cerebrum 0.1.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,7 @@
1
+ ---
2
+ SHA1:
3
+ metadata.gz: 0f30759c9f08ac49ff7c52a6a0fd97dcf288d255
4
+ data.tar.gz: 94a095b0fe5853e8b7e5b8e6f88c4cfe8ea1fd7a
5
+ SHA512:
6
+ metadata.gz: 7c6cc26527c029730a51e2c1f5a36eed725d1b4e3c473732b67bc02673da9b28557adeb9a88c6ea2b1916f432a5d673ffc17cd52d8236decba912bf54c2b85a7
7
+ data.tar.gz: 6b755cd92c8fbb84c69dde3b4751247c670278272112128ca6412c798b15a57ad26770367afed48315b5c7dce905ef1d6e0a4949e165927985f8890fd79782d8
@@ -0,0 +1,9 @@
1
+ /.bundle/
2
+ /.yardoc
3
+ /Gemfile.lock
4
+ /_yardoc/
5
+ /coverage/
6
+ /doc/
7
+ /pkg/
8
+ /spec/reports/
9
+ /tmp/
@@ -0,0 +1,5 @@
1
+ language: ruby
2
+ rvm:
3
+ - 2.1.8
4
+ before_install: gem install bundler -v 1.11.2
5
+ script: bundle exec rake
data/Gemfile ADDED
@@ -0,0 +1,7 @@
1
+ source 'https://rubygems.org'
2
+
3
+ # Specify your gem's dependencies in cerebrum.gemspec
4
+ gemspec
5
+ gem 'pry-nav', group: [:development, :test]
6
+ gem 'bundler', group: [:development, :test]
7
+ gem 'minitest', group: [:development, :test]
@@ -0,0 +1,21 @@
1
+ The MIT License (MIT)
2
+
3
+ Copyright (c) 2016 Irfan Sharif
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in
13
+ all copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
21
+ THE SOFTWARE.
@@ -0,0 +1,136 @@
1
+ # GEM: cerebrum ![](https://travis-ci.org/irfansharif/cerebrum.svg?branch=master)
2
+
3
+ `cerebrum` is an implementation of
4
+ [ANNs](https://en.wikipedia.org/wiki/Artificial_neural_networ://en.wikipedia.org/wiki/Artificial_neural_network)
5
+ in Ruby. There's no reason to train a neural network in Ruby, I'm using it to
6
+ experiment and play around with the bare fundamentals of ANNs, original idea
7
+ for this project [here](https://github.com/harthur/brain) is currently
8
+ unmaintained. Extensions on top of that are personal experimentation.
9
+
10
+ ## Installation
11
+
12
+ Add this line to your application's Gemfile:
13
+
14
+ ```ruby
15
+ gem 'cerebrum'
16
+ ```
17
+
18
+ And then execute:
19
+
20
+ $ bundle
21
+
22
+ Or install it yourself as:
23
+
24
+ $ gem install cerebrum
25
+
26
+ ## Usage
27
+
28
+ ```ruby
29
+ require 'cerebrum'
30
+
31
+ network = Cerebrum.new
32
+
33
+ network.train([
34
+ {input: [0, 0], output: [0]},
35
+ {input: [0, 1], output: [1]},
36
+ {input: [1, 0], output: [1]},
37
+ {input: [1, 1], output: [0]}
38
+ ])
39
+
40
+ result = network.run([1, 0])
41
+ # => [0.9333206724219677]
42
+
43
+ ```
44
+
45
+ ### Training
46
+
47
+ Use `Cerebrum#train` to train the network with an array of training data.
48
+
49
+ #### Data format
50
+
51
+ Each training pattern should have an `input:` and an `output:`, both of which
52
+ can either be an array of numbers from `0` to `1` or a hash of numbers from `0`
53
+ to `1`. An example of the latter is demonstrated below:
54
+
55
+ ```ruby
56
+ network = Cerebrum.new
57
+
58
+ network.train([
59
+ {input: { r: 0.03, g: 0.7, b: 0.5 }, output: { black: 1 }},
60
+ {input: { r: 0.16, g: 0.09, b: 0.2 }, output: { white: 1 }},
61
+ {input: { r: 0.5, g: 0.5, b: 1.0 }, output: { white: 1 }}
62
+ ]);
63
+
64
+ result = network.run({ r: 1, g: 0.4, b: 0 })
65
+ # => { :black=>0.011967728530458011, :white=>0.9871010273923573 }
66
+ ```
67
+
68
+ #### Cerebrum Options
69
+
70
+ `Cerebrum#new` takes a hash of options that would set defaults if not specified in the `Cerebrum#train` procedure call:
71
+
72
+ ```ruby
73
+ network = Cerebrum.new({
74
+ learning_rate: 0.3,
75
+ momentum: 0.1,
76
+ binary_thresh: 0.5,
77
+ hidden_layers: [3, 4]
78
+ })
79
+ ```
80
+
81
+ #### Training Options
82
+
83
+ `Cerebrum#train` optionally takes in a configuration hash as the second argument:
84
+
85
+ ```ruby
86
+ network.train(data, {
87
+ error_threshold: 0.005,
88
+ iterations: 20000,
89
+ log: true,
90
+ log_period: 100,
91
+ learning_rate: 0.3
92
+ })
93
+ ```
94
+
95
+ The network will train until the training error has gone below the threshold or
96
+ the max number of iterations has been reached, whichever comes first.
97
+
98
+ By default training won't let you know how its doing until the end, but set `log`
99
+ to `true` to get periodic updates on the current training error of the network.
100
+ The training error should decrease every time. The updates will be printed to
101
+ console. If you set `log` to a function, this function will be called with the
102
+ updates instead of printing to the console.
103
+
104
+ The `learning_rate` is a parameter that influences how quickly the network
105
+ trains, a number from `0` to `1`. If the learning rate is close to `0` it will
106
+ take longer to train. If the learning rate is closer to `1` it will train faster
107
+ but it's in danger of training to a local minimum and performing badly on new
108
+ data.
109
+
110
+ #### Output
111
+
112
+ The output of `Cerebrum#train` is a hash of information about how the training went:
113
+
114
+ ```ruby
115
+ network.train(data, options)
116
+ # => { error: 0.005324233132423, iterations: 9001 }
117
+ ```
118
+ ## Development
119
+
120
+ After checking out the repo, run `bin/setup` to install dependencies. Then, run
121
+ `rake test` to run the tests. You can also run `bin/console` for an interactive
122
+ prompt that will allow you to experiment. To install this gem onto your local
123
+ machine, run `bundle exec rake install`. To release a new version, update the
124
+ version number in `version.rb`, and then run `bundle exec rake release`, which
125
+ will create a git tag for the version, push git commits and tags, and push the
126
+ `.gem` file to [rubygems.org](https://rubygems.org).
127
+
128
+ ## Contributing
129
+
130
+ Bug reports and pull requests are welcome on GitHub at [irfansharif](https://github.com/irfansharif/cerebrum).
131
+
132
+
133
+ ## License
134
+
135
+ The gem is available as open source under the terms of the [MIT License](http://opensource.org/licenses/MIT).
136
+
@@ -0,0 +1,10 @@
1
+ require "bundler/gem_tasks"
2
+ require "rake/testtask"
3
+
4
+ Rake::TestTask.new(:test) do |t|
5
+ t.libs << "test"
6
+ t.libs << "lib"
7
+ t.test_files = FileList['test/**/*_test.rb']
8
+ end
9
+
10
+ task default: :test
@@ -0,0 +1,11 @@
1
+ #!/usr/bin/env ruby
2
+
3
+ require "bundler/setup"
4
+ require "cerebrum"
5
+
6
+ # You can add fixtures and/or initialization code here to make experimenting
7
+ # with your gem easier. You can also use a different console, if you like.
8
+
9
+ # (If you use this, don't forget to add pry to your Gemfile!)
10
+ require "pry"
11
+ Pry.start
@@ -0,0 +1,8 @@
1
+ #!/usr/bin/env bash
2
+ set -euo pipefail
3
+ IFS=$'\n\t'
4
+ set -vx
5
+
6
+ bundle install
7
+
8
+ # Do any other automated setup that you need to do here
@@ -0,0 +1,32 @@
1
+ # coding: utf-8
2
+ lib = File.expand_path('../lib', __FILE__)
3
+ $LOAD_PATH.unshift(lib) unless $LOAD_PATH.include?(lib)
4
+ require 'cerebrum/version'
5
+
6
+ Gem::Specification.new do |spec|
7
+ spec.name = "cerebrum"
8
+ spec.version = Cerebrum::VERSION
9
+ spec.authors = ["Irfan Sharif", "Arham Ahmed"]
10
+ spec.email = ["irfanmahmoudsharif@gmail.com", "mohammad.a.ahmed@uwaterloo.ca"]
11
+
12
+ spec.summary = %q{Artificial Neural Networks in Ruby}
13
+ spec.homepage = "https://github.com/irfansharif/cerebrum"
14
+ spec.license = "MIT"
15
+
16
+ # Prevent pushing this gem to RubyGems.org by setting 'allowed_push_host', or
17
+ # delete this section to allow pushing this gem to any host.
18
+ if spec.respond_to?(:metadata)
19
+ spec.metadata['allowed_push_host'] = "https://rubygems.org/"
20
+ else
21
+ raise "RubyGems 2.0 or newer is required to protect against public gem pushes."
22
+ end
23
+
24
+ spec.files = `git ls-files -z`.split("\x0").reject { |f| f.match(%r{^(test|spec|features)/}) }
25
+ spec.bindir = "exe"
26
+ spec.executables = spec.files.grep(%r{^exe/}) { |f| File.basename(f) }
27
+ spec.require_paths = ["lib"]
28
+
29
+ spec.add_development_dependency "bundler", "~> 1.11"
30
+ spec.add_development_dependency "rake", "~> 10.0"
31
+ spec.add_development_dependency "minitest", "~> 5.0"
32
+ end
@@ -0,0 +1,2 @@
1
+ require "cerebrum/version"
2
+ require "cerebrum/cerebrum"
@@ -0,0 +1,166 @@
1
+ require_relative "data_scrubber"
2
+ require_relative "cerebrum_helper"
3
+
4
+ class Cerebrum
5
+ include CerebrumHelper
6
+ include DataScrubber
7
+
8
+ attr_accessor :learning_rate, :momentum, :binary_thresh, :hidden_layers,
9
+ :input_lookup_table, :output_lookup_table
10
+
11
+ def initialize(learning_rate: 0.3, momentum: 0.1, binary_thresh: 0.5, hidden_layers: nil)
12
+ @learning_rate = learning_rate
13
+ @momentum = momentum
14
+ @binary_thresh = binary_thresh
15
+ @hidden_layers = hidden_layers
16
+ end
17
+
18
+ def train_pattern(input, target, learning_rate)
19
+ learning_rate = learning_rate || @learning_rate
20
+
21
+ run_input(input)
22
+ calculate_deltas(target)
23
+ adjust_weights(learning_rate)
24
+ mean_squared_error(@errors[@layers])
25
+ end
26
+
27
+ def train(training_set, options = Hash.new)
28
+ @input_lookup_table ||= get_input_lookup_table(training_set)
29
+ @output_lookup_table ||= get_output_lookup_table(training_set)
30
+ training_set = scrub_dataset(training_set)
31
+
32
+ iterations = options[:iterations] || 20000
33
+ error_threshold = options[:error_threshold] || 0.005
34
+ log = options[:log] || false
35
+ log_period = options[:log_period] || 10
36
+ learning_rate = options[:learning_rate] || 0.3
37
+ error = Float::INFINITY
38
+ current_iteration = 0
39
+
40
+ input_size = training_set[0][:input].length
41
+ output_size = training_set[0][:output].length
42
+
43
+ hidden_layer_sizes = [ [3, (input_size/2).floor].max ] unless @hidden_layers
44
+ layer_sizes = [input_size, hidden_layer_sizes, output_size].flatten
45
+ construct_network(layer_sizes)
46
+
47
+ iterations.times do |i|
48
+ current_iteration = i
49
+ training_set_errors = training_set.map { |ex| train_pattern(ex[:input], ex[:output], learning_rate) }
50
+ error = training_set_errors.inject(:+) / training_set.length
51
+ puts "(#{i}) training error: #{error}" if (log && (i % log_period) == 0)
52
+
53
+ break if error < error_threshold
54
+ end
55
+
56
+ { error: error, iterations: current_iteration }
57
+ end
58
+
59
+ def run(input)
60
+ input = to_vector_given_features(input, @input_lookup_table) if @input_lookup_table
61
+ output = run_input(input)
62
+ @output_lookup_table ? to_features_given_vector(output, @output_lookup_table) : output
63
+ end
64
+
65
+ private
66
+
67
+ def construct_network(layer_sizes)
68
+ @layer_sizes = layer_sizes
69
+ @layers = layer_sizes.length - 1 # Excluding output layer
70
+
71
+ @biases, @weights, @outputs = [], [], []
72
+ @deltas, @changes, @errors = [], [], []
73
+
74
+ (@layers + 1).times do |layer| # Including output layer
75
+ layer_size = @layer_sizes[layer]
76
+ @deltas[layer] = zeros(layer_size)
77
+ @errors[layer] = zeros(layer_size)
78
+ @outputs[layer] = zeros(layer_size)
79
+
80
+ next if layer == 0
81
+
82
+ @biases[layer] = randos(layer_size)
83
+ @weights[layer] = Array.new(layer_size)
84
+ @changes[layer] = Array.new(layer_size)
85
+ previous_layer_size = @layer_sizes[layer - 1]
86
+
87
+ layer_size.times do |node|
88
+ @weights[layer][node] = randos(previous_layer_size)
89
+ @changes[layer][node] = zeros(previous_layer_size)
90
+ end
91
+ end
92
+ end
93
+
94
+ def mean_squared_error(errors)
95
+ sum_of_squares = errors.map{ |error| error ** 2 }.reduce(:+)
96
+ Float(sum_of_squares) / errors.length
97
+ end
98
+
99
+ def run_input(input)
100
+ @outputs[0] = input
101
+
102
+ (@layers + 1).times do |layer| # Include output layer
103
+ next if layer == 0
104
+
105
+ layer_size = @layer_sizes[layer]
106
+ previous_layer_size = @layer_sizes[layer - 1]
107
+
108
+ layer_size.times do |node|
109
+ weights = @weights[layer][node]
110
+ sum = @biases[layer][node]
111
+ previous_layer_size.times do |prev_node|
112
+ sum += @outputs[layer - 1][prev_node] * weights[prev_node]
113
+ end
114
+ @outputs[layer][node] = activation_function(sum)
115
+ end
116
+ end
117
+
118
+ @outputs.last
119
+ end
120
+
121
+ def calculate_deltas(target)
122
+ @layers.downto(0) do |layer|
123
+ layer_size = @layer_sizes[layer]
124
+
125
+ layer_size.times do |node|
126
+ output = @outputs[layer][node]
127
+ error = 0
128
+
129
+ if layer == @layers # Output layer
130
+ error = target[node] - output
131
+ else # Hidden layer
132
+ deltas = @deltas[layer + 1]
133
+ deltas.each_with_index do |delta, next_node|
134
+ error += delta * @weights[layer + 1][next_node][node]
135
+ end
136
+ end
137
+ @errors[layer][node] = error
138
+ @deltas[layer][node] = error * output * (1 - output)
139
+ end
140
+ end
141
+ end
142
+
143
+ def adjust_weights(rate)
144
+ 1.upto(@layers) do |layer|
145
+ prev_layer_output = @outputs[layer - 1]
146
+ layer_size = @layer_sizes[layer]
147
+
148
+ layer_size.times do |node|
149
+ delta = @deltas[layer][node]
150
+ prev_layer_output.length.times do |prev_node|
151
+ change = @changes[layer][node][prev_node]
152
+ change = rate * delta * prev_layer_output[prev_node] + (@momentum * change)
153
+
154
+ @changes[layer][node][prev_node] = change
155
+ @weights[layer][node][prev_node] += change
156
+ end
157
+
158
+ @biases[layer][node] += rate * delta
159
+ end
160
+ end
161
+ end
162
+
163
+ def activation_function(sum)
164
+ 1 / (1 + Math.exp( -sum ))
165
+ end
166
+ end
@@ -0,0 +1,37 @@
1
+ module CerebrumHelper
2
+ private
3
+
4
+ def zeros(size)
5
+ Array.new(size, 0)
6
+ end
7
+
8
+ def randos(size)
9
+ Array.new(size) { rand }
10
+ end
11
+
12
+ # [{a: 1}, {b: 6, c: 7}] -> {a: 0, b: 1, c: 2}
13
+ def features_to_vector_index_lookup_table(features)
14
+ flattened_feature_keys = features.inject(:merge)
15
+ reindex_hash_values(flattened_feature_keys)
16
+ end
17
+
18
+ # changes hash {a: 6, b: 7} to {a: 0, b: 1}
19
+ def reindex_hash_values(hash)
20
+ hash.each_with_index{ |pair, index| hash[pair[0]] = index }
21
+ end
22
+
23
+ # formats {a: 0, b: 1}, {a: 6} to [6, 0]
24
+ def to_vector_given_features(features, lookup_table)
25
+ lookup_table.map { |k,v| features[k] || 0 }
26
+ end
27
+
28
+ # {a: 0, b: 1}, [6, 7] to {a: 6, b: 7}
29
+ def to_features_given_vector(vector, lookup_table)
30
+ lookup_table.keys.zip(vector).to_h
31
+ end
32
+
33
+ # [5, 3] to {5: 0, 3: 1}
34
+ def lookup_table_from_array(arr)
35
+ Hash[arr.each_with_index.map { |val, i| [val, i] }]
36
+ end
37
+ end
@@ -0,0 +1,33 @@
1
+ module DataScrubber
2
+ private
3
+
4
+ def scrub_dataset(dataset)
5
+ dataset = scrub_input(dataset) unless dataset[0][:input].is_a? Array
6
+ dataset = scrub_output(dataset) unless dataset[0][:output].is_a? Array
7
+ dataset
8
+ end
9
+
10
+ def get_input_lookup_table(dataset)
11
+ input_features = dataset.map { |ex| ex[:input] }
12
+ (input_features.first.is_a? Array) ? nil : features_to_vector_index_lookup_table(input_features)
13
+ end
14
+
15
+ def get_output_lookup_table(dataset)
16
+ output_features = dataset.map { |ex| ex[:output] }
17
+ (output_features.first.is_a? Array) ? nil : features_to_vector_index_lookup_table(output_features)
18
+ end
19
+
20
+ def scrub_input(dataset)
21
+ input_lookup_table = get_input_lookup_table(dataset)
22
+ dataset.each do |ex|
23
+ ex[:input] = to_vector_given_features(ex[:input], input_lookup_table)
24
+ end
25
+ end
26
+
27
+ def scrub_output(dataset)
28
+ output_lookup_table = get_output_lookup_table(dataset)
29
+ dataset.each do |ex|
30
+ ex[:output] = to_vector_given_features(ex[:output], output_lookup_table)
31
+ end
32
+ end
33
+ end
@@ -0,0 +1,3 @@
1
+ class Cerebrum
2
+ VERSION = "0.1.1"
3
+ end
metadata ADDED
@@ -0,0 +1,103 @@
1
+ --- !ruby/object:Gem::Specification
2
+ name: cerebrum
3
+ version: !ruby/object:Gem::Version
4
+ version: 0.1.1
5
+ platform: ruby
6
+ authors:
7
+ - Irfan Sharif
8
+ - Arham Ahmed
9
+ autorequire:
10
+ bindir: exe
11
+ cert_chain: []
12
+ date: 2016-04-21 00:00:00.000000000 Z
13
+ dependencies:
14
+ - !ruby/object:Gem::Dependency
15
+ name: bundler
16
+ requirement: !ruby/object:Gem::Requirement
17
+ requirements:
18
+ - - "~>"
19
+ - !ruby/object:Gem::Version
20
+ version: '1.11'
21
+ type: :development
22
+ prerelease: false
23
+ version_requirements: !ruby/object:Gem::Requirement
24
+ requirements:
25
+ - - "~>"
26
+ - !ruby/object:Gem::Version
27
+ version: '1.11'
28
+ - !ruby/object:Gem::Dependency
29
+ name: rake
30
+ requirement: !ruby/object:Gem::Requirement
31
+ requirements:
32
+ - - "~>"
33
+ - !ruby/object:Gem::Version
34
+ version: '10.0'
35
+ type: :development
36
+ prerelease: false
37
+ version_requirements: !ruby/object:Gem::Requirement
38
+ requirements:
39
+ - - "~>"
40
+ - !ruby/object:Gem::Version
41
+ version: '10.0'
42
+ - !ruby/object:Gem::Dependency
43
+ name: minitest
44
+ requirement: !ruby/object:Gem::Requirement
45
+ requirements:
46
+ - - "~>"
47
+ - !ruby/object:Gem::Version
48
+ version: '5.0'
49
+ type: :development
50
+ prerelease: false
51
+ version_requirements: !ruby/object:Gem::Requirement
52
+ requirements:
53
+ - - "~>"
54
+ - !ruby/object:Gem::Version
55
+ version: '5.0'
56
+ description:
57
+ email:
58
+ - irfanmahmoudsharif@gmail.com
59
+ - mohammad.a.ahmed@uwaterloo.ca
60
+ executables: []
61
+ extensions: []
62
+ extra_rdoc_files: []
63
+ files:
64
+ - ".gitignore"
65
+ - ".travis.yml"
66
+ - Gemfile
67
+ - LICENSE.txt
68
+ - README.md
69
+ - Rakefile
70
+ - bin/console
71
+ - bin/setup
72
+ - cerebrum.gemspec
73
+ - lib/cerebrum.rb
74
+ - lib/cerebrum/cerebrum.rb
75
+ - lib/cerebrum/cerebrum_helper.rb
76
+ - lib/cerebrum/data_scrubber.rb
77
+ - lib/cerebrum/version.rb
78
+ homepage: https://github.com/irfansharif/cerebrum
79
+ licenses:
80
+ - MIT
81
+ metadata:
82
+ allowed_push_host: https://rubygems.org/
83
+ post_install_message:
84
+ rdoc_options: []
85
+ require_paths:
86
+ - lib
87
+ required_ruby_version: !ruby/object:Gem::Requirement
88
+ requirements:
89
+ - - ">="
90
+ - !ruby/object:Gem::Version
91
+ version: '0'
92
+ required_rubygems_version: !ruby/object:Gem::Requirement
93
+ requirements:
94
+ - - ">="
95
+ - !ruby/object:Gem::Version
96
+ version: '0'
97
+ requirements: []
98
+ rubyforge_project:
99
+ rubygems_version: 2.6.3
100
+ signing_key:
101
+ specification_version: 4
102
+ summary: Artificial Neural Networks in Ruby
103
+ test_files: []