cerebrum 0.1.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.gitignore +9 -0
- data/.travis.yml +5 -0
- data/Gemfile +7 -0
- data/LICENSE.txt +21 -0
- data/README.md +136 -0
- data/Rakefile +10 -0
- data/bin/console +11 -0
- data/bin/setup +8 -0
- data/cerebrum.gemspec +32 -0
- data/lib/cerebrum.rb +2 -0
- data/lib/cerebrum/cerebrum.rb +166 -0
- data/lib/cerebrum/cerebrum_helper.rb +37 -0
- data/lib/cerebrum/data_scrubber.rb +33 -0
- data/lib/cerebrum/version.rb +3 -0
- metadata +103 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA1:
|
3
|
+
metadata.gz: 0f30759c9f08ac49ff7c52a6a0fd97dcf288d255
|
4
|
+
data.tar.gz: 94a095b0fe5853e8b7e5b8e6f88c4cfe8ea1fd7a
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: 7c6cc26527c029730a51e2c1f5a36eed725d1b4e3c473732b67bc02673da9b28557adeb9a88c6ea2b1916f432a5d673ffc17cd52d8236decba912bf54c2b85a7
|
7
|
+
data.tar.gz: 6b755cd92c8fbb84c69dde3b4751247c670278272112128ca6412c798b15a57ad26770367afed48315b5c7dce905ef1d6e0a4949e165927985f8890fd79782d8
|
data/.gitignore
ADDED
data/.travis.yml
ADDED
data/Gemfile
ADDED
data/LICENSE.txt
ADDED
@@ -0,0 +1,21 @@
|
|
1
|
+
The MIT License (MIT)
|
2
|
+
|
3
|
+
Copyright (c) 2016 Irfan Sharif
|
4
|
+
|
5
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6
|
+
of this software and associated documentation files (the "Software"), to deal
|
7
|
+
in the Software without restriction, including without limitation the rights
|
8
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9
|
+
copies of the Software, and to permit persons to whom the Software is
|
10
|
+
furnished to do so, subject to the following conditions:
|
11
|
+
|
12
|
+
The above copyright notice and this permission notice shall be included in
|
13
|
+
all copies or substantial portions of the Software.
|
14
|
+
|
15
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
21
|
+
THE SOFTWARE.
|
data/README.md
ADDED
@@ -0,0 +1,136 @@
|
|
1
|
+
# GEM: cerebrum 
|
2
|
+
|
3
|
+
`cerebrum` is an implementation of
|
4
|
+
[ANNs](https://en.wikipedia.org/wiki/Artificial_neural_networ://en.wikipedia.org/wiki/Artificial_neural_network)
|
5
|
+
in Ruby. There's no reason to train a neural network in Ruby, I'm using it to
|
6
|
+
experiment and play around with the bare fundamentals of ANNs, original idea
|
7
|
+
for this project [here](https://github.com/harthur/brain) is currently
|
8
|
+
unmaintained. Extensions on top of that are personal experimentation.
|
9
|
+
|
10
|
+
## Installation
|
11
|
+
|
12
|
+
Add this line to your application's Gemfile:
|
13
|
+
|
14
|
+
```ruby
|
15
|
+
gem 'cerebrum'
|
16
|
+
```
|
17
|
+
|
18
|
+
And then execute:
|
19
|
+
|
20
|
+
$ bundle
|
21
|
+
|
22
|
+
Or install it yourself as:
|
23
|
+
|
24
|
+
$ gem install cerebrum
|
25
|
+
|
26
|
+
## Usage
|
27
|
+
|
28
|
+
```ruby
|
29
|
+
require 'cerebrum'
|
30
|
+
|
31
|
+
network = Cerebrum.new
|
32
|
+
|
33
|
+
network.train([
|
34
|
+
{input: [0, 0], output: [0]},
|
35
|
+
{input: [0, 1], output: [1]},
|
36
|
+
{input: [1, 0], output: [1]},
|
37
|
+
{input: [1, 1], output: [0]}
|
38
|
+
])
|
39
|
+
|
40
|
+
result = network.run([1, 0])
|
41
|
+
# => [0.9333206724219677]
|
42
|
+
|
43
|
+
```
|
44
|
+
|
45
|
+
### Training
|
46
|
+
|
47
|
+
Use `Cerebrum#train` to train the network with an array of training data.
|
48
|
+
|
49
|
+
#### Data format
|
50
|
+
|
51
|
+
Each training pattern should have an `input:` and an `output:`, both of which
|
52
|
+
can either be an array of numbers from `0` to `1` or a hash of numbers from `0`
|
53
|
+
to `1`. An example of the latter is demonstrated below:
|
54
|
+
|
55
|
+
```ruby
|
56
|
+
network = Cerebrum.new
|
57
|
+
|
58
|
+
network.train([
|
59
|
+
{input: { r: 0.03, g: 0.7, b: 0.5 }, output: { black: 1 }},
|
60
|
+
{input: { r: 0.16, g: 0.09, b: 0.2 }, output: { white: 1 }},
|
61
|
+
{input: { r: 0.5, g: 0.5, b: 1.0 }, output: { white: 1 }}
|
62
|
+
]);
|
63
|
+
|
64
|
+
result = network.run({ r: 1, g: 0.4, b: 0 })
|
65
|
+
# => { :black=>0.011967728530458011, :white=>0.9871010273923573 }
|
66
|
+
```
|
67
|
+
|
68
|
+
#### Cerebrum Options
|
69
|
+
|
70
|
+
`Cerebrum#new` takes a hash of options that would set defaults if not specified in the `Cerebrum#train` procedure call:
|
71
|
+
|
72
|
+
```ruby
|
73
|
+
network = Cerebrum.new({
|
74
|
+
learning_rate: 0.3,
|
75
|
+
momentum: 0.1,
|
76
|
+
binary_thresh: 0.5,
|
77
|
+
hidden_layers: [3, 4]
|
78
|
+
})
|
79
|
+
```
|
80
|
+
|
81
|
+
#### Training Options
|
82
|
+
|
83
|
+
`Cerebrum#train` optionally takes in a configuration hash as the second argument:
|
84
|
+
|
85
|
+
```ruby
|
86
|
+
network.train(data, {
|
87
|
+
error_threshold: 0.005,
|
88
|
+
iterations: 20000,
|
89
|
+
log: true,
|
90
|
+
log_period: 100,
|
91
|
+
learning_rate: 0.3
|
92
|
+
})
|
93
|
+
```
|
94
|
+
|
95
|
+
The network will train until the training error has gone below the threshold or
|
96
|
+
the max number of iterations has been reached, whichever comes first.
|
97
|
+
|
98
|
+
By default training won't let you know how its doing until the end, but set `log`
|
99
|
+
to `true` to get periodic updates on the current training error of the network.
|
100
|
+
The training error should decrease every time. The updates will be printed to
|
101
|
+
console. If you set `log` to a function, this function will be called with the
|
102
|
+
updates instead of printing to the console.
|
103
|
+
|
104
|
+
The `learning_rate` is a parameter that influences how quickly the network
|
105
|
+
trains, a number from `0` to `1`. If the learning rate is close to `0` it will
|
106
|
+
take longer to train. If the learning rate is closer to `1` it will train faster
|
107
|
+
but it's in danger of training to a local minimum and performing badly on new
|
108
|
+
data.
|
109
|
+
|
110
|
+
#### Output
|
111
|
+
|
112
|
+
The output of `Cerebrum#train` is a hash of information about how the training went:
|
113
|
+
|
114
|
+
```ruby
|
115
|
+
network.train(data, options)
|
116
|
+
# => { error: 0.005324233132423, iterations: 9001 }
|
117
|
+
```
|
118
|
+
## Development
|
119
|
+
|
120
|
+
After checking out the repo, run `bin/setup` to install dependencies. Then, run
|
121
|
+
`rake test` to run the tests. You can also run `bin/console` for an interactive
|
122
|
+
prompt that will allow you to experiment. To install this gem onto your local
|
123
|
+
machine, run `bundle exec rake install`. To release a new version, update the
|
124
|
+
version number in `version.rb`, and then run `bundle exec rake release`, which
|
125
|
+
will create a git tag for the version, push git commits and tags, and push the
|
126
|
+
`.gem` file to [rubygems.org](https://rubygems.org).
|
127
|
+
|
128
|
+
## Contributing
|
129
|
+
|
130
|
+
Bug reports and pull requests are welcome on GitHub at [irfansharif](https://github.com/irfansharif/cerebrum).
|
131
|
+
|
132
|
+
|
133
|
+
## License
|
134
|
+
|
135
|
+
The gem is available as open source under the terms of the [MIT License](http://opensource.org/licenses/MIT).
|
136
|
+
|
data/Rakefile
ADDED
data/bin/console
ADDED
@@ -0,0 +1,11 @@
|
|
1
|
+
#!/usr/bin/env ruby
|
2
|
+
|
3
|
+
require "bundler/setup"
|
4
|
+
require "cerebrum"
|
5
|
+
|
6
|
+
# You can add fixtures and/or initialization code here to make experimenting
|
7
|
+
# with your gem easier. You can also use a different console, if you like.
|
8
|
+
|
9
|
+
# (If you use this, don't forget to add pry to your Gemfile!)
|
10
|
+
require "pry"
|
11
|
+
Pry.start
|
data/bin/setup
ADDED
data/cerebrum.gemspec
ADDED
@@ -0,0 +1,32 @@
|
|
1
|
+
# coding: utf-8
|
2
|
+
lib = File.expand_path('../lib', __FILE__)
|
3
|
+
$LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
|
4
|
+
require 'cerebrum/version'
|
5
|
+
|
6
|
+
Gem::Specification.new do |spec|
|
7
|
+
spec.name = "cerebrum"
|
8
|
+
spec.version = Cerebrum::VERSION
|
9
|
+
spec.authors = ["Irfan Sharif", "Arham Ahmed"]
|
10
|
+
spec.email = ["irfanmahmoudsharif@gmail.com", "mohammad.a.ahmed@uwaterloo.ca"]
|
11
|
+
|
12
|
+
spec.summary = %q{Artificial Neural Networks in Ruby}
|
13
|
+
spec.homepage = "https://github.com/irfansharif/cerebrum"
|
14
|
+
spec.license = "MIT"
|
15
|
+
|
16
|
+
# Prevent pushing this gem to RubyGems.org by setting 'allowed_push_host', or
|
17
|
+
# delete this section to allow pushing this gem to any host.
|
18
|
+
if spec.respond_to?(:metadata)
|
19
|
+
spec.metadata['allowed_push_host'] = "https://rubygems.org/"
|
20
|
+
else
|
21
|
+
raise "RubyGems 2.0 or newer is required to protect against public gem pushes."
|
22
|
+
end
|
23
|
+
|
24
|
+
spec.files = `git ls-files -z`.split("\x0").reject { |f| f.match(%r{^(test|spec|features)/}) }
|
25
|
+
spec.bindir = "exe"
|
26
|
+
spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) }
|
27
|
+
spec.require_paths = ["lib"]
|
28
|
+
|
29
|
+
spec.add_development_dependency "bundler", "~> 1.11"
|
30
|
+
spec.add_development_dependency "rake", "~> 10.0"
|
31
|
+
spec.add_development_dependency "minitest", "~> 5.0"
|
32
|
+
end
|
data/lib/cerebrum.rb
ADDED
@@ -0,0 +1,166 @@
|
|
1
|
+
require_relative "data_scrubber"
|
2
|
+
require_relative "cerebrum_helper"
|
3
|
+
|
4
|
+
class Cerebrum
|
5
|
+
include CerebrumHelper
|
6
|
+
include DataScrubber
|
7
|
+
|
8
|
+
attr_accessor :learning_rate, :momentum, :binary_thresh, :hidden_layers,
|
9
|
+
:input_lookup_table, :output_lookup_table
|
10
|
+
|
11
|
+
def initialize(learning_rate: 0.3, momentum: 0.1, binary_thresh: 0.5, hidden_layers: nil)
|
12
|
+
@learning_rate = learning_rate
|
13
|
+
@momentum = momentum
|
14
|
+
@binary_thresh = binary_thresh
|
15
|
+
@hidden_layers = hidden_layers
|
16
|
+
end
|
17
|
+
|
18
|
+
def train_pattern(input, target, learning_rate)
|
19
|
+
learning_rate = learning_rate || @learning_rate
|
20
|
+
|
21
|
+
run_input(input)
|
22
|
+
calculate_deltas(target)
|
23
|
+
adjust_weights(learning_rate)
|
24
|
+
mean_squared_error(@errors[@layers])
|
25
|
+
end
|
26
|
+
|
27
|
+
def train(training_set, options = Hash.new)
|
28
|
+
@input_lookup_table ||= get_input_lookup_table(training_set)
|
29
|
+
@output_lookup_table ||= get_output_lookup_table(training_set)
|
30
|
+
training_set = scrub_dataset(training_set)
|
31
|
+
|
32
|
+
iterations = options[:iterations] || 20000
|
33
|
+
error_threshold = options[:error_threshold] || 0.005
|
34
|
+
log = options[:log] || false
|
35
|
+
log_period = options[:log_period] || 10
|
36
|
+
learning_rate = options[:learning_rate] || 0.3
|
37
|
+
error = Float::INFINITY
|
38
|
+
current_iteration = 0
|
39
|
+
|
40
|
+
input_size = training_set[0][:input].length
|
41
|
+
output_size = training_set[0][:output].length
|
42
|
+
|
43
|
+
hidden_layer_sizes = [ [3, (input_size/2).floor].max ] unless @hidden_layers
|
44
|
+
layer_sizes = [input_size, hidden_layer_sizes, output_size].flatten
|
45
|
+
construct_network(layer_sizes)
|
46
|
+
|
47
|
+
iterations.times do |i|
|
48
|
+
current_iteration = i
|
49
|
+
training_set_errors = training_set.map { |ex| train_pattern(ex[:input], ex[:output], learning_rate) }
|
50
|
+
error = training_set_errors.inject(:+) / training_set.length
|
51
|
+
puts "(#{i}) training error: #{error}" if (log && (i % log_period) == 0)
|
52
|
+
|
53
|
+
break if error < error_threshold
|
54
|
+
end
|
55
|
+
|
56
|
+
{ error: error, iterations: current_iteration }
|
57
|
+
end
|
58
|
+
|
59
|
+
def run(input)
|
60
|
+
input = to_vector_given_features(input, @input_lookup_table) if @input_lookup_table
|
61
|
+
output = run_input(input)
|
62
|
+
@output_lookup_table ? to_features_given_vector(output, @output_lookup_table) : output
|
63
|
+
end
|
64
|
+
|
65
|
+
private
|
66
|
+
|
67
|
+
def construct_network(layer_sizes)
|
68
|
+
@layer_sizes = layer_sizes
|
69
|
+
@layers = layer_sizes.length - 1 # Excluding output layer
|
70
|
+
|
71
|
+
@biases, @weights, @outputs = [], [], []
|
72
|
+
@deltas, @changes, @errors = [], [], []
|
73
|
+
|
74
|
+
(@layers + 1).times do |layer| # Including output layer
|
75
|
+
layer_size = @layer_sizes[layer]
|
76
|
+
@deltas[layer] = zeros(layer_size)
|
77
|
+
@errors[layer] = zeros(layer_size)
|
78
|
+
@outputs[layer] = zeros(layer_size)
|
79
|
+
|
80
|
+
next if layer == 0
|
81
|
+
|
82
|
+
@biases[layer] = randos(layer_size)
|
83
|
+
@weights[layer] = Array.new(layer_size)
|
84
|
+
@changes[layer] = Array.new(layer_size)
|
85
|
+
previous_layer_size = @layer_sizes[layer - 1]
|
86
|
+
|
87
|
+
layer_size.times do |node|
|
88
|
+
@weights[layer][node] = randos(previous_layer_size)
|
89
|
+
@changes[layer][node] = zeros(previous_layer_size)
|
90
|
+
end
|
91
|
+
end
|
92
|
+
end
|
93
|
+
|
94
|
+
def mean_squared_error(errors)
|
95
|
+
sum_of_squares = errors.map{ |error| error ** 2 }.reduce(:+)
|
96
|
+
Float(sum_of_squares) / errors.length
|
97
|
+
end
|
98
|
+
|
99
|
+
def run_input(input)
|
100
|
+
@outputs[0] = input
|
101
|
+
|
102
|
+
(@layers + 1).times do |layer| # Include output layer
|
103
|
+
next if layer == 0
|
104
|
+
|
105
|
+
layer_size = @layer_sizes[layer]
|
106
|
+
previous_layer_size = @layer_sizes[layer - 1]
|
107
|
+
|
108
|
+
layer_size.times do |node|
|
109
|
+
weights = @weights[layer][node]
|
110
|
+
sum = @biases[layer][node]
|
111
|
+
previous_layer_size.times do |prev_node|
|
112
|
+
sum += @outputs[layer - 1][prev_node] * weights[prev_node]
|
113
|
+
end
|
114
|
+
@outputs[layer][node] = activation_function(sum)
|
115
|
+
end
|
116
|
+
end
|
117
|
+
|
118
|
+
@outputs.last
|
119
|
+
end
|
120
|
+
|
121
|
+
def calculate_deltas(target)
|
122
|
+
@layers.downto(0) do |layer|
|
123
|
+
layer_size = @layer_sizes[layer]
|
124
|
+
|
125
|
+
layer_size.times do |node|
|
126
|
+
output = @outputs[layer][node]
|
127
|
+
error = 0
|
128
|
+
|
129
|
+
if layer == @layers # Output layer
|
130
|
+
error = target[node] - output
|
131
|
+
else # Hidden layer
|
132
|
+
deltas = @deltas[layer + 1]
|
133
|
+
deltas.each_with_index do |delta, next_node|
|
134
|
+
error += delta * @weights[layer + 1][next_node][node]
|
135
|
+
end
|
136
|
+
end
|
137
|
+
@errors[layer][node] = error
|
138
|
+
@deltas[layer][node] = error * output * (1 - output)
|
139
|
+
end
|
140
|
+
end
|
141
|
+
end
|
142
|
+
|
143
|
+
def adjust_weights(rate)
|
144
|
+
1.upto(@layers) do |layer|
|
145
|
+
prev_layer_output = @outputs[layer - 1]
|
146
|
+
layer_size = @layer_sizes[layer]
|
147
|
+
|
148
|
+
layer_size.times do |node|
|
149
|
+
delta = @deltas[layer][node]
|
150
|
+
prev_layer_output.length.times do |prev_node|
|
151
|
+
change = @changes[layer][node][prev_node]
|
152
|
+
change = rate * delta * prev_layer_output[prev_node] + (@momentum * change)
|
153
|
+
|
154
|
+
@changes[layer][node][prev_node] = change
|
155
|
+
@weights[layer][node][prev_node] += change
|
156
|
+
end
|
157
|
+
|
158
|
+
@biases[layer][node] += rate * delta
|
159
|
+
end
|
160
|
+
end
|
161
|
+
end
|
162
|
+
|
163
|
+
def activation_function(sum)
|
164
|
+
1 / (1 + Math.exp( -sum ))
|
165
|
+
end
|
166
|
+
end
|
@@ -0,0 +1,37 @@
|
|
1
|
+
module CerebrumHelper
|
2
|
+
private
|
3
|
+
|
4
|
+
def zeros(size)
|
5
|
+
Array.new(size, 0)
|
6
|
+
end
|
7
|
+
|
8
|
+
def randos(size)
|
9
|
+
Array.new(size) { rand }
|
10
|
+
end
|
11
|
+
|
12
|
+
# [{a: 1}, {b: 6, c: 7}] -> {a: 0, b: 1, c: 2}
|
13
|
+
def features_to_vector_index_lookup_table(features)
|
14
|
+
flattened_feature_keys = features.inject(:merge)
|
15
|
+
reindex_hash_values(flattened_feature_keys)
|
16
|
+
end
|
17
|
+
|
18
|
+
# changes hash {a: 6, b: 7} to {a: 0, b: 1}
|
19
|
+
def reindex_hash_values(hash)
|
20
|
+
hash.each_with_index{ |pair, index| hash[pair[0]] = index }
|
21
|
+
end
|
22
|
+
|
23
|
+
# formats {a: 0, b: 1}, {a: 6} to [6, 0]
|
24
|
+
def to_vector_given_features(features, lookup_table)
|
25
|
+
lookup_table.map { |k,v| features[k] || 0 }
|
26
|
+
end
|
27
|
+
|
28
|
+
# {a: 0, b: 1}, [6, 7] to {a: 6, b: 7}
|
29
|
+
def to_features_given_vector(vector, lookup_table)
|
30
|
+
lookup_table.keys.zip(vector).to_h
|
31
|
+
end
|
32
|
+
|
33
|
+
# [5, 3] to {5: 0, 3: 1}
|
34
|
+
def lookup_table_from_array(arr)
|
35
|
+
Hash[arr.each_with_index.map { |val, i| [val, i] }]
|
36
|
+
end
|
37
|
+
end
|
@@ -0,0 +1,33 @@
|
|
1
|
+
module DataScrubber
|
2
|
+
private
|
3
|
+
|
4
|
+
def scrub_dataset(dataset)
|
5
|
+
dataset = scrub_input(dataset) unless dataset[0][:input].is_a? Array
|
6
|
+
dataset = scrub_output(dataset) unless dataset[0][:output].is_a? Array
|
7
|
+
dataset
|
8
|
+
end
|
9
|
+
|
10
|
+
def get_input_lookup_table(dataset)
|
11
|
+
input_features = dataset.map { |ex| ex[:input] }
|
12
|
+
(input_features.first.is_a? Array) ? nil : features_to_vector_index_lookup_table(input_features)
|
13
|
+
end
|
14
|
+
|
15
|
+
def get_output_lookup_table(dataset)
|
16
|
+
output_features = dataset.map { |ex| ex[:output] }
|
17
|
+
(output_features.first.is_a? Array) ? nil : features_to_vector_index_lookup_table(output_features)
|
18
|
+
end
|
19
|
+
|
20
|
+
def scrub_input(dataset)
|
21
|
+
input_lookup_table = get_input_lookup_table(dataset)
|
22
|
+
dataset.each do |ex|
|
23
|
+
ex[:input] = to_vector_given_features(ex[:input], input_lookup_table)
|
24
|
+
end
|
25
|
+
end
|
26
|
+
|
27
|
+
def scrub_output(dataset)
|
28
|
+
output_lookup_table = get_output_lookup_table(dataset)
|
29
|
+
dataset.each do |ex|
|
30
|
+
ex[:output] = to_vector_given_features(ex[:output], output_lookup_table)
|
31
|
+
end
|
32
|
+
end
|
33
|
+
end
|
metadata
ADDED
@@ -0,0 +1,103 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: cerebrum
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 0.1.1
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- Irfan Sharif
|
8
|
+
- Arham Ahmed
|
9
|
+
autorequire:
|
10
|
+
bindir: exe
|
11
|
+
cert_chain: []
|
12
|
+
date: 2016-04-21 00:00:00.000000000 Z
|
13
|
+
dependencies:
|
14
|
+
- !ruby/object:Gem::Dependency
|
15
|
+
name: bundler
|
16
|
+
requirement: !ruby/object:Gem::Requirement
|
17
|
+
requirements:
|
18
|
+
- - "~>"
|
19
|
+
- !ruby/object:Gem::Version
|
20
|
+
version: '1.11'
|
21
|
+
type: :development
|
22
|
+
prerelease: false
|
23
|
+
version_requirements: !ruby/object:Gem::Requirement
|
24
|
+
requirements:
|
25
|
+
- - "~>"
|
26
|
+
- !ruby/object:Gem::Version
|
27
|
+
version: '1.11'
|
28
|
+
- !ruby/object:Gem::Dependency
|
29
|
+
name: rake
|
30
|
+
requirement: !ruby/object:Gem::Requirement
|
31
|
+
requirements:
|
32
|
+
- - "~>"
|
33
|
+
- !ruby/object:Gem::Version
|
34
|
+
version: '10.0'
|
35
|
+
type: :development
|
36
|
+
prerelease: false
|
37
|
+
version_requirements: !ruby/object:Gem::Requirement
|
38
|
+
requirements:
|
39
|
+
- - "~>"
|
40
|
+
- !ruby/object:Gem::Version
|
41
|
+
version: '10.0'
|
42
|
+
- !ruby/object:Gem::Dependency
|
43
|
+
name: minitest
|
44
|
+
requirement: !ruby/object:Gem::Requirement
|
45
|
+
requirements:
|
46
|
+
- - "~>"
|
47
|
+
- !ruby/object:Gem::Version
|
48
|
+
version: '5.0'
|
49
|
+
type: :development
|
50
|
+
prerelease: false
|
51
|
+
version_requirements: !ruby/object:Gem::Requirement
|
52
|
+
requirements:
|
53
|
+
- - "~>"
|
54
|
+
- !ruby/object:Gem::Version
|
55
|
+
version: '5.0'
|
56
|
+
description:
|
57
|
+
email:
|
58
|
+
- irfanmahmoudsharif@gmail.com
|
59
|
+
- mohammad.a.ahmed@uwaterloo.ca
|
60
|
+
executables: []
|
61
|
+
extensions: []
|
62
|
+
extra_rdoc_files: []
|
63
|
+
files:
|
64
|
+
- ".gitignore"
|
65
|
+
- ".travis.yml"
|
66
|
+
- Gemfile
|
67
|
+
- LICENSE.txt
|
68
|
+
- README.md
|
69
|
+
- Rakefile
|
70
|
+
- bin/console
|
71
|
+
- bin/setup
|
72
|
+
- cerebrum.gemspec
|
73
|
+
- lib/cerebrum.rb
|
74
|
+
- lib/cerebrum/cerebrum.rb
|
75
|
+
- lib/cerebrum/cerebrum_helper.rb
|
76
|
+
- lib/cerebrum/data_scrubber.rb
|
77
|
+
- lib/cerebrum/version.rb
|
78
|
+
homepage: https://github.com/irfansharif/cerebrum
|
79
|
+
licenses:
|
80
|
+
- MIT
|
81
|
+
metadata:
|
82
|
+
allowed_push_host: https://rubygems.org/
|
83
|
+
post_install_message:
|
84
|
+
rdoc_options: []
|
85
|
+
require_paths:
|
86
|
+
- lib
|
87
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
88
|
+
requirements:
|
89
|
+
- - ">="
|
90
|
+
- !ruby/object:Gem::Version
|
91
|
+
version: '0'
|
92
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
93
|
+
requirements:
|
94
|
+
- - ">="
|
95
|
+
- !ruby/object:Gem::Version
|
96
|
+
version: '0'
|
97
|
+
requirements: []
|
98
|
+
rubyforge_project:
|
99
|
+
rubygems_version: 2.6.3
|
100
|
+
signing_key:
|
101
|
+
specification_version: 4
|
102
|
+
summary: Artificial Neural Networks in Ruby
|
103
|
+
test_files: []
|