cassowary-ruby 0.5.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +15 -0
- data/LICENSE +20 -0
- data/README.md +18 -0
- data/lib/cassowary.rb +25 -0
- data/lib/constraint/edit_or_stay_constraint.rb +40 -0
- data/lib/constraint/linear_constraint.rb +23 -0
- data/lib/constraint.rb +30 -0
- data/lib/ext/float.rb +24 -0
- data/lib/ext/numeric.rb +11 -0
- data/lib/ext/object.rb +11 -0
- data/lib/linear_expression.rb +163 -0
- data/lib/simplex_solver.rb +704 -0
- data/lib/strength.rb +31 -0
- data/lib/symbolic_weight.rb +115 -0
- data/lib/utils/equalities.rb +27 -0
- data/lib/variables/abstract_variable.rb +35 -0
- data/lib/variables/dummy_variable.rb +21 -0
- data/lib/variables/objective_variable.rb +17 -0
- data/lib/variables/slack_variable.rb +17 -0
- data/lib/variables/variable.rb +56 -0
- data/lib/variables.rb +5 -0
- data/test/test_abstract_methods.rb +22 -0
- data/test/test_cassowary.rb +184 -0
- data/test/test_ext.rb +38 -0
- data/test/test_helper.rb +12 -0
- data/test/test_variables.rb +33 -0
- metadata +106 -0
@@ -0,0 +1,704 @@
|
|
1
|
+
# Copyright (C) 2012 by Tim Felgentreff
|
2
|
+
|
3
|
+
require "set"
|
4
|
+
|
5
|
+
module Cassowary
|
6
|
+
class SimplexSolver
|
7
|
+
|
8
|
+
attr_accessor :rows, :columns, :objective, :infeasible_rows,
|
9
|
+
:stay_plus_error_vars, :stay_minus_error_vars, :edit_vars,
|
10
|
+
:edit_constraints, :edit_plus_error_vars, :edit_minus_error_vars,
|
11
|
+
:prev_edit_constants, :new_edit_constants, :marker_vars,
|
12
|
+
:error_vars, :auto_solve
|
13
|
+
|
14
|
+
Epsilon = 1.0e-8
|
15
|
+
|
16
|
+
def add_bounds(var, lower = nil, upper = nil)
|
17
|
+
add_constraint lower.cn_leq(var) if lower
|
18
|
+
add_constraint var.cn_leq(upper) if upper
|
19
|
+
end
|
20
|
+
|
21
|
+
def add_constraint(constraint)
|
22
|
+
expr = make_expression(constraint)
|
23
|
+
unless try_adding_directly(expr)
|
24
|
+
add_with_artificial_variable(expr)
|
25
|
+
end
|
26
|
+
if auto_solve
|
27
|
+
optimize(objective)
|
28
|
+
set_external_variables
|
29
|
+
end
|
30
|
+
end
|
31
|
+
|
32
|
+
def remove_constraint(cn)
|
33
|
+
reset_stay_constants
|
34
|
+
|
35
|
+
# remove any error variables from the objective function
|
36
|
+
evars = error_vars.delete(cn) || []
|
37
|
+
zrow = objective
|
38
|
+
obj = rows[zrow]
|
39
|
+
evars.each do |v|
|
40
|
+
expr = rows[v]
|
41
|
+
if expr.nil?
|
42
|
+
obj.add_variable(v, cn.strength.symbolic_weight * -cn.weight, zrow, self)
|
43
|
+
else
|
44
|
+
obj.add_expression(expr, cn.strength.symbolic_weight * -cn.weight, zrow, self)
|
45
|
+
end
|
46
|
+
end
|
47
|
+
|
48
|
+
exit_var = nil
|
49
|
+
col = nil
|
50
|
+
min_ratio = 0
|
51
|
+
|
52
|
+
# try to make the marker variable basic, if it isn't already
|
53
|
+
marker = marker_vars.delete(cn)
|
54
|
+
unless rows.has_key? marker
|
55
|
+
# choose which variable to move out of the basis. only consider restricted basic vars
|
56
|
+
col = columns[marker]
|
57
|
+
col.each do |v|
|
58
|
+
if v.restricted?
|
59
|
+
expr = rows[v]
|
60
|
+
coeff = expr.coefficient_for(marker)
|
61
|
+
# only consider negative coefficients
|
62
|
+
if coeff < 0.0
|
63
|
+
r = 0.0 - expr.constant / coeff
|
64
|
+
if exit_var.nil? or r < min_ratio
|
65
|
+
min_ratio = r
|
66
|
+
exit_var = v
|
67
|
+
end
|
68
|
+
end
|
69
|
+
end
|
70
|
+
end
|
71
|
+
|
72
|
+
# If exitVar is still nil at this point, then either the
|
73
|
+
# marker variable has a positive coefficient in all equations,
|
74
|
+
# or it only occurs in equations for unrestricted variables.
|
75
|
+
# If it does occur in an equation for a restricted variable,
|
76
|
+
# pick the equation that gives the smallest ratio. (The row
|
77
|
+
# with the marker variable will become infeasible, but all the
|
78
|
+
# other rows will still be feasible; and we will be dropping
|
79
|
+
# the row with the marker variable. In effect we are removing
|
80
|
+
# the non-negativity restriction on the marker variable.)
|
81
|
+
if exit_var.nil?
|
82
|
+
col.each do |v|
|
83
|
+
if v.restricted?
|
84
|
+
expr = rows[v]
|
85
|
+
coeff = expr.coefficient_for(marker)
|
86
|
+
r = expr.constant / coeff
|
87
|
+
if exit_var.nil? or r < min_ratio
|
88
|
+
min_ratio = r
|
89
|
+
exit_var = v
|
90
|
+
end
|
91
|
+
end
|
92
|
+
end
|
93
|
+
end
|
94
|
+
|
95
|
+
# If exitVar is still nil, and col is empty, then exitVar
|
96
|
+
# doesn't occur in any equations, so just remove it.
|
97
|
+
# Otherwise pick an exit var from among the unrestricted
|
98
|
+
# variables whose equation involves the marker var
|
99
|
+
if exit_var.nil?
|
100
|
+
if col.empty?
|
101
|
+
remove_parametric_var(marker)
|
102
|
+
else
|
103
|
+
exit_var = col.to_a.first
|
104
|
+
end
|
105
|
+
end
|
106
|
+
|
107
|
+
if exit_var
|
108
|
+
pivot(marker, exit_var)
|
109
|
+
end
|
110
|
+
end
|
111
|
+
|
112
|
+
# Now delete any error variables. If cn is an inequality, it
|
113
|
+
# also contains a slack variable; but we use that as the
|
114
|
+
# marker variable and so it has been deleted when we removed
|
115
|
+
# its row
|
116
|
+
if rows.has_key?(marker)
|
117
|
+
remove_row(marker)
|
118
|
+
end
|
119
|
+
evars.each do |v|
|
120
|
+
remove_parametric_var(v) unless v == marker
|
121
|
+
end
|
122
|
+
|
123
|
+
if cn.stay_constraint?
|
124
|
+
self.stay_plus_error_vars = stay_plus_error_vars.reject do |v| evars.include? v end
|
125
|
+
self.stay_minus_error_vars = stay_minus_error_vars.reject do |v| evars.include? v end
|
126
|
+
end
|
127
|
+
|
128
|
+
if cn.edit_constraint?
|
129
|
+
# find the index in editPlusErrorVars of the error variable for this constraint
|
130
|
+
index = find_edit_error_index(evars)
|
131
|
+
|
132
|
+
# remove the error variables from editPlusErrorVars and editMinusErrorVars
|
133
|
+
edit_plus_error_vars.delete_at(index)
|
134
|
+
edit_minus_error_vars.delete_at(index)
|
135
|
+
|
136
|
+
# remove the constants from prevEditConstants
|
137
|
+
prev_edit_constants.delete_at(index)
|
138
|
+
end
|
139
|
+
|
140
|
+
if auto_solve
|
141
|
+
optimize(zrow)
|
142
|
+
set_external_variables
|
143
|
+
end
|
144
|
+
end
|
145
|
+
|
146
|
+
def resolve(cs = nil)
|
147
|
+
if cs
|
148
|
+
self.new_edit_constants = cs
|
149
|
+
end
|
150
|
+
|
151
|
+
# Re-solve the current collection of constraints for the new values in newEditConstants.
|
152
|
+
self.infeasible_rows = []
|
153
|
+
reset_stay_constants
|
154
|
+
reset_edit_constants
|
155
|
+
dual_optimize
|
156
|
+
set_external_variables
|
157
|
+
end
|
158
|
+
|
159
|
+
def solve
|
160
|
+
optimize objective
|
161
|
+
set_external_variables
|
162
|
+
end
|
163
|
+
|
164
|
+
def suggest_value(var, val)
|
165
|
+
edit_vars.each_with_index do |v, idx|
|
166
|
+
if v == var
|
167
|
+
new_edit_constants[idx] = val
|
168
|
+
end
|
169
|
+
return self
|
170
|
+
end
|
171
|
+
raise InternalError, "variable not currently being edited"
|
172
|
+
end
|
173
|
+
|
174
|
+
def add_edit_var(variable, strength)
|
175
|
+
add_constraint(EditConstraint.new variable: variable, strength: strength)
|
176
|
+
end
|
177
|
+
|
178
|
+
def add_stay(variable, strength = Strength::WeakStrength)
|
179
|
+
add_constraint(StayConstraint.new variable: variable, strength: strength)
|
180
|
+
end
|
181
|
+
|
182
|
+
def begin_edit
|
183
|
+
self.new_edit_constants = [nil] * edit_vars.size
|
184
|
+
end
|
185
|
+
|
186
|
+
def end_edit
|
187
|
+
edit_constraints.each do |cn|
|
188
|
+
remove_constraint(cn)
|
189
|
+
end
|
190
|
+
self.edit_vars = []
|
191
|
+
self.edit_constraints = []
|
192
|
+
end
|
193
|
+
|
194
|
+
def note_added_variable(var, subject)
|
195
|
+
if subject
|
196
|
+
columns[var] ||= Set.new
|
197
|
+
columns[var] << subject
|
198
|
+
end
|
199
|
+
end
|
200
|
+
|
201
|
+
def note_removed_variable(var, subject)
|
202
|
+
if subject
|
203
|
+
columns[var].delete(subject)
|
204
|
+
end
|
205
|
+
end
|
206
|
+
|
207
|
+
private
|
208
|
+
def add_row(var, expr)
|
209
|
+
rows[var] = expr
|
210
|
+
expr.each_variable_and_coefficient do |v, c|
|
211
|
+
columns[v] ||= Set.new
|
212
|
+
columns[v] << var
|
213
|
+
end
|
214
|
+
end
|
215
|
+
|
216
|
+
def add_with_artificial_variable(expr)
|
217
|
+
av = SlackVariable.new
|
218
|
+
az = ObjectiveVariable.new
|
219
|
+
azrow = LinearExpression.new
|
220
|
+
|
221
|
+
# the artificial objective is av, which we know is equal to expr
|
222
|
+
# (which contains only parametric variables)
|
223
|
+
azrow.constant = expr.constant
|
224
|
+
expr.each_variable_and_coefficient do |v, c|
|
225
|
+
azrow.terms[v] = c
|
226
|
+
end
|
227
|
+
|
228
|
+
add_row(az, azrow)
|
229
|
+
add_row(av, expr)
|
230
|
+
|
231
|
+
# try to optimize av to 0
|
232
|
+
optimize az
|
233
|
+
|
234
|
+
# Check that we were able to make the objective value 0. If
|
235
|
+
# not, the original constraint was unsatisfiable.
|
236
|
+
raise RequiredFailure unless azrow.constant.cl_approx_zero
|
237
|
+
|
238
|
+
if e = rows[av]
|
239
|
+
# Find another variable in this row and pivot, so that av
|
240
|
+
# becomes parametric. If there isn't another variable in the
|
241
|
+
# row then the tableau contains the equation av=0 -- just
|
242
|
+
# delete av's row.
|
243
|
+
if e.constant?
|
244
|
+
remove_row(av)
|
245
|
+
return nil
|
246
|
+
else
|
247
|
+
pivot(e.any_variable, av)
|
248
|
+
end
|
249
|
+
end
|
250
|
+
|
251
|
+
# av should be parametric at this point
|
252
|
+
remove_parametric_var av
|
253
|
+
|
254
|
+
# remove the temporary objective function
|
255
|
+
remove_row az
|
256
|
+
end
|
257
|
+
|
258
|
+
def choose_subject(expr)
|
259
|
+
# We are trying to add the constraint expr=0 to the tableaux.
|
260
|
+
# Try to choose a subject (a variable to become basic) from
|
261
|
+
# among the current variables in expr. If expr contains any
|
262
|
+
# unrestricted variables, then we must choose an unrestricted
|
263
|
+
# variable as the subject. Also, if the subject is new to the
|
264
|
+
# solver we won't have to do any substitutions, so we prefer new
|
265
|
+
# variables to ones that are currently noted as parametric. If
|
266
|
+
# expr contains only restricted variables, if there is a
|
267
|
+
# restricted variable with a negative coefficient that is new to
|
268
|
+
# the solver we can make that the subject. Otherwise we can't
|
269
|
+
# find a subject, so return nil. (In this last case we have to
|
270
|
+
# add an artificial variable and use that variable as the
|
271
|
+
# subject -- this is done outside this method though.)
|
272
|
+
#
|
273
|
+
# Note: in checking for variables that are new to the solver, we
|
274
|
+
# ignore whether a variable occurs in the objective function, since
|
275
|
+
# new slack variables are added to the objective function by
|
276
|
+
# 'makeExpression:', which is called before this method.
|
277
|
+
found_unrestricted = false
|
278
|
+
found_new_restricted = false
|
279
|
+
subject = nil
|
280
|
+
coeff = nil
|
281
|
+
|
282
|
+
expr.each_variable_and_coefficient do |v, c|
|
283
|
+
if found_unrestricted
|
284
|
+
# We have already found an unrestricted variable. The only
|
285
|
+
# time we will want to use v instead of the current choice
|
286
|
+
# 'subject' is if v is unrestricted and new to the solver
|
287
|
+
# and 'subject' isn't new. If this is the case just pick v
|
288
|
+
# immediately and return.
|
289
|
+
unless v.restricted?
|
290
|
+
return v unless columns.has_key? v
|
291
|
+
end
|
292
|
+
else
|
293
|
+
if v.restricted?
|
294
|
+
# v is restricted. If we have already found a suitable
|
295
|
+
# restricted variable just stick with that. Otherwise, if
|
296
|
+
# v is new to the solver and has a negative coefficient
|
297
|
+
# pick it. Regarding being new to the solver -- if the
|
298
|
+
# variable occurs only in the objective function we regard
|
299
|
+
# it as being new to the solver, since error variables are
|
300
|
+
# added to the objective function when we make the
|
301
|
+
# expression. We also never pick a dummy variable here.
|
302
|
+
if !found_new_restricted and !v.dummy? and c < 0.0
|
303
|
+
col = columns[v]
|
304
|
+
if col.nil? or (col.size == 1 and col.include? objective)
|
305
|
+
subject = v
|
306
|
+
found_new_restricted = true
|
307
|
+
end
|
308
|
+
end
|
309
|
+
else
|
310
|
+
# v is unrestricted. If v is also new to the solver just
|
311
|
+
# pick it now
|
312
|
+
return v unless columns.has_key? v
|
313
|
+
subject = v
|
314
|
+
found_unrestricted = true
|
315
|
+
end
|
316
|
+
end
|
317
|
+
end
|
318
|
+
|
319
|
+
# subject is nil. Make one last check -- if all of the
|
320
|
+
# variables in expr are dummy variables, then we can pick a
|
321
|
+
# dummy variable as the subject.
|
322
|
+
return subject unless subject.nil?
|
323
|
+
expr.each_variable_and_coefficient do |v, c|
|
324
|
+
return nil unless v.dummy?
|
325
|
+
# if v is new to the solver tentatively make it the subject
|
326
|
+
unless columns.has_key? v
|
327
|
+
subject = v
|
328
|
+
coeff = c
|
329
|
+
end
|
330
|
+
end
|
331
|
+
|
332
|
+
# If we get this far, all of the variables in the expression
|
333
|
+
# should be dummy variables. If the constant is nonzero we are
|
334
|
+
# trying to add an unsatisfiable required constraint. (Remember
|
335
|
+
# that dummy variables must take on a value of 0.) Otherwise,
|
336
|
+
# if the constant is zero, multiply by -1 if necessary to make
|
337
|
+
# the coefficient for the subject negative.
|
338
|
+
raise RequiredFailure unless expr.constant.cl_approx_zero
|
339
|
+
if coeff > 0
|
340
|
+
expr.each_variable_and_coefficient do |v, c|
|
341
|
+
expr.terms[v] = 0.0 - c
|
342
|
+
end
|
343
|
+
end
|
344
|
+
|
345
|
+
subject
|
346
|
+
end
|
347
|
+
|
348
|
+
def delta_edit_constant(delta, plus_error_var, minus_error_var)
|
349
|
+
if expr = rows[plus_error_var]
|
350
|
+
expr.increment_constant delta
|
351
|
+
# error variables are always restricted -- so the row is
|
352
|
+
# infeasible if the constant is negative
|
353
|
+
(infeasible_rows << plus_error_var) if expr.constant < 0.0
|
354
|
+
return nil
|
355
|
+
end
|
356
|
+
|
357
|
+
if expr = rows[minus_error_var]
|
358
|
+
expr.increment_constant -delta
|
359
|
+
(infeasible_rows << plus_error_var) if expr.constant < 0.0
|
360
|
+
return nil
|
361
|
+
end
|
362
|
+
|
363
|
+
# Neither minusErrorVar nor plusErrorVar is basic. So they must
|
364
|
+
# both be nonbasic, and will both occur in exactly the same
|
365
|
+
# expressions. Find all the expressions in which they occur by
|
366
|
+
# finding the column for the minusErrorVar (it doesn't matter
|
367
|
+
# whether we look for that one or for plusErrorVar). Fix the
|
368
|
+
# constants in these expressions.
|
369
|
+
columns[minus_error_var].each do |basic_var|
|
370
|
+
expr = rows[basic_var]
|
371
|
+
c = expr.coefficient_for(minus_error_var)
|
372
|
+
expr.increment_constant c * delta
|
373
|
+
if basic_var.restricted? and expr.constant < 0.0
|
374
|
+
infeasible_rows << basic_var
|
375
|
+
end
|
376
|
+
end
|
377
|
+
end
|
378
|
+
|
379
|
+
def dual_optimize
|
380
|
+
# We have set new values for the constants in the edit
|
381
|
+
# constraints. Re-optimize using the dual simplex algorithm.
|
382
|
+
entry_var = nil
|
383
|
+
zrow = rows[objective]
|
384
|
+
until infeasible_rows.empty?
|
385
|
+
exit_var = infeasible_rows.shift
|
386
|
+
if expr = rows[exit_var]
|
387
|
+
if expr.constant < 0.0
|
388
|
+
ratio = nil
|
389
|
+
expr.each_variable_and_coefficient do |v, c|
|
390
|
+
if c > 0.0 and v.pivotable?
|
391
|
+
zc = zrow.terms[v]
|
392
|
+
r = zc ? zc / c : SymbolicWeight::Zero
|
393
|
+
if ratio.nil? or r < ratio or (r == ratio and v.hash < entry_var.hash)
|
394
|
+
entry_var = v
|
395
|
+
ratio = r
|
396
|
+
end
|
397
|
+
end
|
398
|
+
end
|
399
|
+
raise InternalError if ratio.nil?
|
400
|
+
pivot entry_var, exit_var
|
401
|
+
end
|
402
|
+
end
|
403
|
+
end
|
404
|
+
end
|
405
|
+
|
406
|
+
def find_edit_error_index(evars)
|
407
|
+
evars.each do |v|
|
408
|
+
if index = edit_plus_error_vars.index(v)
|
409
|
+
return index
|
410
|
+
end
|
411
|
+
end
|
412
|
+
raise InternalError, "didn't find a variable"
|
413
|
+
end
|
414
|
+
|
415
|
+
def initialize
|
416
|
+
self.objective = ObjectiveVariable.new
|
417
|
+
self.rows = {objective => LinearExpression.new_with_symbolic_weight}
|
418
|
+
self.columns = {}
|
419
|
+
self.infeasible_rows = []
|
420
|
+
self.prev_edit_constants = []
|
421
|
+
self.stay_plus_error_vars = []
|
422
|
+
self.stay_minus_error_vars = []
|
423
|
+
self.edit_vars = []
|
424
|
+
self.edit_constraints = []
|
425
|
+
self.edit_plus_error_vars = []
|
426
|
+
self.edit_minus_error_vars = []
|
427
|
+
self.marker_vars = {}
|
428
|
+
self.error_vars = {}
|
429
|
+
self.auto_solve = true
|
430
|
+
end
|
431
|
+
|
432
|
+
def make_expression(cn)
|
433
|
+
# Make a new linear expression representing the constraint cn,
|
434
|
+
# replacing any basic variables with their defining expressions.
|
435
|
+
# Normalize if necessary so that the constant is non-negative.
|
436
|
+
# If the constraint is non-required give its error variables an
|
437
|
+
# appropriate weight in the objective function.
|
438
|
+
expr = LinearExpression.new
|
439
|
+
cnexpr = cn.expression
|
440
|
+
expr.constant = cnexpr.constant
|
441
|
+
cnexpr.each_variable_and_coefficient do |v, c|
|
442
|
+
e = rows[v]
|
443
|
+
if e.nil?
|
444
|
+
expr.add_variable(v, c)
|
445
|
+
else
|
446
|
+
expr.add_expression(e, c)
|
447
|
+
end
|
448
|
+
end
|
449
|
+
|
450
|
+
# add slack and error variables as needed
|
451
|
+
if cn.inequality?
|
452
|
+
# cn is an inequality, so add a slack variable. The original
|
453
|
+
# constraint is expr>=0, so that the resulting equality is
|
454
|
+
# expr-slackVar=0. If cn is also non-required add a negative
|
455
|
+
# error variable, giving expr-slackVar = -errorVar, in other
|
456
|
+
# words expr-slackVar+errorVar=0. Since both of these
|
457
|
+
# variables are newly created we can just add them to the
|
458
|
+
# expression (they can't be basic).
|
459
|
+
slackvar = SlackVariable.new
|
460
|
+
expr.terms[slackvar] = -1.0
|
461
|
+
marker_vars[cn] = slackvar
|
462
|
+
unless cn.required?
|
463
|
+
eminus = SlackVariable.new
|
464
|
+
expr.terms[eminus] = 1.0
|
465
|
+
|
466
|
+
zrow = rows[objective]
|
467
|
+
zrow.terms[eminus] = cn.strength.symbolic_weight * cn.weight
|
468
|
+
error_vars[cb] = [eminus]
|
469
|
+
note_added_variable(eminus, objective)
|
470
|
+
end
|
471
|
+
else
|
472
|
+
if cn.required?
|
473
|
+
# Add a dummy variable to the expression to serve as a
|
474
|
+
# marker for this constraint. The dummy variable is never
|
475
|
+
# allowed to enter the basis when pivoting.
|
476
|
+
dummyvar = DummyVariable.new
|
477
|
+
expr.terms[dummyvar] = 1.0
|
478
|
+
marker_vars[cn] = dummyvar
|
479
|
+
else
|
480
|
+
# cn is a non-required equality. Add a positive and a
|
481
|
+
# negative error variable, making the resulting constraint
|
482
|
+
# expr = eplus - eminus, in other words expr-eplus+eminus=0
|
483
|
+
eplus = SlackVariable.new
|
484
|
+
eminus = SlackVariable.new
|
485
|
+
expr.terms[eplus] = -1.0
|
486
|
+
expr.terms[eminus] = 1.0
|
487
|
+
|
488
|
+
# index the constraint under one of the error variables
|
489
|
+
marker_vars[cn] = eplus
|
490
|
+
zrow = rows[objective]
|
491
|
+
zrow.terms[eplus] = cn.strength.symbolic_weight * cn.weight
|
492
|
+
note_added_variable(eplus, objective)
|
493
|
+
zrow.terms[eminus] = cn.strength.symbolic_weight * cn.weight
|
494
|
+
error_vars[cn] = [eplus, eminus]
|
495
|
+
note_added_variable(eminus, objective)
|
496
|
+
|
497
|
+
if cn.stay_constraint?
|
498
|
+
stay_plus_error_vars << eplus
|
499
|
+
stay_minus_error_vars << eminus
|
500
|
+
end
|
501
|
+
|
502
|
+
if cn.edit_constraint?
|
503
|
+
edit_vars << cn.variable
|
504
|
+
edit_constraints << cn
|
505
|
+
edit_plus_error_vars << eplus
|
506
|
+
edit_minus_error_vars << eminus
|
507
|
+
prev_edit_constants << cnexpr.constant
|
508
|
+
end
|
509
|
+
end
|
510
|
+
end
|
511
|
+
|
512
|
+
# The constant in the expression should be non-negative. If
|
513
|
+
# necessary normalize the expression by multiplying by -1.
|
514
|
+
if expr.constant < 0
|
515
|
+
expr.constant = 0.0 - expr.constant
|
516
|
+
expr.each_variable_and_coefficient do |v, c|
|
517
|
+
expr.terms[v] = 0.0 - c
|
518
|
+
end
|
519
|
+
end
|
520
|
+
expr
|
521
|
+
end
|
522
|
+
|
523
|
+
def optimize(zvar)
|
524
|
+
# Minimize the value of the objective. (The tableau should
|
525
|
+
# already be feasible.)
|
526
|
+
zrow = rows[zvar]
|
527
|
+
exitvar = nil
|
528
|
+
while true do
|
529
|
+
# Find a variable in the objective function with a negative
|
530
|
+
# coefficient (ignoring dummy variables). If all coefficients
|
531
|
+
# are positive we're done. To implement Bland's anticycling
|
532
|
+
# rule, if there is more than one variable with a negative
|
533
|
+
# coefficient, pick the one with the smaller id (implemented
|
534
|
+
# as hash).
|
535
|
+
entryvar = nil
|
536
|
+
zrow.each_variable_and_coefficient do |v, c|
|
537
|
+
if v.pivotable? and c.definitely_negative and (entryvar.nil? or v.hash < entryvar.hash)
|
538
|
+
entryvar = v
|
539
|
+
end
|
540
|
+
end
|
541
|
+
|
542
|
+
# if all coefficients were positive (or if the objective
|
543
|
+
# function has no pivotable variables) we are at optimum
|
544
|
+
return nil if entryvar.nil?
|
545
|
+
|
546
|
+
# Choose which variable to move out of the basis. Only
|
547
|
+
# consider pivotable basic variables (that is, restricted,
|
548
|
+
# non-dummy variables).
|
549
|
+
minratio = nil
|
550
|
+
columns[entryvar].each do |v|
|
551
|
+
if v.pivotable?
|
552
|
+
expr = rows[v]
|
553
|
+
coeff = expr.coefficient_for(entryvar)
|
554
|
+
|
555
|
+
if coeff < 0.0
|
556
|
+
r = -(expr.constant / coeff)
|
557
|
+
# Decide whether to make v be the best choice for exit
|
558
|
+
# variable so far by comparing the ratios. In case of a
|
559
|
+
# tie, choose the variable with the smaller id (to
|
560
|
+
# implement Bland's anticycling rule).
|
561
|
+
if minratio.nil? or r < minratio or (r == minratio and v.hash < exitvar.hash)
|
562
|
+
minratio = r
|
563
|
+
exitvar = v
|
564
|
+
end
|
565
|
+
end
|
566
|
+
end
|
567
|
+
end
|
568
|
+
|
569
|
+
# If minRatio is still nil at this point, it means that the
|
570
|
+
# objective function is unbounded, i.e. it can become
|
571
|
+
# arbitrarily negative. This should never happen in this
|
572
|
+
# application.
|
573
|
+
raise InternalError if minratio.nil?
|
574
|
+
pivot entryvar, exitvar
|
575
|
+
end
|
576
|
+
end
|
577
|
+
|
578
|
+
def pivot(entryvar, exitvar)
|
579
|
+
# Do a pivot. Move entryVar into the basis (i.e. make it a
|
580
|
+
# basic variable), and move exitVar out of the basis (i.e. make
|
581
|
+
# it a parametric variable). expr is the expression for the
|
582
|
+
# exit variable (about to leave the basis) -- so that the old
|
583
|
+
# tableau includes the equation exitVar = expr
|
584
|
+
expr = remove_row(exitvar)
|
585
|
+
|
586
|
+
# Compute an expression for the entry variable. Since expr has
|
587
|
+
# been deleted from the tableau we can destructively modify it
|
588
|
+
# to build this expression.
|
589
|
+
expr.change_subject exitvar, entryvar
|
590
|
+
substitute_out(entryvar, expr)
|
591
|
+
add_row(entryvar, expr)
|
592
|
+
end
|
593
|
+
|
594
|
+
def remove_parametric_var(var)
|
595
|
+
set = columns.delete(var)
|
596
|
+
set.each do |v|
|
597
|
+
rows[v].terms.delete(var)
|
598
|
+
end
|
599
|
+
end
|
600
|
+
|
601
|
+
def remove_row(var)
|
602
|
+
expr = rows.delete(var)
|
603
|
+
expr.each_variable_and_coefficient do |v, c|
|
604
|
+
columns[v].delete var
|
605
|
+
end
|
606
|
+
infeasible_rows.delete(var)
|
607
|
+
expr
|
608
|
+
end
|
609
|
+
|
610
|
+
def reset_edit_constants
|
611
|
+
# Each of the non-required edits will be represented by an
|
612
|
+
# equation of the form
|
613
|
+
#
|
614
|
+
# v = c + eplus - eminus
|
615
|
+
#
|
616
|
+
# where v is the variable with the edit, c is the previous edit
|
617
|
+
# value, and eplus and eminus are slack variables that hold the
|
618
|
+
# error in satisfying the edit constraint. We are about to
|
619
|
+
# change something, and we want to fix the constants in the
|
620
|
+
# equations representing the edit constraints. If one of eplus
|
621
|
+
# and eminus is basic, the other must occur only in the
|
622
|
+
# expression for that basic error variable. (They can't both be
|
623
|
+
# basic.) Fix the constant in this expression. Otherwise they
|
624
|
+
# are both nonbasic. Find all of the expressions in which they
|
625
|
+
# occur, and fix the constants in those. See the UIST paper for
|
626
|
+
# details.
|
627
|
+
|
628
|
+
raise InternalError if new_edit_constants.size != edit_plus_error_vars.size
|
629
|
+
new_edit_constants.each_with_index do |ec, idx|
|
630
|
+
delta = ec - prev_edit_constants[idx]
|
631
|
+
prev_edit_constants[idx] = ec
|
632
|
+
delta_edit_constant(delta, edit_plus_error_vars[idx], edit_minus_error_vars[idx])
|
633
|
+
end
|
634
|
+
end
|
635
|
+
|
636
|
+
def reset_stay_constants
|
637
|
+
# Each of the non-required stays will be represented by an
|
638
|
+
# equation of the form
|
639
|
+
#
|
640
|
+
# v = c + eplus - eminus
|
641
|
+
#
|
642
|
+
# where v is the variable with the stay, c is the previous value
|
643
|
+
# of v, and eplus and eminus are slack variables that hold the
|
644
|
+
# error in satisfying the stay constraint. We are about to
|
645
|
+
# change something, and we want to fix the constants in the
|
646
|
+
# equations representing the stays. If both eplus and eminus
|
647
|
+
# are nonbasic they have value 0 in the current solution,
|
648
|
+
# meaning the previous stay was exactly satisfied. In this case
|
649
|
+
# nothing needs to be changed. Otherwise one of them is basic,
|
650
|
+
# and the other must occur only in the expression for that basic
|
651
|
+
# error variable. Reset the constant in this expression to 0.
|
652
|
+
|
653
|
+
stay_plus_error_vars.each_with_index do |ev, idx|
|
654
|
+
expr = rows[ev] || rows[stay_minus_error_vars[idx]]
|
655
|
+
expr.constant = 0.0 if expr
|
656
|
+
end
|
657
|
+
end
|
658
|
+
|
659
|
+
def set_external_variables
|
660
|
+
# Set each external basic variable to its value, and set each
|
661
|
+
# external parametric variable to 0. (It isn't clear that we
|
662
|
+
# will ever have external parametric variables -- every external
|
663
|
+
# variable should either have a stay on it, or have an equation
|
664
|
+
# that defines it in terms of other external variables that do
|
665
|
+
# have stays. For the moment I'll put this in though.)
|
666
|
+
# Variables that are internal to the solver don't actually store
|
667
|
+
# values -- their values are just implicit in the tableu -- so
|
668
|
+
# we don't need to set them.
|
669
|
+
rows.each_pair do |var, expr|
|
670
|
+
var.value = expr.constant if var.external?
|
671
|
+
end
|
672
|
+
|
673
|
+
columns.keys.each do |var|
|
674
|
+
var.value = 0.0 if var.external?
|
675
|
+
end
|
676
|
+
end
|
677
|
+
|
678
|
+
def substitute_out(old_var, expr)
|
679
|
+
col = columns.delete(old_var)
|
680
|
+
col.each do |v|
|
681
|
+
row = rows[v]
|
682
|
+
row.substitute_variable(old_var, expr, v, self)
|
683
|
+
if v.restricted? and row.constant < 0.0
|
684
|
+
infeasible_rows << v
|
685
|
+
end
|
686
|
+
end
|
687
|
+
end
|
688
|
+
|
689
|
+
def try_adding_directly(expr)
|
690
|
+
# If possible choose a subject for expr (a variable to become
|
691
|
+
# basic) from among the current variables in expr. If this
|
692
|
+
# isn't possible, add an artificial variable and use that
|
693
|
+
# variable as the subject.
|
694
|
+
subject = choose_subject(expr)
|
695
|
+
return false if subject.nil?
|
696
|
+
expr.new_subject subject
|
697
|
+
if columns.has_key? subject
|
698
|
+
substitute_out subject, expr
|
699
|
+
end
|
700
|
+
add_row subject, expr
|
701
|
+
true
|
702
|
+
end
|
703
|
+
end
|
704
|
+
end
|