5vxo2bEjHjh05cODAZa339PQkJibmkuutVitWq96Yr9SebBvjEpM4eOIsbhZ47JZOPNyvHW46iiMiInWI6efo/F+FhYUcPHiQ0NDQy1rvcDjYtWvXZa+X32cYBok/Z3Dnwh85eOIsIQHeLPnvPoy9qb1KjoiI1DmmHtF5/PHHGTJkCK1ateLYsWM8++yzuLu7ExcXB8B9991HixYtSEhIAOD555+nd+/etG/fnry8PGbPnk16ejoPPvigmS/DZRSUlPHUF6l8teMYADd1asYrw6Np7OdlcjIREZHKMbXoZGZmEhcXx6lTp2jWrBnXX389P/30E82a/XZNloyMDNzc/v9BpzNnzvCXv/yFnJwcGjVqRI8ePdi8eTNdunQx6yW4jNSsfMYlJnHkVBEebhamDOjEX25oq6M4IiJSp9Wqk5FrQmVPZnJVhmHw8U/pzPh6D6UOJy0a+jAvLoYerRqZHU1ERKSCS5yMLDXLVlLG1M93smpXDgA3dw7m5WHdaeirUZWIiLgGFZ16asfRPMYtTuLo6WI83S1MHdiZMde11ldqiIiIS1HRqWcMw+BfPx7hhW/2UOYwCG/sw4K4WKLCG5odTUREpMqp6NQjeUWlTPlsJ2t/zQVgYNcQXri7O4E+niYnExERqR4qOvVEUsYZxicmk5VXjJe7G0/f1pn/6t1KoyoREXFpKjouzuk0+OfGQ8xes49yp0HrJr4siI+la4tAs6OJiIhUOxUdF3b6bCmPf7qD7/YeB2BIVHNm3dUVf2+NqkREpH5Q0XFR246cZnxiMjm2Eqwebjw7JJK4XuEaVYmISL2iouNinE6DN344yJy1+3E4Ddo282NhfCydQ3VxRBERqX9UdFzIyUI7kz5JYWPaSQCGxrRgxp1d8bPq/2YREamf9A7oIrYcPMXEJckcL7Dj7enG83d0ZViPMI2qRESkXlPRqeMcToMF3x1g7vr9OA3oENSAhaNi6Rjsb3Y0ERER06no1GHHC0p4dEkKmw+eAmB4zzCeu70rPl7uJicTERGpHVR06qhNaSd59JNkThaW4uvlzsy7unJXTJjZsURERGoVFZ06ptzhZO76NBZ8fwDDgIgQfxbEx9I+qIHZ0URERGodFZ06JCe/hAlLktl6+DQA8de25JnbuuDtqVGViIjIhajo1BEb9h1n8tIdnD5bSgOrB7OGduP2qOZmxxIREanVVHRquTKHk1e+3c+bPxwEILJ5AAvjY2nd1M/kZCIiIrWfik4tlpVXzITFyfySfgaA0X1aMW1QZ42qRERELpOKTi217tdcHv9sB3lFZfy/9u4+KMqy3wP4d1lYVhHwDXkZUDQQTEVQgxYjtqSotCeaM0/JOMpMKNUDZ2A80UGnfBmcwZ5MMzF1chLHNNI8WFOEoSROvKTA8oSohPhuAtbpuEA+qMt1/njGfVoE3CV2771vv5+Ze8a97+tyf7/5eY0/7utm11Prir//RwSene4vdVhERESywkbHydy604O/l5zBju/PAwBmBHpjc/JMjB8zXOLIiIiI5IeNjhO5/L+/I+NTA/5x+f8AAKmPTcR/PxMOjauLxJERERHJExsdJ1FyshXZn/8DHf+8A+9hblj/1xl46mFfqcMiIiKSNTY6Euu+Y0Je8RkUVF4AAMwcPxIfJEchcBS3qoiIiP4sNjoSuvhrFzL2GtBw9QYA4NX4SXjj6TC4qblVRURENBTY6Ejkqx9/Rs6BBnR238Go4W7Y8FIknggfJ3VYREREisJGx8H+eduE3K9OYc8PlwAAjwSPwgfJUfD3HiZxZERERMrDRseBzl3vRPpeA05fM0KlAtL1IchKCIUrt6qIiIjsgo2Ogxw0XMWKogb8fsuEMR4avL8gEnGhPlKHRUREpGhsdOzs5i0TVn/ZiM9qLgMAdJPGYNOCSIzz0kocGRERkfKx0bGj5rYOpO+tw09tnVCpgMy5ofjPJ0OhdlFJHRoREdEDQdKHQ1avXg2VSmVxhIeHDzhn//79CA8Ph1arxfTp01FcXOygaG2zv+Yy/pJfgZ/aOuHj6Y49S2KQlTCZTQ4REZEDSX5HZ+rUqTh8+LD5tatr/yFVVlYiOTkZeXl5mD9/Pvbu3YukpKRVHWsAAA4QSURBVCTU1dVh2rRpjgj3vrq67+DtL07if+quAgDiQsdiw0uR8PF0lzgyIiKiB4/kjY6rqyv8/PysGrtp0yY888wzyM7OBgDk5uaitLQU+fn52LZtmz3DtMqZViPS99Sh5XoXXFTAfz0dhtfjH4IL7+IQERFJQvLfa25ubkZAQAAmTZqEhQsX4tKlS/2OraqqQkJCgsW5xMREVFVV9Tunu7sbRqPR4rCH0lNteCG/Ai3Xu+DnpUVhmg7pT4SwySEiIpKQpI1OTEwMCgoKUFJSgq1bt+L8+fOIi4tDR0dHn+NbW1vh62v5RZe+vr5obW3t9z3y8vLg7e1tPoKCgoY0h7um+HtC66aGPswHxZlxiJ442i7vQ0RERNaTdOvq2WefNf85IiICMTExmDBhAvbt24fU1NQheY/ly5dj2bJl5tdGo9EuzU7gqOEo+lssgsd48C4OERGRk5D8GZ0/GjlyJCZPnoyzZ8/2ed3Pzw9tbW0W59ra2gZ8xsfd3R3u7o55EHiSzwiHvA8RERFZR/JndP6os7MTLS0t8Pf37/O6TqfDkSNHLM6VlpZCp9M5IjwiIiKSGUkbnTfeeAPl5eW4cOECKisr8eKLL0KtViM5ORkAsHjxYixfvtw8PjMzEyUlJXjvvfdw5swZrF69GjU1NcjIyJAqBSIiInJikm5dXblyBcnJyfj111/h4+ODxx57DNXV1fDx+dd3QF26dAkuLv/uxWJjY7F371689dZbWLFiBUJDQ3Hw4EGn+QwdIiIici4qIYSQOghHMhqN8Pb2xo0bN+Dl5SV1OERERGSFwf7/7VTP6BARERENJTY6REREpFhsdIiIiEix2OgQERGRYrHRISIiIsVio0NERESKxUaHiIiIFIuNDhERESkWGx0iIiJSLKf69nJHuPtB0EajUeJIiIiIyFp3/9+29QsdHrhGp6OjAwAQFBQkcSRERERkq46ODnh7e1s9/oH7rquenh78/PPP8PT0hEqlGtK/22g0IigoCJcvX1bk92gpPT9A+TkyP/lTeo7MT/7slaMQAh0dHQgICLD4wu/7eeDu6Li4uCAwMNCu7+Hl5aXYf8CA8vMDlJ8j85M/pefI/OTPHjnacifnLj6MTERERIrFRoeIiIgUS7169erVUgehJGq1Gnq9Hq6uytwVVHp+gPJzZH7yp/QcmZ/8OVOOD9zDyERERPTg4NYVERERKRYbHSIiIlIsNjpERESkWGx0iIiISLHY6Nhoy5YtCA4OhlarRUxMDI4fPz7g+P379yM8PBxarRbTp09HcXGxgyIdHFvyKygogEqlsji0Wq0Do7XNsWPH8PzzzyMgIAAqlQoHDx6875yjR49i5syZcHd3R0hICAoKCuwf6CDZmt/Ro0fvqZ9KpUJra6uDIrZNXl4eHnnkEXh6emLcuHFISkpCU1PTfefJaQ0OJkc5rcOtW7ciIiLC/EFyOp0O33zzzYBz5FQ/W/OTU+36sm7dOqhUKmRlZQ04TuoastGxwWeffYZly5Zh1apVqKurw4wZM5CYmIj29vY+x1dWViI5ORmpqakwGAxISkpCUlISTp486eDIrWNrfsC/Pvny2rVr5uPixYsOjNg2XV1dmDFjBrZs2WLV+PPnz2PevHl44oknUF9fj6ysLCxZsgSHDh2yc6SDY2t+dzU1NVnUcNy4cXaK8M8pLy9Heno6qqurUVpaitu3b+Ppp59GV1dXv3PktgYHkyMgn3UYGBiIdevWoba2FjU1NXjyySfxwgsvoLGxsc/xcqufrfkB8qldbydOnMD27dsREREx4DinqKEgq0VHR4v09HTza5PJJAICAkReXl6f41966SUxb948i3MxMTHi1VdftWucg2Vrfjt37hTe3t6OCm9IARBFRUUDjnnzzTfF1KlTLc69/PLLIjEx0Z6hDQlr8vvuu+8EAPHbb785KKqh1d7eLgCI8vLyfsfIbQ32Zk2Ocl6HQggxatQosWPHjj6vyb1+Qgycn1xr19HRIUJDQ0VpaamIj48XmZmZ/Y51hhryjo6Vbt26hdraWiQkJJjPubi4ICEhAVVVVX3OqaqqshgPAImJif2Ol9Jg8gOAzs5OTJgwAUFBQff9yUVu5FS/PyMyMhL+/v546qmnUFFRIXU4Vrtx4wYAYPTo0f2OkXsNrckRkOc6NJlMKCwsRFdXF3Q6XZ9j5Fw/a/ID5Fm79PR0zJs3757a9MUZashGx0q//PILTCYTfH19Lc77+vr2+0xDa2urTeOlNJj8wsLC8PHHH+OLL77AJ598gp6eHsTGxuLKlSuOCNnu+quf0WjEzZs3JYpq6Pj7+2Pbtm04cOAADhw4gKCgIOj1etTV1Ukd2n319PQgKysLc+bMwbRp0/odJ6c12Ju1OcptHTY0NGDEiBFwd3fHa6+9hqKiIjz88MN9jpVj/WzJT261A4DCwkLU1dUhLy/PqvHOUEPpP5uZZEun01n8pBIbG4spU6Zg+/btyM3NlTAyskZYWBjCwsLMr2NjY9HS0oKNGzdi9+7dEkZ2f+np6Th58iS+//57qUOxG2tzlNs6DAsLQ319PW7cuIHPP/8cKSkpKC8v77cZkBtb8pNb7S5fvozMzEyUlpbK6qFpNjpWGjt2LNRqNdra2izOt7W1wc/Pr885fn5+No2X0mDy683NzQ1RUVE4e/asPUJ0uP7q5+XlhWHDhkkUlX1FR0c7ffOQkZGBr776CseOHUNgYOCAY+W0Bv/Ilhx7c/Z1qNFoEBISAgCYNWsWTpw4gU2bNmH79u33jJVj/WzJrzdnr11tbS3a29sxc+ZM8zmTyYRjx44hPz8f3d3dUKvVFnOcoYbcurKSRqPBrFmzcOTIEfO5np4eHDlypN/9V51OZzEeAEpLSwfcr5XKYPLrzWQyoaGhAf7+/vYK06HkVL+hUl9f77T1E0IgIyMDRUVFKCsrw8SJE+87R241HEyOvcltHfb09KC7u7vPa3KrX18Gyq83Z6/d3Llz0dDQgPr6evMxe/ZsLFy4EPX19fc0OYCT1NBhjz0rQGFhoXB3dxcFBQXi1KlTIi0tTYwcOVK0trYKIYRYtGiRyMnJMY+vqKgQrq6uYv369eL06dNi1apVws3NTTQ0NEiVwoBszW/NmjXi0KFDoqWlRdTW1ooFCxYIrVYrGhsbpUphQB0dHcJgMAiDwSAAiA0bNgiDwSAuXrwohBAiJydHLFq0yDz+3LlzYvjw4SI7O1ucPn1abNmyRajValFSUiJVCgOyNb+NGzeKgwcPiubmZtHQ0CAyMzOFi4uLOHz4sFQpDOj1118X3t7e4ujRo+LatWvm4/fffzePkfsaHEyOclqHOTk5ory8XJw/f178+OOPIicnR6hUKvHtt98KIeRfP1vzk1Pt+tP7t66csYZsdGy0efNmMX78eKHRaER0dLSorq42X4uPjxcpKSkW4/ft2ycmT54sNBqNmDp1qvj6668dHLFtbMkvKyvLPNbX11c899xzoq6uToKorXP316l7H3dzSklJEfHx8ffMiYyMFBqNRkyaNEns3LnT4XFby9b83nnnHfHQQw8JrVYrRo8eLfR6vSgrK5MmeCv0lRsAi5rIfQ0OJkc5rcNXXnlFTJgwQWg0GuHj4yPmzp1rbgKEkH/9bM1PTrXrT+9GxxlrqBJCCMfdPyIiIiJyHD6jQ0RERIrFRoeIiIgUi40OERERKRYbHSIiIlIsNjpERESkWGx0iIiISLHY6BAREZFisdEhItm7cOECVCoV6uvrpQ6FiJwMPzCQiGTPZDLh+vXrGDt2LFxd+V3FRPRvbHSISNZu3boFjUYjdRhE5KS4dUVETkWv1yMjIwMZGRnw9vbG2LFj8fbbb+Puz2TBwcHIzc3F4sWL4eXlhbS0tD63rhobGzF//nx4eXnB09MTcXFxaGlpMV/fsWMHpkyZAq1Wi/DwcHz44YcOz5WI7I/3eInI6ezatQupqak4fvw4ampqkJaWhvHjx2Pp0qUAgPXr12PlypVYtWpVn/OvXr2Kxx9/HHq9HmVlZfDy8kJFRQXu3LkDANizZw9WrlyJ/Px8REVFwWAwYOnSpfDw8EBKSorD8iQi++PWFRE5Fb1ej/b2djQ2NkKlUgEAcnJy8OWXX+LUqVMIDg5GVFQUioqKzHMuXLiAiRMnwmAwIDIyEitWrEBhYSGamprg5uZ2z3uEhIQgNzcXycnJ5nNr165FcXExKisr7Z8kETkMt66IyOk8+uij5iYHAHQ6HZqbm2EymQAAs2fPHnB+fX094uLi+mxyurq60NLSgtTUVIwYMcJ8rF271mJri4iUgVtXRCQ7Hh4eA14fNmxYv9c6OzsBAB999BFiYmIsrqnV6j8fHBE5FTY6ROR0fvjhB4vX1dXVCA0NtboRiYiIwK5du3D79u177ur4+voiICAA586dw8KFC4csZiJyTty6IiKnc+nSJSxbtgxNTU349NNPsXnzZmRmZlo9PyMjA0ajEQsWLEBNTQ2am5uxe/duNDU1AQDWrFmDvLw8fPDBB/jpp5/Q0NCAnTt3YsOGDfZKiYgkwjs6ROR0Fi9ejJs3byI6OhpqtRqZmZlIS0uzev6YMWNQVlaG7OxsxMfHQ61WIzIyEnPmzAEALFmyBMOHD8e7776L7OxseHh4YPr06cjKyrJXSkQkEf7WFRE5Fb1ej8jISLz//vtSh0JECsCtKyIiIlIsNjpERESkWNy6IiIiIsXiHR0iIiJSLDY6REREpFhsdIiIiEix2OgQERGRYrHRISIiIsVio0NERESKxUaHiIiIFIuNDhERESkWGx0iIiJSrP8HbCtIxJAGXrEAAAAASUVORK5CYII=",
|
121
|
-
"text/plain": [
|
122
|
-
"<Figure size 640x480 with 1 Axes>"
|
123
|
-
]
|
124
|
-
},
|
125
|
-
"execution_count": 15,
|
126
|
-
"metadata": {},
|
127
|
-
"output_type": "execute_result"
|
128
|
-
}
|
129
|
-
],
|
130
|
-
"source": [
|
131
|
-
"curve = charty.to_curve(:price, :sales)\n",
|
132
|
-
"curve.render('sample')"
|
133
|
-
]
|
134
|
-
},
|
135
|
-
{
|
136
|
-
"cell_type": "code",
|
137
|
-
"execution_count": 16,
|
138
|
-
"metadata": {},
|
139
|
-
"outputs": [
|
140
|
-
{
|
141
|
-
"data": {
|
142
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG0CAYAAAA7Go31AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3Xt4VNW9//HPJJALNhlByYVDgCjIHSHQYAAP0IJBKQc8fazkQIFysXLgkYCixFNERIy0SrVeAKECgsrBWtAjGgjQoJBQLiGWoCKXkHBJQq2QCQgDTfbvD39MHUliMiTZmcX79Tz7j71mrZnvcptnPuy99h6HZVmWAAAADBRgdwEAAAB1haADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMZqZHcB9a28vFynTp1SWFiYHA6H3eUAAIBqsCxLpaWlatGihQICqn+e5roLOqdOnVJMTIzdZQAAAB8cP35cLVu2rHb/6y7ohIWFSfr2P1R4eLjN1QAAgOpwuVyKiYnxfI9X13UXdK5crgoPDyfoAADgZ2q67ITFyAAAwFgEHQAAYCyCDgAAMNZ1t0YHAADYo6ysTJcvX6709aCgoBrdOl4dBB0AAFCnLMtSUVGRzp49W2W/gIAAxcbGKigoqNY+m6ADAADq1JWQExERoSZNmlR459SVB/oWFhaqVatWtfZQX4IOAACoM2VlZZ6Qc9NNN1XZt3nz5jp16pT++c9/qnHjxrXy+SxGBgAAdebKmpwmTZr8YN8rl6zKyspq7fMJOgAAoM5V51JUXfwGJUEHAAAYizU6AADgmpWVW9qV97VOl15URFiI4mObKTCg9s/Q1JStZ3RKS0uVnJys1q1bKzQ0VH369NHu3burHJORkaG4uDgFBwerbdu2WrFiRf0UCwAAKpSWW6h+C7YqaelOTVuTo6SlO9VvwVal5RbaXZq9QWfixIlKT0/XqlWrtH//ft11110aNGiQTp48WWH/vLw8DR06VAMHDlROTo6Sk5M1ceJEbdy4sZ4rBwAA0rchZ/LqbBWWXPRqLyq5qMmrs/XJl3+X9O2zdH5IdfrUlMOqi3ethgsXLigsLEzvvfeehg4d6mnv2bOn7r77bj399NNXjXnssce0YcMG5ebmetpGjhyps2fPKi0trVqf63K55HQ6VVJSwq+XAwBwDcrKLfVbsPWqkHOFQ1KbZiF65WctFBn5w7eXl5SU6NSpU2rbtu1Vt5f7+v1t2xqdf/7znyorK1NISIhXe2hoqLZv317hmKysLA0aNMirLTExUcnJyZV+jtvtltvt9uy7XK5rqBoAAFyxK+/rSkOOJFmS8r6+qFIrSI7TpyWpygcG/v3vf1eTJk3UqFHtxRPbgk5YWJgSEhI0b948dezYUZGRkXr77beVlZWltm3bVjimqKhIkZGRXm2RkZFyuVy6cOGCQkNDrxqTmpqquXPn1skcAAC4np0urTzkfFfRpWC1imqi0/8/7FQmICCgVp+KLNl819WqVas0fvx4/du//ZsCAwMVFxenpKQk7d27t9Y+IyUlRTNmzPDsu1wuxcTE1Nr7AwBwvYoIC/nhTpIiwkMVHX2TIiIirq8f9bz11lu1bds2nT9/Xi6XS9HR0br//vt1yy23VNg/KipKxcXFXm3FxcUKDw+v8GyOJAUHBys4OLjWawcA4HoXH9tM0c4QFZVcVEULfh2Sopzf3mouSYGBgQoMDKzXGhvEAwNvuOEGRUdH68yZM9q4caOGDx9eYb+EhARt2bLFqy09PV0JCQn1USYAAPiOwACH5gzrJOnbUPNdV/bnDOtk6/N0bA06GzduVFpamvLy8pSenq6BAweqQ4cO+tWvfiXp28tOY8aM8fR/8MEHdfToUT366KP64osv9Oqrr2rt2rWaPn26XVMAAOC6NqRLtBaNjlOU0/syVpQzRItGx2lIl2ibKvuWrZeuSkpKlJKSohMnTqhZs2b6+c9/rvnz53tuKSssLFRBQYGnf2xsrDZs2KDp06frxRdfVMuWLbVs2TIlJibaNQUAAK57Q7pEa3CnqAb5ZGTbnqNjF56jAwCA//H1+7tBrNEBAACoCwQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABj2Rp0ysrKNHv2bMXGxio0NFS33nqr5s2bJ8uyKh2TkZEhh8Nx1VZUVFSPlQMAAH/QyM4PX7BggRYtWqSVK1eqc+fO2rNnj371q1/J6XTqoYceqnLswYMHFR4e7tmPiIio63IBAICfsTXoZGZmavjw4Ro6dKgkqU2bNnr77be1a9euHxwbERGhG2+8sa5LBAAAfszWS1d9+vTRli1b9OWXX0qSPv30U23fvl133333D47t3r27oqOjNXjwYO3YsaPSfm63Wy6Xy2sDAADXB1vP6MyaNUsul0sdOnRQYGCgysrKNH/+fI0aNarSMdHR0Vq8eLF69eolt9utZcuWacCAAfrrX/+quLi4q/qnpqZq7ty5dTkNAADQQDmsqlb+1rE1a9Zo5syZ+t3vfqfOnTsrJydHycnJWrhwocaOHVvt9+nfv79atWqlVatWXfWa2+2W2+327LtcLsXExKikpMRrjQ8AAGi4XC6XnE5njb+/bT2jM3PmTM2aNUsjR46UJHXt2lX5+flKTU2tUdCJj4/X9u3bK3wtODhYwcHBtVIvAADwL7au0fnmm28UEOBdQmBgoMrLy2v0Pjk5OYqOjq7N0gAAgAFsPaMzbNgwzZ8/X61atVLnzp21b98+LVy4UOPHj/f0SUlJ0cmTJ/XGG29Ikl544QXFxsaqc+fOunjxopYtW6atW7dq06ZNdk0DAAA0ULYGnZdeekmzZ8/Wf//3f+v06dNq0aKFfv3rX+uJJ57w9CksLFRBQYFn/9KlS3r44Yd18uRJNWnSRN26ddPmzZs1cOBAO6YAAAAaMFsXI9vB18VMAADAPr5+f/NbVwAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjNXI7gIAAJCksnJLu/K+1unSi4oIC1F8bDMFBjjsLgt+ztYzOmVlZZo9e7ZiY2MVGhqqW2+9VfPmzZNlWVWOy8jIUFxcnIKDg9W2bVutWLGifgoGANSJtNxC9VuwVUlLd2ramhwlLd2pfgu2Ki230O7S4OdsDToLFizQokWL9PLLL+vzzz/XggUL9Nvf/lYvvfRSpWPy8vI0dOhQDRw4UDk5OUpOTtbEiRO1cePGeqwcAFBb0nILNXl1tgpLLnq1F5Vc1OTV2YQdXBOH9UOnT+rQz372M0VGRuqPf/yjp+3nP/+5QkNDtXr16grHPPbYY9qwYYNyc3M9bSNHjtTZs2eVlpb2g5/pcrnkdDpVUlKi8PDwa58EAMBnZeWW+i3YelXIucIhKcoZou2P/YTLWNc5X7+/bT2j06dPH23ZskVffvmlJOnTTz/V9u3bdffdd1c6JisrS4MGDfJqS0xMVFZWVoX93W63XC6X1wYAaBh25X1daciRJEtSYclF7cr7uv6KglFsXYw8a9YsuVwudejQQYGBgSorK9P8+fM1atSoSscUFRUpMjLSqy0yMlIul0sXLlxQaGio12upqamaO3dundQPALg2p0srDzm+9AO+z9YzOmvXrtWbb76pt956S9nZ2Vq5cqWee+45rVy5stY+IyUlRSUlJZ7t+PHjtfbeAIBrExEWUqv9gO+z9YzOzJkzNWvWLI0cOVKS1LVrV+Xn5ys1NVVjx46tcExUVJSKi4u92oqLixUeHn7V2RxJCg4OVnBwcO0XDwC4ZvGxzRTtDFFRyUVVtGD0yhqd+Nhm9V0aDGHrGZ1vvvlGAQHeJQQGBqq8vLzSMQkJCdqyZYtXW3p6uhISEuqkRgBA3QkMcGjOsE6Svg0133Vlf86wTixEhs9sDTrDhg3T/PnztWHDBh07dkzr1q3TwoULde+993r6pKSkaMyYMZ79Bx98UEePHtWjjz6qL774Qq+++qrWrl2r6dOn2zEFAMA1GtIlWotGxynK6X15KsoZokWj4zSkS7RNlcEEtt5eXlpaqtmzZ2vdunU6ffq0WrRooaSkJD3xxBMKCgqSJI0bN07Hjh1TRkaGZ1xGRoamT5+uzz77TC1bttTs2bM1bty4an0mt5cDQMPEk5FRFV+/v20NOnYg6AAA4H/88jk6AAAAdYmgAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLFuDTps2beRwOK7apkyZUmH/FStWXNU3JCSknqsGAAD+opGdH757926VlZV59nNzczV48GDdd999lY4JDw/XwYMHPfsOh6NOawQAAP7L1qDTvHlzr/1nn31Wt956q/r371/pGIfDoaioqLouDQAAGKDBrNG5dOmSVq9erfHjx1d5lubcuXNq3bq1YmJiNHz4cB04cKDK93W73XK5XF4bAAC4PjSYoLN+/XqdPXtW48aNq7RP+/bt9frrr+u9997T6tWrVV5erj59+ujEiROVjklNTZXT6fRsMTExdVA9AABoiByWZVl2FyFJiYmJCgoK0v/93/9Ve8zly5fVsWNHJSUlad68eRX2cbvdcrvdnn2Xy6WYmBiVlJQoPDz8musGAAB1z+Vyyel01vj729Y1Olfk5+dr8+bN+vOf/1yjcY0bN1aPHj10+PDhSvsEBwcrODj4WksEAAB+qEFculq+fLkiIiI0dOjQGo0rKyvT/v37FR0dXUeVAQAAf2Z70CkvL9fy5cs1duxYNWrkfYJpzJgxSklJ8ew/9dRT2rRpk44ePars7GyNHj1a+fn5mjhxYn2XDQAA/IDtl642b96sgoICjR8//qrXCgoKFBDwryx25swZTZo0SUVFRWratKl69uypzMxMderUqT5LBgAAfqLBLEauL74uZgIAAPbx9fvb9ktXAAAAdYWgAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGP5FHSOHz+uEydOePZ37dql5ORkvfbaa7VWGAAAwLXyKej813/9l/7yl79IkoqKijR48GDt2rVL//M//6OnnnqqVgsEAADwlU9BJzc3V/Hx8ZKktWvXqkuXLsrMzNSbb76pFStW1GZ9AAAAPvMp6Fy+fFnBwcGSpM2bN+s//uM/JEkdOnRQYWFh7VUHAABwDXwKOp07d9bixYv1ySefKD09XUOGDJEknTp1SjfddFOtFggAAOArn4LOggULtGTJEg0YMEBJSUm6/fbbJUnvv/++55IWAACA3RyWZVm+DCwrK5PL5VLTpk09bceOHVOTJk0UERFRawXWNpfLJafTqZKSEoWHh9tdDgAAqAZfv799fo6OZVnau3evlixZotLSUklSUFCQmjRp4utbAgAA1KpGvgzKz8/XkCFDVFBQILfbrcGDByssLEwLFiyQ2+3W4sWLa7tOAACAGvPpjM60adPUq1cvnTlzRqGhoZ72e++9V1u2bKm14gAAAK6FT2d0PvnkE2VmZiooKMirvU2bNjp58mStFAYANVFWbmlX3tc6XXpREWEhio9tpsAAh91lAbCZT2d0ysvLVVZWdlX7iRMnFBYWVu33adOmjRwOx1XblClTKh3zzjvvqEOHDgoJCVHXrl314Ycf+jIFAAZJyy1UvwVblbR0p6atyVHS0p3qt2Cr0nJ5rhdwvfMp6Nx111164YUXPPsOh0Pnzp3TnDlzdM8991T7fXbv3q3CwkLPlp6eLkm67777KuyfmZmppKQkTZgwQfv27dOIESM0YsQI5ebm+jINAAZIyy3U5NXZKiy56NVeVHJRk1dnE3aA65xPt5efOHFCiYmJsixLhw4dUq9evXTo0CHdfPPN+vjjj32+vTw5OVkffPCBDh06JIfj6lPO999/v86fP68PPvjA03bHHXeoe/fu1V4Aze3lgDnKyi31W7D1qpBzhUNSlDNE2x/7CZexAD/n6/e3T2t0WrZsqU8//VRr1qzR3/72N507d04TJkzQqFGjvBYn18SlS5e0evVqzZgxo8KQI0lZWVmaMWOGV1tiYqLWr19f6fu63W653W7Pvsvl8qk+AA3PrryvKw05kmRJKiy5qF15XyvhVp7aDlyPfAo6ktSoUSONHj261gpZv369zp49q3HjxlXap6ioSJGRkV5tkZGRKioqqnRMamqq5s6dW1tlAmhATpdWHnJ86QfAPNUOOu+//3613/TKj3zWxB//+EfdfffdatGiRY3HViUlJcXrLJDL5VJMTEytfgYAe0SEhdRqPwDmqXbQGTFiRLX6ORyOCu/Iqkp+fr42b96sP//5z1X2i4qKUnFxsVdbcXGxoqKiKh0THBzs+aV1AGaJj22maGeIikouqqLFhlfW6MTHNqvv0gA0ENW+66q8vLxaW01DjiQtX75cERERGjp0aJX9EhISrnogYXp6uhISEmr8mQD8X2CAQ3OGdZL0baj5riv7c4Z1YiEycB3z+beuakt5ebmWL1+usWPHqlEj7xNMY8aMUUpKimd/2rRpSktL0/PPP68vvvhCTz75pPbs2aOpU6fWd9kAGoghXaK1aHScopzel6einCFaNDpOQ7pE21QZgIbA58XI58+f17Zt21RQUKBLly55vfbQQw9V+302b96sgoICjR8//qrXCgoKFBDwryzWp08fvfXWW/rNb36jxx9/XO3atdP69evVpUsXX6cBwABDukRrcKconowM4Co+PUdn3759uueee/TNN9/o/Pnzatasmb766is1adJEEREROnr0aF3UWit4jg4AAP7H1+9vny5dTZ8+XcOGDfP8qOfOnTuVn5+vnj176rnnnvPlLQEAAGqdT0EnJydHDz/8sAICAhQYGCi3262YmBj99re/1eOPP17bNQIAAPjEp6DTuHFjz9qZiIgIFRQUSJKcTqeOHz9ee9UBAABcA58WI/fo0UO7d+9Wu3bt1L9/fz3xxBP66quvtGrVKhYGAwCABsOnMzrPPPOMoqO/vWVz/vz5atq0qSZPnqyvvvpKS5YsqdUCAQAAfOXTGZ3OnTvrys1aERERWrx4sdatW6dOnTqpe/futVogAACAr3w6ozN8+HC98cYbkqSzZ8/qjjvu0MKFCzVixAgtWrSoVgsEAADwlU9BJzs7W3feeack6U9/+pMiIyOVn5+vN954Q3/4wx9qtUAAAABf+RR0vvnmG4WFhUmSNm3apP/8z/9UQECA7rjjDuXn59dqgQAAAL7yKei0bdtW69ev1/Hjx7Vx40bdddddkqTTp0/ztGEAANBg+BR0nnjiCT3yyCNq06aNevfu7fn18E2bNqlHjx61WiAAAICvfPqtK0kqKipSYWGhbr/9ds/DA3ft2qXw8HB16NChVousTfzWFQAA/sfX72+ff708KipKUVFRXm3x8fG+vh0AAECt8+nSFQAAgD8g6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABj2R50Tp48qdGjR+umm25SaGiounbtqj179lTaPyMjQw6H46qtqKioHqsGAAD+oJGdH37mzBn17dtXAwcO1EcffaTmzZvr0KFDatq06Q+OPXjwoMLDwz37ERERdVkqAADwQ7YGnQULFigmJkbLly/3tMXGxlZrbEREhG688ca6Kg0AABjA1ktX77//vnr16qX77rtPERER6tGjh5YuXVqtsd27d1d0dLQGDx6sHTt2VNrP7XbL5XJ5bQAA4Ppga9A5evSoFi1apHbt2mnjxo2aPHmyHnroIa1cubLSMdHR0Vq8eLHeffddvfvuu4qJidGAAQOUnZ1dYf/U1FQ5nU7PFhMTU1fTAQAADYzDsizLrg8PCgpSr169lJmZ6Wl76KGHtHv3bmVlZVX7ffr3769WrVpp1apVV73mdrvldrs9+y6XSzExMSopKfFa4wMAABoul8slp9NZ4+9vW8/oREdHq1OnTl5tHTt2VEFBQY3eJz4+XocPH67wteDgYIWHh3ttAADg+mBr0Onbt68OHjzo1fbll1+qdevWNXqfnJwcRUdH12ZpAADAALbedTV9+nT16dNHzzzzjH7xi19o165deu211/Taa695+qSkpOjkyZN64403JEkvvPCCYmNj1blzZ128eFHLli3T1q1btWnTJrumAQAAGihbg86Pf/xjrVu3TikpKXrqqacUGxurF154QaNGjfL0KSws9LqUdenSJT388MM6efKkmjRpom7dumnz5s0aOHCgHVMAAAANmK2Lke3g62ImAABgH79cjAwAAFCXCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABirkd0FAA1FWbmlXXlf63TpRUWEhSg+tpkCAxx2lwUAuAa2n9E5efKkRo8erZtuukmhoaHq2rWr9uzZU+WYjIwMxcXFKTg4WG3bttWKFSvqp1gYKy23UP0WbFXS0p2atiZHSUt3qt+CrUrLLbS7NADANbA16Jw5c0Z9+/ZV48aN9dFHH+mzzz7T888/r6ZNm1Y6Ji8vT0OHDtXAgQOVk5Oj5ORkTZw4URs3bqzHymGStNxCTV6drcKSi17tRSUXNXl1NmEHAPyYw7Isy64PnzVrlnbs2KFPPvmk2mMee+wxbdiwQbm5uZ62kSNH6uzZs0pLS/vB8S6XS06nUyUlJQoPD/epbpijrNxSvwVbrwo5VzgkRTlDtP2xn3AZCwBs5Ov3t61ndN5//3316tVL9913nyIiItSjRw8tXbq0yjFZWVkaNGiQV1tiYqKysrIq7O92u+Vyubw24IpdeV9XGnIkyZJUWHJRu/K+rr+iAAC1xtagc/ToUS1atEjt2rXTxo0bNXnyZD300ENauXJlpWOKiooUGRnp1RYZGSmXy6ULFy5c1T81NVVOp9OzxcTE1Po84L9Ol1YecnzpBwBoWGwNOuXl5YqLi9MzzzyjHj166IEHHtCkSZO0ePHiWvuMlJQUlZSUeLbjx4/X2nvD/0WEhdRqPwBAw2Jr0ImOjlanTp282jp27KiCgoJKx0RFRam4uNirrbi4WOHh4QoNDb2qf3BwsMLDw7024Ir42GaKdoaostU3DknRzm9vNQcA+B9bg07fvn118OBBr7Yvv/xSrVu3rnRMQkKCtmzZ4tWWnp6uhISEOqkRZgsMcGjOsG/D9vfDzpX9OcM6sRAZAPyUrUFn+vTp2rlzp5555hkdPnxYb731ll577TVNmTLF0yclJUVjxozx7D/44IM6evSoHn30UX3xxRd69dVXtXbtWk2fPt2OKcAAQ7pEa9HoOEU5vS9PRTlDtGh0nIZ0ibapMgDAtbL19nJJ+uCDD5SSkqJDhw4pNjZWM2bM0KRJkzyvjxs3TseOHVNGRoanLSMjQ9OnT9dnn32mli1bavbs2Ro3bly1Po/by1EZnowMAA2Xr9/ftged+kbQAQDA//jlc3QAAADqEkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYtgadJ598Ug6Hw2vr0KFDpf1XrFhxVf+QkJB6rBgAAPiTRnYX0LlzZ23evNmz36hR1SWFh4fr4MGDnn2Hw1FntQEAAP9me9Bp1KiRoqKiqt3f4XDUqD8AALh+2b5G59ChQ2rRooVuueUWjRo1SgUFBVX2P3funFq3bq2YmBgNHz5cBw4cqLK/2+2Wy+Xy2gAAwPXB1qDTu3dvrVixQmlpaVq0aJHy8vJ05513qrS0tML+7du31+uvv6733ntPq1evVnl5ufr06aMTJ05U+hmpqalyOp2eLSYmpq6mAwAAGhiHZVmW3UVccfbsWbVu3VoLFy7UhAkTfrD/5cuX1bFjRyUlJWnevHkV9nG73XK73Z59l8ulmJgYlZSUKDw8vNZqBwAAdcflcsnpdNb4+9v2NTrfdeONN+q2227T4cOHq9W/cePG6tGjR5X9g4ODFRwcXFslAgAAP2L7Gp3vOnfunI4cOaLo6Ohq9S8rK9P+/fur3R8AAFxfbA06jzzyiLY2hdAgAAAQfElEQVRt26Zjx44pMzNT9957rwIDA5WUlCRJGjNmjFJSUjz9n3rqKW3atElHjx5Vdna2Ro8erfz8fE2cONGuKQAAgAbM1ktXJ06cUFJSkv7xj3+oefPm6tevn3bu3KnmzZtLkgoKChQQ8K8sdubMGU2aNElFRUVq2rSpevbsqczMTHXq1MmuKQAAgAasQS1Grg++LmYCAAD28fX7u0Gt0QEAAKhNBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMYi6AAAAGMRdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGIugAAABjEXQAAICxCDoAAMBYBB0AAGAsgg4AADAWQQcAABiLoAMAAIxF0AEAAMZqZHcBJikrt7Qr72udLr2oiLAQxcc2U2CAw+6yAAC4btl6RufJJ5+Uw+Hw2jp06FDlmHfeeUcdOnRQSEiIunbtqg8//LCeqq1aWm6h+i3YqqSlOzVtTY6Slu5UvwVblZZbaHdpAABct2y/dNW5c2cVFhZ6tu3bt1faNzMzU0lJSZowYYL27dunESNGaMSIEcrNza3Hiq+WlluoyauzVVhy0au9qOSiJq/OJuwAAGAT24NOo0aNFBUV5dluvvnmSvu++OKLGjJkiGbOnKmOHTtq3rx5iouL08svv1yPFXsrK7c09/8+k1XBa1fa5v7fZyorr6gHAACoS7YHnUOHDqlFixa65ZZbNGrUKBUUFFTaNysrS4MGDfJqS0xMVFZWVqVj3G63XC6X11abduV9fdWZnO+yJBWWXNSuvK9r9XMBAMAPszXo9O7dWytWrFBaWpoWLVqkvLw83XnnnSotLa2wf1FRkSIjI73aIiMjVVRUVOlnpKamyul0eraYmJhancPp0spDji/9AABA7bE16Nx9992677771K1bNyUmJurDDz/U2bNntXbt2lr7jJSUFJWUlHi248eP19p7S1JEWEit9gMAALWnQd1efuONN+q2227T4cOHK3w9KipKxcXFXm3FxcWKioqq9D2Dg4MVHBxcq3V+V3xsM0U7Q1RUcrHCdToOSVHOb281BwAA9cv2NTrfde7cOR05ckTR0dEVvp6QkKAtW7Z4taWnpyshIaE+yqtQYIBDc4Z1kvRtqPmuK/tzhnXieToAANjA1qDzyCOPaNu2bTp27JgyMzN17733KjAwUElJSZKkMWPGKCUlxdN/2rRpSktL0/PPP68vvvhCTz75pPbs2aOpU6faNQVJ0pAu0Vo0Ok5RTu/LU1HOEC0aHachXSoObgAAoG7ZeunqxIkTSkpK0j/+8Q81b95c/fr1086dO9W8eXNJUkFBgQIC/pXF+vTpo7feeku/+c1v9Pjjj6tdu3Zav369unTpYtcUPIZ0idbgTlE8GRkAgAbEYVnWdfWAF5fLJafTqZKSEoWHh9tdDgAAqAZfv78b1BodAACA2kTQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACMRdABAADGsvW3ruxw5RcvXC6XzZUAAIDquvK9XdNfrrrugk5paakkKSYmxuZKAABATZWWlsrpdFa7/3X3o57l5eU6deqUwsLC5HDU/i+Lu1wuxcTE6Pjx40b+aCjz82/Mz7+ZPj/J/DkyP99ZlqXS0lK1aNFCAQHVX3lz3Z3RCQgIUMuWLev8c8LDw438n/gK5uffmJ9/M31+kvlzZH6+qcmZnCtYjAwAAIxF0AEAAMYKfPLJJ5+0uwjTBAYGasCAAWrUyMwrg8zPvzE//2b6/CTz58j86td1txgZAABcP7h0BQAAjEXQAQAAxiLoAAAAYxF0AACAsQg6PnjllVfUpk0bhYSEqHfv3tq1a1eV/d955x116NBBISEh6tq1qz788MN6qtQ3NZnfihUr5HA4vLaQkJB6rLZmPv74Yw0bNkwtWrSQw+HQ+vXrf3BMRkaG4uLiFBwcrLZt22rFihV1X6iPajq/jIyMq46fw+FQUVFRPVVcfampqfrxj3+ssLAwRUREaMSIETp48OAPjvOXvz9f5udvf3+LFi1St27dPA+TS0hI0EcffVTlGH85flLN5+dvx+/7nn32WTkcDiUnJ1fZz+5jSNCpof/93//VjBkzNGfOHGVnZ+v2229XYmKiTp8+XWH/zMxMJSUlacKECdq3b59GjBihESNGKDc3t54rr56azk/69gmYhYWFni0/P78eK66Z8+fP6/bbb9crr7xSrf55eXkaOnSoBg4cqJycHCUnJ2vixInauHFjHVfqm5rO74qDBw96HcOIiIg6qtB327Zt05QpU7Rz506lp6fr8uXLuuuuu3T+/PlKx/jT358v85P86++vZcuWevbZZ7V3717t2bNHP/nJTzR8+HAdOHCgwv7+dPykms9P8q/j9127d+/WkiVL1K1btyr7NYhjaKFG4uPjrSlTpnj2y8rKrBYtWlipqakV9v/FL35hDR061Kutd+/e1q9//es6rdNXNZ3f8uXLLafTWV/l1SpJ1rp166rs8+ijj1qdO3f2arv//vutxMTEuiytVlRnfn/5y18sSdaZM2fqqarac/r0aUuStW3btkr7+Nvf33dVZ37+/Pd3RdOmTa1ly5ZV+Jo/H78rqpqfvx6/0tJSq127dlZ6errVv39/a9q0aZX2bQjHkDM6NXDp0iXt3btXgwYN8rQFBARo0KBBysrKqnBMVlaWV39JSkxMrLS/nXyZnySdO3dOrVu3VkxMzA/+68Xf+NPxuxbdu3dXdHS0Bg8erB07dthdTrWUlJRIkpo1a1ZpH38+ftWZn+S/f39lZWVas2aNzp8/r4SEhAr7+PPxq878JP88flOmTNHQoUOvOjYVaQjHkKBTA1999ZXKysoUGRnp1R4ZGVnpmoaioqIa9beTL/Nr3769Xn/9db333ntavXq1ysvL1adPH504caI+Sq5zlR0/l8ulCxcu2FRV7YmOjtbixYv17rvv6t1331VMTIwGDBig7Oxsu0urUnl5uZKTk9W3b1916dKl0n7+9Pf3XdWdnz/+/e3fv18/+tGPFBwcrAcffFDr1q1Tp06dKuzrj8evJvPzx+O3Zs0aZWdnKzU1tVr9G8IxbBjPZ4bfSkhI8PrXSp8+fdSxY0ctWbJE8+bNs7EyVEf79u3Vvn17z36fPn105MgR/f73v9eqVatsrKxqU6ZMUW5urrZv3253KXWiuvPzx7+/9u3bKycnRyUlJfrTn/6ksWPHatu2bZWGAX9Tk/n52/E7fvy4pk2bpvT0dL9aNE3QqYGbb75ZgYGBKi4u9movLi5WVFRUhWOioqJq1N9Ovszv+xo3bqwePXro8OHDdVFivavs+IWHhys0NNSmqupWfHx8gw4QU6dO1QcffKCPP/5YLVu2rLKvP/39XVGT+X2fP/z9BQUFqW3btpKknj17avfu3XrxxRe1ZMmSq/r64/Gryfy+r6Efv7179+r06dOKi4vztJWVlenjjz/Wyy+/LLfbrcDAQK8xDeEYcumqBoKCgtSzZ09t2bLF01ZeXq4tW7ZUeg02ISHBq78kpaenV3nN1i6+zO/7ysrKtH//fkVHR9dVmfXKn45fbcnJyWmQx8+yLE2dOlXr1q3T1q1bFRsb+4Nj/On4+TK/7/PHv7/y8nK53e4KX/On41eZqub3fQ39+P30pz/V/v37lZOT49l69eqlUaNGKScn56qQIzWQY1hvy54NsWbNGis4ONhasWKF9dlnn1kPPPCAdeONN1pFRUWWZVnWL3/5S2vWrFme/jt27LAaNWpkPffcc9bnn39uzZkzx2rcuLG1f/9+u6ZQpZrOb+7cudbGjRutI0eOWHv37rVGjhxphYSEWAcOHLBrClUqLS219u3bZ+3bt8+SZC1cuNDat2+flZ+fb1mWZc2aNcv65S9/6el/9OhRq0mTJtbMmTOtzz//3HrllVeswMBAKy0tza4pVKmm8/v9739vrV+/3jp06JC1f/9+a9q0aVZAQIC1efNmu6ZQqcmTJ1tOp9PKyMiwCgsLPds333zj6ePPf3++zM/f/v5mzZplbdu2zcrLy7P+9re/WbNmzbIcDoe1adMmy7L8+/hZVs3n52/HryLfv+uqIR5Dgo4PXnrpJatVq1ZWUFCQFR8fb+3cudPzWv/+/a2xY8d69V+7dq112223WUFBQVbnzp2tDRs21HPFNVOT+SUnJ3v6RkZGWvfcc4+VnZ1tQ9XVc+V26u9vV+Y0duxYq3///leN6d69uxUUFGTdcsst1vLly+u97uqq6fwWLFhg3XrrrVZISIjVrFkza8CAAdbWrVvtKf4HVDQvSV7Hw5///nyZn7/9/Y0fP95q3bq1FRQUZDVv3tz66U9/6gkBluXfx8+yaj4/fzt+Ffl+0GmIx9BhWZZVf+ePAAAA6g9rdAAAgLEIOgAAwFgEHQAAYCyCDgAAMBZBBwAAGIugAwAAjEXQAQAAxiLoAPB7x44dk8PhUE5Ojt2lAGhgeGAgAL9XVlamv//977r55pvVqBG/VQzgXwg6APzapUuXFBQUZHcZABooLl0BaFAGDBigqVOnaurUqXI6nbr55ps1e/ZsXfk3WZs2bTRv3jyNGTNG4eHheuCBByq8dHXgwAH97Gc/U3h4uMLCwnTnnXfqyJEjnteXLVumjh07KiQkRB06dNCrr75a73MFUPc4xwugwVm5cqUmTJigXbt2ac+ePXrggQfUqlUrTZo0SZL03HPP6YknntCcOXMqHH/y5En9+7//uwYMGKCtW7cqPDxcO3bs0D//+U9J0ptvvqknnnhCL7/8snr06KF9+/Zp0qRJuuGGGzR27Nh6myeAuselKwANyoABA3T69GkdOHBADodDkjRr1iy9//77+uyzz9SmTRv16NFD69at84w5duyYYmNjtW/fPnXv3l2PP/641qxZo4MHD6px48ZXfUbbtm01b948JSUledqefvppffjhh8rMzKz7SQKoN1y6AtDg3HHHHZ6QI0kJCQk6dOiQysrKJEm9evWqcnxOTo7uvPPOCkPO+fPndeTIEU2YMEE/+tGPPNvTTz/tdWkLgBm4dAXA79xwww1Vvh4aGlrpa+fOnZMkLV26VL179/Z6LTAw8NqLA9CgEHQANDh//etfvfZ37typdu3aVTuIdOvWTStXrtTly5evOqsTGRmpFi1a6OjRoxo1alSt1QygYeLSFYAGp6CgQDNmzNDBgwf19ttv66WXXtK0adOqPX7q1KlyuVwaOXKk9uzZo0OHDmnVqlU6ePCgJGnu3LlKTU3VH/7wB3355Zfav3+/li9froULF9bVlADYhDM6ABqcMWPG6MKFC4qPj1dgYKCmTZumBx54oNrjb7rpJm3dulUzZ85U//79FRgYqO7du6tv376SpIkTJ6pJkyb63e9+p5kzZ+qGG25Q165dlZycXFdTAmAT7roC0KAMGDBA3bt31wsvvGB3KQAMwKUrAABgLIIOAAAwFpeuAACAsTijAwAAjEXQAQAAxiLoAAAAYxF0AACAsQg6AADAWAQdAABgLIIOAAAwFkEHAAAYi6ADAACM9f8AEKe8l9OL3ScAAAAASUVORK5CYII=",
|
143
|
-
"text/plain": [
|
144
|
-
"<Figure size 640x480 with 1 Axes>"
|
145
|
-
]
|
146
|
-
},
|
147
|
-
"execution_count": 16,
|
148
|
-
"metadata": {},
|
149
|
-
"output_type": "execute_result"
|
150
|
-
}
|
151
|
-
],
|
152
|
-
"source": [
|
153
|
-
"scatter = charty.to_scatter(:price, :sales)\n",
|
154
|
-
"scatter.render('sample')"
|
155
|
-
]
|
156
|
-
},
|
157
|
-
{
|
158
|
-
"cell_type": "code",
|
159
|
-
"execution_count": 17,
|
160
|
-
"metadata": {},
|
161
|
-
"outputs": [
|
162
|
-
{
|
163
|
-
"data": {
|
164
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG0CAYAAAA7Go31AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzs3XtclHX+/vHXcAYFPHJQUPGIoiJoplZrtZmZ2cHyALbZWvvdyrNlaZu16SqVZXnqtLUdRbMyszRNLVtNSw1QMQ94AkFAUWFAYICZ+/dH3+X3dT2ECNwwXM/HY/6Ym889c82uMRf3+557LIZhGIiIiIg4IRezA4iIiIhUFxUdERERcVoqOiIiIuK0VHRERETEaanoiIiIiNNS0RERERGnpaIjIiIiTktFR0RERJyWio6IiIg4LRUdERERcVoqOiIiIuK03MwOUNMcDgcnTpzA19cXi8VidhwRERGpAMMwyM/Pp0WLFri4VPw4Tb0rOidOnCA0NNTsGCIiIlIJx48fJyQkpMLr613R8fX1BX77H8rPz8/kNCIiIlIRVquV0NDQ8vfxiqp3Rec/4yo/Pz8VHRERkTrmSk870cnIIiIi4rRUdERERMRpqeiIiIiI06p35+iIiIiIOex2O6WlpZf8uYeHxxV9dLwiVHRERESkWhmGQVZWFrm5uZdd5+LiQlhYGB4eHlX23Co6IiIiUq3+U3ICAgLw8fG56Cen/nNB38zMTFq1alVlF/VV0REREZFqY7fby0tO06ZNL7u2efPmnDhxgrKyMtzd3avk+XUysoiIiFSb/5yT4+Pj87tr/zOystvtVfb8KjoiIiJS7SoyiqqO76BU0RERERGnZWrRyc/PZ9KkSbRu3Rpvb2/69evHjh07LrvPpk2biI6OxtPTk/bt2/P+++/XTFgRERGpc0wtOg8//DDr16/no48+Ys+ePdx6663ccsstZGRkXHT90aNHGTx4MDfddBNJSUlMmjSJhx9+mHXr1tVwchEREakLLIZhGGY8cVFREb6+vnz55ZcMHjy4fHvPnj0ZNGgQ//jHPy7Y56mnnmL16tUkJyeXbxs5ciS5ubmsXbu2Qs9rtVrx9/cnLy9PX+opIiJSxX5JPUubpj40begJQHFxMUePHqVNmzZ4e3tfdt+ioiKOHTtGWFgYXl5e5/2ssu/fph3RKSsrw263X/BCvL292bJly0X32bZtG7fccst52wYOHMi2bdsu+Tw2mw2r1XreTURERKqWw2Hw5g+HGf7WNh7/dBcOx2/HUf7zMfHCwsLffYySkhIAXF1dqyyXaUXH19eXvn37MmvWLE6cOIHdbufjjz9m27ZtZGZmXnSfrKwsAgMDz9sWGBiI1WqlqKjoovvExcXh7+9ffgsNDa3y1yIiIlKfnS6wMeaDHbzwzX7sDgNfL3dK7A7gt9LSqFEjTp48yenTpykqKqK4uPiCW2FhIadOncLHxwc3t6q7zJ+pFwz86KOPGDNmDC1btsTV1ZXo6GhiYmL45Zdfquw5pk+fzpQpU8rvW61WlR0REZEq8vOR00xYlki21Yanmwt/vzOCkdeEnvdR8aCgIABOnjx52cdycXGp0qsig8lFp127dvzwww+cO3cOq9VKcHAwI0aMoG3bthddHxQURHZ29nnbsrOz8fPzu+Tcz9PTE09PzyrPLiIiUp/ZHQavf3+IVzccxGFA2+YNWBwbTefgC8+fsVgsBAcHExAQUD+/1LNBgwY0aNCAs2fPsm7dOl566aWLruvbty9r1qw5b9v69evp27dvTcQUERER4FS+jcmfJLHlUA4AQ6NaMuvurjTwvHytcHV1rdLzbyrC1KKzbt06DMOgU6dOHDp0iKlTpxIeHs6f//xn4LexU0ZGBh9++CEAjzzyCIsWLeLJJ59kzJgxfPfddyxfvpzVq1eb+TJERETqja2Hcpj4SRKn8m14ubsw666uDOtVe08JMbXo5OXlMX36dNLT02nSpAn33nsvs2fPLj9DOzMzk7S0tPL1YWFhrF69msmTJzN//nxCQkJ45513GDhwoFkvQUREpF6wOwzmb0xh4XcpGAZ0DGzI4thoOgT6mh3tsky7jo5ZdB0dERGRK5NtLWbiskR+OnIGgOG9Qnj+zq54e9TcGKqy79+14hwdERERqZ3+ffAUkz9J4vS5Enw8XJl9T1fuiQoxO1aFqeiIiIjIBcrsDl7dcJDXNx3GMCA8yJfFo6Jp17yh2dGuiIqOiIiInCczr4gJSxPZcewsAKOubcWMO7rg5V6zn5iqCio6IiIiUu77/SeZsjyJs4WlNPR0I25oN4ZEtjA7VqWp6IiIiAildgcvrzvAW/8+AkDXln4siommTbMGJie7Oio6IiIi9Vz62ULGL00kMS0XgAf7tWH67eF4utW9UdV/U9ERERGpx77dm8XUz3aTV1SKr5cbc+/rzm1dg82OVWVUdEREROqhkjIHcd/s470fjwEQGeLPothoQpv4mBusiqnoiIiI1DNppwsZtzSB3el5ADx0fRhP3RaOh1vVfqFmbaCiIyIiUo98syeTJz/bTb6tDH9vd14eFsmALoFmx6o2KjoiIiL1QHGpnTlr9vHhtlQAols1YmFsNC0beZucrHqp6IiIiDi5oznnGBefwN4TVgD+2r8tT9zaCXdX5xtV/TcVHRERESe2atcJnl6xhwJbGU0aePDK8Ehu6hRgdqwao6IjIiLihIpL7Tz/1a8s3Z4GQO82TVgQE0WQv5fJyWqWio6IiIiTOXSygHHxCezPysdigXE3tWfiHzvgVg9GVf9NRUdERMSJrEhI55mVyRSW2GnW0INXR/Tghg7NzY5lGhUdERERJ1BYUsZzX+7l01/SAejbtinzR/YgwK9+jar+m4qOiIhIHXcwO5+xSxJIOVmAxQIT/9iB8Td3wNXFYnY006noiIiI1FGGYfDpznSeXZVMcamD5r6ezB/Zg37tmpkdrdZQ0REREamDztnKeGZlMl8kZgBwQ4dmvDqiB80aepqcrHZR0REREalj9mVaGbskgSM553CxwOO3duLR/u1w0ajqAio6IiIidYRhGMRvT+P5r36lpMxBkJ8XC2Ki6B3WxOxotZaKjoiISB2QX1zK9BV7+Hp3JgA3dWrOK8N70KSBh8nJajcVHRERkVouOSOPsfEJpJ4uxM3FwtSBnfjLDW01qqoAFR0REZFayjAMPtyWyuzV+yixO2jZyJsFMVH0bN3Y7Gh1hoqOiIhILZRXVMpTn+1m7d4sAG7pHMjLw7rTyEejqiuhoiMiIlLLJB3PZVx8Aulni3B3tTBtUGfGXNcGi0WjqiuloiMiIlJLGIbBu1uO8uLa/ZTaDUKbeLMoJprI0EZmR6uzVHRERERqgdzCEp74dDcb9mUDMKhrEC/c2x1/b3eTk9VtKjoiIiIm+yX1LOPjEziRV4yHqwvP3NGZP/VprVFVFVDRERERMYnDYfD25iPMXXcAu8OgTVMfFsVG07Wlv9nRnIaLmU9ut9uZMWMGYWFheHt7065dO2bNmoVhGJfcZ9OmTVgslgtuWVlZNZhcRETk6pwusDHmgx288M1+7A6DIZEt+Gr89So5VczUIzovvvgib7zxBh988AERERHs3LmTP//5z/j7+zNhwoTL7nvgwAH8/PzK7wcEBFR3XBERkSqx/egZxi9NINtqw9PNheeGRBDTO1SjqmpgatHZunUrd911F4MHDwagTZs2LF26lO3bt//uvgEBATRqpLPQRUSk7nA4DF7fdIh56w/iMKBt8wYsjo2mc7Df7+8slWLq6Kpfv35s3LiRgwcPArBr1y62bNnCoEGDfnffHj16EBwczIABA/jxxx8vuc5ms2G1Ws+7iYiI1LRT+TZGv7edl7/9reQMjWrJV+OuV8mpZqYe0Zk2bRpWq5Xw8HBcXV2x2+3Mnj2bUaNGXXKf4OBg3nzzTXr16oXNZuOdd97hxhtv5OeffyY6OvqC9XFxcTz//PPV+TJEREQua+uhHCZ+ksSpfBte7i7MvKsrw3qGaFRVAyzG5c78rWbLli1j6tSpzJ07l4iICJKSkpg0aRLz5s1j9OjRFX6c/v3706pVKz766KMLfmaz2bDZbOX3rVYroaGh5OXlnXeOj4iISFWzOwwWbExhwXcpGAZ0CGjI4lHRdAz0NTtanWO1WvH397/i929Tj+hMnTqVadOmMXLkSAC6detGamoqcXFxV1R0evfuzZYtWy76M09PTzw9Paskr4iISEWdtBYzcVkS246cBmB4rxCev7Mr3h6uJierX0wtOoWFhbi4nH+akKurKw6H44oeJykpieDg4KqMJiIiUmmbU04x+ZMkcgpK8PFwZfY9XbknKsTsWPWSqUVnyJAhzJ49m1atWhEREUFiYiLz5s1jzJgx5WumT59ORkYGH374IQCvvfYaYWFhREREUFxczDvvvMN3333Ht99+a9bLEBERAaDM7uC1DSks3nQIw4DwIF8WxUbTPqCh2dHqLVOLzsKFC5kxYwaPPfYYJ0+epEWLFvz1r3/l2WefLV+TmZlJWlpa+f2SkhIef/xxMjIy8PHxoXv37mzYsIGbbrrJjJcgIiICQGZeEROXJrH92BkAYq9txbN3dMHLXaMqM5l6MrIZKnsyk4iIyKV8v/8kU5YncbawlIaebswZ2o07I1uYHcup1MmTkUVEROqyUruDl9cd4K1/HwEgooUfi2OjadOsgcnJ5D9UdERERCohI7eI8fEJJKTlAjC6b2um395Zo6paRkVHRETkCq3/NZsnPt1FXlEpvl5uvHRvdwZ106d/ayMVHRERkQoqKXPwwjf7+dePRwGIDPFnYUw0rZr6mJxMLkVFR0REpAKOnylkXHwCu9LzABhzXRjTBoXj4Wbq10bK71DRERER+R1rkzOZ+tlu8ovL8Pd25+VhkQzoEmh2LKkAFR0REZFLKC61E7dmHx9sSwUgulUjFsREEdJYo6q6QkVHRETkIo7lnGNsfAJ7T1gB+Gv/tjxxayfcXTWqqktUdERERP7Lql0neHrFHgpsZTT2cWfe8B7cFB5gdiypBBUdERGR/1Vcauf5r35l6fbfvnromjaNWRATRbC/t8nJpLJUdERERIDDpwoYuySB/Vn5WCww9sb2TLqlA24aVdVpKjoiIlLvfZGYzt++SKawxE7TBh68NrIHN3RobnYsqQIqOiIiUm8Vldh59stkPv0lHYC+bZsyf2QPAvy8TE4mVUVFR0RE6qWD2fmMXZJAyskCLBaYcHMHJvyxA64uFrOjSRVS0RERkXrFMAw+/SWdZ79MprjUQXNfT+aP6EG/9s3MjibVQEVHRETqjXO2MmasTGZFYgYAN3RoxrzhPWju62lyMqkuKjoiIlIv7Mu0MjY+gSOnzuFigcdv7cSj/dvholGVU1PRERERp2YYBku3H+fvX+2lpMxBkJ8XC2Ki6B3WxOxoUgNUdERExGnlF5fy9BfJfLXrBAA3dmrOvOE9aNLAw+RkUlNUdERExCklZ+QxLj6BY6cLcXWx8OTATvzlhrYaVdUzKjoiIuJUDMPgo59S+cfX+yixO2jh78XC2Gh6tm5sdjQxgYqOiIg4jbyiUqZ9vptvkrMAuKVzIC8P604jH42q6isVHRERcQq7jucybmkCx88U4e5q4anbwnno+jAsFo2q6jMVHRERqdMMw+BfPx7jhW/2UWo3CGnszaLYaHqENjI7mtQCKjoiIlJn5RaW8MSnu9mwLxuA2yKCePG+7vh7u5ucTGoLFR0REamTfkk9y4SliWTkFuHh6sIzd3TmT31aa1Ql51HRERGROsXhMPjn5iPMXXeAModB66Y+LI6NpmtLf7OjSS2koiMiInXGmXMlPL48ie8PnALgju7BxA3thq+XRlVycSo6IiJSJ2w/eoYJSxPJshbj4ebC34dEENM7VKMquSwVHRERqdUcDoM3fjjMvPUHsTsM2jZrwOJR0XQO9jM7mtQBKjoiIlJr5RTYmPxJEptTcgC4J6ol/7i7Kw089fYlFeNi5pPb7XZmzJhBWFgY3t7etGvXjlmzZmEYxmX327RpE9HR0Xh6etK+fXvef//9mgksIiI1ZuvhHAbN38zmlBy83F146d7uzBseqZIjV8TUfy0vvvgib7zxBh988AERERHs3LmTP//5z/j7+zNhwoSL7nP06FEGDx7MI488wpIlS9i4cSMPP/wwwcHBDBw4sIZfgYiIVDW7w2Dhdyks2JiCw4AOAQ1ZPCqajoG+ZkeTOshi/N7hk2p0xx13EBgYyLvvvlu+7d5778Xb25uPP/74ovs89dRTrF69muTk5PJtI0eOJDc3l7Vr1/7uc1qtVvz9/cnLy8PPT/NdEZHa5KS1mEmfJLH18GkAhvUM4fm7IvDx0FGc+q6y79+mjq769evHxo0bOXjwIAC7du1iy5YtDBo06JL7bNu2jVtuueW8bQMHDmTbtm0XXW+z2bBarefdRESk9tmccorbF2xm6+HT+Hi4Mm94JHOHRarkyFUx9V/PtGnTsFqthIeH4+rqit1uZ/bs2YwaNeqS+2RlZREYGHjetsDAQKxWK0VFRXh7e5/3s7i4OJ5//vlqyS8iIlevzO7gtQ0pLN50CMOA8CBfFsVG0z6godnRxAmYWnSWL1/OkiVLiI+PJyIigqSkJCZNmkSLFi0YPXp0lTzH9OnTmTJlSvl9q9VKaGholTy2iIhcncy8IiYuTWL7sTMAxPRuxXNDuuDl7mpyMnEWphadqVOnMm3aNEaOHAlAt27dSE1NJS4u7pJFJygoiOzs7PO2ZWdn4+fnd8HRHABPT088PT2rPryIiFyV7w+cZMonSZwtLKWBhytx93bnzsgWZscSJ2Nq0SksLMTF5fzThFxdXXE4HJfcp2/fvqxZs+a8bevXr6dv377VklFERKpWqd3By98e4K0fjgAQ0cKPRbHRhDVrYHIycUamFp0hQ4Ywe/ZsWrVqRUREBImJicybN48xY8aUr5k+fToZGRl8+OGHADzyyCMsWrSIJ598kjFjxvDdd9+xfPlyVq9ebdbLEBGRCsrILWJ8fAIJabkAPNC3NU/f3lmjKqk2phadhQsXMmPGDB577DFOnjxJixYt+Otf/8qzzz5bviYzM5O0tLTy+2FhYaxevZrJkyczf/58QkJCeOedd3QNHRGRWm79r9k88eku8opK8fVy46V7uzOoW7DZscTJmXodHTPoOjoiIjWrpMzBi2v38+6WowBEhvizMCaaVk19TE4mdUll3791cQIREak2x88UMm5pIruO/zaqGnNdGNMGhePhZupl3KQeUdEREZFqsTY5k6mf7Sa/uAw/LzdeHhbJrRFBZseSekZFR0REqpStzM6c1fv4YFsqAFGtGrEwJoqQxhpVSc1T0RERkSpzLOcc45YmkJzx29ft/PUPbXliYCfcXTWqEnOo6IiISJX4atcJpq/YQ4GtjMY+7rwyPJKbwwN/f0eRaqSiIyIiV6W41M7Mr38l/uffLgVyTZvGLIiJItj/wqvVi9Q0FR0REam0w6cKGLskgf1Z+Vgs8NiN7Zh8S0fcNKqSWkJFR0REKuWLxHT+9kUyhSV2mjbw4NURPfhDx+ZmxxI5j4qOiIhckaISO8+tSmb5znQA+rRtwoKRUQT4eZmcTORCKjoiIlJhKdn5jI1P4GB2ARYLTLi5AxP+2AFXF4vZ0UQuSkVHREQq5NOdx5nxZTLFpQ6a+3oyf0QP+rVvZnYskctS0RERkcs6ZytjxpfJrEjIAOD69s14dUQPmvt6mpxM5Pep6IiIyCXtz7IydkkCh0+dw8UCUwZ05LEb2+OiUZXUESo6IiJyAcMwWLbjOH9ftRdbmYNAP08WjIzi2rZNzY4mckVUdERE5Dz5xaU8/UUyX+06AUD/js2ZNzySpg01qpK6R0VHRETKJWfkMS4+gWOnC3F1sTB1YCf+54a2GlVJnaWiIyIiGIbBxz+lMuvrfZTYHbTw92JhbBQ9WzcxO5rIVVHRERGp56zFpUz7fDdr9mQBcEvnAF4eFkkjHw+Tk4lcPRUdEZF6bNfxXMYtTeD4mSLcXS08dVs4D10fhsWiUZU4BxUdEZF6yDAM3vvxGHHf7KPUbhDS2JtFsdH0CG1kdjSRKqWiIyJSz+QWljD1s92s/zUbgNsignjxvu74e7ubnEyk6qnoiIjUIwlpZxkfn0hGbhEeri78bXBnHujbWqMqcVoqOiIi9YDDYfDOliO8tPYAZQ6D1k19WBQTTbcQf7OjiVQrFR0RESd35lwJT3y6i+/2nwRgcPdgXhjaDV8vjarE+anoiIg4sR3HzjA+PpEsazEebi48N6QLsb1baVQl9YaKjoiIE3I4DN744TDz1h/E7jBo26wBi2Kj6dLCz+xoIjVKRUdExMnkFNiY/EkSm1NyALgnqiX/uLsrDTz1K1/qH/2rFxFxItsOn2biskRO5tvwcndh5p1dGdYrRKMqqbdUdEREnIDdYbDou0PM33gQhwHtAxry+qhoOgb6mh1NxFQqOiIiddzJ/GImLUti6+HTAAzrGcLzd0Xg46Ff8SL6r0BEpA7bkpLDpE8SySkowdvdldn3dGVodIjZsURqDRczn7xNmzZYLJYLbmPHjr3o+vfff/+CtV5eXjWcWkTEfGV2B698e4A//etncgpKCA/y5avx16vkiPwXU4/o7NixA7vdXn4/OTmZAQMGMGzYsEvu4+fnx4EDB8rv6wQ7EalvsvKKmbAske1HzwAQ07sVzw3pgpe7q8nJRGofU4tO8+bNz7v/wgsv0K5dO/r373/JfSwWC0FBQdUdTUSkVtp04CRTlu/izLkSGni4Endvd+6MbGF2LJFaq9aco1NSUsLHH3/MlClTLnuUpqCggNatW+NwOIiOjmbOnDlERERccr3NZsNms5Xft1qtVZpbRKQmlNodvPLtQd784TAAXYL9WDwqmrBmDUxOJlK7mXqOzv+1cuVKcnNzefDBBy+5plOnTvzrX//iyy+/5OOPP8bhcNCvXz/S09MvuU9cXBz+/v7lt9DQ0GpILyJSfTJyixj59k/lJeeBvq1Z8Vg/lRyRCrAYhmGYHQJg4MCBeHh48NVXX1V4n9LSUjp37kxMTAyzZs266JqLHdEJDQ0lLy8PPz9dCl1EarcNv2bzxGe7yC0sxdfTjRfv687t3YLNjiVS46xWK/7+/lf8/l0rRlepqals2LCBFStWXNF+7u7uREVFcejQoUuu8fT0xNPT82ojiojUqJIyBy+t3c87W44C0D3En0Ux0bRq6mNyMpG6pVYUnffee4+AgAAGDx58RfvZ7Xb27NnD7bffXk3JRERq3vEzhYxbmsiu47kAjLkujKcGdcLTTZ+qErlSphcdh8PBe++9x+jRo3FzOz/OAw88QMuWLYmLiwNg5syZ9OnTh/bt25Obm8vcuXNJTU3l4YcfNiO6iEiVW5ucxdTPdpFfXIaflxsvD4vk1gh90lSkskwvOhs2bCAtLY0xY8Zc8LO0tDRcXP7/+dJnz57lL3/5C1lZWTRu3JiePXuydetWunTpUpORRUSqnK3MTtya/by/9RgAUa0asTAmipDGGlWJXI1aczJyTansyUwiItUl9fQ5xsUnsicjD4C//qEtTwzshLtrrflgrIjp6vTJyCIi9dXXu08w7fM9FNjKaOzjzivDI7k5PNDsWCJOQ0VHRMQExaV2Zn39K0t+TgPgmjaNWRATRbC/t8nJRJyLio6ISA07cqqAsfGJ7Mv87Urtj93YjikDOuKmUZVIlVPRERGpQSsTM3j6iz0Ulthp2sCDeSN60L9j89/fUUQqRUVHRKQGFJXY+fuqvXyy8zgAfdo2Yf7IKAL9vExOJuLcVHRERKpZSnY+Y+MTOJhdgMUC42/uwMQ/dsDV5dJfYCwiVUNFR0SkGn268zjPfrmXolI7zRp6smBkD/q1b2Z2LJF6Q0VHRKQanLOVMePLZFYkZABwfftmvDqiB8199d17IjVJRUdEpIrtz7IydkkCh0+dw8UCUwZ05NEb22tUJWICFR0RkSpiGAaf7DjOc6v2YitzEOjnyYKRUVzbtqnZ0UTqLRUdEZEqUGAr4+kVe1i16wQA/Ts2Z97wSJo21KhKxEwqOiIiV2nviTzGxSdyNOccri4Wnri1E3/9Q1tcNKoSMZ2KjohIJRmGwcc/pzHr618pKXPQwt+LhbFR9GzdxOxoIvK/VHRERCrBWlzK9M/3sHpPJgC3dA5g7n2RNG7gYXIyEfm/VHRERK7Q7vRcxsUnknamEDcXC9MGhfPQ9WFYLBpVidQ2KjoiIhVkGAbv/XiMuG/2UWo3CGnszaLYaHqENjI7mohcgoqOiEgF5BWWMvWzXXz7azYAAyMCeem+SPy93U1OJiKXo6IjIvI7EtPOMi4+kYzcIjxcXfjb4M480Le1RlUidYCKjojIJTgcBu9uOcqLa/dT5jBo3dSHRTHRdAvxNzuaiFSQio6IyEWcPVfC45/u4rv9JwEY3D2YuKHd8PPSqEqkLqlU0Tl+/DgWi4WQkBAAtm/fTnx8PF26dOF//ud/qjSgiEhN23nsDOOXJpKZV4yHmwvP3tGFUde20qhKpA5yqcxOsbGxfP/99wBkZWUxYMAAtm/fzt/+9jdmzpxZpQFFRGqKw2Hw+qZDjHj7JzLzimnbrAErH7uO+/vofByRuqpSRSc5OZnevXsDsHz5crp27crWrVtZsmQJ77//flXmExGpETkFNh58fwcvrT2A3WFwd48WrBp/PV1a+JkdTUSuQqVGV6WlpXh6/vZFdRs2bODOO+8EIDw8nMzMzKpLJyJSA346cpoJSxM5mW/Dy92F5++MYHivUB3FEXEClTqiExERwZtvvsnmzZtZv349t912GwAnTpygadOmVRpQRKS62B0G8zekEPvPnziZb6N9QEO+HHs9I67R+TgizqJSR3RefPFF7rnnHubOncvo0aOJjIwEYNWqVeUjLRGR2uxkfjGTP0nix0OnAbivZwgz74rAx0MfRhVxJhbDMIzK7Gi327FarTRu3Lh827Fjx/Dx8SEgIKDKAlY1q9WKv78/eXl5+Plp9i5SH/14KIeJy5LIKbDh7e7KP+7uyr09Q8yOJSKXUdn370r/6WIYBr/88gvA6zqWAAAgAElEQVSHDx8mNjYWX19fPDw88PHxqexDiohUqzK7gwUbU1j4/SEMAzoF+rJ4VDTtAxqaHU1Eqkmlik5qaiq33XYbaWlp2Gw2BgwYgK+vLy+++CI2m40333yzqnOKiFyVbGsx45cmsv3oGQBieofy3JAIvNxdTU4mItWpUicjT5w4kV69enH27Fm8vb3Lt99zzz1s3LixysKJiFSFTQdOMmj+ZrYfPUMDD1fmj+xB3NDuKjki9UCljuhs3ryZrVu34uHhcd72Nm3akJGRUSXBRESuVpndwSvrD/LGpsMAdAn2Y1FsFG2ba1QlUl9U6oiOw+HAbrdfsD09PR1fX98KP06bNm2wWCwX3MaOHXvJfT799FPCw8Px8vKiW7durFmzpjIvQUSc3IncIka+/VN5yflTn9aseKyfSo5IPVOponPrrbfy2muvld+3WCwUFBTw3HPPcfvtt1f4cXbs2EFmZmb5bf369QAMGzbsouu3bt1KTEwMDz30EImJidx9993cfffdJCcnV+ZliIiT2rgvm9sXbGZn6ll8Pd1YHBvNrLu7alQlUg9V6uPl6enpDBw4EMMwSElJoVevXqSkpNCsWTP+/e9/V/rj5ZMmTeLrr78mJSXlohfrGjFiBOfOnePrr78u39anTx969OhR4ROg9fFyEedVUuZg7rr9/HPzUQC6h/izKCaaVk31aVCRuq5GP14eEhLCrl27WLZsGbt376agoICHHnqIUaNGnXdy8pUoKSnh448/ZsqUKZe8Ium2bduYMmXKedsGDhzIypUrL/m4NpsNm81Wft9qtVYqn4jUbsfPFDJ+aSJJx3MB+PN1bZg2KBxPNx3FEanPKn0dHTc3N+6///4qC7Jy5Upyc3N58MEHL7kmKyuLwMDA87YFBgaSlZV1yX3i4uJ4/vnnqyqmiNRC6/ZmMfXTXViLy/DzcmPusEgGRgSZHUtEaoEKF51Vq1ZV+EH/8yWfV+Ldd99l0KBBtGjR4or3vZzp06efdxTIarUSGhpapc8hIuawldmJW7Of97ceA6BHaCMWxUYR0lijKhH5TYWLzt13312hdRaL5aKfyLqc1NRUNmzYwIoVKy67LigoiOzs7PO2ZWdnExR06b/cPD09y79pXUScR+rpc4yLT2RPRh4A//OHtkwd2Al310p9xkJEnFSFfyM4HI4K3a605AC89957BAQEMHjw4Muu69u37wUXJFy/fj19+/a94ucUkbpr9e5M7liwhT0ZeTTycedfD/bi6ds7q+SIyAVM/5peh8PBe++9x+jRo3FzOz/OAw88QMuWLYmLiwN+uyJz//79eeWVVxg8eDDLli1j586dvP3222ZEF5EaVlxq5x+rf+Xjn9IA6NW6MQtiomjRqHIfghAR51fponPu3Dl++OEH0tLSKCkpOe9nEyZMqPDjbNiwgbS0NMaMGXPBz9LS0nBx+f9/ofXr14/4+HieeeYZnn76aTp06MDKlSvp2rVrZV+GiNQRR04VMDY+kX2Zv31y8rEb2zFlQEfcdBRHRC6jUtfRSUxM5Pbbb6ewsJBz587RpEkTcnJy8PHxISAggCNHjlRH1iqh6+iI1D1fJmXw9Io9nCux07SBB/NG9KB/x+ZmxxKRGlTZ9+9K/Sk0efJkhgwZUv6lnj/99BOpqan07NmTl19+uTIPKSJygaISO9M+383EZUmcK7HTp20T1ky8QSVHRCqsUqOrpKQk3nrrLVxcXHB1dcVms9G2bVteeuklRo8ezdChQ6s6p4jUM4dO5jN2SSIHsvOxWGD8zR2Y+McOuLpc/IKiIiIXU6mi4+7uXn7uTEBAAGlpaXTu3Bl/f3+OHz9epQFFpP757Jd0ZqxMpqjUTrOGnswf2YPr2jczO5aI1EGVKjpRUVHs2LGDDh060L9/f5599llycnL46KOPdGKwiFRaYUkZM1bu5fOEdACua9+UV0f0IMDXy+RkIlJXVeocnTlz5hAcHAzA7Nmzady4MY8++ig5OTm89dZbVRpQROqHA1n5DFm4hc8T0nGxwOMDOvLhmGtVckTkqlTqiE5ERAT/+bBWQEAAb775Jl988QVdunShR48eVRpQRJybYRh8suM4z63ai63MQaCfJ/NHRtGnbVOzo4mIE6hU0bnrrrsYOnQojzzyCLm5ufTp0wd3d3dycnKYN28ejz76aFXnFBEnVGAr429f7OHLpBMA9O/YnHnDI2naUF/bIiJVo1Kjq4SEBG644QYAPvvsMwIDA0lNTeXDDz9kwYIFVRpQRJzT3hN53LlwC18mncDVxcJTt4Xz3oPXqOSISJWq1BGdwsJCfH19Afj2228ZOnQoLi4u9OnTh9TU1CoNKCLOxTAMPv45jVlf/0pJmYNgfy8WxkTRq00Ts6OJiBOq1BGd9u3bs3LlSo4fP866deu49dZbATh58qSuNiwil2QtLmXc0kRmrEympMzBH8MDWDPhBpUcEak2lSo6zz77LE888QRt2rTh2muvLf/28G+//ZaoqKgqDSgizmFPeh53LNjC6t2ZuLlYeGZwZ94Z3YvGDTzMjiYiTqxS33UFkJWVRWZmJpGRkeUXD9y+fTt+fn6Eh4dXaciqpO+6EqlZhmHwwdZjzFmznxK7g5aNvFkUG0VUq8ZmRxOROqSy79+V/vbyoKAggoKCztvWu3fvyj6ciDihvMJSnvx8F+v2ZgNwa5dA5t4Xib+Pu8nJRKS+qHTRERG5nMS0s4xfmkj62SI8XF14+vZwRvdrg8Wi76oSkZqjoiMiVcowDN7ZfJQX1+6nzGHQqokPi2Oj6Rbib3Y0EamHVHREpMqcPVfCE5/uYuP+kwAM7hZM3L3d8PPSqEpEzKGiIyJVYuexM0xYmsiJvGI83Fx49o4ujLq2lUZVImIqFR0RuSoOh8Gb/z7MK98exO4wCGvWgEWxUUS00KhKRMynoiMilXa6wMaU5bv44eApAO7q0YLZ93Sjoad+tYhI7aDfRiJSKT8fOc2EZYlkW214urkw864IhvcK1ahKRGoVFR0RuSJ2h8Hr3x/i1Q0HcRjQrnkDXh/Vk05BvmZHExG5gIqOiFTYqXwbkz5J5MdDpwG4NzqEWXdH4OOhXyUiUjvpt5OIVMiPh3KYuCyJnAIb3u6uzLq7K/f1DDE7lojIZanoiMhl2R0G8zemsPC7FAwDOgX6snhUFO0DNKoSkdpPRUdELinbWsyEpYn8fPQMACOvCeW5IRF4e7ianExEpGJUdETkon44eIopnyRx+lwJDTxcmTO0G3f1aGl2LBGRK6KiIyLnKbM7eGX9Qd7YdBiAzsF+LI6Nom3zhiYnExG5cio6IlLuRG4RE5YmsjP1LAD392nFM4O74OWuUZWI1E0qOiICwHf7s5myfBe5haX4eroRd2837ujewuxYIiJXRUVHpJ4rtTuYu+4Ab//7CADdWvqzKDaK1k0bmJxMROTqqeiI1GPpZwsZF59I0vFcAB7s14bpt4fj6aZRlYg4BxezA2RkZHD//ffTtGlTvL296datGzt37rzk+k2bNmGxWC64ZWVl1WBqkbpv3d4sbp+/maTjufh5ufHWn3ry9zsjVHJExKmYekTn7NmzXHfdddx000188803NG/enJSUFBo3bvy7+x44cAA/P7/y+wEBAdUZVcRplJQ5iPtmH+/9eAyAHqGNWBgTRWgTH3ODiYhUA1OLzosvvkhoaCjvvfde+bawsLAK7RsQEECjRo2qK5qIU0o7Xci4pQnsTs8D4C83hDF1YDgebqYf3BURqRam/nZbtWoVvXr1YtiwYQQEBBAVFcU///nPCu3bo0cPgoODGTBgAD/++OMl19lsNqxW63k3kfpozZ5MBi/YzO70PBr5uPPu6F78bXAXlRwRcWqm/oY7cuQIb7zxBh06dGDdunU8+uijTJgwgQ8++OCS+wQHB/Pmm2/y+eef8/nnnxMaGsqNN95IQkLCRdfHxcXh7+9ffgsNDa2ulyNSKxWX2pmxMpnHliSQbyujV+vGrJlwA3/sHGh2NBGRamcxDMMw68k9PDzo1asXW7duLd82YcIEduzYwbZt2yr8OP3796dVq1Z89NFHF/zMZrNhs9nK71utVkJDQ8nLyzvvHB8RZ3Q05xxjlyTwa+ZvRzIfvbEdUwZ0xN1VR3FEpG6xWq34+/tf8fu3qefoBAcH06VLl/O2de7cmc8///yKHqd3795s2bLloj/z9PTE09Oz0hlF6qovkzJ4esUezpXYadLAg3nDI7mxk07aF5H6xdSic91113HgwIHzth08eJDWrVtf0eMkJSURHBxcldFE6qziUjvPf7WXpduPA9A7rAkLRkYR5O9lcjIRkZpnatGZPHky/fr1Y86cOQwfPpzt27fz9ttv8/bbb5evmT59OhkZGXz44YcAvPbaa4SFhREREUFxcTHvvPMO3333Hd9++61ZL0Ok1jh0soCxSxI4kJ2PxQLjb2rPhD92wE2jKhGpp0wtOtdccw1ffPEF06dPZ+bMmYSFhfHaa68xatSo8jWZmZmkpaWV3y8pKeHxxx8nIyMDHx8funfvzoYNG7jpppvMeAkitcbnv6TzzMpkikrtNGvoyWsjenB9h2ZmxxIRMZWpJyObobInM4nUVoUlZTz75V4++yUdgH7tmvLayB4E+GpUJSLOo06ejCwiV+dgdj5jlySQcrIAFwtMuqUjY29qj6uLxexoIiK1goqOSB1kGAbLdx7nuVV7KS51EODryYKYKPq0bWp2NBGRWkVFR6SOKbCV8cwXe1iZdAKAP3RszrzhkTRrqMsoiIj8NxUdkTrk1xNWxsUncCTnHK4uFh6/tSOP/KEdLhpViYhclIqOSB1gGAZLfk5j5te/UlLmINjfiwUxUVzTponZ0UREajUVHZFaLr+4lGkr9rB6dyYAN4cH8MqwSBo38DA5mYhI7aeiI1KL7UnPY9zSBFJPF+LmYuGp28J56PowjapERCpIRUekFjIMgw+2HmPOmv2U2B20bOTNwtgools1NjuaiEidoqIjUsvkFZXy1Ge7Wbs3C4BbuwQy975I/H3cTU4mIlL3qOiI1CJJx3MZF59A+tki3F0tPH17Zx7s1waLRaMqEZHKUNERqQUMw+DdLUd54Zv9lDkMWjXxYVFsFN1DGpkdTUSkTlPRETFZbmEJT3y6iw37TgJwe7cgXri3O35eGlWJiFwtFR0RE/2Seobx8YmcyCvGw82FGXd04f5rW2lUJSJSRVR0REzgcBi8vfkIc9cdwO4wCGvWgEWxUUS08Dc7moiIU1HREalhpwtsPP7pLjYdOAXAnZEtmDO0Gw099Z+jiEhV029WkRr085HTTFiWSLbVhqebC8/fGcGIa0I1qhIRqSYqOiI1wO4weP37Q7y64SAOA9o1b8DiUdGEB/mZHU1ExKmp6IhUs1P5NiZ/ksSWQzkADI1uyay7utJAoyoRkWqn37Qi1WjroRwmfpLEqXwb3u6uzLwrgmG9Qs2OJSJSb6joiFQDu8Ng/sYUFn6XgmFAx8CGLI6NpkOgr9nRRETqFRUdkSqWbS1m4rJEfjpyBoARvUL5+50ReHu4mpxMRKT+UdERqUL/PniKyZ8kcfpcCT4ersy5pxt3R7U0O5aISL2loiNSBcrsDl7dcJDXNx3GMKBzsB+LY6No27yh2dFEROo1FR2Rq5SZV8SEpYnsOHYWgFHXtmLGHV3wcteoSkTEbCo6Ilfh+/0nmbI8ibOFpTT0dOOFe7txR/cWZscSEZH/paIjUgmldgcvrzvAW/8+AkDXln4sjo2mddMGJicTEZH/S0VH5Aqlny1k/NJEEtNyAXiwXxum3x6Op5tGVSIitY2KjsgV+HZvFlM/201eUSm+Xm7Mva87t3UNNjuWiIhcgoqOSAWUlDmI+2Yf7/14DIDI0EYsiokitImPucFEROSyVHREfkfa6ULGLU1gd3oeAA9fH8aTt4Xj4eZicjIREfk9Kjoil/HNnkye/Gw3+bYy/L3deWVYJLd0CTQ7loiIVJDpf5JmZGRw//3307RpU7y9venWrRs7d+687D6bNm0iOjoaT09P2rdvz/vvv18zYaXeKC618+yXyTy6JIF8Wxk9WzdmzcQbVHJEROoYU4/onD17luuuu46bbrqJb775hubNm5OSkkLjxo0vuc/Ro0cZPHgwjzzyCEuWLGHjxo08/PDDBAcHM3DgwBpML87qaM45xsUnsPeEFYBH+rfj8Vs74u5q+t8FIiJyhSyGYRhmPfm0adP48ccf2bx5c4X3eeqpp1i9ejXJycnl20aOHElubi5r16793f2tViv+/v7k5eXh5+dXqdzivFbtOsHTK/ZQYCujSQMP5g2P5MZOAWbHEhGp9yr7/m3qn6irVq2iV69eDBs2jICAAKKiovjnP/952X22bdvGLbfcct62gQMHsm3btouut9lsWK3W824i/6241M70FXuYsDSRAlsZvcOasGbCDSo5IiJ1nKlF58iRI7zxxht06NCBdevW8eijjzJhwgQ++OCDS+6TlZVFYOD550kEBgZitVopKiq6YH1cXBz+/v7lt9DQ0Cp/HVK3HTpZwN2Lf2Tp9jQsFhh/c3viH76WIH8vs6OJiMhVMvUcHYfDQa9evZgzZw4AUVFRJCcn8+abbzJ69OgqeY7p06czZcqU8vtWq1VlR8qtSEjnmZXJFJbYadbQg9dGRHF9h2ZmxxIRkSpiatEJDg6mS5cu523r3Lkzn3/++SX3CQoKIjs7+7xt2dnZ+Pn54e3tfcF6T09PPD09qyawOI3CkjKe+3Ivn/6SDkC/dk15bUQPAvx0FEdExJmYWnSuu+46Dhw4cN62gwcP0rp160vu07dvX9asWXPetvXr19O3b99qySjO52B2PmOXJJBysgAXC0z8Y0fG3dweVxeL2dFERKSKmXqOzuTJk/npp5+YM2cOhw4dIj4+nrfffpuxY8eWr5k+fToPPPBA+f1HHnmEI0eO8OSTT7J//35ef/11li9fzuTJk814CVKHGIbB8h3HuXPRFlJOFhDg68mSh/sw8ZYOKjkiIk7K1CM611xzDV988QXTp09n5syZhIWF8dprrzFq1KjyNZmZmaSlpZXfDwsLY/Xq1UyePJn58+cTEhLCO++8o2voyGWds5XxzMpkvkjMAOCGDs14dUQPmjXUWFNExJmZeh0dM+g6OvXPvkwrY5ckcCTnHK4uFqYM6Mij/dvhoqM4IiJ1RmXfv/VdV+K0DMMgfnsaz3/1KyVlDoL8vFgYG8U1bZqYHU1ERGqIio44pfziUqav2MPXuzMBuDk8gJeHRdKkgYfJyUREpCap6IjTSc7IY1x8AsdOF+LmYuHJ2zrx8PVtNaoSEamHVHTEaRiGwYfbUpm9eh8ldgctG3mzMDaK6FaX/pJYERFxbio64hTyikqZ9vluvknOAmBAl0Dm3tedRj4aVYmI1GcqOlLnJR3PZVx8Aulni3B3tTB9UGf+fF0bLBaNqkRE6jsVHamzDMPg3S1HeXHtfkrtBqFNvFkUE01kaCOzo4mISC2hoiN1Um5hCU98upsN+3773rNBXYN44d7u+Hu7m5xMRERqExUdqXN+ST3L+PgETuQV4+Hqwow7OnN/n9YaVYmIyAVUdKTOcDgM3t58hLnrDmB3GLRp6sOi2Gi6tvQ3O5qIiNRSKjpSJ5w5V8KU5UlsOnAKgDsjWzBnaDcaeuqfsIiIXJreJaTW2370DBOWJpJlLcbTzYW/3xnByGtCNaoSEZHfpaIjtZbDYfD6pkPMW38QhwFtmzdgcWw0nYP1ZawiIlIxKjpSK53KtzFleRKbU3IAGBrVkll3d6WBRlUiInIF9K4htc7WwzlMXJbEqXwbXu4uzLqrK8N6hZodS0RE6iAVHak17A6Dhd+lsGBjCg4DOgY2ZHFsNB0Cfc2OJiIidZSKjtQKJ63FTFyWxLYjpwEY3iuE5+/sireHq8nJRESkLlPREdNtTjnF5E+SyCkowcfDldn3dOWeqBCzY4mIiBNQ0RHTlNkdvLYhhcWbDmEYEB7ky+JR0bRr3tDsaCIi4iRUdMQUmXlFTFyaxPZjZwAYdW0rZtzRBS93japERKTqqOhIjft+/0mmLE/ibGEpDT3diBvajSGRLcyOJSIiTkhFR2pMqd3By+sO8Na/jwDQtaUfi2KiadOsgcnJRETEWanoSI3IyC1ifHwCCWm5ADzYrw3Tbw/H002jKhERqT4qOlLt1v+azROf7iKvqBRfLzfm3ted27oGmx1LRETqARUdqTYlZQ5eXLufd7ccBSAyxJ9FsdGENvExOZmIiNQXKjpSLY6fKWRcfAK70vMAeOj6MJ66LRwPNxeTk4mISH2ioiNVbm1yJlM/201+cRn+3u68PCySAV0CzY4lIiL1kIqOVBlbmZ05q/fxwbZUAKJbNWJhbDQtG3mbnExEROorFR2pEsdyzjFuaQLJGVYA/tq/LU/c2gl3V42qRETEPCo6ctW+2nWC6Sv2UGAro0kDD14ZHslNnQLMjiUiIqKiI5VXXGpn5te/Ev9zGgC92zRhQUwUQf5eJicTERH5jalzhb///e9YLJbzbuHh4Zdc//7771+w3stLb6pmOHyqgLsX/0j8z2lYLDD+5vbE/+ValRwREalVTD+iExERwYYNG8rvu7ldPpKfnx8HDhwov2+xWKotm1zcF4np/O2LZApL7DRr6MGrI3pwQ4fmZscSERG5gOlFx83NjaCgoAqvt1gsV7Reqk5RiZ3nViWzfGc6AH3bNmX+yB4E+OkojoiI1E6mfyQmJSWFFi1a0LZtW0aNGkVaWtpl1xcUFNC6dWtCQ0O566672Lt372XX22w2rFbreTe5cinZ+dy5aAvLd6ZjscCkWzrw8cPXquSIiEitZmrRufbaa3n//fdZu3Ytb7zxBkePHuWGG24gPz//ous7derEv/71L7788ks+/vhjHA4H/fr1Iz09/ZLPERcXh7+/f/ktNDS0ul6OUzIMg+U7jzNk0RZSThbQ3NeTJQ9fy6RbOuLqorGhiIjUbhbDMAyzQ/xHbm4urVu3Zt68eTz00EO/u760tJTOnTsTExPDrFmzLrrGZrNhs9nK71utVkJDQ8nLy8PPz6/Ksjujc7YyZqxMZkViBgA3dGjGqyN60Kyhp8nJRESkvrFarfj7+1/x+7fp5+j8X40aNaJjx44cOnSoQuvd3d2Jioq67HpPT088PfXGfKX2ZVoZF5/A4VPncLHA47d24tH+7XDRURwREalDTD9H5/8qKCjg8OHDBAcHV2i93W5nz549FV4vv88wDOJ/TuPuxT9y+NQ5gvy8WPY/fRl7U3uVHBERqXNMPaLzxBNPMGTIEFq3bs2JEyd47rnncHV1JSYmBoAHHniAli1bEhcXB8DMmTPp06cP7du3Jzc3l7lz55KamsrDDz9s5stwGvnFpTz9RTJf7ToBwE2dmvPK8B40aeBhcjIREZHKMbXopKenExMTw+nTp2nevDnXX389P/30E82b/3ZNlrS0NFxc/v9Bp7Nnz/KXv/yFrKwsGjduTM+ePdm6dStdunQx6yU4jeSMPMbFJ3DsdCFuLhamDuzEX25oq6M4IiJSp9Wqk5FrQmVPZnJWhmHw8U+pzPp6HyV2By0bebMgJoqerRubHU1ERKScU5yMLDXLWlzKtM93s2ZPFgC3dA7k5WHdaeSjUZWIiDgHFZ16atfxXMYtTeD4mSLcXS1MG9SZMde10VdqiIiIU1HRqWcMw+BfPx7jhW/2UWo3CG3izaKYaCJDG5kdTUREpMqp6NQjuYUlTP1sN+t/zQZgUNcgXri3O/7e7iYnExERqR4qOvVEQtpZxscnkpFbhIerC8/c0Zk/9WmtUZWIiDg1FR0n53AY/HPzEeauO0CZw6BNUx8WxUbTtaW/2dFERESqnYqOEztzroQnPt3Fd/tPAjAksgVz7umKr5dGVSIiUj+o6DipHcfOMD4+kSxrMZ5uLjw3JIKY3qEaVYmISL2iouNkHA6DN344zLz1B7E7DNo2b8Di2Gg6B+viiCIiUv+o6DiRnAIbkz9JYnNKDgBDo1oy6+6uNPDU/80iIlI/6R3QSWw7fJqJyxI5mW/Dy92FmXd1ZVjPEI2qRESkXlPRqePsDoNF3x1i/saDOAzoENCQxaOi6Rjoa3Y0ERER06no1GEn84uZtCyJrYdPAzC8VwjP39kVbw9Xk5OJiIjUDio6ddSWlBwmfZJITkEJPh6uzL6nK/dEhZgdS0REpFZR0alj/l97dx8UZdnvAfy7LCyrCPiGvAwoGgimIr4ELUZsSVFpT3TOnJIcZSaU6sB5YDzRQacUB+dgT6aZmDo5iWMaaR6sKdJQEieBFFgKURHx3QTsjQU01OU6fzzjPoGAu8Tuvfft9zNzz7j3fV3u7zc/r/HHfd3s3jZ1Yt3BeuR+ewZCAKE+7sh9aRqCRg2ROjQiIiKHw0ZHRhpb/sDf8w04eu5XAMBLkaOxbM6D0Lpwq4qIiKgnbHRk4lBdMxbv+gG/tt/EEFdn/O+/TcbfpvhJHRYREZFDY6Pj4G6ZOvHuN6exqaQBADDRzwMbXpqGwJFuEkdGRETk+NjoOLArv9/A3z8xoPLCbwCARN0YLHlmAreqiIiILMRGx0EdONGE1z/7Ab9fvwV3rTP+8e9heHqyr9RhERERyQobHQdz83Yn/rHvFLZ8dw4AMMXfE+sTpmH0iMESR0ZERCQ/bHQcyKVfryP1EwN+uPQ7ACDpkbH4n6dCoXF2kjgyIiIieWKj4yD2HW9Exmc/oPWP2/Ac5ILV/zEFTzzoLXVYREREssZGR2Idt03IKTyFvNLzAIBpo4fi/YSp8B/GrSoiIqK/io2OhC780o7UnQbUXGkBALwSMw6vPxkCFzW3qoiIiAYCGx2JfPnjT8jcU4O2jtsYNtgFa14Ix2Oho6QOi4iISFHY6NjZH7dMyP7yBHZ8fxEA8FDgMLyfMBW+noMkjvyqN5MAAA8ASURBVIyIiEh52OjY0dlrbUjZacDJq0aoVECKPgjpscFw5lYVERGRTbDRsZO9hitYWlCD6zdNGOGmwXtzwxEd7CV1WERERIrGRsfGbtw0IeuLWnxacQkAoBs3AuvmhmOUh1biyIiIiJSPjY4N1Te1ImVnFU43tUGlAtJmBeO/Hg+G2kkldWhERET3BUkfDsnKyoJKpepyhIaG9jln9+7dCA0NhVarxeTJk1FYWGinaK2zu+IS/pZ7BKeb2uDl7oodCyORHjueTQ4REZEdSX5HZ+LEiThw4ID5tbNz7yGVlpYiISEBOTk5mDNnDnbu3In4+HhUVVVh0qRJ9gj3nto7buOtz4/j/6quAACig0dizQvh8HJ3lTgyIiKi+4/kjY6zszN8fHwsGrtu3To89dRTyMjIAABkZ2ejqKgIubm52LRpky3DtMipRiNSdlSh4Vo7nFTAfz8ZgtdiHoAT7+IQERFJQvLfa66vr4efnx/GjRuHefPm4eLFi72OLSsrQ2xsbJdzcXFxKCsr63VOR0cHjEZjl8MWik404bncI2i41g4fDy3yk3VIeSyITQ4REZGEJG10IiMjkZeXh3379mHjxo04d+4coqOj0dra2uP4xsZGeHt3/aJLb29vNDY29voeOTk58PT0NB8BAQEDmsMdE3zdoXVRQx/ihcK0aESMHW6T9yEiIiLLSbp19fTTT5v/HBYWhsjISIwZMwa7du1CUlLSgLzHkiVLsHjxYvNro9Fok2bHf9hgFPxnFAJHuPEuDhERkYOQ/BmdPxs6dCjGjx+PM2fO9Hjdx8cHTU1NXc41NTX1+YyPq6srXF3t8yDwOK8hdnkfIiIisozkz+j8WVtbGxoaGuDr69vjdZ1Oh4MHD3Y5V1RUBJ1OZ4/wiIiISGYkbXRef/11lJSU4Pz58ygtLcXzzz8PtVqNhIQEAMCCBQuwZMkS8/i0tDTs27cP7777Lk6dOoWsrCxUVFQgNTVVqhSIiIjIgUm6dXX58mUkJCTgl19+gZeXFx555BGUl5fDy+uf3wF18eJFODn9qxeLiorCzp078eabb2Lp0qUIDg7G3r17HeYzdIiIiMixqIQQQuog7MloNMLT0xMtLS3w8PCQOhwiIiKyQH///3aoZ3SIiIiIBhIbHSIiIlIsNjpERESkWGx0iIiISLHY6BAREZFisdEhIiIixWKjQ0RERIrFRoeIiIgUi40OERERKZZDfXu5Pdz5IGij0ShxJERERGSpO/9vW/uFDvddo9Pa2goACAgIkDgSIiIislZrays8PT0tHn/ffddVZ2cnfvrpJ7i7u0OlUg3o3200GhEQEIBLly4p8nu0lJ4foPwcmZ/8KT1H5id/tspRCIHW1lb4+fl1+cLve7nv7ug4OTnB39/fpu/h4eGh2H/AgPLzA5SfI/OTP6XnyPzkzxY5WnMn5w4+jExERESKxUaHiIiIFEudlZWVJXUQSqJWq6HX6+HsrMxdQaXnByg/R+Ynf0rPkfnJnyPleN89jExERET3D25dERERkWKx0SEiIiLFYqNDREREisVGh4iIiBSLjY6VNmzYgMDAQGi1WkRGRuLo0aN9jt+9ezdCQ0Oh1WoxefJkFBYW2inS/rEmv7y8PKhUqi6HVqu1Y7TWOXz4MJ599ln4+flBpVJh796995xz6NAhTJs2Da6urggKCkJeXp7tA+0na/M7dOjQXfVTqVRobGy0U8TWycnJwUMPPQR3d3eMGjUK8fHxqKuru+c8Oa3B/uQop3W4ceNGhIWFmT9ITqfT4euvv+5zjpzqZ21+cqpdT1atWgWVSoX09PQ+x0ldQzY6Vvj000+xePFiLF++HFVVVZgyZQri4uLQ3Nzc4/jS0lIkJCQgKSkJBoMB8fHxiI+Px/Hjx+0cuWWszQ/45ydfXr161XxcuHDBjhFbp729HVOmTMGGDRssGn/u3DnMnj0bjz32GKqrq5Geno6FCxdi//79No60f6zN7466urouNRw1apSNIvxrSkpKkJKSgvLychQVFeHWrVt48skn0d7e3uscua3B/uQIyGcd+vv7Y9WqVaisrERFRQUef/xxPPfcc6itre1xvNzqZ21+gHxq192xY8ewefNmhIWF9TnOIWooyGIREREiJSXF/NpkMgk/Pz+Rk5PT4/gXXnhBzJ49u8u5yMhI8corr9g0zv6yNr+tW7cKT09Pe4U3oACIgoKCPse88cYbYuLEiV3OvfjiiyIuLs6WoQ0IS/L79ttvBQDx22+/2SmqgdXc3CwAiJKSkl7HyG0NdmdJjnJeh0IIMWzYMLFly5Yer8m9fkL0nZ9ca9fa2iqCg4NFUVGRiImJEWlpab2OdYQa8o6OhW7evInKykrExsaazzk5OSE2NhZlZWU9zikrK+syHgDi4uJ6HS+l/uQHAG1tbRgzZgwCAgLu+ZOL3Mipfn9FeHg4fH198cQTT+DIkSNSh2OxlpYWAMDw4cN7HSP3GlqSIyDPdWgymZCfn4/29nbodLoex8i5fpbkB8izdikpKZg9e/ZdtemJI9SQjY6Ffv75Z5hMJnh7e3c57+3t3eszDY2NjVaNl1J/8gsJCcFHH32Ezz//HB9//DE6OzsRFRWFy5cv2yNkm+utfkajETdu3JAoqoHj6+uLTZs2Yc+ePdizZw8CAgKg1+tRVVUldWj31NnZifT0dMycOROTJk3qdZyc1mB3luYot3VYU1ODIUOGwNXVFa+++ioKCgrw4IMP9jhWjvWzJj+51Q4A8vPzUVVVhZycHIvGO0INpf9sZpItnU7X5SeVqKgoTJgwAZs3b0Z2draEkZElQkJCEBISYn4dFRWFhoYGrF27Ftu3b5cwsntLSUnB8ePH8d1330kdis1YmqPc1mFISAiqq6vR0tKCzz77DImJiSgpKem1GZAba/KTW+0uXbqEtLQ0FBUVyeqhaTY6Fho5ciTUajWampq6nG9qaoKPj0+Pc3x8fKwaL6X+5Nedi4sLpk6dijNnztgiRLvrrX4eHh4YNGiQRFHZVkREhMM3D6mpqfjyyy9x+PBh+Pv79zlWTmvwz6zJsTtHX4cajQZBQUEAgOnTp+PYsWNYt24dNm/efNdYOdbPmvy6c/TaVVZWorm5GdOmTTOfM5lMOHz4MHJzc9HR0QG1Wt1ljiPUkFtXFtJoNJg+fToOHjxoPtfZ2YmDBw/2uv+q0+m6jAeAoqKiPvdrpdKf/LozmUyoqamBr6+vrcK0KznVb6BUV1c7bP2EEEhNTUVBQQGKi4sxduzYe86RWw37k2N3cluHnZ2d6Ojo6PGa3OrXk77y687Razdr1izU1NSgurrafMyYMQPz5s1DdXX1XU0O4CA1tNtjzwqQn58vXF1dRV5enjhx4oRITk4WQ4cOFY2NjUIIIebPny8yMzPN448cOSKcnZ3F6tWrxcmTJ8Xy5cuFi4uLqKmpkSqFPlmb34oVK8T+/ftFQ0ODqKysFHPnzhVarVbU1tZKlUKfWltbhcFgEAaDQQAQa9asEQaDQVy4cEEIIURmZqaYP3++efzZs2fF4MGDRUZGhjh58qTYsGGDUKvVYt++fVKl0Cdr81u7dq3Yu3evqK+vFzU1NSItLU04OTmJAwcOSJVCn1577TXh6ekpDh06JK5evWo+rl+/bh4j9zXYnxzltA4zMzNFSUmJOHfunPjxxx9FZmamUKlU4ptvvhFCyL9+1uYnp9r1pvtvXTliDdnoWGn9+vVi9OjRQqPRiIiICFFeXm6+FhMTIxITE7uM37Vrlxg/frzQaDRi4sSJ4quvvrJzxNaxJr/09HTzWG9vb/HMM8+IqqoqCaK2zJ1fp+5+3MkpMTFRxMTE3DUnPDxcaDQaMW7cOLF161a7x20pa/N7++23xQMPPCC0Wq0YPny40Ov1ori4WJrgLdBTbgC61ETua7A/OcppHb788stizJgxQqPRCC8vLzFr1ixzEyCE/OtnbX5yql1vujc6jlhDlRBC2O/+EREREZH98BkdIiIiUiw2OkRERKRYbHSIiIhIsdjoEBERkWKx0SEiIiLFYqNDREREisVGh4iIiBSLjQ4Ryd758+ehUqlQXV0tdShE5GD4gYFEJHsmkwnXrl3DyJEj4ezM7yomon9ho0NEsnbz5k1oNBqpwyAiB8WtKyJyKHq9HqmpqUhNTYWnpydGjhyJt956C3d+JgsMDER2djYWLFgADw8PJCcn97h1VVtbizlz5sDDwwPu7u6Ijo5GQ0OD+fqWLVswYcIEaLVahIaG4oMPPrB7rkRke7zHS0QOZ9u2bUhKSsLRo0dRUVGB5ORkjB49GosWLQIArF69GsuWLcPy5ct7nH/lyhU8+uij0Ov1KC4uhoeHB44cOYLbt28DAHbs2IFly5YhNzcXU6dOhcFgwKJFi+Dm5obExES75UlEtsetKyJyKHq9Hs3NzaitrYVKpQIAZGZm4osvvsCJEycQGBiIqVOnoqCgwDzn/PnzGDt2LAwGA8LDw7F06VLk5+ejrq4OLi4ud71HUFAQsrOzkZCQYD63cuVKFBYWorS01PZJEpHdcOuKiBzOww8/bG5yAECn06G+vh4mkwkAMGPGjD7nV1dXIzo6uscmp729HQ0NDUhKSsKQIUPMx8qVK7tsbRGRMnDriohkx83Nrc/rgwYN6vVaW1sbAODDDz9EZGRkl2tqtfqvB0dEDoWNDhE5nO+//77L6/LycgQHB1vciISFhWHbtm24devWXXd1vL294efnh7Nnz2LevHkDFjMROSZuXRGRw7l48SIWL16Muro6fPLJJ1i/fj3S0tIsnp+amgqj0Yi5c+eioqIC9fX12L59O+rq6gAAK1asQE5ODt5//32cPn0aNTU12Lp1K9asWWOrlIhIIryjQ0QOZ8GCBbhx4wYiIiKgVquRlpaG5ORki+ePGDECxcXFyMjIQExMDNRqNcLDwzFz5kwAwMKFCzF48GC88847yMjIgJubGyZPnoz09HRbpUREEuFvXRGRQ9Hr9QgPD8d7770ndShEpADcuiIiIiLFYqNDREREisWtKyIiIlIs3tEhIiIixWKjQ0RERIrFRoeIiIgUi40OERERKRYbHSIiIlIsNjpERESkWGx0iIiISLHY6BAREZFisdEhIiIixfp/0buniqqZLAkAAAAASUVORK5CYII=",
|
165
|
-
"text/plain": [
|
166
|
-
"<Figure size 640x480 with 1 Axes>"
|
167
|
-
]
|
168
|
-
},
|
169
|
-
"execution_count": 17,
|
170
|
-
"metadata": {},
|
171
|
-
"output_type": "execute_result"
|
172
|
-
}
|
173
|
-
],
|
174
|
-
"source": [
|
175
|
-
"error_bar = charty.to_error_bar(:price, :sales)\n",
|
176
|
-
"error_bar.render('sample')"
|
177
|
-
]
|
178
|
-
},
|
179
|
-
{
|
180
|
-
"cell_type": "code",
|
181
|
-
"execution_count": 18,
|
182
|
-
"metadata": {},
|
183
|
-
"outputs": [
|
184
|
-
{
|
185
|
-
"data": {
|
186
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAG0CAYAAAAxRiOnAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvhp/UCwAAIABJREFUeJzt3XtUVXX+//HXAeKiX8ELcSsMSse7QDoSmSOtSGT8OlIrU8fSyMvKr6w0yoom0dQiTY0sR9I0db7mpW9pTTmWUWiOKCkyZVOmheINvPySIziiA+f3h8szc0ZUJGBz/Dwfa33WtD/7sz/n/dmLTq/Ze59zbA6HwyEAAABDeVhdAAAAgJUIQwAAwGiEIQAAYDTCEAAAMBphCAAAGI0wBAAAjEYYAgAARiMMAQAAoxGGAACA0QhDAADAaIQhAABgNC+rC2iKqqurdeTIEbVo0UI2m83qcgAAQC04HA6dPn1aYWFh8vCo/fUewlANjhw5ovDwcKvLAAAAdXDw4EHdfPPNtR5PGKpBixYtJF04mf7+/hZXAwAAasNutys8PNz53/HaIgzV4OKtMX9/f8IQAABu5lofceEBagAAYDTCEAAAMBphCAAAGI0wBAAAjEYYAgAARiMMAQAAoxGGAACA0QhDAADAaIQhAABgNMIQAAAwGmEIAAAYzdIwlJmZqV//+tdq0aKFgoKClJycrD179lz1uHfffVcdO3aUr6+vunXrpvXr17vsdzgcysjIUGhoqPz8/JSQkKC9e/c21DIAAIAbszQMbdq0SePHj9e2bdu0ceNGnT9/Xv369VNFRcVlj9m6dauGDRumUaNGadeuXUpOTlZycrJ2797tHDNr1izNmzdP2dnZ2r59u5o3b67ExESdPXu2MZYFAADciM3hcDisLuKi48ePKygoSJs2bdJvfvObGscMGTJEFRUV+uijj5x9d9xxh6Kjo5WdnS2Hw6GwsDA9+eSTeuqppyRJZWVlCg4O1tKlSzV06NCr1mG32xUQEKCysjJ+tR4AADdR1/9+N6lnhsrKyiRJrVu3vuyYvLw8JSQkuPQlJiYqLy9PklRUVKSSkhKXMQEBAYqNjXWO+U+VlZWy2+0uDQAAmMHL6gIuqq6u1sSJE9W7d2917dr1suNKSkoUHBzs0hccHKySkhLn/ot9lxvznzIzM/XCCy/8kvKvScSzH1/T+P0vD2igSszA+UaDmBpwjePLGqYO1Kjbsm7XNP6bkd80UCVmcPfz3WSuDI0fP167d+/WqlWrGv2109PTVVZW5mwHDx5s9BoAAIA1msSVodTUVH300UfavHmzbr755iuODQkJUWlpqUtfaWmpQkJCnPsv9oWGhrqMiY6OrnFOHx8f+fj4/JIlAAAAN2XplSGHw6HU1FStXbtWn3/+uSIjI696TFxcnHJyclz6Nm7cqLi4OElSZGSkQkJCXMbY7XZt377dOQYAAOAiS68MjR8/Xu+8844++OADtWjRwvlMT0BAgPz8/CRJI0aM0E033aTMzExJ0oQJE9S3b1/NmTNHAwYM0KpVq7Rjxw4tXLhQkmSz2TRx4kTNmDFD7du3V2RkpCZPnqywsDAlJydbs1AAANBkWRqGFixYIEmKj4936X/77bf1yCOPSJKKi4vl4fGvC1h33nmn3nnnHT3//PN67rnn1L59e61bt87loeunn35aFRUVGjt2rE6dOqW77rpLGzZskK+vb4OvCQAAuBdLw1BtvuIoNzf3kr7Bgwdr8ODBlz3GZrNp2rRpmjZt2i8pDwAAGKDJfJoMAADACoQhAABgNMIQAAAwGmEIAAAYjTAEAACMRhgCAABGIwwBAACjEYYAAIDRCEMAAMBohCEAAGA0whAAADAaYQgAABiNMAQAAIxGGAIAAEYjDAEAAKMRhgAAgNEIQwAAwGiEIQAAYDTCEAAAMBphCAAAGI0wBAAAjEYYAgAARiMMAQAAoxGGAACA0QhDAADAaIQhAABgNMIQAAAwGmEIAAAYjTAEAACMRhgCAABGIwwBAACjEYYAAIDRCEMAAMBoloahzZs3a+DAgQoLC5PNZtO6deuuOP6RRx6RzWa7pHXp0sU5ZurUqZfs79ixY0MvBQAAuClLw1BFRYWioqI0f/78Wo1/7bXXdPToUWc7ePCgWrdurcGDB7uM69Kli8u4LVu2NET5AADgOuBl5YsnJSUpKSmp1uMDAgIUEBDg3F63bp1+/vlnpaSkuIzz8vJSSEhIvdUJAACuX279zNDixYuVkJCgW265xaV/7969CgsL06233qrhw4eruLj4ivNUVlbKbre7NAAAYAa3DUNHjhzRX/7yF40ePdqlPzY2VkuXLtWGDRu0YMECFRUVqU+fPjp9+vRl58rMzHRedQoICFB4eHhDlw8AAJoItw1Dy5YtU8uWLZWcnOzSn5SUpMGDB6t79+5KTEzU+vXrderUKa1Zs+ayc6Wnp6usrMzZDh482NDlAwCAJsLSZ4bqyuFwaMmSJXr44Yfl7e19xbEtW7bUr371K+3bt++yY3x8fOTj41PfZQIAADfglleGNm3apH379mnUqFFXHVteXq4ff/xRoaGhjVAZAABwN5aGofLychUWFqqwsFCSVFRUpMLCQucDz+np6RoxYsQlxy1evFixsbHq2rXrJfueeuopbdq0Sfv379fWrVt13333ydPTU8OGDWvYxQAAALdk6W2yHTt26O6773Zup6WlSZJGjhyppUuX6ujRo5d8EqysrEzvvfeeXnvttRrnPHTokIYNG6aTJ0/qxhtv1F133aVt27bpxhtvbLiFAAAAt2VpGIqPj5fD4bjs/qVLl17SFxAQoDNnzlz2mFWrVtVHaQAAwBBu+cwQAABAfSEMAQAAoxGGAACA0QhDAADAaIQhAABgNMIQAAAwGmEIAAAYjTAEAACMRhgCAABGIwwBAACjEYYAAIDRCEMAAMBohCEAAGA0whAAADAaYQgAABiNMAQAAIxGGAIAAEYjDAEAAKMRhgAAgNEIQwAAwGiEIQAAYDTCEAAAMBphCAAAGI0wBAAAjEYYAgAARiMMAQAAoxGGAACA0QhDAADAaIQhAABgNMIQAAAwGmEIAAAYjTAEAACMRhgCAABGszQMbd68WQMHDlRYWJhsNpvWrVt3xfG5ubmy2WyXtJKSEpdx8+fPV0REhHx9fRUbG6v8/PyGXAYAAHBjloahiooKRUVFaf78+dd03J49e3T06FFnCwoKcu5bvXq10tLSNGXKFBUUFCgqKkqJiYk6duxYfZcPAACuA15WvnhSUpKSkpKu+bigoCC1bNmyxn1z587VmDFjlJKSIknKzs7Wxx9/rCVLlujZZ5/9RfUCAIDrj1s+MxQdHa3Q0FDde++9+utf/+rsP3funHbu3KmEhARnn4eHhxISEpSXl3fZ+SorK2W3210aAAAwg1uFodDQUGVnZ+u9997Te++9p/DwcMXHx6ugoECSdOLECVVVVSk4ONjluODg4EueK/p3mZmZCggIcLbw8PAGXQcAAGg6LL1Ndq06dOigDh06OLfvvPNO/fjjj3r11Vf1pz/9qc7zpqenKy0tzbltt9sJRAAAGMKtwlBNevXqpS1btkiSAgMD5enpqdLSUpcxpaWlCgkJuewcPj4+8vHxadA6AQBA0+RWt8lqUlhYqNDQUEmSt7e3evTooZycHOf+6upq5eTkKC4uzqoSAQBAE2bplaHy8nLt27fPuV1UVKTCwkK1bt1abdu2VXp6ug4fPqzly5dLkrKyshQZGakuXbro7Nmzeuutt/T555/r008/dc6RlpamkSNHqmfPnurVq5eysrJUUVHh/HQZAADAv7M0DO3YsUN33323c/viczsjR47U0qVLdfToURUXFzv3nzt3Tk8++aQOHz6sZs2aqXv37vrss89c5hgyZIiOHz+ujIwMlZSUKDo6Whs2bLjkoWoAAADJ4jAUHx8vh8Nx2f1Lly512X766af19NNPX3Xe1NRUpaam/tLyAACAAdz+mSEAAIBfgjAEAACMRhgCAABGIwwBAACjEYYAAIDRCEMAAMBohCEAAGA0whAAADAaYQgAABiNMAQAAIxGGAIAAEYjDAEAAKMRhgAAgNEIQwAAwGiEIQAAYDTCEAAAMBphCAAAGI0wBAAAjEYYAgAARiMMAQAAoxGGAACA0QhDAADAaIQhAABgNMIQAAAwGmEIAAAYjTAEAACMRhgCAABGIwwBAACjEYYAAIDRCEMAAMBohCEAAGA0whAAADAaYQgAABjN0jC0efNmDRw4UGFhYbLZbFq3bt0Vx7///vu69957deONN8rf319xcXH65JNPXMZMnTpVNpvNpXXs2LEhlwEAANyYpWGooqJCUVFRmj9/fq3Gb968Wffee6/Wr1+vnTt36u6779bAgQO1a9cul3FdunTR0aNHnW3Lli0NUT4AALgOeFn54klJSUpKSqr1+KysLJftl156SR988IH+/Oc/KyYmxtnv5eWlkJCQeqsTAABcv9z6maHq6mqdPn1arVu3dunfu3evwsLCdOutt2r48OEqLi6+4jyVlZWy2+0uDQAAmMGtw9Ds2bNVXl6uBx980NkXGxurpUuXasOGDVqwYIGKiorUp08fnT59+rLzZGZmKiAgwNnCw8Mbo3wAANAEuG0Yeuedd/TCCy9ozZo1CgoKcvYnJSVp8ODB6t69uxITE7V+/XqdOnVKa9asuexc6enpKisrc7aDBw82xhIAAEATYOkzQ3W1atUqjR49Wu+++64SEhKuOLZly5b61a9+pX379l12jI+Pj3x8fOq7TAAA4Abc7srQypUrlZKSopUrV2rAgAFXHV9eXq4ff/xRoaGhjVAdAABwN5ZeGSovL3e5YlNUVKTCwkK1bt1abdu2VXp6ug4fPqzly5dLunBrbOTIkXrttdcUGxurkpISSZKfn58CAgIkSU899ZQGDhyoW265RUeOHNGUKVPk6empYcOGNf4CAQBAk2fplaEdO3YoJibG+bH4tLQ0xcTEKCMjQ5J09OhRl0+CLVy4UP/85z81fvx4hYaGOtuECROcYw4dOqRhw4apQ4cOevDBB9WmTRtt27ZNN954Y+MuDgAAuAVLrwzFx8fL4XBcdv/SpUtdtnNzc68656pVq35hVQAAwCRu98wQAABAfSIMAQAAoxGGAACA0QhDAADAaIQhAABgNMIQAAAwGmEIAAAYjTAEAACMRhgCAABGIwwBAACjEYYAAIDRCEMAAMBohCEAAGC0OoWhgwcP6tChQ87t/Px8TZw4UQsXLqy3wgAAABpDncLQ73//e33xxReSpJKSEt17773Kz8/XH/7wB02bNq1eCwQAAGhIdQpDu3fvVq9evSRJa9asUdeuXbV161atWLFCS5curc/6AAAAGlSdwtD58+fl4+MjSfrss8/0u9/9TpLUsWNHHT16tP6qAwAAaGB1CkNdunRRdna2vvzyS23cuFH9+/eXJB05ckRt2rSp1wIBAAAaUp3C0MyZM/Xmm28qPj5ew4YNU1RUlCTpww8/dN4+AwAAcAdedTkoPj5eJ06ckN1uV6tWrZz9Y8eOVbNmzeqtOAAAgIZW5+8Zcjgc2rlzp958802dPn1akuTt7U0YAgAAbqVOV4YOHDig/v37q7i4WJWVlbr33nvVokULzZw5U5WVlcrOzq7vOgEAABpEna4MTZgwQT179tTPP/8sPz8/Z/99992nnJyceisOAACgodXpytCXX36prVu3ytvb26U/IiJChw8frpfCAAAAGkOdrgxVV1erqqrqkv5Dhw6pRYsWv7goAACAxlKnMNSvXz9lZWU5t202m8rLyzVlyhT99re/rbfiAAAAGlqdbpPNmTNHiYmJ6ty5s86ePavf//732rt3rwIDA7Vy5cr6rhEAAKDB1CkM3Xzzzfrb3/6mVatW6euvv1Z5eblGjRql4cOHuzxQDQAA0NTVKQxJkpeXlx566KH6rAUAAKDR1ToMffjhh7We9OIPtwIAADR1tQ5DycnJtRpns9lq/KQZAABAU1TrMFRdXd2QdQAAAFiizr9NBgAAcD2ocxiqqKjQ+vXrlZ2drXnz5rm02tq8ebMGDhyosLAw2Ww2rVu37qrH5Obm6vbbb5ePj4/atWunpUuXXjJm/vz5ioiIkK+vr2JjY5Wfn38tSwMAAAap06fJdu3apd/+9rc6c+aMKioq1Lp1a504cULNmjVTUFCQHn/88VrNU1FRoaioKD366KO6//77rzq+qKhIAwYM0GOPPaYVK1YoJydHo0ePVmhoqBITEyVJq1evVlpamrKzsxUbG6usrCwlJiZqz549CgoKqstyAQDAdaxOV4aeeOIJDRw40PlDrdu2bdOBAwfUo0cPzZ49u9bzJCUlacaMGbrvvvtqNT47O1uRkZGaM2eOOnXqpNTUVD3wwAN69dVXnWPmzp2rMWPGKCUlRZ07d1Z2draaNWumJUuWXPM6AQDA9a9OYaiwsFBPPvmkPDw85OnpqcrKSoWHh2vWrFl67rnn6rtGp7y8PCUkJLj0JSYmKi8vT5J07tw57dy502WMh4eHEhISnGNqUllZKbvd7tIAAIAZ6nSb7IYbbpCHx4UcFRQUpOLiYnXq1EkBAQE6ePBgvRb470pKShQcHOzSFxwcLLvdrn/84x/6+eefVVVVVeOY77///rLzZmZm6oUXXmiQmq8nEc9+fE3j9788oIEqQY2mBlzj+LKGqeNauWvd7orz3aR1W9btmsZ/M/KbBqrELHW6MhQTE6OvvvpKktS3b19lZGRoxYoVmjhxorp27VqvBTaG9PR0lZWVOVtDBjoAANC01CkMvfTSSwoNDZUkvfjii2rVqpXGjRunEydO6M0336zXAv9dSEiISktLXfpKS0vl7+8vPz8/BQYGytPTs8YxISEhl53Xx8dH/v7+Lg0AAJihTrfJunTpIofDIenCbbLs7GytXbtWnTt3VnR0dL0W+O/i4uK0fv16l76NGzcqLi5OkuTt7a0ePXooJyfH+Y3Z1dXVysnJUWpqaoPVBQAA3FedrgwNGjRIy5cvlySdOnVKd9xxh+bOnavk5GQtWLCg1vOUl5ersLBQhYWFki58dL6wsFDFxcWSLty+GjFihHP8Y489pp9++klPP/20vv/+e/3xj3/UmjVr9MQTTzjHpKWladGiRVq2bJm+++47jRs3ThUVFUpJSanLUgEAwHWuTmGooKBAffr0kST93//9n4KDg3XgwAEtX778mr50cceOHYqJiVFMTIykC0EmJiZGGRkZkqSjR486g5EkRUZG6uOPP9bGjRsVFRWlOXPm6K233nJ+x5AkDRkyRLNnz1ZGRoaio6NVWFioDRs2XPJQNQAAgFTH22RnzpxRixYtJEmffvqp7r//fnl4eOiOO+7QgQMHaj1PfHy883ZbTWr6dun4+Hjt2rXrivOmpqZyWwwAANRKna4MtWvXTuvWrdPBgwf1ySefqF+/fpKkY8eO8fAxAABwK3UKQxkZGXrqqacUERGh2NhY5wPMn376qfOWFwAAgDuo022yBx54QHfddZeOHj2qqKgoZ/8999xT65/WAAAAaArqFIakC9/585/f3dOrV69fXBAAAEBjqtNtMgAAgOsFYQgAABiNMAQAAIxGGAIAAEYjDAEAAKMRhgAAgNEIQwAAwGiEIQAAYDTCEAAAMBphCAAAGI0wBAAAjEYYAgAARiMMAQAAoxGGAACA0QhDAADAaIQhAABgNMIQAAAwGmEIAAAYjTAEAACMRhgCAABGIwwBAACjEYYAAIDRCEMAAMBohCEAAGA0whAAADAaYQgAABiNMAQAAIxGGAIAAEYjDAEAAKM1iTA0f/58RUREyNfXV7GxscrPz7/s2Pj4eNlstkvagAEDnGMeeeSRS/b379+/MZYCAADcjJfVBaxevVppaWnKzs5WbGyssrKylJiYqD179igoKOiS8e+//77OnTvn3D558qSioqI0ePBgl3H9+/fX22+/7dz28fFpuEUAAAC3ZfmVoblz52rMmDFKSUlR586dlZ2drWbNmmnJkiU1jm/durVCQkKcbePGjWrWrNklYcjHx8dlXKtWrRpjOQAAwM1YGobOnTunnTt3KiEhwdnn4eGhhIQE5eXl1WqOxYsXa+jQoWrevLlLf25uroKCgtShQweNGzdOJ0+evOwclZWVstvtLg0AAJjB0jB04sQJVVVVKTg42KU/ODhYJSUlVz0+Pz9fu3fv1ujRo136+/fvr+XLlysnJ0czZ87Upk2blJSUpKqqqhrnyczMVEBAgLOFh4fXfVEAAMCtWP7M0C+xePFidevWTb169XLpHzp0qPOfu3Xrpu7du+u2225Tbm6u7rnnnkvmSU9PV1pamnPbbrcTiAAAMISlV4YCAwPl6emp0tJSl/7S0lKFhIRc8diKigqtWrVKo0aNuurr3HrrrQoMDNS+fftq3O/j4yN/f3+XBgAAzGBpGPL29laPHj2Uk5Pj7KuurlZOTo7i4uKueOy7776ryspKPfTQQ1d9nUOHDunkyZMKDQ39xTUDAIDri+WfJktLS9OiRYu0bNkyfffddxo3bpwqKiqUkpIiSRoxYoTS09MvOW7x4sVKTk5WmzZtXPrLy8s1adIkbdu2Tfv371dOTo4GDRqkdu3aKTExsVHWBAAA3IflzwwNGTJEx48fV0ZGhkpKShQdHa0NGzY4H6ouLi6Wh4drZtuzZ4+2bNmiTz/99JL5PD099fXXX2vZsmU6deqUwsLC1K9fP02fPp3vGgIAAJewPAxJUmpqqlJTU2vcl5ube0lfhw4d5HA4ahzv5+enTz75pD7LAwAA1zHLb5MBAABYiTAEAACMRhgCAABGIwwBAACjEYYAAIDRCEMAAMBohCEAAGA0whAAADAaYQgAABiNMAQAAIxGGAIAAEYjDAEAAKMRhgAAgNEIQwAAwGiEIQAAYDTCEAAAMBphCAAAGI0wBAAAjEYYAgAARiMMAQAAoxGGAACA0QhDAADAaIQhAABgNMIQAAAwGmEIAAAYjTAEAACMRhgCAABGIwwBAACjEYYAAIDRCEMAAMBohCEAAGA0whAAADAaYQgAABitSYSh+fPnKyIiQr6+voqNjVV+fv5lxy5dulQ2m82l+fr6uoxxOBzKyMhQaGio/Pz8lJCQoL179zb0MgAAgBuyPAytXr1aaWlpmjJligoKChQVFaXExEQdO3bsssf4+/vr6NGjznbgwAGX/bNmzdK8efOUnZ2t7du3q3nz5kpMTNTZs2cbejkAAMDNWB6G5s6dqzFjxiglJUWdO3dWdna2mjVrpiVLllz2GJvNppCQEGcLDg527nM4HMrKytLzzz+vQYMGqXv37lq+fLmOHDmidevWNcaSAACAG7E0DJ07d047d+5UQkKCs8/Dw0MJCQnKy8u77HHl5eW65ZZbFB4erkGDBunbb7917isqKlJJSYnLnAEBAYqNjb3snJWVlbLb7S4NAACYwdIwdOLECVVVVblc2ZGk4OBglZSU1HhMhw4dtGTJEn3wwQf63//9X1VXV+vOO+/UoUOHJMl53LXMmZmZqYCAAGcLDw//pUsDAABuwvLbZNcqLi5OI0aMUHR0tPr27av3339fN954o9588806z5menq6ysjJnO3jwYD1WDAAAmjJLw1BgYKA8PT1VWlrq0l9aWqqQkJBazXHDDTcoJiZG+/btkyTncdcyp4+Pj/z9/V0aAAAwg6VhyNvbWz169FBOTo6zr7q6Wjk5OYqLi6vVHFVVVfrmm28UGhoqSYqMjFRISIjLnHa7Xdu3b6/1nAAAwBxeVheQlpamkSNHqmfPnurVq5eysrJUUVGhlJQUSdKIESN00003KTMzU5I0bdo03XHHHWrXrp1OnTqlV155RQcOHNDo0aMlXfik2cSJEzVjxgy1b99ekZGRmjx5ssLCwpScnGzZOgEAQNNkeRgaMmSIjh8/royMDJWUlCg6OlobNmxwPgBdXFwsD49/XcD6+eefNWbMGJWUlKhVq1bq0aOHtm7dqs6dOzvHPP3006qoqNDYsWN16tQp3XXXXdqwYcMlX84IAABgeRiSpNTUVKWmpta4Lzc312X71Vdf1auvvnrF+Ww2m6ZNm6Zp06bVV4kAAOA65XafJgMAAKhPhCEAAGA0whAAADAaYQgAABiNMAQAAIxGGAIAAEYjDAEAAKMRhgAAgNEIQwAAwGiEIQAAYDTCEAAAMBphCAAAGI0wBAAAjEYYAgAARiMMAQAAoxGGAACA0QhDAADAaIQhAABgNMIQAAAwGmEIAAAYjTAEAACMRhgCAABGIwwBAACjEYYAAIDRCEMAAMBohCEAAGA0whAAADAaYQgAABiNMAQAAIxGGAIAAEYjDAEAAKMRhgAAgNEIQwAAwGhNIgzNnz9fERER8vX1VWxsrPLz8y87dtGiRerTp49atWqlVq1aKSEh4ZLxjzzyiGw2m0vr379/Qy8DAAC4IcvD0OrVq5WWlqYpU6aooKBAUVFRSkxM1LFjx2ocn5ubq2HDhumLL75QXl6ewsPD1a9fPx0+fNhlXP/+/XX06FFnW7lyZWMsBwAAuBnLw9DcuXM1ZswYpaSkqHPnzsrOzlazZs20ZMmSGsevWLFC//M//6Po6Gh17NhRb731lqqrq5WTk+MyzsfHRyEhIc7WqlWrxlgOAABwM5aGoXPnzmnnzp1KSEhw9nl4eCghIUF5eXm1muPMmTM6f/68Wrdu7dKfm5uroKAgdejQQePGjdPJkycvO0dlZaXsdrtLAwAAZrA0DJ04cUJVVVUKDg526Q8ODlZJSUmt5njmmWcUFhbmEqj69++v5cuXKycnRzNnztSmTZuUlJSkqqqqGufIzMxUQECAs4WHh9d9UQAAwK14WV3AL/Hyyy9r1apVys3Nla+vr7N/6NChzn/u1q2bunfvrttuu025ubm65557LpknPT1daWlpzm273U4gAgDAEJZeGQoMDJSnp6dKS0td+ktLSxUSEnLFY2fPnq2XX35Zn376qbp3737FsbfeeqsCAwO1b9++Gvf7+PjI39/fpQEAADNYGoa8vb3Vo0cPl4efLz4MHRcXd9njZs2apenTp2vDhg3q2bPnVV/n0KFDOnliXBIIAAAQNElEQVTypEJDQ+ulbgAAcP2w/NNkaWlpWrRokZYtW6bvvvtO48aNU0VFhVJSUiRJI0aMUHp6unP8zJkzNXnyZC1ZskQREREqKSlRSUmJysvLJUnl5eWaNGmStm3bpv379ysnJ0eDBg1Su3btlJiYaMkaAQBA02X5M0NDhgzR8ePHlZGRoZKSEkVHR2vDhg3Oh6qLi4vl4fGvzLZgwQKdO3dODzzwgMs8U6ZM0dSpU+Xp6amvv/5ay5Yt06lTpxQWFqZ+/fpp+vTp8vHxadS1AQCAps/yMCRJqampSk1NrXFfbm6uy/b+/fuvOJefn58++eSTeqoMAABc7yy/TQYAAGAlwhAAADAaYQgAABiNMAQAAIxGGAIAAEYjDAEAAKMRhgAAgNEIQwAAwGiEIQAAYDTCEAAAMBphCAAAGI0wBAAAjEYYAgAARiMMAQAAoxGGAACA0QhDAADAaIQhAABgNMIQAAAwGmEIAAAYjTAEAACMRhgCAABGIwwBAACjEYYAAIDRCEMAAMBohCEAAGA0whAAADAaYQgAABiNMAQAAIxGGAIAAEYjDAEAAKMRhgAAgNEIQwAAwGiEIQAAYLQmEYbmz5+viIgI+fr6KjY2Vvn5+Vcc/+6776pjx47y9fVVt27dtH79epf9DodDGRkZCg0NlZ+fnxISErR3796GXAIAAHBTloeh1atXKy0tTVOmTFFBQYGioqKUmJioY8eO1Th+69atGjZsmEaNGqVdu3YpOTlZycnJ2r17t3PMrFmzNG/ePGVnZ2v79u1q3ry5EhMTdfbs2cZaFgAAcBOWh6G5c+dqzJgxSklJUefOnZWdna1mzZppyZIlNY5/7bXX1L9/f02aNEmdOnXS9OnTdfvtt+uNN96QdOGqUFZWlp5//nkNGjRI3bt31/Lly3XkyBGtW7euMZcGAADcgJeVL37u3Dnt3LlT6enpzj4PDw8lJCQoLy+vxmPy8vKUlpbm0peYmOgMOkVFRSopKVFCQoJzf0BAgGJjY5WXl6ehQ4deMmdlZaUqKyud22VlZZIku91e98VdQXXlmWsa31B1XCvqbuIqHdc2vqmsk7obl7vWfY2q/lF1TeObyr/31P3LXJzX4bi2v3NLw9CJEydUVVWl4OBgl/7g4GB9//33NR5TUlJS4/iSkhLn/ot9lxvznzIzM/XCCy9c0h8eHl67hTSwgCyrK6gb6m7iXg6wuoK6oe7G5a51X6OAce65Tuqu2enTpxUQUPvXsDQMNRXp6ekuV5uqq6v1//7f/1ObNm1ks9nqPK/dbld4eLgOHjwof3//+ijVLXEeOAcXcR4u4DxcwHngHFxUX+fB4XDo9OnTCgsLu6bjLA1DgYGB8vT0VGlpqUt/aWmpQkJCajwmJCTkiuMv/m9paalCQ0NdxkRHR9c4p4+Pj3x8fFz6WrZseW2LuQJ/f3+j/8gv4jxwDi7iPFzAebiA88A5uKg+zsO1XBG6yNIHqL29vdWjRw/l5OQ4+6qrq5WTk6O4uLgaj4mLi3MZL0kbN250jo+MjFRISIjLGLvdru3bt192TgAAYC7Lb5OlpaVp5MiR6tmzp3r16qWsrCxVVFQoJSVFkjRixAjddNNNyszMlCRNmDBBffv21Zw5czRgwACtWrVKO3bs0MKFCyVJNptNEydO1IwZM9S+fXtFRkZq8uTJCgsLU3JysmXrBAAATZPn1KlTp1pZQNeuXdWyZUu9+OKLmj17tiRpxYoV6tChg6QLH6X38vJyBpnw8HB16tRJr7zyil5++WWVlpZq8eLF6t27t3PO3r1768yZM5o6dapef/11hYSEaOXKlZc8VN0YPD09FR8fLy8vy3OnpTgPnIOLOA8XcB4u4DxwDi6y8jzYHNf6+TMAAIDriOVfuggAAGAlwhAAADAaYQgAABiNMAQAAIxGGGog8+fPV0REhHx9fRUbG6v8/HyrS2pUmZmZ+vWvf60WLVooKChIycnJ2rNnj9VlWe7ll192fv2DaQ4fPqyHHnpIbdq0kZ+fn7p166YdO3ZYXVajqaqq0uTJkxUZGSk/Pz/ddtttmj59+jX/hpK72bx5swYOHKiwsDDZbLZLfjDb4XAoIyNDoaGh8vPzU0JCgvbu3WtRtQ3nSufh/PnzeuaZZ9StWzc1b95cYWFhGjFihI4cOWJhxQ3jan8P/+6xxx6TzWZTVlbD/0YSYagBrF69WmlpaZoyZYoKCgoUFRWlxMREHTt2zOrSGs2mTZs0fvx4bdu2TRs3btT58+fVr18/VVRUWF2aZb766iu9+eab6t69u9WlNLqff/5ZvXv31g033KC//OUv+vvf/645c+aoVatWVpfWaGbOnKkFCxbojTfe0HfffaeZM2dq1qxZev31160urUFVVFQoKipK8+fPr3H/rFmzNG/ePGVnZ2v79u1q3ry5EhMTdfbs2UautGFd6TycOXNGBQUFmjx5sgoKCvT+++9rz549+t3vfmdBpQ3ran8PF61du1bbtm275p/VqDMH6l2vXr0c48ePd25XVVU5wsLCHJmZmRZWZa1jx445JDk2bdpkdSmWOH36tKN9+/aOjRs3Ovr27euYMGGC1SU1qmeeecZx1113WV2GpQYMGOB49NFHXfruv/9+x/Dhwy2qqPFJcqxdu9a5XV1d7QgJCXG88sorzr5Tp045fHx8HCtXrrSixEbxn+ehJvn5+Q5JjgMHDjRSVY3vcufh0KFDjptuusmxe/duxy233OJ49dVXG7wWrgzVs3Pnzmnnzp1KSEhw9nl4eCghIUF5eXkWVmatsrIySVLr1q0trsQa48eP14ABA1z+Lkzy4YcfqmfPnho8eLCCgoIUExOjRYsWWV1Wo7rzzjuVk5OjH374QZL0t7/9TVu2bFFSUpLFlVmnqKhIJSUlLv9eBAQEKDY21uj3S+nCe6bNZqvX38l0B9XV1Xr44Yc1adIkdenSpdFe1+yvu2wAJ06cUFVV1SXfdh0cHKzvv//eoqqsVV1drYkTJ6p3797q2rWr1eU0ulWrVqmgoEBfffWV1aVY5qefftKCBQuUlpam5557Tl999ZUef/xxeXt7a+TIkVaX1yieffZZ2e12dezYUZ6enqqqqtKLL76o4cOHW12aZUpKSiSpxvfLi/tMdPbsWT3zzDMaNmyYcT/eOnPmTHl5eenxxx9v1NclDKHBjR8/Xrt379aWLVusLqXRHTx4UBMmTNDGjRvl6+trdTmWqa6uVs+ePfXSSy9JkmJiYrR7925lZ2cbE4bWrFmjFStW6J133lGXLl1UWFioiRMnKiwszJhzgKs7f/68HnzwQTkcDi1YsMDqchrVzp079dprr6mgoEA2m61RX5vbZPUsMDBQnp6eKi0tdekvLS1VSEiIRVVZJzU1VR999JG++OIL3XzzzVaX0+h27typY8eO6fbbb5eXl5e8vLy0adMmzZs3T15eXqqqqrK6xEYRGhqqzp07u/R16tRJxcXFFlXU+CZNmqRnn31WQ4cOVbdu3fTwww/riSeecP4ItYkuvifyfnnBxSB04MABbdy40birQl9++aWOHTumtm3bOt8vDxw4oCeffFIREREN+tqEoXrm7e2tHj16KCcnx9lXXV2tnJwcxcXFWVhZ43I4HEpNTdXatWv1+eefKzIy0uqSLHHPPffom2++UWFhobP17NlTw4cPV2FhoTw9Pa0usVH07t37kq9W+OGHH3TLLbdYVFHjO3PmjDw8XN9yPT09VV1dbVFF1ouMjFRISIjL+6Xdbtf27duNer+U/hWE9u7dq88++0xt2rSxuqRG9/DDD+vrr792eb8MCwvTpEmT9MknnzToa3ObrAGkpaVp5MiR6tmzp3r16qWsrCxVVFQoJSXF6tIazfjx4/XOO+/ogw8+UIsWLZz3/wMCAuTn52dxdY2nRYsWlzwn1bx5c7Vp08ao56eeeOIJ3XnnnXrppZf04IMPKj8/XwsXLtTChQutLq3RDBw4UC+++KLatm2rLl26aNeuXZo7d64effRRq0trUOXl5dq3b59zu6ioSIWFhWrdurXatm2riRMnasaMGWrfvr0iIyM1efJkhYWFKTk52cKq69+VzkNoaKgeeOABFRQU6KOPPlJVVZXzPbN169by9va2qux6d7W/h/8MgTfccINCQkLUoUOHhi2swT+vZqjXX3/d0bZtW4e3t7ejV69ejm3btlldUqOSVGN7++23rS7NciZ+tN7hcDj+/Oc/O7p27erw8fFxdOzY0bFw4UKrS2pUdrvdMWHCBEfbtm0dvr6+jltvvdXxhz/8wVFZWWl1aQ3qiy++qPG9YOTIkQ6H48LH6ydPnuwIDg52+Pj4OO655x7Hnj17rC26AVzpPBQVFV32PfOLL76wuvR6dbW/h//UWB+ttzkc1/nXnwIAAFwBzwwBAACjEYYAAIDRCEMAAMBohCEAAGA0whAAADAaYQgAABiNMAQAAIxGGAJghP3798tms6mwsNDqUgA0MXzpIgAjVFVV6fjx4woMDJSXF79EBOBfCEMArnvnzp27rn7fCUD94jYZALcTHx+v1NRUpaamKiAgQIGBgZo8ebIu/n+7iIgITZ8+XSNGjJC/v7/Gjh1b422yb7/9Vv/93/8tf39/tWjRQn369NGPP/7o3P/WW2+pU6dO8vX1VceOHfXHP/6x0dcKoOFxrRiAW1q2bJlGjRql/Px87dixQ2PHjlXbtm01ZswYSdLs2bOVkZGhKVOm1Hj84cOH9Zvf/Ebx8fH6/PPP5e/vr7/+9a/65z//KUlasWKFMjIy9MYbbygmJka7du3SmDFj1Lx5c40cObLR1gmg4XGbDIDbiY+P17Fjx/Ttt9/KZrNJkp599ll9+OGH+vvf/66IiAjFxMRo7dq1zmP279+vyMhI7dq1S9HR0Xruuee0atUq7dmzRzfccMMlr9GuXTtNnz5dw4YNc/bNmDFD69ev19atWxt+kQAaDbfJALilO+64wxmEJCkuLk579+5VVVWVJKlnz55XPL6wsFB9+vSpMQhVVFToxx9/1KhRo/Rf//VfzjZjxgyX22gArg/cJgNwXWrevPkV9/v5+V12X3l5uSRp0aJFio2Nddnn6en5y4sD0KQQhgC4pe3bt7tsb9u2Te3bt691WOnevbuWLVum8+fPX3J1KDg4WGFhYfrpp580fPjweqsZQNPEbTIAbqm4uFhpaWnas2ePVq5cqddff10TJkyo9fGpqamy2+0aOnSoduzYob179+pPf/qT9uzZI0l64YUXlJmZqXnz5umHH37QN998o7fffltz585tqCUBsAhXhgC4pREjRugf//iHevXqJU9PT02YMEFjx46t9fFt2rTR559/rkmTJqlv377y9PRUdHS0evfuLUkaPXq0mjVrpldeeUWTJk1S8+bN1a1bN02cOLGhlgTAInyaDIDbiY+PV3R0tLKysqwuBcB1gNtkAADAaIQhAABgNG6TAQAAo3FlCAAAGI0wBAAAjEYYAgAARiMMAQAAoxGGAACA0QhDAADAaIQhAABgNMIQAAAwGmEIAAAY7f8DvNHycAhc/bkAAAAASUVORK5CYII=",
|
187
|
-
"text/plain": [
|
188
|
-
"<Figure size 640x480 with 1 Axes>"
|
189
|
-
]
|
190
|
-
},
|
191
|
-
"execution_count": 18,
|
192
|
-
"metadata": {},
|
193
|
-
"output_type": "execute_result"
|
194
|
-
}
|
195
|
-
],
|
196
|
-
"source": [
|
197
|
-
"hst= charty.to_hst(:price, :sales)\n",
|
198
|
-
"hst.render('sample')"
|
199
|
-
]
|
200
|
-
},
|
201
|
-
{
|
202
|
-
"cell_type": "code",
|
203
|
-
"execution_count": null,
|
204
|
-
"metadata": {},
|
205
|
-
"outputs": [],
|
206
|
-
"source": []
|
207
|
-
}
|
208
|
-
],
|
209
|
-
"metadata": {
|
210
|
-
"kernelspec": {
|
211
|
-
"display_name": "Ruby 2.5.0",
|
212
|
-
"language": "ruby",
|
213
|
-
"name": "ruby"
|
214
|
-
},
|
215
|
-
"language_info": {
|
216
|
-
"file_extension": ".rb",
|
217
|
-
"mimetype": "application/x-ruby",
|
218
|
-
"name": "ruby",
|
219
|
-
"version": "2.5.0"
|
220
|
-
},
|
221
|
-
"toc": {
|
222
|
-
"nav_menu": {},
|
223
|
-
"number_sections": true,
|
224
|
-
"sideBar": true,
|
225
|
-
"skip_h1_title": false,
|
226
|
-
"toc_cell": false,
|
227
|
-
"toc_position": {},
|
228
|
-
"toc_section_display": "block",
|
229
|
-
"toc_window_display": false
|
230
|
-
}
|
231
|
-
},
|
232
|
-
"nbformat": 4,
|
233
|
-
"nbformat_minor": 2
|
234
|
-
}
|